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Abstract

We introduce elements of an auction in a rent-seeking contest. Players
compete for a prize. Apart from exerting lobbying efforts, they also
submit a bid which is payable only if they win the prize. First, we
analyze the model if the returns-to-scale parameters of both bids and
efforts are unity. In that case there exists a unique Nash equilibrium
in pure strategies, in which each active player submits the same bid,
while the sum of all efforts equals that bid. Second, we analyze the
case in which the returns-to-scale parameters differ from unity, and
derive the implications of that specification.
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1 Introduction

In many economic situations, a number of contestants try to obtain some
prize or rent. Several mechanisms can be used to assign a prize to one of the
competitors. One obvious way to do so is through a regular auction. Then,
all contestants submit a bid and as a rule the one submitting the highest bid
obtains the prize, and pays an amount that depends in some pre-described
way on the total vector of bids. In the simplest case, a first-price sealed bid
auction, the highest bidder pays his own bid, whereas the other bidders pay
nothing.1 In the case of policy decisions, the parties involved often exert
effort in an attempt to influence the decision process. This effort can take
the form of lobbying, but can also consist of bribes. Such a process can
be modelled as an all-pay auction or a rent-seeking contest. In an all-pay
auction (see e.g. Baye, Kovenock, and de Vries, 1993), all contestants have
to pay for their effort, and the one with the highest effort wins the auction.
In a rent-seeking contest, all players also exert some effort, but the outcome
of the process is stochastic: each contestant wins with a probability that is
increasing in his own effort, but decreasing in that of his competitors. The
extensive literature on such contests started with Tullock (1980).2

Yet, in practice, we often have situations that lie somewhere between the
two extremes of rent-seeking contests and regular auctions. An example is
the procedure by which major sports events, such as the Olympic Games, are
assigned to cities or countries. On the one hand, this decision is influenced
by lobbying or bribing. Yet, the contestants also submit bids, which come in
the form of e.g. the quality or quantity of new stadiums and infrastructure,
which will only be built by a city or country if it becomes the actual organiser
of the event. As another example, note that often when an auction is held,
the outcome is not solely determined by the height of the bid. In many cases,
other aspects of the competing offers also play a role. In public procurement,
the quality of the offers made is also taken into account, usually by some
predefined rule that weighs different quantifiable quality criteria of the offers
made. A final example is a takeover battle. Suppose two firms try to take
over a third firm. Both firms submit a bid. Shareholders decide whom to
tender their shares to. They will usually base their decisions not only on the
bids submitted, but also on the extent to which they feel each firm contributes
to the long-term prospects of the firm being taken over.3 Thus, in practice
we often see hybrid forms of rent-seeking contests and regular auctions.

In this paper, we try to model this notion. We build on the rent-seeking



Marco Haan and Lambert Schoonbeek 3

literature, but assume that the probability of winning not only depends on
the effort exerted, but also on the bid made. A bid is payable for a player only
if he wins the prize. This is the first-price sealed bid aspect of our model.
In section 2, we describe our general framework, and show that it can be
seen as an extension of the standard rent-seeking game. In section 3, we
consider the simplest possible version of our model in which returns-to-scale
parameters of both bids and efforts are equal to unity. We demonstrate for
this model the existence of a unique (Nash) equilibrium in pure strategies.
Denoting a player as active if and only if he submits positive bid and effort,
it turns out that in the equilibrium one of the following two possibilities
must hold: either all players are active, or there is a subset of players with a
relatively high valuation of the prize who are active whereas the other players
with a relatively low valuation of the prize are not active. We further show
that in the equilibrium (a) each active player submits the same bid, (b) the
sum of all efforts equals that bid, and (c) there is underdissipation of rent.
Furthermore, we give the equilibrium solution in explicit form for the case of
equal valuations, and for the case in which there are only two contestants.
Section 4 uses a more general model, in which the returns-to-scale parameters
of bids and efforts may differ from unity, and derives the implications of that
specification. If a pure strategy equilibrium in which all players are active
exists, it now has that the sum of all individual ratios of effort and bid,
equals the ratio of the returns-to-scale parameters associated with efforts
and bids. We further present a sufficient condition for the existence of a
unique symmetric equilibrium in pure strategies of this model for the case of
equal valuations. Section 5 concludes.

2 The general model

Our basic model is the following. There are n > 1 given players trying to
obtain some prize. Player i values the prize at vi > 0. We thus allow for
asymmetric valuations. Different from the auction literature, but consistent
with the rent-seeking literature, we assume that the valuations vi are common
knowledge. Each player i can submit a bid bi ≥ 0, and spend effort ei ≥ 0.
The bid bi only has to be paid if i wins the prize. However, effort outlays ei

are sunk. A player cannot retrieve these, regardless of whether or not he wins
the prize. The probability pi that i wins is given by the logit form contest
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success function

pi(b1, . . . , bn, e1, . . . , en) =
f(bi, ei)∑n

j=1 f(bj, ej)
, i = 1, . . . , n, (1)

if bj > 0 and ej > 0 for at least one j, and pi = 0 if that is not the case.
Here, f(bi, ei) is non-negative, and ∂f/∂bi, ∂f/∂ei ≥ 0. This implies ∂pi/∂bi,
∂pi/∂ei ≥ 0, and ∂pi/∂bj, ∂pi/∂ej ≤ 0 (j 6= i). Thus, based on the bid bi and
the effort ei, a ‘score’ f(bi, ei) is computed for each player. The probability
that a certain player wins this contest, is equal to the share of his score in
the total sum of scores. Note that these probabilities sum to unity.4 Given
(1), player i maximizes his expected payoff, given by

Πi = pi (vi − bi)− ei. (2)

This expression reflects that the bid only has to be paid if the player wins
the prize, whereas the effort outlays are non-refundable.

