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Abstract

The model in Verboven (2002) is extended to include non-zero price
elasticities and behavior in the fuel market is modelled explicitly. With
the use of simulations it is shown, that this makes quite a difference and,
therefore, might lead to bias in parameter estimates

1 Introduction

This paper integrates two approaches of modelling the purchase of a

durable. The first approach has been used to model the purchase of a

specific durable; the automobile. It assumes, that consumers have different

tastes for quality. Quality can be one dimensional (Bresnahan, 1987), which

means that a certain composite of product characteristics is used to indi-

cate quality. Alternatively, quality can be multi-dimensional (Berry, 1994;

Berry et.al. 1995; Feenstra et.al. 1995). A consumer with a certain taste for

quality chooses the car, which best matches his preferences given the price

of the car. On the supply side producers maximize profits by setting prices.

The variable costs of the car, i.e. the cost of driving one kilometer, is part

of the taste for quality. People with a tendency to drive more kilometers

are said to have a strong taste for the component of quality indicating fuel
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cars. In the Netherlands sales tax on diesel cars is considerably higher than

sales tax on gasoline cars. There is a lump-sum tax difference of 1868 euros

compared to an average price difference of 2395 euros, but this still leaves

a sizeable price difference of 517 euros. Verboven (2002) finds a similar

difference in price, but there are no noteworthy lump-sum tax differences.

A follow-up to this paper will investigate whether markups on diesel cars

exceed the markups on gasoline cars in the Dutch market. Therefore I will

at times point out the peculiarities of the Dutch car market.

In the presence of non-zero price elasticities of demand for kilometers,

the behavior of fuel producers can also be modelled. If prices had no effect

on demand, the optimal strategy for producers is to set prices as high as

possible, which is not realistic and will always be rejected by the data. In

this paper I will just show how fuel producer behavior could be modelled.

I will start by giving an outline of the game-theoretical framework un-

derlying the model in Section 2, then the model will be discussed in detail

in Section 3. With the aid of simulation I will show the possible effect of

this extended model in Section 4. Finally, a conclusion is given in Section

5.

2 Outline of the model

In this section an outline of the model of the automobile market is given.

In the next section it will be discussed in detail. An automobile is charac-

terized by its model (indexed by j) and its engine (indexed by k). There

are 3 groups of actors; consumers, producers of cars and producers of fuel

(i.e. diesel and gasoline).

It is assumed that consumers have already decided, which model they

want to purchase. Now, they have to choose between a diesel engine and a

gasoline engine. For each model car manufacturers usually offer a version

with a gasoline engine and a version with a diesel engine. Moreover, the

technical performances of these cars do not differ much. The points on
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which they do differ, which is basically cost, are easily measurable. So,

it is assumed that consumers are able to separate the choice of engine.

Consumers maximize utility, which has three arguments; the amount of

income spent on goods other than cars, mean intrinsic utility of owning

model (j, k) and the amount consumers drive (mileage). Consumers know

that the cost of driving a diesel car are lower than the cost of driving a

gasoline car, but the fixed cost of a diesel car exceed the fixed cost of a

gasoline car. Therefore, only consumers who are planning to drive more

than a certain amount of kilometers per year will choose a diesel car (see

Section 3.1).

Assume that for every car model, there is one producer. Since consumers

have already decided which model to choose, producers act as a monopolist.

They set the difference in price between the car equipped with a diesel

engine and the one equipped with a gasoline engine, such that their profit

is maximized. Producers are aware that people who have a high mileage

are willing to pay more for a diesel, regardless of the actual (marginal) cost

differences. This allows for (third degree) price discrimination. (see Section

3.2).

It is assumed, that all fuel is supplied by one producer, who can act

as a monopolist.1 Profit is maximized by setting the price of diesel and

gasoline. (see Section 3.4).

Endogenous variables are: choices made by individual consumers (rep-

resented by market share of gasoline cars: the number of gasoline cars of

model j sold divided by the number of cars of model j sold), price difference

between diesel cars and gasoline cars, the price of diesel and the price of

gasoline. It is assumed that all endogenous variables are set simultaneously,

which leads to a one-shot pure Nash equilibrium (cf. Section 3.3).

