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Abstract

We model the development of world records of metric running events from the
100 meter dash to the marathon for men and women. First, we review methods to
fit time-series curves of world records in general. We discuss methods to estimate
curves and review candidate functional forms that fit the systematic shape of the
progress of world records. Next, we fit the asymmetric Gompertz-curves for 16 events
and compute implied limit values. In order to assess the implied limits we use the
Francis (1943)-model to relate limit records and distance in a log-log specification.
We compare men and women and conclude that there is a fixed difference in record
times between the two sexes. Finally, using the log-log relationship between time and
distance we calculate the development of the world record of the mile in a robustness
check.
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1 Introduction

Over the past 50 years multiple studies have made attempts to model the development
of world or Olympic records, for instance for running events. Deakin (1967) explored
progress in the mile record, Chatterjee and Chatterjee (1982) for the 100, 200, 400, and
800 meter in the Olympic Games, Blest (1996) for running distances of 100 meter to
the marathon, and recently Nevill and Whyte (2005) for 800 meter to the marathon by
male and female runners. Modelling world records through time attracts attention from
different perspectives. First, all studies are inspired by the apparent problems in the
analysis of world records. In terms of time used to complete an event for instance we only
observe nonpositive changes. These nonpositive changes can be very infrequent: world
records sometimes survive for about 20 to 25 years. But at some instances improvements
are really substantial, leading to extreme values in the distribution of the first difference
of the series. Or technological innovation of sports gear shifts up the human frontier; an
example is the klapskate in speed skating (see Kuper and Sterken, 2003). A second element
in the analysis is the interest in the ultimate human performance. Given the development
of the world record up to now, can we predict the fastest time ever? And thirdly, can
we compare contemporaneous performances? How does the world record 10K running for
men compare to the 5K for men? Is there a phase difference in the development of records
of the various events? And can women outperform men in the far future?

Observing the time series of the world record of a well-developed sports event reveals an
inverted S-shape pattern (we will treat all developments of records as monotonic declining
time series of the time used to complete an event). In the early phase of the development
of running events, competition is not fierce, and amateurism dominates. At the inflection
point the rate of progress is large, because more sportsmen get involved, more professional
help is available, rewards become more visible, etc. After this rapid development phase
there is a phase of saturation. It is hard to improve the record and only at a few instances
a highly talented individual is able to break it. For some sports events we do not observe
such a shape of the time series, because the development is much faster through cross-
fertilization (e.g. the 3000 meter steeple for women). For some events typical observations
are available for some pieces of the curve. This sometimes leads to the use of simple
piecewise linear techniques to model the development of world records. These linear
approximations are computationally attractive, but theoretically poor. Nevill and Whyte
(2005) contribute to the debate on whether linear approximations are helpful in describing
world records. Tatem et al. (2004) use linear approximations of the development of the
best male and female 100 meter sprints at the Olympic Games and conclude that in
2156 women will run as fast as men. Whipp and Ward (1992) also employed a linear
approximation of marathon times of men and women and predicted in 1992 that female
marathon runners would run as fast as men in 1998. Of course linear approximations
cannot be correct: world record times cannot become negative. So the question is to
find more biologically sound and statistically robust nonlinear (S-shaped) functions that
provide a superior fit (see Nevill and Whyte, 2005).

Besides finding the best fit, most studies are trying to get insight into the upper-limit of
speed (of running) or the lower limit of time to be used to complete an event. For some
functional forms, a nice limit value can be derived from the properties of the functions.



For instance Kuper and Sterken (2003) give detailed lower limits of time to be used on
skating events, while Nevill and Whyte (2005) give predicted peak world records for the
men’s 800 meter, 1500 meter, mile, 5000 meter, 10000 meter, marathon and women’s 800
meter, and 1500 meter. For skating the predictions of future world records are highly
dependent on the no-technical progress assumption. Contrary to running, speedskating is
a technology-intensive sport (skates, ice rinks, clothing), so that shocks to technological
progress are visible in the improvements of world records. Ultimate human performances
are so conditional on this typically hard to predict factor.