A natural assumption is that the score f(bi, ei) links bi and ei in some
multiplicative fashion. In that way, we capture the idea that there is a trade-
off between bid bi and effort ei, and that both a positive bid and a positive
effort are necessary to have a positive probability of winning. In section 3,
we simply assume f(bi, ei) = biei, which we denote as a constant-returns-to-
scale score. In section 4, we use a more general Cobb-Douglas score function
f(bi, ei) = bα

i eβ
i , with α, β > 0 returns-to-scale parameters of, respectively,

the bids and efforts. Such a more general function, however, leads to a less
tractable model.

In a standard rent-seeking model, only some effort ei is exerted. Expected
payoffs then equal

πi =
g(ei)∑
j g(ej)

vi − ei. (3)

Many papers in this literature assume g(ei) = ei. Hillman and Riley (1989)
analyze this model, allowing for n contestants and asymmetric valuations.
Ellingsen (1991) gives an application. Our model in section 3 can be seen as
a generalization of this approach. Some papers, including Tullock (1980), use
a more general contest success function g(ei) = er

i , with r > 0. Nti (1999)
analyzes this model, allowing for asymmetric valuations, but restricting at-
tention to the case n = 2. Our model in section 4 generalizes this approach.
Finally, we refer to Skaperdas (1996) and Kooreman and Schoonbeek (1997)
for a general discussion of the foundations of logit form contest success func-
tions in rent-seeking models.



Marco Haan and Lambert Schoonbeek 5

3 A constant-returns-to-scale score

In this section we use the constant-returns-to-scale score f(bi, ei) = biei. The
expected payoff for player i then equals

Πi =

(
biei∑
j bjej

)
(vi − bi)− ei (4)

if bj > 0 and ej > 0 for at least one j, and Πi = 0 otherwise. We look for Nash
equilibria in pure strategies. Without loss of generality, order valuations such
that v1 ≥ v2 ≥ . . . ≥ vn. To derive our main result, we need the following
continuous auxiliary functions

hm(b) =
m∑

j=1

(
1

vj − b

)
− m− 1

b
, (5)

for 0 < b < vm , with m = 2, . . . , n. For fixed m, the function hm(b) is strictly
increasing in b. Moreover, limb↓0 hm(b) = −∞, and limb↑vm hm(b) = ∞. This
implies that hm(b) has a unique root, b(m) say, on (0, vm), i.e. hm(b(m)) = 0.
It is not possible to find a general closed form expression for b(m).

In an equilibrium, not every player necessarily submits a positive bid
and effort. There are circumstances in which a player i is better off setting
bi = ei = 0, and earning zero expected profits. We will describe such a player
as inactive. The following theorem now states the unique equilibrium of our
model.

Theorem 1 With n > 1 players, whose valuations are given by v1 ≥ v2 ≥
. . . ≥ vn, there is a unique equilibrium (b̂1, . . . , b̂n, ê1, . . . , ên). There is some
player k (2 ≤ k ≤ n), such that in the equilibrium every player j with
vj ≥ vk is active, whereas the other players (if any) are inactive. With b(m)
the unique root of the function hm(b) as defined in (5), with m = 2, . . . , n,
we have:

(i) b̂i = b(k), for all i = 1, . . . , k,

(ii) êi = b̂i(vi−2b̂i)

(vi−b̂i)
, for all i = 1, . . . , k,

(iii)
∑k

i=1 êi = b(k),

(iv) k = supm {m : b(m) < vm/2}.
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Proof. See the Appendix.

The unique equilibrium has a number of interesting properties. First,
all active players submit the same bid b(k), regardless of their valuation.
This implies that, in equilibrium, differences in success probabilities of active
players are solely determined by differences in the efforts êi. Second, the bid
b(k) every active player submits, equals the sum of total efforts. Third, that
bid is strictly increasing in the size of the valuations of the active players:
∂b(k)/∂vi > 0, ∀i = 1, . . . , k. This can be seen from (i) of Theorem 1 and (5).
Fourth, equilibrium bid and efforts are linear homogeneous in valuations:
if all valuations are multiplied with the same factor, then the equilibrium
bid and efforts all are multiplied with this factor as well. Fifth, we have
ê1 ≥ ê2 ≥ . . . ≥ êk > 0. Thus, the higher the valuation of an active player,
the greater the effort he exerts. Sixth, p̂1 ≥ p̂2 ≥ . . . ≥ p̂k > 0, which follows
from the fact that p̂i = êi/b(k). Thus, the player with the highest valuation
also has the highest probability to win the prize. Seventh, a player with a
higher valuation also has a higher expected profit: Π̂1 ≥ Π̂2 ≥ . . . ≥ Π̂k > 0.
This follows from the fact that Π̂i = (vi−2b(k))2/(vi− b(k)) for i = 1, . . . , k.
Eighth, if not all players are active, then only the players with the highest
valuations are. Finally, all n players are active if and only if b(n) < vn/2.