1In the Netherlands a cartel might be active in this particular market. This has still not
been properly investigated by the Dutch Competition Authority.
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3 The model

3.1 The demand for mileage

Consider the following indirect utility function (see Appendix A for the

derivation):

ujk = y − ρp∗jk − τjk + ajk +
1
λ

e−λπjkθj0, (1)

where j denotes the car model, k = G,D engine type, gasoline or diesel,

ujk utility derived from owning and using car model (j, k), y is income,

ρ an annualization coefficient (see Appendix B), p∗jk price of car (j, k),

including sales tax, τjk lump sum tax on car (j, k), ajk mean intrinsic

utility of consuming (j, k), λ a price sensitivity parameter and πjk fuel

cost of driving one kilometer or equivalent measure.

πjk is the marginal cost of driving. It is the product of the efficiency of

a car (in liters/km, denoted by wjk) and the price per liter of fuel (denoted

by rk(1 + tk), where rk is price minus taxes and tk an ad valorem tax.)

Consumer heterogeneity is introduced through the θj0-constant, which

at πjk = 0 can be interpreted as the amount of kilometers owner of model

j would drive in that particular point. Let θj0 ∈ Θj . It is assumed, that

there exists a function FΘ,j : Θj → [0, 1] and FΘ,j is non-decreasing and

differentiable. FΘ,j is the c.d.f. of θj0. Denote the p.d.f. by fΘ,j . The F -

function describes the continuum of consumers on Θ.

From Roy’s identity it follows that the demand for mileage given j

equals:

θjk = θj0e−λπjk , (2)

where θjk denotes the amount owner of car (j, k) drives given πjk. The price

elasticity ε is defined as:

ε =
dθjk
dπjk

πjk

θjk
= −λθjk

πjk

θjk
= −λπjk. (3)

Assume that λ ∈ [0, 1/πjk). The higher the variable cost (πjk) of car (j, k),

the more sensitive the consumer is to small price changes. Since πjD < πjG,
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by definition, and thus θjD > θjG, a rise in the variable cost of gasoline cars

would have a larger relative effect, but not necessarily a larger absolute

effect.

There exists a unique θj0, denoted as θj∗, such that ujD = ujG. Straight-

forward manipulation of (1) yields:

θj∗ =
∆aj − ρ∆p∗j −∆τj
1
λ [e−λπjG − e−λπjD ]

, (4)

where ∆xj = xjD − xjG for a variable xj . Equation (4) is an extension of

Verboven (2002, eq.2) If λ → 0, then the denominator converges to ∆πj ,

as can be verified using the rule of L’Hôpital.

Consumers for which θj0 < θj∗ choose a gasoline car. Market share of

gasoline cars for model j is the probability, that θj0 < θj∗. If this market

share is denoted by sG|j , then:

sG|j = P(θj0 < θj∗) = FΘ,j(θj∗)⇔ F−1
Θ,j(sG|j) = θj∗. (5)

Note, that sG|j + sD|j=1, where sD|j is the market share of diesel cars. In-

terestingly, if λ→ 0, then (5) can be transformed into a linear relationship

by multiplying both sides by ∆πj (cf. Verboven, 2002, eq. 7).

Let observed mileage demand be denoted by θj . If λ→ 0, then θj = θj0.

However if λ > 0, then:

θj =

{
θjG if θj0 < θj∗
θjD else

(6)

At θj = θj∗, it is clear that θjG < θjD and the distribution of mileage demand

is not continuous in this particular point.

3.2 The price of cars

Every firm produces one model, j, and equips this model with either a

gasoline engine or a diesel engine. By setting different prices the firm can

influence sG|j and maximize its profits, which are given by:

(pjG − cjG)sG|j + (pjD − cjD)(1− sG|j), (7)
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A Derivation of the indirect utility func-

tion

Consumers receive extra utility when they drive more. This can be incor-

porated in two equivalent ways: assume a demand function for mileage

and derive (indirect) utility from the demand function or assume a utility

function dependent on the amount of kilometers consumed and then derive

the demand function and the indirect utility.