In this paper we contribute to the literature on modelling world records. We focus on
running events, since these events are well-developed, highly competitive, not intensively
affected by the problem of hard to predict technical innovations, and have a typical long
history. For instance for the one mile record we have official data since 1865 (for men).
We first review methods to model world records. There are two approaches. First, one
can fit the historical curves of individual events. Secondly, one can compare different
records at the same moment of time and detect outliers. We do both. First we compute
the approximation of historical lower bounds of time needed to complete running events
using the single-event historical data. We apply, after a careful selection and discussion of
alternative specifications, the Gompertz-curve. The Gompertz-curve is a relatively simple
curve that allows for an asymmetric S-shape. From these specifications we compute the
implied infinite lower bounds. These lower bounds are compared in a cross-sectional
setting as a robustness check. Finally, we use one event, the one mile run, to compare the
forecasting performance of our methodology.

The set-up of the paper is as follows. First, we discuss the existing methodology to model
world records. From this analysis we conclude to use the Gompertz-model. In Section 4
we present the results of fitting the Gompertz-curve for the 100, 200, 400, 800, 1500, 5000,
10000 meter and marathon events for men and women. In Section 5 we test for robustness
of the methods by relating the limit values implied by the Gompertz-curves and distance
in the famous log-log model of distance and time (see Section 2 for a description). We
summarize and conclude in Section 6.

2 Modelling World records

In this section we present two approaches to model world records. First we review candi-
date functional forms to fit the historical development of world records. Next we review
the literature on comparing world records at the same moment of time on various dis-
tances. Before doing so, we first discuss in short the problems in estimation. How do we
cope with the extreme nature of world records? For instance Kuper and Sterken (2003)
estimate a so-called Chapman-Richards approach (see hereafter for a precise definition)
to the development of the trend using normally distributed residuals and calculate the
extreme residual to compute the shift to the extreme frontier. Smith (1988) proposes a
maximum likelihood method of fitting a model to a series of record times. Let Y; be the
best performance in a particular event in the tth year:

Y, = X; + ¢ (1)



where X; is an iid-variable and ¢; a nonrandom trend. The records in an T-year period
are given by:

Zy =min(Yy,...,Y;) (2)

for 1 <t < T. The sequence Z; is observable, but the underlying data Y; not. We
concentrate on two parameterizations. First, we can think of the density function f(z;6)
of X;. Let F(x;0) be the cumulative density function of f(x;#). The statistical problem is
then a censored data problem in which the value of Y;, in a nonrecord year, is censored at
the record level. Smith (1988) analyses the normal distribution (which we do not describe
here), the so-called Gumbel extreme-value distribution:

F(z;pu,0) =1—exp[—exp((z — p)/0)] (3)

and the generalized extreme-value (GEV) distribution:
Flwsn,0,k) = 1= expl~(1+ k(x — u)/0) ] ()

The GEV with £ = 0 gives the Gumbel distribution. For £ > 1 the GEV-function
does not yield a local maximum. Smith indeed finds that these extreme-value functions
have fitting problems and proceeds with the normal distribution. Sterken (2005) applies
a similar approach to age-dependent running performance data in a stochastic frontier
analysis. Stochastic frontiers allow for measurement error in the data, but assume that
a large fraction of the deviation of observed records to the frontier is due to inefficiency.
The stochastic frontier analysis can so be seen as an alternative approach to trim extreme
values.

The main attention in this paper focuses on the modelling of the trend ¢; though. We
review the ideas on the parametrization of ¢; next. After that we review the relationship
between c¢;-limit values for various distances.

2.1 Fitting the curve

In this section we briefly review candidate functional forms of the nonrandom trend ¢,
that are or could be used in fitting the progress of world records. After that

2.1.1 Linear trend

The linear trend ¢; = 01 + 05t is one of the first candidates to use (see Whipp and Ward,
1992, and Tatem et al., 2004). Although a linear trend cannot be true in the long run (there
is no limit value of e.g. speed), local linear approximations often perform rather well. So
if the focus of the fitting is purely descriptive (and not on forecasting or computing limit
values) local linear approximations, like e.g.data envelopment analysis, are true candidates.