Now consider the extent of rent dissipation that occurs in equilibrium.
To study this issue, we need a definition of rent dissipation in the context of
our model. Usually, it is defined as the total sum of efforts of the contestants
trying to obtain the prize. Yet, in our model, there is also a bid b(k) paid by
the winner. Arguably, this should not be counted as rent dissipation, since
it merely consists of a transfer from the winner of the prize to the authority
selling the prize. On the other hand, it is often argued that efforts êi consist
of bribes rather than efforts. Since bribes are also merely transfers, then
if bribes are counted as dissipated rent, winning bids should also be. We
therefore consider both possibilities. First, suppose that the winning bid is
considered as dissipated rent. Total dissipation then equals D =

∑
i êi +b(k).

Using Theorem 1, it follows that D = 2b(k) < vk. Thus, in this case there is
always underdissipation of rent: total rent dissipation is less than the size of
(even) the smallest valuation of the prize among the active players. If we do
not consider the winning bid as dissipated rent, then total rent dissipation,
D′ say, satisfies D′ = 1

2
D < 1

2
vk. Again there is always underdissipation of

rent.
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3.1 The case of n equal valuations

Now consider the case in which all players have the same valuation. We then
obtain the following result.

Corollary 1 Take the model with n > 1 players. If vi = v, ∀i, then the
unique equilibrium bids and efforts are given by:

(i) b̂i = b(n) = (n−1)v
(2n−1)

,∀i,

(ii) êi = (n−1)v
(2n−1)n

,∀i.

Proof. See the Appendix.

For this case, we do have explicit solutions for b̂i and êi. Therefore, we
can explicitly characterize the extent of rent dissipation in equilibrium. If
the winning bid is considered as dissipated rent, then total rent dissipation
is 2

3
v with n = 2, and it strictly increases to v as n goes to infinity. If the

winning bid is not considered as dissipated rent, then total rent dissipation
is 1

3
v with n = 2, and it strictly increases to 1

2
v as n goes to infinity. In

the standard rent-seeking model, total rent dissipation equals (n−1)v/n, see
e.g. Hillman and Riley (1989). Thus, in our model, total rent dissipation is
lower than in the standard rent-seeking model when the winning bid is not
considered as dissipated rent, but higher when it is.

For the standard rent-seeking model, equilibrium efforts are e∗i = e∗ =
(n− 1)v/n2,∀i and expected payoffs π∗

i = v/n2, see again Hillman and Riley
(1989). In our model, using Corollary 1,

Π̂i =
v

n

(
1

2n− 1

)
. (6)

In a regular (first-price) auction, it is easy to see that each player would bid
the common valuation of the prize (v), leaving expected payoffs equal to zero.
Therefore, in our model, expected payoffs for contestants are higher than in
a regular auction, but lower than in a standard rent-seeking contest.

3.2 The case of two players

Next, we return to the general model in which valuations are allowed to
differ, but restrict attention to the case of two contestants, thus n = 2. We
then have the following result.
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Corollary 2 Take the model with n = 2 players. The unique equilibrium
bids and efforts are given by:

(i) b̂i = b(2) = v1+v2

3
− 1

3

√
(v1 + v2)

2 − 3v1v2,

(ii) êi = b̂i(vi−2b̂i)

(vi−b̂i)
,

for i = 1, 2. Substituting b̂i = b(2) into (ii), we have an explicit solution for
êi.

Proof. See the Appendix.

Suppose we consider the winning bid b(2) as dissipated rent. Total rent
dissipation then equals D = ê1 + ê2 + b(2) = 2b(2). In order to study the
effect of asymmetry, suppose the sum of valuations of both contestants is
fixed: v1 + v2 = V. Assuming that v1 ≥ v2, we may write v1 = ρV and
v2 = (1−ρ)V, with ρ ∈ [1

2
, 1). We can study the effect of decreased asymmetry

as a decrease in ρ. Total rent dissipation equals

D =
2

3
V
(
1−

√
1− 3ρ(1− ρ)

)
. (7)

Observe that
∂D

∂ρ
=

1− 2ρ√
1− 3ρ(1− ρ)

V. (8)

Thus, rent dissipation is maximized when ρ = 1
2
, i.e. when the two valuations

are equal. Further, ∂D/∂ρ < 0 for all ρ ∈ (1
2
, 1). Therefore, with two players,

we have that more equal valuations lead to higher total rent dissipation. 5

This result does not hinge on the definition of rent dissipation. When we
also take the winning bid into account, total rent dissipation simply equals
D′ = 1

2
D.

4 A general Cobb-Douglas score

In the previous section, we analyzed a model where the returns-to-scale pa-
rameters associated with both bidding and exerting effort equal unity. In
this section, we use the more general Cobb-Douglas score function f(bi, ei) =
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bα
i eβ

i . The returns-to-scale parameters satisfy α, β > 0. Hence, the model an-
alyzed in the previous section is a special case of this model, with α = β = 1.
The expected payoff of player i now equals

Πi =

 bα
i eβ

i∑
j bα

j eβ
j

 (vi − bi)− ei (9)

if bj > 0 and ej > 0 for at least one j, and Πi = 0 otherwise.
For this model we have the following general result.

Theorem 2 Take the model with n > 1 players. Consider an equilibrium
(b̂1, . . . , b̂n, ê1, . . . , ên) in which all n players are active. We then have: n∑

j=1

êj

b̂j

 =
β

α
. (10)

Proof. See the Appendix.
Thus, if we have an equilibrium in which all players are active, then the

sum of all individual ratios of the effort and bid, equals the ratio of the
returns-to-scale parameters associated with efforts and bids. This theorem
has a natural interpretation. As β, the parameter that reflects returns to scale
with respect to the efforts increases, then efforts become more important, in
the sense that the sum of the individual ratios of the equilibrium effort and
equilibrium bid increases. As α, the parameter that reflects returns to scale
with respect to bids increases, then bids become more important, in the sense
that the sum of the individual ratios of the equilibrium effort and equilibrium
bid decreases.