A.1 Starting point: a utility function

Let (j, k) be given, then the utility of the consumer depends on the ex-

penditure on other goods (z) as a function of θjk and the utility received

from consuming θjk. If y∗ = y− ρp∗jk− τjk, then z = y∗−πjkθjk. The utility

received from consuming θjk is f(θjk), where f > 0, f ′ > 0 and f ′′ < 0.

Utility is given by:

ūjk(θ
j
k) = y∗ − πjkθjk + ajk + f(θjk). (34)

Maximize with respect to θjk:

dūjk(θ
j
k)

dθjk
= −πjk + f ′(θjk) = 0 =⇒ f ′(θjk) = πjk. (35)

From (35) follows the demand function of θjk. Substituting the demand

function in (34) gives the indirect utility.

A.2 Starting point: a demand function

Suppose the demand function of θjk is given by:

θjk = θj0e
−λπjk , (36)

where θj0 and λ are parameters. Note that if the variable cost are zero, the

consumer will drive θj0 kilometers. So, θj0 is the maximum amount of θjk

the consumer will ‘purchase’. Substituting (36) in (34) gives the indirect

utility, but only if the function f is chosen in such a way that the demand
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function that follows from (35) is the same as the demand function given

in (36).

A.3 Equivalence

From (36) follows:

πjk =
log θjk − log θj0

−λ = − 1
λ

[log θjk − log θj0]. (37)

Substituting this into (35) gives:

f ′(θjk) = − 1
λ

[log θjk − log θj0]. (38)

Integrating over θjk:

f(θjk) = − 1
λ

∫
[log θjk− log θj0]dθjk = − 1

λ
[θjk log θjk−θjk−θjk log θj0].(39)

After some rearranging the following is obtained:

f(θjk) = −θ
j
k

λ
[log

(
θjk
θj0

)
− 1]. (40)

From θjk/θ
j
0 ≤ 1 it follows that f > 0. Note that f ′(θjk) = (−1/λ)[log θjk −

log θj0] > 0 and f ′′(θjk) = −1/(λθjk) < 0. Substitute (36) and (40) in (34) to

obtain the indirect utility function given in (1).

I would like to end by making some remarks about the function f :

1. f(0) = −∞

2. f(θj0e) = 0

3. f ′(θj0) = 0 and f(θj0) = θj0/λ > 0.

This implies, that ∀θ ∈ [0, θj0] f ′(θ) ≥ 0 and ∀θ ∈ (θj0, θ
j
0e] f ′(θ) < 0 Since

f ′(θjk) = πjk and πjk is finite and non-negative, θjk ∈ (0, θj0].

B Derivation of the annualization coeffi-

cient

One of the first papers using this concept is Hausman (1979). Instead of

referring to this paper I would rather give the derivation, basically because

Hausman (1979) does not.
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efficiency. It should, however, be part of the price of owning and driving a

car.

An example of such an approach is Verboven (2002), a study much in

the vein of Berry (1994) and Berry et.al. (1995). It focuses on the choice

of engine in an automobile. The main factor determining this choice is the

amount of kilometers a person drives. If a person drives a lot the high price

of purchasing a diesel car is offset by its lower cost of driving one kilometer.

Instead of assuming that people who intensively use a car have strong taste

for the fuel efficiency component of quality, the choice of engine can depend

on evaluation of the cost structure difference.

Unfortunately in Verboven (2002), the amount of kilometers demanded

is fixed (but varies over persons) or, put differently, the (short term) price

elasticity of the demand for kilometers is equal to zero. Most empirical

studies have found small but significant price elasticities. These estimates

are usually between 0 and −0.5. See Goodwin (1992) for a review.

The second approach are studies, like Hausman (1979) and Dubin et.al.