2.1.2 Exponential

The exponential function ¢; = 6; — 03 exp(—0st) is the mostly used asymptotic model
(see e.g. Deakin, 1967). For positive values of 03 the limit value of the series is 6;.



Ratkowsky (1990) describes this function as a close to linear model, since the estimates of
the parameters encompass the ones of a linear model. The main critique on the model is
its monotonic change over time, which is not apparent in standard S-shaped curves.

2.1.3 Modified Weibull equation

The modified Weibull ¢; = 6; — exp(—62t%3) is function is also in the exponential class
and has limit value 0 for 65 > 0. The Weibull function is a very flexible function and
widely used to model growth and yield data. The parameters 63 and 63 are scale and
shape parameters. For 63 = 1 we get the exponential form.

2.1.4 Chapman-Richards

This model, which is also known as the Von Bertalanffy equation, ¢; = 61 — 03]1 —
exp(—05t)]%* contains a number of special cases. If 64 = 1 we get the so-called natural
growth model. If 6, = —1 we get the logistic model (see hereafter). The Chapman-
Richards function has been used by Grubb (1998) for running and Kuper and Sterken
(2003) for skating. The limit value is 6; — 5.

2.1.5 Antisymmetric exponential function

One of the disadvantages of the Chapman-Richards form is that it is a symmetric S-shaped
function for certain parameter combinations. Blest (1996) and Grubb (1998) propose the
antisymmetric exponential function with a positive limit 64:

¢ = 01+05 exp[—93(t — 94)] if t >0, (5)
g = 01+ 92[2 — exp(93(t — 94)] if t <0y (6)

2.1.6 Generalized logistic

The generalized logistic function ¢; = 61 /[02+exp(03—04t)] has two horizontal asymptotes.
One at ¢ = 0 for t — oo and at C' = 6, /05 for t — —oo. The inflection point is at ¢t = 03/6,.
This inflection point is interesting in the modelling of world records. According to Nevill
and Whyte (2005) this point reveals the period of greatest gain (acceleration) in world
record performance. For instance for running events this period is in the years 1940-1960.

2.1.7 Gompertz

Gompertz (1825) proposed ¢; = 601 + 02 exp|—exp(f3(t — 04))]. Similar to the logistic
function the Gompertz curve has asymptotes at 61 and 61 + 05. The inflection point is at
t = 04. The Gompertz-curve is asymmetric about its point of inflection. The parameters
f> and 64 control the shape of the function.



2.1.8 Schnute’s equation

Schnute (1981) proposed a generalization of the Chapman-Richards, Gompertz and logistic
functions: ¢; = 092 + (052 — 692)[1 — exp(—04(t — Tp))]/[1 — exp(—04(t — T)))]. Contrary to
the Chapman-Richards it does not impose an asymptotic trend. The parameters 6; and
03 are the values of ¢ at the first and the last year of observation Ty and T respectively.

2.2 Cross-sectional approach

Apart from analyzing the progress of world records for separate events, one could also
consider the cross-sectional evidence. For instance for running Francis (1943), Lietzke
(1954), and Grubb (1998) analyzed the log-log relationship between running time and
distance. Kennelly (1905) stated the relationship between time ¢ and distance d after a
study of race horses and human athletes as

logt = 9/8log d — constant (7)
Define velocity v = d/t. Francis (1943) considered the relation:

(logd — 1.5)(v — 3.2) = 6.081 (8)
and found that the 5000m record in 1943 was a sign of high performance. In this model
the exp(1.5) is an asymptote, which gives the distance at which the maximum speed is
attained. Rewriting the Francis equation in general terms v = A/[log d — B]+ C', Mosteller
and Tuckey (1977) proposed the relation:

v=A(d-B>*+C (9)

where C' is the speed at long distances, B the distance at which the maximum speed is
obtained and A the decrease in speed with transformed distance.