To further analyze this model, we assume that all contestants have equal
valuations. Even for the case of two players, it is in general not possible to
find the equilibrium with both agents active in closed form.6

4.1 The case of n equal valuations

Suppose that all players have equal valuations. We then have the following
result.

Theorem 3 Take the model with n > 1 players. Suppose that vi = v, ∀i,
and β ≤ 1. Then there exists a unique symmetric equilibrium with bids and
efforts given by:
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(i) b̂i = b̂ = α(n−1)v
α(n−1)+n

,∀i,

(ii) êi = ê = 1
n

β(n−1)v
α(n−1)+n

,∀i.

Proof. See the Appendix.
Thus, when valuations are equal, β ≤ 1 is a sufficient condition for the ex-

istence of a unique symmetric equilibrium. Again, bids and efforts are linear
homogeneous in the valuation v. Second, if α, the returns-to-scale parameter
of bids, increases, then equilibrium bids strictly increase, whereas the equi-
librium efforts strictly decrease. Third, if β, the returns-to-scale parameter
of efforts, increases, then equilibrium efforts strictly increase. There is no
effect on equilibrium bids. Fourth, in equilibrium the probability that player
i wins, equals p̂i = 1/n. His expected payoff equals

Π̂i =
1

n
(v − b̂)− ê =

1

n

(
nv − β(n− 1)v

α(n− 1) + n

)
, (11)

which is positive, because we assumed that β ≤ 1.
Using Theorem 3, we can again study the extent of rent dissipation.

Suppose that the winning bid is considered as dissipated rent. We then have
from Theorem 3 that

D = nê + b̂ =
(α + β)(n− 1)v

α(n− 1) + n
. (12)

Consequently, with two contestants, total rent dissipation is (α+β)v/(α+2).
The extent of rent dissipation strictly increases to (α + β) v/(α+1) as n goes
to infinity. Note that

∂D

∂α
=

n− β(n− 1)

(αn− α + n)2 (n− 1) v, (13)

which is positive, since by assumption β ≤ 1. Thus here, rent dissipation
strictly increases in α and β.

Now suppose we do not count the winning bid as dissipated rent. From
Theorem 3 we obtain

D′ = nê =
β(n− 1)v

α(n− 1) + n
. (14)

With two contestants, total rent dissipation now equals βv/(α + 2). The
extent of rent dissipation strictly increases to βv/(α+1) as n goes to infinity.
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Rent dissipation now strictly decreases in α, but strictly increases in β. It is
easy to verify that there is always underdissipation of rent, regardless of the
treatment of the winning bid.

5 Conclusion

In this paper, we presented a model that combines a rent-seeking contest
with elements of a first-price (sealed bid) auction. The model considers a
situation in which players compete for a prize. The probability that a player
wins the prize depends not only on the amount of effort exerted, but also on
the bid submitted. The bid only has to be paid if the player wins the prize,
the effort outlays are sunk.

First, we discussed the model with constant returns to scale in both bids
and efforts. We showed the existence of a unique Nash equilibrium in pure
strategies for that model. Further, we found that in such an equilibrium
all active players will submit the same bid, regardless of their valuations,
and that total efforts equal that bid. Moreover, we found underdissipation
of rent. For the two player case, we showed that the extent of total rent
dissipation is strictly decreasing in the extent of asymmetry in valuations.

Second, we studied pure strategy Nash equilibria of a more general model,
in which the probability of success depends on a general Cobb-Douglas func-
tion in bids and efforts. We demonstrated for that model that in an equilib-
rium in which all players are active, the sum of the individual ratios of the
effort and bid is equal to the ratio of their respective returns-to-scale parame-
ters. Focusing on the case of equal valuations, we showed that the model has
a unique symmetric equilibrium if the returns-to-scale parameter of efforts is
not greater than unity. We showed that in equilibrium there is underdissipa-
tion of rent. Total rent dissipation strictly increases in the returns-to-scale
parameter of efforts. If the winning bid is considered as dissipated rent, then
total rent dissipation strictly increases in the returns-to-scale parameter of
bids, whereas if it is not, total rent dissipation is strictly decreasing in this
parameter.
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Appendix

Proofs of section 3

To prove the results in section 3, we first state the first-order conditions for
an interior solution of player i′s maximization problem, given bids bj and
efforts ej (j 6= i) of his rivals:

∂Πi

∂bi

=

(∑
j bjej

)
ei (vi − 2bi)− bie

2
i (vi − bi)(∑

j bjej

)2 = 0 (A.1)

and

∂Πi

∂ei

=

(
bi

(∑
j bjej

)
− b2

i ei

)
(vi − bi)(∑

j bjej

)2 − 1 = 0. (A.2)

In stating these, we implicitly assume
∑

j 6=i bjej > 0.
Next, we present three lemma’s that will be used in the proofs of Theo-

rem 1 and its corollaries. Lemma 1 characterizes the optimal bid and effort
of player i, given bids and efforts of the other players.

Lemma 1 Take the model with n > 1 players. Consider player i. Let ci =∑
j 6=i bjej > 0. Then the optimal bid and effort of player i, b̃i and ẽi, are as

follows:

(i) If ci ≥
(

vi

2

)2
, then b̃i = ẽi = 0. Hence, Π̃i = 0.