(1984), which provide a useful alternative for examining the purchase and

use of a durable. Although both articles are about electric appliances, the

basic structure of the problem is the same and in most respects quite

similar to Verboven (2002). The difference is that Hausman (1979) and

Dubin et.al. (1984) use a utility function, in which extra utility is derived

from the usage of the durable. It is acknowledged that the decision to

buy a certain brand of durable depends on the cost of use and since these

cost may vary over brands, the intensity of use may differ over brands

and this leads to non-zero price-elasticities. Verboven (2002) argues that

these elasticities are so small that their effect is negligible. It is investigated

whether this is the case.

Verboven (2002) showed that for the Belgian, French and Italian car

market, observed price differences between cars with diesel engines and

cars with gasoline engines are mainly due to a higher mark-up on diesel
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where pjk is the price of car model (j, k) before taxes and cjk the constant

marginal cost of this model. Let p∗jk = pjk(1 + b) + βk, where b denotes

value added taxes on car (j, k) and βk a lump sum tax or subsidy.

It is clear from (4), that consumers care only about the difference in

sales prices. Since there is a linear relationship between ∆p∗j (sales price)

and ∆pj (sales price minus tax), this implies that instead of setting pD and

pG, producers can set ∆pj . This follows also from the non-existence of an

outside opportunity (i.e. not purchasing a car, but an alternative mode of

transport). There is no need to model an outside opportunity, because we

are only interested in the difference in price.

To find the FOC we differentiate (7) with respect to pjD to obtain:

(pjG − cjG)
∂sG|j
∂pjD

+ (1− sG|j)− (pjD − cjD)
∂sG|j
∂pjD

= 0. (8)

Substituting

∂sG|j
∂pjD

=
∂sG|j
∂θj∗

× ∂θj∗
∂p∗jD

× ∂p∗jD
∂pjD

= fΘ,j(θj∗)
−ρ(1 + b)

1
λ [e−λπjG − e−λπjD ]

in (8) yields (cf. Verboven, 2002, eq.8):

∆pj = ∆cj − 1− FΘ,j(θ
j
∗)

fΘ,j(θ
j
∗)

× e−λπjG − e−λπjD

ρλ(1 + b)
. (9)

The difference in price can be split in two parts; difference in marginal

cost and difference in mark-up. It is widely believed, that diesel cars are

more costly to produce. However, Verboven (2002) shows that for the Bel-

gian, French and Italian market just 16% of price differences can be ex-

plained from cost differences.

While the model does not exclude that ∆cj < 0, markups are positive

by construction. This follows from the observed fact, that πjG > πjD. If

consumers discount future cash flows heavily, then ρ is small and, therefore,

markups are high. This is because consumers are less sensitive to price

changes. If the value added tax (b) increases, then markups decrease. This

can be seen as a typical trait of a monopolistic market, where the burden of

additional taxes are worn by both consumers and producers. The roles of
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the p.d.f. and c.d.f of θ are less clear. For instance, if the value of F is close

to one, then the value of f will be close to zero. The ratio of (1 − F )/f

can be anything. If θ has an exponential distribution, then the ratio is

equal to one. It is also hard to pinpoint the economic interpretation of

(1− F )/f . A possible explanation is that it represent how sensitive to car

price differences consumers are given the market share.

There are two obvious extensions:competition between models and de-

termination of car model characteristics.

A car producer may acknowledge the fact that by setting his prices,

he may lose or win customers to other models. Then one must drop the

assumption, that model choice is given. This implies that consumer prefer-

ences must be modelled more explicitly. In this paper we have been able to

mostly avoid the problem of measuring consumer preferences, because the

source of heterogeneity in this paper are not preferences but the demand

for mileage. See Bresnahan (1987) and Berry (1994) for examples of these

extensions.

Differences in technological performance are captured by the ∆aj-

variable. It is assumed, that this is a constant, but you could let producers

increase or decrease the difference in performance to maximize profit. It is

reasonable that ∆aj is constant in the short run, because most manufac-

tures leave a model unchanged for two to four years.