Lietzke (1954) noted that, starting from the log-log relation between time used and dis-
tance:

logd = klogt + loga (10)

we get t = (d/a)'/*. This implies that v = d/t = a'/*d*~1/k_ So:

-1 1
K k: logd + %loga (11)

logv =

Lietzke labels the constant (k — 1)/k as the exhaustion constant and estimates different
values for running, horse racing, swimming, cycling, walking, and even auto racing.

Blest (1996) estimates a model for the Olympic records ¢;; for the distance d; at the time
of the i-th Olympiad:

tz’j = Ald’]yl (12)



where A; and 7; are parameters to be estimated. An alternative model is ¢;; = Ad}i,
where A is an average value over n Olympiads:

A =exp (% Z log AZ-) (13)
i=1

No matter what model is used, there seems to be a clear log-log relation between speed
and distance, or running time and distance. We explore this relation for the limit values
of the Gompertz-curves of individual distances that we compute hereafter.

3 Selection of the functional form

Choosing a model for a set of data can be a difficult task, especially when time series are
short. In case of modelling world records there is a second complication: some records
stand for a very long time which makes it difficult to observe patterns in the improvement.

We first plot the data (in seconds) against time. This provides valuable information on
the shape of the development of world records. For long time series we find a non-linear
pattern. Also there is prior knowledge that is useful in selection the functional form.
First, there are limits to world records, in other words, there is a lower bound which
rules out linear models. Second, increased professionalism in sports leads to saturation in
the sense that recently improvements are generally smaller. This, however, may not be
true in sports where technology plays an important role (like in speedskating). The two
observations suggest to apply S-shaped curves. These S-shaped curves can be symmetric
or asymmetric around the inflection point.

In this paper we apply the Gompertz model derived in 1825. This model is used in various
applications ranging from population and body growth to biomass and forest growth rates.
The four-parameter Gompertz model is given by

ct =61+ 0zexp (—exp (03 (t —04))) (14)

¢; denotes running time in seconds for a certain distance and t is the time index. Four
parameters 61,605,603 and 64 are estimated. Parameter 6; allows the lower asymptote to
be different from zero. Parameters 65 and 63 control the shape of the curve: For positive
values of #3 the curve is monotonically decreasing. Parameter 03 also determines the
smoothness of the curve, small values makes the curve linear. The smoothness decreases
if A3 increases. Parameters 6, and 0,4 shift the curve: 6 shifts the curve up and down and
04 shifts the curve along the x-axis. Figure 1 illustrates this. The lower and upper limits
are identified as:

lim ¢, = 6, (15)
t—o0
lim ¢¢ = 61+6- (16)
t——o0

with #; > 0 and 6y > 0. The lower limit is calculated from one parameter, whereas the
upper limit is the sum of two parameters.



Figure 1: The shape of the Gompertz function for different parameter values keeping the
other parameters constant
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Unlike the logistic model, the Gompertz model is not symmetric about the inflection point
(see Schabenberger et al., 1999). Note that in point of inflection (where ¢ = 64):

0
ct =06+ ;2 (17)

Where e is the base of the natural logarithms, sometimes called the Eulian number and is

defined as
. 1\"
e = lim (1 + —) ~ 2.718281828 (18)
n

The point of inflection is below the center of the limits (asymmetry) since e > 2:

) )
0 =<0 —= 1
1+e< 1+2 (19)

This implies that the Gompertz model has a shorter period of fast growth.
At point of inflection the slope is:

dCt 6362
A ) 2
p” o < 0 (20)

since 69,63 > 0.

The Gompertz function is flexible enough to allow for various patterns. Figure 1 shows
some examples.

4 Running data

Our main source of information is the official website of the Olympic movement! which
publishes information on current world records and progress of world records for various
events. In this section we show the current record holders and we illustrate the progress
of the world records graphically.