(ii) If ci <
(

vi

2

)2
, then b̃i = b̄i and ẽi = ci(vi−2b̄i)/b̄

2
i , with b̄i the unique root

of the continuous auxiliary function ki(b) = b3− ci(vi− b), b ∈ (0, vi). In this
case 0 < b̃i < vi/2 and ẽi > 0, and Π̃i > 0.

Proof. Given ci > 0, player i considers three possible options. If he chooses
bi = 0, then his corresponding best effort is 0, and his expected payoff also
is. If i chooses ei = 0, his expected payoff equals 0 irrespective of his bid. If i
chooses positive bid and effort, these must satisfy (A.1) and (A.2). Rewriting
these yields

ci(vi − bi) = bi(biei + ci) (A.3)

and
cibi(vi − bi) = (biei + ci)

2, (A.4)

or, equivalently,
b3
i = ci(vi − bi) (A.5)
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and

ei =
ci(vi − 2bi)

b2
i

. (A.6)

Defining the function ki(b) = b3−ci(vi−b) for 0 < b < vi, we have that ki(b) is
strictly increasing in b, that limb↓0 ki(b) = −civi < 0, and that limb↑vi

ki(b) =
v3

i > 0. This implies that ki(b) has a unique root b̄i on (0, vi). Thus there
exist bi > 0 and ei > 0 that satisfy (A.5) and (A.6) if and only if b̄i < vi/2.
In particular, if b̄i < vi/2, then the relevant bi and ei are unique and given
by bi = b̄i > 0 and ei = ci(vi− 2b̄i)/b̄

2
i > 0. Moreover, using (A.3) and (A.5),

we now have Πi =
(

b̄2i
ci
− 1

)
ei =

(
vi−2b̄i

b̄i

)
ei > 0, i.e. the expected payoff is

strictly positive. Finally, observing that ki(
vi

2
) =

(
vi

2

) ((
vi

2

)2
− ci

)
, it easily

follows that b̄i < vi/2 if and only if ci < (vi/2)2. The proof of the lemma
now follows directly.

Lemma 2 Consider for n = 2 the function h2(b) as defined in (5), with
v1 ≥ v2. The unique root b(2) of h2(b) is given by

b(2) =
v1 + v2

3
− 1

3

√
(v1 + v2)

2 − 3v1v2 (A.7)

and satisfies b(2) < v2/2.

Proof. Straightforward manipulations show that b(2) is given by (A.7).
We then have to show that b(2) < v2/2, i.e. v2 − 2b(2) > 0. Now,

v2 − 2b(2) =
v2 − 2v1

3
+

2

3

√
(v1 + v2)

2 − 3v1v2.

For this expression to be positive, we need

2
√

(v1 + v2)
2 − 3v1v2 > 2v1 − v2. (A.8)

With v1 ≥ v2, the rhs of this expression is positive. Taking squares on both
sides and rearranging, (A.8) simplifies to 3v2

2 > 0, which is always satisfied.

Lemma 3 Take the model with n > 1 players, whose valuations are given
by v1 ≥ v2 ≥ . . . ≥ vn. Let b(n) be the unique root of the function hn(b)
as defined in (5). Then there exists an equilibrium (b̂1, . . . , b̂n, ê1, . . . , ên) in
which all n players are active if and only if b(n) < vn/2. Moreover, if such
an equilibrium exists, then it is the unique equilibrium in which all players
participate, and the bids and efforts satisfy:
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(i) b̂i = b(n), for all i = 1, . . . , n,

(ii) êi = b̂i(vi−2b̂i)

(vi−b̂i)
, for all i = 1, . . . , n,

(iii)
∑n

i=1 êi = b(n).

Proof.
— First, assume that (b̂1, . . . , b̂n, ê1, . . . , ên) is an equilibrium with b̂i > 0
and êi > 0, ∀i. We then have to show that b(n) < vn/2, that there cannot
exist another equilibrium in which all n players are active, and that the given
equilibrium bids and efforts satisfy (i), (ii) and (iii) of the lemma. Note that,
using (A.1) and (A.2), in the given equilibrium we must have b̂i < vi/2, ∀i.
Evaluated in the given equilibrium, (A.1) implies∑

j 6=i

b̂j êj

(vi − b̂i

)
= b̂i

∑
j

b̂j êj

 , (A.9)

whereas (A.2) yields∑
j 6=i

b̂j êj

 b̂i

(
vi − b̂i

)
=

∑
j

b̂j êj

2

. (A.10)

Substituting (A.9) into (A.10) yields b̂2
i

(∑
j b̂j êj

)
=
(∑

j b̂j êj

)2
, thus

b̂2
i =

∑
j

b̂j êj. (A.11)

The rhs of (A.11) is a constant, independent of i. Thus we can write b̂ for the
bid of each player. Hence, the condition b̂i < vi/2, ∀i, reduces to b̂ < vn/2.
From (A.11) we immediately have

b̂ =
∑
j

êj. (A.12)

Using (A.12), (A.9) implies
(
b̂2 − b̂êi

)
(vi − b̂) = b̂3, so we have

êi =
b̂(vi − 2b̂)

(vi − b̂)
. (A.13)



Marco Haan and Lambert Schoonbeek 15

Substituting (A.13) into (A.12) yields
∑

j

(
vj−2b̂

vj−b̂

)
= 1, thus

∑
j

(
1− b̂

vj−b̂

)
=

1, or

b̂
∑
j

(
1

vj − b̂

)
= n− 1. (A.14)