3.3 Solution

Summarizing: if mileage demand is not constant the following model is

obtained:

F−1
X,j(sG|j) = θj∗. (10)

∆pj = ∆cj − 1− FΘ,j(θ
j
∗)

fΘ,j(θ
j
∗)

× e−λπjG − e−λπjD

ρλ(1 + b)
. (11)
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If θj0 is uniformly distributed on the interval [0, θjm] then the following

solution is obtained analytically (see Appendix C):

sG|j =
1
2

+
1
2

∆aj − ρ(1 + b)∆cj − ρ∆β −∆τj
1
λ [e−λπjG − e−λπjD ]

1
θjm

, (12)

∆pj = ∆cj

+1
2

∆aj−ρ(1+b)∆cj−ρ∆β−∆τj− 1
λ

[e−λπjG−e−λπjD ]θjm
ρ(1+b) .

(13)

Note that since 1
λ [e−λπjG − e−λπjD ] is negative by assumption, one of

the conditions for θj∗ is in the interior of [0, θjm] is that ∆aj−ρ(1+ b)∆pj−
ρ∆β−∆τj < 0 (cf. 4). If θj∗ can be any point in the interior of [0, θjm], then

sG|j ∈ (0, 1). From (11) it follows, that ∆pj > ∆cj . Therefore ∆aj − ρ(1 +

b)∆cj−ρ∆β−∆τj can have any sign. If it is positive, then sG|j < 1/2 and

else it is larger than 1/2.

The second part of (13) is a different way to express the markup, which

is positive, because 1
λ [e−λπjG− e−λπjD ] is negative. Since there are no prior

assumptions on ∆cj , theoretically the sign of ∆pj is undetermined. How-

ever, we know from practice, that ∆pj � 0. Therefore, it is believed that

either ∆cj and the mark-up have the same positive sign or, ∆cj < 0 and

the absolute value of the marginal cost difference is much smaller than the

positive mark-up.

3.4 Endogenizing fuel prices

This is a simplified example of how fuel prices could be endogenized. It

is simplified not because the algebra is that difficult, but this approach

yields clearer expressions. It, therefore, serves as a starting point for further

analysis.

The average value of θj0 given that θj0 ≥ θj∗ is:

E[θj0|θj0 ≥ θj∗] =

∫
z≥θj∗ zfΘ,j(z)dz

1− FΘ,j(θ
j
∗)

. (14)

The average diesel car owner will drive:

EθjD = E[θj0|θj0 ≥ θj∗]e−λπjD , (15)

9



and will demand EθjDwjk liters of fuel. Multiplying this with the market

share of diesel cars we obtain the total demand for diesel. The demand for

gasoline can be derived in an analogous way and is given by the following

equation:

EθjG = E[θj0|θj0 ≤ θj∗]e−λπjG , (16)

where

E[θj0|θj0 ≤ θj∗] =

∫
z≤θj∗ zfΘ,j(z)dz

FΘ,j(θ
j
∗)

. (17)

As noted before, πjk = rk(1 + tk)wjk. Note that we split fuel price in a

price component set by firms and a tax component set by the government.

Also note that if the price of diesel is increased ceteris paribus two effects

occur. The market share of diesel cars falls and those who remain drive

less. These are the short term effects. For the sake of simplicity, we assume

that the fuel producer takes market shares as given. In the long term wjk

cannot be assumed to be constant. For instance, after the oil crisis in the

1970s, more fuel efficient cars were produced, at least in Europe, but this

happened with a lag of a decade.

There is only one firm in the fuel market.2 Let the marginal cost of fuel

k be dk, then the firm maximizes:

max
rk

∑

k=G,D

(rk − dk)
∑

j

Eθjk
wjk

sk|j , (18)

where sG|j = FΘ,j(θ
j
∗) and sD|j = 1 − sG|j . Note that it is not sufficient

to calculate the difference in prices, because unlike car prices consumer

do care about the height of both diesel and gasoline price (cf.4). Since we

assume that the firm takes market shares as given, it follows that:

∂Eθjk
∂rk∗

= 0 k∗ 6= k (19)

2In view of the Dutch market for fuel, it maybe would be more appropriate to think of a
Stackelberg leader in prices. Shell, the largest seller of fuel to petrol stations in the Netherlands,
advices these petrol stations on sales price. Although owners are free to set prices, in practice
this is the sales price. The petrol station, which are not supplied by Shell, can take this price
as given and set their own price.
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and