For running we analyze distances from the 100 meter sprint to the marathon for both
men and women. We transform the raw data of running times to seconds per meter. The
normalised time series are shown in Figure 2. This figure show a remarkable improvement
in the world record running times. Figure 2 indicates that for some women distances there
are relatively few observations. Also many of the women’s world records are relatively old
(see Table 1). This makes it difficult to estimate the parameters in the model. Examples of
old records are the records on the sprint distances from the late Florence Griffith Joyner,
who set the current 100 meter and 200 meter world records in the summer of 1988, almost
twenty years ago. The oldest world record in running is the 800 meter record held by the
Czech athlete Jarmila Kratochvilova. Also Marita Koch’s 400 meter world record (from
1985) is yet to be beaten. The men’s world records are improved more often. However,

Thttp://www.olympic.org/uk/utilities /reports//.



Figure 2: The development of world records running for men and women (in seconds,

normalised)
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there examples of world records lasting for a very long time. Jim Hines’s 100 meter world
record, set in 1968 at the Olympic Games in Mexico was not improved until 1983. Pietro
Mennea’s 200 meter world record of 1979 lasted until 1996. Recently, Justin Gatlin’s 100
meters world record of 9.76 seconds has been corrected to 9.77, equaling the previous mark
set by Asafa Powell in 2005.

Table 1: Current running world records (June 2006)

Men Performance  Athlete Nat. Place Date

100m 9.77  Asafa Powell JAM  Athens (GRE) 14-06-2005
200m 19.32  Michael Johnson USA  Atlanta (USA) 01-08-1996
400m 43.18  Michael Johnson USA  Sevilla (ESP) 26-08-1999
800m 1:41.11  Wilson Kipketer DEN  Cologne (GER) 24-08-1997
1500m 3:26.00 Hicham EI Guerrouj MAR Rome (ITA) 14-07-1998
5000m 12:37.35 Kenenisa Bekele ETH  Hengelo (NED) 31-05-2004
10000m 26:17.53  Kenenisa Bekele ETH  Brussels (BEL) 26-08-2005
Marathon 2:04:55  Paul Tergat KEN  Berlin (GER) 28-09-2003
Women Performance  Athlete Nat. Place Date

100m 10.49  Florence Griffith-Joyner USA  Indianapolis (USA) 16-07-1988
200m 21.34  Florence Griffith-Joyner USA  Seoul (KOR) 29-09-1988
400m 47.60 Marita Koch GDR  Canberra (AUS) 06-10-1985
800m 1:53.28  Jarmila Kratochvilova TCH  Munich (GER) 26-07-1983
1500m 3:50.46  Yunxia Qu CHN  Beijing (CHN) 11-09-1993
5000m 14:24.53  Meseret Defar ETH New York City (USA) 03-06-2006
10000m 29:31.78  Junxia Wang CHN  Beijing (CHN) 08-09-1993
Marathon 2:15:25  Paula Radcliffe GBR  London (GBR) 13-04-2003

5 Results of fitting the Gompertz curves

In this section we model the development of the world records. The world records describe
the possibility frontier of athletes. We model the trend in world record times. We try to
predict the pattern of world record improvements based on past performance assuming
that there will not be major technological improvements that shift out the possibility
frontier. With only a few observations it is difficult to estimate the shape of the frontier in
a reliable way. Despite these problems we will try to determine the frontier, which we use
to derive the limits for eight running events - 200m, 400m, 800m, 1500m, 5k, 10k and the
marathon - for both men and women. We use annual data for the world records as they
are on December 31 of each year. The last year included in our analysis is 2005 (so Gatlin’s
100 meter and Defar’s 5000 meter world records are not included in our estimations). To
fit the Gompertz model we minimize the sum of squared errors in a grid search in which
the parameter 0, is fixed and the remaining parameters are estimated using non-linear
least squares. In presenting the results we give the optimal value of 65. The regression
model is

¢t =01+ 6aexp (—exp (03 (t — 04))) + ¢ (21)
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where 7 is the error term. To find the limit we add the smallest error to parameter 6;.
limit = 6; + minn, (22)

The results are in Table 2. The table gives the parameter estimates (with the standard
errors in the rows below indicated by (se)). We also indicate the start of the sample, the
number of observations, the number of improvements in the sample, indicators of the fit
of the model and the implied limit values. We also indicate the predicted times for the
year of the next Olympiad in Bejing (2008). Especially for the records for women we find
a rather flat limit after 2008.