From (A.14), b̂ is a root of hn(b) of (5). Since hn(b) has a unique root, b̂ =
b(n), and we must have b(n) < vn/2. Next, (i) of the lemma is now obvious,
and (ii) and (iii) follow from, respectively, (A.13) and (A.12). Because b(n)
is the unique root of hn(b), there cannot exist another equilibrium in which
all n players are active.
— Next, assume that b(n) < vn/2. We then have to prove that there exists
an equilibrium in which all n players are active, and that its bids and efforts
are given by (i) and (ii) of the lemma ((iii) is then automatically satisfied).
Note that these satisfy b̂i > 0 and êi > 0, ∀i. It remains to be shown that
each player i maximizes his expected payoff by choosing bi = b(n) and ei = êi,
given the rivals’ choices b̂j and êj (j 6= i). Consider ci =

∑
j 6=i b̂j êj. Note that

ci > 0. Further,

ci = b(n)
∑
j 6=i

(
b(n)(vj − 2b(n))

vj − b(n)

)
= b(n)2

n− 1−
∑
j 6=i

(
b(n)

vj − b(n)

) .

Rewriting hn(b(n)) = 0, it follows that

∑
j 6=i

(
b(n)

vj − b(n)

)
= n− 1−

(
b(n)

vi − b(n)

)
.

Combining results, we thus derive that

ci = b(n)2

(
b(n)

vi − b(n)

)
.

Because b(n) < vi/2, we see that ci < (vi/2)2. Applying part (ii) of Lemma 1,
consider the function ki(b) for this case, with 0 < b < vi. We have

ki(b) = b3 −
(

b(n)3

vi − b(n)

)
(vi − b).

Clearly, b = b(n) is the (unique) root of ki(b). Thus, indeed, the optimal bid
and effort of player i are given by bi = b(n) and ei = êi.
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Proof of Theorem 1
We give the proof in 4 steps. Throughout the proof, b(m) denotes the unique
root of the function hm(b) defined in (5), with m = 1, . . . , n.
— Step 1: First, we show that there is no equilibrium in which only one
agent is active. Suppose there is such an equilibrium and, without loss of
generality, it is given by (b∗1, 0, . . . , 0, e

∗
1, 0, . . . , 0) with b∗1, e

∗
1 > 0. Then Π1 =

v1−b∗1−e∗1. By not being active, player 1 can always secure zero payoff. Hence,
v1 − b∗1 − e∗1 ≥ 0. For ε > 0 sufficiently small, v1 − (b∗1 − ε) − (e∗1 − ε) > 0.
Thus, player 1 strictly prefers to set (b∗1 − ε, e∗1 − ε) rather than (b∗1, e

∗
1), and

the original situation is not an equilibrium. We have a contradiction. In the
remainder, we can therefore concentrate on (candidate) equilibria with more
than 1 player active.
— Step 2: Next, we show that in an equilibrium in which some player s is
active, necessarily all players 1, . . . , s − 1 are active as well. Suppose there
is an equilibrium (b∗1, . . . , b

∗
n, e

∗
1, . . . , e

∗
n) in which exactly t players are active,

with 1 < t < n, and in which both there is a player s who is active and
a player r with vr ≥ vs who is inactive. We will derive a contradiction.
Denote the set of active players in the given equilibrium as T . Consider
the hypothetical contest that is obtained from our original contest with n
players by removing the n− t players with i /∈ T . Removing these non-active
players does not affect the incentives of the active players in the equilibrium.
Hence, for this hypothetical contest, the bids and efforts b∗i and e∗i with i ∈ T
must constitute an equilibrium. Noting that all t players are active in this
equilibrium, we conclude from Lemma 3 that b∗i = b(t) and

∑
i∈T e∗i = b(t).

Also, b(t) < vs/2.
Returning to the original contest with n players, consider now player

r. Using the notation of Lemma 1, cr =
∑

i6=r b∗i e
∗
i =

∑
i∈T b∗i e

∗
i = b(t)2 <

(vs/2)2 ≤ (vr/2)2. Applying part (ii) of Lemma 1, player r prefers to choose
positive bid and effort, rather than b∗r = e∗r = 0. Thus, we have a contradic-
tion.
— Step 3: Suppose there exists an equilibrium in which the set of active play-
ers is S = {1, . . . , s} for some 1 < s ≤ n. We show that there cannot exist
another equilibrium in which the set of active players is a strict subset of S.
Without loss of generality, take s = n, and assume (b∗1, . . . , b

∗
n, e

∗
1, . . . , e

∗
n) is

an equilibrium in which all players are active. From Lemma 3, b(n) < vn/2.
Suppose now there is another equilibrium (b∗∗1 , . . . , b∗∗n , e∗∗1 , . . . , e∗∗n ) in which
only t players are active, t < n. We will derive a contradiction. Consider the
hypothetical contest among only the players {1, . . . t}. For this hypothetical
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contest, (b∗∗1 , . . . , b∗∗t , e∗∗1 , . . . , e∗∗t ) must be an equilibrium. From Lemma 3,
b∗∗i = b(t) for all i = 1, . . . , t, and

∑t
i=1 e∗∗i = b(t), with b(t) < vt/2. Evaluat-

ing ht(b) in b = b(n), using hn(b(n)) = 0 and b(n) < vn/2, we have

ht(b(n)) = −
n∑

j=t+1

(
1

vj − b(n)