∂Eθjk
∂rk

= −λwjk(1 + tk)Eθ
j
k. (20)

The first order conditions are:

∑

j

EθjG
wjG

sG|j + (rG − dG)
∑

j

∂EθjG
∂rG

sG|j
wjG

= 0 (21)

∑

j

EθjD
wjD

(1− sG|j) + (rD − dD)
∑

j

∂EθjD
∂rD

1− sG|j
wjD

= 0 (22)

Substituting (20) for ∂Eθjk/∂rk and solving for rk this leads to:

rG = dG +

∑
j EθjG

sG|j
wjG

λ(1 + tG)
∑
j EθjGsG|j

(23)

and

rD = dD +

∑
j EθjD

(1−sG|j)
wjD

λ(1 + tD)
∑
j EθjD(1− sG|j)

. (24)

These have the same structure as (11). The second term on the RHS is

a markup. A rise in markup can have three reasons: more efficient cars,

less excise and/or VAT and less price sensitive consumers. If cars are more

efficient or there is less excise, then the price of driving one kilometer

decreases and this enables fuel producers to capture at least part of this

effect. It is well known that price sensitivity and markups are inversely

related.

If there is just one car model we get the trivial solution: rk = dk +

(1/λ(1 + tk)wjk)

4 Simulation

In order to show the effects of introducing a price sensitivity parameter

in the Verboven (2002) model, I have done some simulation on the model

described in equations 10 and 11. In this simulation fuel producer behavior

is exogenous and we treat fuel prices as given. Parameter values are taken

from Verboven (2002, Table 5). Demand and pricing were estimated jointly
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and car producers behave monopolistically. The hypothetical average car

model is sold in Belgium and is not produced in France, Germany or Italy.

It has average horsepower, displacement and weight. These numbers are

taken from Verboven (2002, Table 1 and 2).

Mean intrinsic utility is a linear combination of a constant, horsepower,

displacement and weight. The same applies to marginal cost. The param-

eter values are shown in Table 1. The value of ρ implies that given an

average lifetime of the car of 10 years consumers have an implicit interest

rate of 6.8% and if the average lifetime of the car is 15 years an implicit

interest rate of 12.2%. Note that the marginal cost difference is negative

but small compared to an average price difference of 2000 euros.

Note, that we observe θj , which is either θjD or θjG. If λ, the price

sensitivity parameter, equals zero, then θj = θj0. However if λ > 0, then

θjk = e−λπjkθj0. Recall that

θj =

{
θjG if θj0 < θj∗
θjD else

(25)

This means that the expected value of θj is defined as:

Eθj = P(θj = θjG)EθjG + P(θj = θjD)EθjD. (26)

The probability that θj = θjG is the probability that θj0 ≤ θj∗. The proba-

bility that θj = θjD is the probability that θj0 > θj∗. This leads to:

Eθj = P(θj0 ≤ θj∗)EθjG + P(θj0 > θj∗)Eθ
j
D. (27)

Of course the probability that θj0 ≤ θj∗ is the market share of gasoline

engines (sG|j):

Eθj = sG|jEθ
j
G + (1− sG|j)EθjD. (28)

The expected value of θjk equals e−λπjkEθj0. After some rearranging this

results in:

Eθj0 =
Eθj

sG|je−λπjG + (1− sG|j)e−λπjD
. (29)
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Table 1: Parameter values based on Verboven (2002)
∆aj −98, 722
ρ 0, 132
τD 285.9
τG 173.7
πjD 0, 043076
πjG 0, 070384
∆cj −31, 29

Table 2: Description of the 4 scenarios
(1) (2) (3) (4)
1 0 0 0
2 0.1 0.06 1.42
3 0.2 0.12 2.84
4 0.5 0.31 7.10

Note: In column (1) are the scenario numbers, in column (2) the absolute price elasticity
of gasoline, in column (3) the implied absolute price elasticity of diesel and in column
(4) the implied value of λ

If the expected value of θj is known, then the expected value of θj0 can be

calculated from the equation above. For now assume that Eθj = 18257 and

θj0 ∼ U(0, 2Eθj0).