Table 2: Modelling running time (seconds) for the period until 2005

Men 100m 200m 400m 800m 1500m 5000m 10000m  marathon

01 9.6370 18.8528  42.9993 101.1068 195.5526 743.6015 1575.143 7513.437
(se) (0.0380) (0.1043)  (0.0749) (0.1687) (1.7961) (3.7731) (5.2033) (38.2890)
02 236 3 7 16 7840 237 390 3000
05 0.0029 0.0211 0.0256 0.0290 0.0027 0.0186 0.0264 0.0287
(se) (0.0002) (0.0009)  (0.0005) (0.0006) (0.0002) (0.0004) (0.0005) (0.0010)
04 574.7330 78.2325  54.0637 53.0789  589.4005 54.8990 61.4153 48.1727
(se) (32.7003) (4.9838)  (1.4810) (1.3574)  (31.7592) (2.5540) (1.7174) (1.6126)
First year 1896 1900 1896 1896 1899 1920 1911 1908
Observations 110 106 110 110 107 86 95 98
Improvements 16 10 16 17 30 25 30 24
R? 0.9788 0.9472 0.9837 0.9792 0.9854 0.9862 0.9828 0.9587
SSR 0.2172 2.1964 5.5854 43.6060  250.6848 1614.260 13380.38 2026859
Limit (sec) 9.55 18.54 42.42 99.01 190.98 733.60 1544.48 7256.36
Limit (h:m:ss.s) 9.55 18.54 42.42 1:39.01 3:10.98 12:13.60 25:44.48 2:00:56
2008 9.71 18.94 42.51 1:39:08 3:20.64 12:26.76 25:53.15 2:01:11
Women 100m 200m 400m 800m 1500m 5000m 10000m  marathon

01 10.1857 21.5373  47.5564 113.1286  230.9393 868.3973 1767.419 8467.090
(se) (0.1198) (0.1570)  (0.0607) (0.2230) (0.2929) (1.5989) (4.6382) (46.3125)
0 3140 5960 7 40 348 30400000 33000000 4800
03 0.0030 0.0061 0.1033 0.0472 0.0458 0.0140 0.0136 0.1599
(se) (0.0003) (0.0006)  (0.0039) (0.0013) (0.0025) (0.0020) (0.0015) (0.0095)
04 -631.6025 -290.9621 77.9019 58.8077 50.2936  -100.4812 -99.3344 76.5443
(se) (64.8919)  (31.9656)  (0.3921) (0.4595) (1.2963)  (27.2444)  (20.9273) (0.3344)
First year 1920 1922 1957 1940 1967 1981 1981 1962
Observations 86 83 49 66 39 25 25 44
Improvements 19 16 12 21 7 8 7 20
R? 0.9497 0.8813 0.9846 0.9852 0.9726 0.9183 0.9533 0.9742
SSR 1.7635 28.2718 3.3782 63.2202 56.4728 386.7078  2564.169 2229555
Limit (sec) 9.88 20.30 46.67 110.42 227.87 859.17 1744.23 7982.27
Limit (h:m:ss.s) 9.88 20.30 46.67 1:50.42 3:47.87 14:19.17 29:04.23 2:13:02
2008 10.17 20.34 46.67 1:50.42 3:47.87 14:19.27 29:04.97 2:13:02

6 Limit values of time and distance

In the previous section we have estimated limit running times for each running distance and
for both sexes. This information is shown in Figure 3 which indicates that the relationship
between the limits of running time and distance is linear in log-log form. This confirms
what has been found by Lietzke (1954) and Grubb (1998).
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Figure 3: The log-log relationship between the limits of running time for men (SECM)
and women (SECW) and distance
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Finally we estimate the pooled log-log model to determine parameter k in Equation (10).
The model allows for a different intercept for men and women (fixed effects). We assume
a cross-section SUR specification to allow for contemporaneous correlation between men
and women. We also estimate robust coefficient standard errors.? The null for redundant
fixed effects (FE) is rejected at 5%, so in Table 3 we report the fixed effects estimates.
Note however that the sample is very small.