)
+

n− t

b(n)
= −

n∑
j=t+1

(
2b(n)− vj

(vj − b(n))b(n)

)
> 0,

thus b(t) < b(n). This implies b(t) < vn/2.
Now return to the original n-player contest. For player t + 1, we have

ct+1 =
∑t

j=1 b∗∗j e∗∗j = (b(t))2 < (vn/2)2 ≤ (vt+1/2)2. Using part (ii) of
Lemma 1, player t + 1 thus prefers positive bid and effort, rather than
b∗∗t+1 = e∗∗t+1 = 0. We have a contradiction.
— Step 4: Using steps 1, 2 and 3, we know that if there exists an equilibrium,
in this equilibrium either all players are active, or there is a player with a
‘critical’ valuation such that all players with a valuation larger than or equal
to this critical valuation are active, whereas all players with a lower valuation
are inactive. Also, if the equilibrium exists, it must be unique.

Using Lemma’s 1 and 3, it now follows that the proof of Theorem 1 is
completed if we demonstrate that there exists a value k ∈ (1, n] such that
(a) b(k) < vk/2, and (b) if k < n, we also have b(k) ≥ vk+1/2. By doing
so, we show the existence of an equilibrium in which, in case k = n, all n
players are active, while in case k < n, the players 1, . . . , k are active and
the players k + 1, . . . , n are not. First, note that Lemma 2 implies that
b(2) < v2/2. Hence, there is at least one t such that b(t) < vt/2. Second,
suppose now that there does not exist a value k satisfying (a) and (b), i.e.
suppose that the contest has no equilibrium. Then both (i) we must have
b(n) ≥ vn/2 (use Lemma 3) and (ii) for all t < n such that b(t) < vt/2, we
must have b(t) < vt+1/2 (use (a) and (b) mentioned above). We will derive
a contradiction. Consider (ii) and take a t∗ < n such that b(t∗) < vt∗/2.
According to (ii), this implies b(t∗) < vt∗+1/2, thus ht∗(vt∗+1/2) > 0. Since
ht∗(vt∗+1/2) = ht∗+1(vt∗+1/2), this implies ht∗+1(vt∗+1/2) > 0, thus b(t∗+1) <
vt∗+1/2. If t∗ +1 = n, then we have a contradiction with (i). If t∗ +1 < n, by
induction, repeating the argument finally implies b(n) < vn/2, which again
violates (i). Thus, (i) and (ii) cannot be both satisfied, which establishes
Theorem 1.

Proof of Corollary 1
Using vi = v, ∀i, it follows that the root b(n) of the function hn(b) is equal
to b(n) = (n− 1)v/(2n− 1), thus b(n) < v/2. Part (i) of the corollary then
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follows from (i) of Theorem 1. Invoking symmetry, êi = ê, ∀i, which implies
(ii).

Proof of Corollary 2
The proof follows directly from Lemma 2 and Theorem 1.

Proofs of section 4

In section 4, the first-order conditions of an interior solution of the maxi-
mization problem of player i, given the bids bj and efforts ej (j 6= i) of his
rivals, are given by

∂Πi

∂bi

=

(∑
j bα

j eβ
j

) (
αbα−1

i eβ
i (vi − bi)− bα

i eβ
i

)
− αb2α−1

i e2β
i (vi − bi)(∑

j bα
j eβ

j

)2 = 0

(A.15)
and

∂Πi

∂ei

=
βbα

i eβ−1
i

(∑
j bα

j eβ
j

)
− βb2α

i e2β−1
i(∑

j bα
j eβ

j

)2 (vi − bi)− 1 = 0, (A.16)

where we assume that
∑

j 6=i b
α
j eβ

j > 0. Note that (A.15) reduces to

α

∑
j 6=i

bα
j eβ

j

 (vi − bi) = bi

∑
j

bα
j eβ

j

 , (A.17)

whereas (A.16) reduces to

(vi − bi)βbα
i eβ−1

i

∑
j 6=i

bα
j eβ

j

 =

∑
j

bα
j eβ

j

2

. (A.18)

Using these conditions we present the proofs of Theorems 2 and 3.

Proof of Theorem 2
Suppose that (b̂1, . . . , b̂n, ê1, . . . , ên) is an equilibrium in which all n players
are active. In the equilibrium each player’s expected payoff must be nonneg-
ative. This implies that we must have b̂i < vi, ∀i. We further know that the
equilibrium must satisfy (A.17) and (A.18). Using this, we obtain

b̂α+1
i êβ−1

i =
α

β

 n∑
j=1

b̂α
j êβ

j

 . (A.19)
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The rhs of this equality is a constant, independent of i. Thus, the products
b̂α+1
i êβ−1

i are a constant. As a result, (A.19) yields n∑
j=1

êj

b̂j

 =
β

α
, (A.20)

which completes the proof.

Proof of Theorem 3
Assume that vi = v, ∀i, and β ≤ 1. We will show that there exists a unique
symmetric equilibrium, which is given by parts (i) and (ii) of the theorem.

Imposing symmetry, i.e. bi = b̂ and ei = ê, ∀i, we observe that b̂ = 0
and/or ê = 0 is not an equilibrium. Substituting bi = b̂ > 0 and ei = ê > 0,
∀i, into conditions (A.17) and (A.18), we have

b̂ =
α(n− 1)v

α(n− 1) + n
(A.21)

and

ê =
1

n

β(n− 1)v

α(n− 1) + n
. (A.22)

This implies that if there is a symmetric equilibrium, it must be given by b̂ and
ê of (A.21) and (A.22). To show that this indeed constitutes an equilibrium,
we have to prove that player i maximizes his expected payoff by choosing b̂
and ê, given the same choices of his rivals.