I consider four scenarios based on four different price elasticities of

gasoline. These correspond to values of λ and the price elasticity of diesel.

See Table 2 for the values. Scenario 1 is the model as estimated in Ver-

boven (2002). Scenario’s 2 and 3 are based on price elasticities as found in

the literature (see Goodwin (1992) for an overview). Scenario 4 is based

on a price-elasticity, which is larger than found in empirical studies. The

scenarios stay the same throughout this section.

Equilibrium is calculated and shown in Table 3. The outcomes are rea-

sonably close to observed differences in the Belgian car market. Price dif-

ference and market share of gasoline cars are both a bit too high. The

effect of introducing non-zero price sensitivities are minimal. The percent-

age change in both market share and price relative to scenario 1 is less

than one percent for all scenario’s.
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Table 3: Outcomes, when θj0 has a uniform distribution
Scenario Market share Price Demand for diesel Demand for gasoline

1 0.6037 2962 22043 22043
2 0.6033 2977 22546 21688
3 0.6029 2991 23052 21331
4 0.6020 3026 24590 20254

Note: Market share is the market share of gasoline cars, price is the price difference
between diesel and gasoline cars in US dollars and the demand for diesel and gasoline
is the demand at the threshold in kilometers.

Table 4: Outcomes, when θj0 has a double exponential distribution
Scenario Market share Price Demand for diesel Demand for gasoline

1 0.6153 2461 19617 19617
2 0.5922 2316 19288 18554
3 0.5679 2185 19003 17584
4 0.4914 1857 18371 15131

Note: Market share is the market share of gasoline cars, price is the price difference
between diesel and gasoline cars in US dollars and the demand for diesel and gasoline
is the demand at the threshold in kilometers.

Verboven (2002) uses the double exponential distribution:

F (θ) = exp(−exp(−(θ − µ)
π√
6σ
− γ)), (30)

where µ is the mean, σ the standard deviation and γ = 0.57721566.3 Take

µ = Eθj0 and σ = 12000 and calculate the equilibrium for each of the

scenario’s. See Table 4.

As we see, the differences between scenario 1 and scenario 2 and 3

are much larger when using the double exponential distribution, probably

due to a much steeper distribution. The relative changes are captured in

Table 5. For the likely scenario’s 2 and 3 these changes are between 4 to

11 percent and for scenario 4 they are above 20%. This indicates, that

ignoring price sensitivity might have quite some implications.

There are two taxes in the model; fuel tax and annual car tax. So far,

the problem has been analyzed in terms of differences between cars with

3This is Euler’s constant, a well known constant in number theory. It is defined as γ =
limn→∞(

∑n
i=1 1/i− ln(n)).
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Table 5: Percentage change relative to scenario 1
Scenario Market share Price

2 4 6
3 7 11
4 20 25

Table 6: Elasticities of the demand of gasoline cars
Scenario εFj εCj

1 -1.203 -0.618
2 -1.385 (15%) -0.743 (20%)
3 -1.550 (29%) -0.810 (31%)
4 -2.035 (69%) -1.099 (78%)

Note: Behind the price elasticities in parentheses are the percentage difference with
scenario 1.

gasoline engines and cars with diesel engines. This will also be the way in

which changes in taxes will be analyzed. For both fuel tax and annual car

tax, the tax on gasoline will be increased by a half percent and the tax on

diesel will be decreased by a half percent. The difference will, more or less,

increase by one percent. Therefore the percentage change in market share

can be interpreted as the price elasticity of the demand of gasoline cars.

Formally, I computed:

εFj =
1
2

dsG|j
dπjG

πjG
sG|j

− 1
2

dsG|j
dπjD

πjD
sG|j

(31)

and

εCj =
1
2

dsG|j
dτjG

τjG
sG|j

− 1
2

dsG|j
dτjD

τjD
sG|j

′
. (32)

Note, that when calculating εFj I change the cost of driving one mile (πjk)

by a half percent instead of changing tax by a half percent. As long as

fuel producer behavior is not modelled there is no difference. The results

are shown in Table 6. The difference between scenario 1 and the other

scenario’s are even larger in the elasticities than they were in market share

and price.