Our estimate for k is slightly smaller than the one Kennelly reported in 1905. Kennelly’s
estimate is 9/8, while our estimate is 11/10, which is significantly smaller than 9/8 at 5%.
This implies that if distance increase by 10%, the limit time increases by 11%, irrespective
of gender. This is what Lietzke refers to as the exhaustion constant or the fatigue rate. As
the fixed effects (FE) model is not rejected, the gender differences 2 x 0.0551 are significant.
The estimates imply that the women are 11% slower than men.

Finally, we estimate the limit time for the one-mile run (1609 meters), which is an irregular
running distance at main championships. The current world record is held by Hicham El
Guerrouj (MOR) who set a world record time of 3:43.13 on July 7, 1999 in Rome (ITA).
The current women world record on the mile is 4:12.56, set by Russian Svetlana Masterkova
on August 14, 1996 in Ziirich (SUI). The development of the one-mile world records are

2In Table 3 we applied the White period robust coefficient variance estimator which accommodates
arbitrary serial correlation and time-varying variances in the disturbance. Other robust coefficient variance
estimators give similar results.
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Table 3: Cross-section SUR estimation results for the log-log relationship between limit
time ¢ and distance d, with the White period robust coefficient variance estimator

Model: logt = klogd + loga

Parameter Coefficient Robust standard error
a -2.8058 0.0697
k 1.1067 0.0082
Fixed Effects

a-Men -0.0551

a-Women 0.0551

R? 0.9998

s.e. of regression 1.0859

Durbin-Watson 1.4669

Redundant FE F(1,13) (p-value) 48.8978 (0.0000)

shown in Figure 4.

Table 4: Modelling running time for the one-mile run for men (seconds)

Men Women

Coefficient Std. error Coefficient Std. error

01 223.3653 0.2115 253.2729 0.4123
0 39 57
03 0.0330 0.0004 0.0672 0.0034
04 91.2639 0.6382 108.6841 0.4200
First year 1896 1967
Observations 110 39
Improvements 35 10
R? 0.9944 0.9730
SSR 82.4707 74.043
Limit (sec) 220.97 250.73
Limit(m:ss.s) 3:40.97 4:10.73

The estimates in Table 3 implies a one-mile limit time for men of 3:22.48 (202.48 seconds).
The estimated women one-mile limit is well below the 4 minute barrier at 3:46.04 (226.04
seconds). The question is how these one-mile limit times differ from separate estimates
of the Gompertz curve for the one-mile run. Two matters complicate this exercise. First,
the current world records are rather old. Second, the one-mile run is an irregular running
distance. Table 4 shows the results.

The Gompertz model suggests limit world records which are considerably slower than the
times implied by Table 3. If the one-mile run would be a regular running event, the limit
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Figure 4: The development of one-mile world records for men and women (in seconds)
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world record would be 18.5 seconds faster for men and 24.7 seconds for women.

7 Summary and conclusions

In this paper we analyze the development of world records. We focus on running events
and fit the historical curves of individual events using an asymmetric S-shape Gompertz
curve. We compute the implied infinite lower bounds for each event and for men and
women. With only a few observations for some events it is difficult to estimate the shape
of the frontier in a reliable way. Despite these problems we have determined this frontier,
which we use to derive the limits for eight running events - 200, 400, 800, 1500, 5000,
10000 meter, and the marathon - for both men and women. We use annual data for the
world records until 2005.

The lower bounds calculated from the Gompertz curve estimations are compared in a
cross-sectional setting to arrive at a relationship between time and distance. Our estimate
is slightly different from the one Kennelly reported in 1905. Our results imply that if
distance increase by 10%, the limit time increases by 11%, irrespective of gender.

As the fixed effects (FE) model is not rejected, the gender differences are significant. The
estimates imply that the woman are 11% slower than men. Finally, we forecast the lower
bound of the mile using the log-log specification between time and distance. If the one-
mile run would be a regular running event like the other events, the gain in the long run
would be 18.5 seconds for men and 24.7 seconds for women.
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