If i chooses bi = 0, then his corresponding best effort is 0, and his expected
payoff also is. If i chooses ei = 0, then his expected payoff is 0 as well. Now
examine positive bi and ei that satisfy (A.17) and (A.18). These conditions
then reduce to

αdi(v − bi) = bi(b
α
i eβ

i + di) (A.23)

and
diβbα

i eβ−1
i (v − bi) = (bα

i eβ
i + di)

2, (A.24)

where for notational convenience we have defined di =
∑

j 6=i b̂
αêβ. Note that

di > 0. From (A.23), we must have bi < αv/(1 + α).
Observe that (A.23) and (A.24) are satisfied if player i chooses bi = b̂ and

ei = ê (note that 0 < b̂ < αv/(1 + α) and êi > 0). Also note

Π̂i =
1

n
(v − b̂)− ê =

1

n

(
nv − β(n− 1)v

α(n− 1) + n

)
, (A.25)
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which is positive, since β ≤ 1. The proof is completed if we show that there
exist no other bi ∈ (0, αv/(1 + α)) and ei > 0 that satisfy (A.23) and (A.24)
(which implies that player i indeed globally maximizes his payoff by choosing
bi = b̂ and ei = ê). To do so, we distinguish two cases: β = 1 and β < 1.

First, take the case β < 1. From (A.23), we obtain that ei = si(bi), where
the continuous auxiliary function si(b) is defined as

si(b) =
(
di(αv − (α + 1)b)b−(α+1)

) 1
β , (A.26)

for 0 < b < αv/(1 + α). Observe that si(b) is strictly decreasing in b, and
that limb↓0 si(b) = ∞ and limb↑ αv

(1+α)
si(b) = 0. Substitution of (A.23) into

(A.24) yields
βbα+1

i eβ−1
i = α(bα

i eβ
i + di), (A.27)

which with (A.23) implies that

α2di(v − bi) = βbα+2
i eβ−1

i . (A.28)

The latter gives that ei = ti(bi), where the continuous auxiliary function ti(b)
is defined as

ti(b) =

(
α2di

β
(v − b)b−(α+2)

) 1
β−1

, (A.29)

for 0 < b < αv/(1 + α). Since β < 1, ti(b) is strictly increasing in b, and
limb↓0 ti(b) = 0. As a result, the functions si(b) and ti(b) have a unique point
of intersection. By implication, this unique point of intersection is given by
b = b̂. It follows that for player i there exist a unique bid 0 < bi < αv/(1+α)
and a unique effort ei > 0 which satisfy (A.23) and (A.24), i.e. bi = b̂ and
ei = êi.

Second, take the case β = 1. It then follows from (A.23) and (A.24) that

ei =
di(αv − (α + 1)bi)

bα+1
i

(A.30)

and
α2di(v − bi) = bα+2

i . (A.31)

It is easy to verify that bi = b̂ is the unique solution of (A.31). In turn, we
can conclude that for player i there exist a unique 0 < bi < αv/(1+α) and a
unique effort ei > 0 which satisfy (A.23) and (A.24), i.e. bi = b̂ and ei = êi.
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Notes
1For recent surveys of this literature, see e.g. Wolfstetter (1996) or Klemperer (1999).
2See further e.g. Dixit (1987), Hillman and Riley (1989), and for a concise survey,

Nitzan (1994). Lockard and Tullock (2001) contains a comprehensive collection of articles
on rent seeking.

3In a recent hostile takeover battle, the British telephone company Vodafone bid some
132 billion euro to obtain control of its German rival Mannesmann. Reportedly, both firms
set aside a total amount of 850 million euro for this fight, trying to influence the voting
behavior of shareholders. From this amount, 150 million was reserved for advertising. See
The Economist (2000).

4As long as at least one player both submits a positive bid and exerts a positive effort.
We assume that the contest is cancelled, i.e. the prize is not awarded at all, if none of the
players both submits a positive bid and exerts a positive effort.

5Nti (1999) proposes the following way to study how the extent of asymmetry in val-
uation influences total rent dissipation. Without loss of generality, assume again that
v1 ≥ v2, and write v2 = λv1, with λ ≤ 1. We then have

D =
2
3
v1

(
1 + λ−

√
1− λ + λ2

)
.

Observe that ∂D/∂λ > 0. Thus, the more equal valuations are (i.e. the higher λ is),
the higher total rent dissipation. Yet, this analysis is in terms of a fixed v1. More equal
valuations then imply a higher v2, while keeping v1 fixed. In this analysis, increased rent
dissipation is not so much due to lower asymmetry, but rather to a higher v2. This can be
seen as follows. Rather than writing v2 = λv1, we can also write v1 = µv2, with µ ≥ 1.
We then have

D =
2
3
v2

(
1 + µ−

√
1− µ + µ2

)
.

Now, ∂D/∂µ > 0. Thus, this suggests that having more equal valuations (i.e. lower µ)
leads to lower dissipation, since we now do the analysis in terms of a fixed v2 rather than
a fixed v1. We prefer our own approach, as it circumvents the above scale effects and leads
to unambiguous results.

6In the special case where β = 1, bids are again equal among agents, regardless of the
size of α. This follows from (A.19) of the Appendix. The results given in section 3 can
easily be generalized to this special case. However, if β 6= 1, bids are no longer equal
among agents.
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