Define government revenue of annual car tax as R = sG|jτjG + (1 −
sjG)τjD and define the elasticity of government revenue with respect to
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Table 7: Elasticities of government revenue
Scenario εRj

1 0.947
2 0.938
3 0.949
4 0.931

annual car tax as:

εRj =
1
2

dR
dτjG

τjG
R
− 1

2
dR

dτjD
τjD
R
. (33)

The results are shown in Table 7. As can be seen almost all the effects cancel

out. It is no surprise that this elasticity is almost equal to one since it is

assumed, implicitly, that everybody buys a car, despite the cost attached

to this.

5 Concluding remarks

In this paper the model in Verboven (2002) has been extended to include

non-zero price elasticities and the fuel market has been modelled explicitly.

The effects of the first extension have been examined with simulation. They

have shown, that an error of 5-10% can easily occur if zero price elasticity

is assumed.

The next task is to estimate the model presented in this paper using

data for the Dutch and (probably) the German market. Because each mar-

ket, however it is defined, just gives us 100-150 observations (i.e. j, the

number of models on sale during a particular period) empirical research

requires the combining of several regional or national markets.

Another possibility is to rearrange the model presented in this paper

to fit existing panel data. Instead of looking at the aggregate of all choices,

one could look at each individual choice. This expands the number of ob-

servations to the number of members of the panel. Since most studies focus

on mobility, i.e. how, why and how much people drive, detailed information

on the mode of transport, as is needed in the kind of models discussed in

16



this paper, is unavailable and therefore it is almost impossible to include

producer behavior.
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Assume that a product has a price of 1 euro and lasts for T years,

therefore a product originally purchased at t = 0, where t ∈ [0, 1, 2, . . .]

denotes time, has to be replaced at t = T, 2T, 3T, . . . Let r > 0 denote

the implicit interest rate, then the present value (denoted by PV) of the

payment equals:

PV = 1 +
1

(1 + r)T
+

1
(1 + r)2T

+ . . . (41)

Since 1/ (1 + r)T < 1, it follows that

PV =
1

1− (1 + r)−T
(42)

Let ρ be a payment made at t = 0, 1, . . ., such that the present value of

these payments equal PV. This leads to:

ρ+
ρ

1 + r
+

ρ

(1 + r)2 + . . . =
1

1− (1 + r)−T
⇔ (43)

ρ

[
1

1− (1 + r)−1

]
=

1
1− (1 + r)−T

⇔ (44)

ρ =
r

1 + r
× 1

1− (1 + r)−T
. (45)

A person, who has an implicit interest rate of r and knows that a product

is going to last T years is indifferent between paying one euro every T

years or paying ρ euro every year. Since T ≥ 1, it follows that ρ ≤ 1. Since

PV > 0 and r/(1 + r) > 0, it follows that ρ > 0 as well.

C Derivation of the solution of the model

with a uniform distribution

Observe, that sG|j = FΘ,j(θ
j
∗) and fΘ,j(θ

j
∗) = 1/θjm. Let Λ = 1

λ [e−λπjG −
e−λπjD ]. Substitute above in (11) to obtain:

∆pj = ∆cj − (1− sG|j)
Λθjm

ρ(1 + b)
. (46)

Substituting above in (10) gives:

θjmsG|j =
∆aj − ρ(1 + b)∆cj + (1− sG|j)Λθjm − ρ∆β −∆τj

Λ
. (47)
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This is equivalent to:

θjmsG|j =
∆aj − ρ(1 + b)∆cj − ρ∆β −∆τj

Λ
+ (1− sG|j)θjm. (48)

Adding θjmsG|j to both sides and dividing both sides by 2θjm leads to (12).

Substitute (12) in (11) to obtain:

∆pj = ∆cj−
[

1
2
− 1

2
× ∆aj − ρ(1 + b)∆β −∆τj

Λθjm

]
×
[

Λθjm
ρ(1 + b)

]
.(49)

After some rearranging (13) is obtained.
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