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Abstract

The paper presents a mean-variance frontier based on dynamic frictionless investment strate-

gies in continuous time. The result applies to a finite number of risky assets whose price process

is given by multivariate geometric Brownian motion with deterministically varying coefficients.

The derivation is based on the solution for the frontier in discrete time. Using the same mul-

tiperiod framework as Li and Ng (2000), I provide an alternative derivation and an alternative

formulation of the solution. It allows for a nice asymptotic formulation of the efficient hyperbola

and its underlying efficient processes that applies in continuous time.

Keywords: multiperiod mean-variance frontier, discrete time, continuous time



1 Introduction

Dynamic mean-variance optimal solutions have been used, mainly in a univariate context, to

study asset allocation and derivative pricing by, among many others, Richardson (1989), Duffie

and Richardson (1991), Schäl (1994), Schweizer (1995), Bajeux-Besnainou and Portait (2002).

In particular Li and Ng (2000) generalized Markowitz (1952, 1959). They provided an analytical

expression for the mean-variance frontier along with optimal portfolio policy for a multivariate

multiperiod portfolio selection problem where the returns of risky assets are assumed to be

independent over time. The solution was hard to find due to problems of nonseparability in

the sense of dynamic programming. Their solution scheme was to embed the original problem

into a tractable auxiliary separable problem and to investigate the relationship between the

solution sets. Leippold et al. (2004) use this approach to cover portfolios consisting of both

assets and liabilities. They emphasize the use of orthogonal projections and provide a financial

interpretation of the desired optimal policies.

Here I start by considering the same problem and derive the solution in a more direct way.

Similar to the standard single-period problem the mean-variance frontier is fully described by

three of the first two moments of two efficient strategies. As the moments of the returns of

the risky assets are not path dependent, the strategy that minimizes the expected squared

return is easily found. Its solution does not depend on the number of periods. So the problem

reduces to finding a single moment of another efficient strategy. If there is no riskless asset

present this problem is nontrivial. Still, relatively simple steps lead to its solution. The overall

solution describes the three moments in terms of the mean-variance parameters that apply in

the separate periods.

In a next step the limits of the relevant expressions are found as the number of periods

increases, while the variances and expectations in the separate periods are shrunk at the same

time. The underlying price process converges to geometric Brownian motion, with deterministi-

cally varying coefficients, and the mean-variance solution converges to the solution in continuous

time. It generalizes the continuous-time efficient frontier of Zhou and Li (2000) to the case where

a riskless asset need not be present. In a separate paper the solution is used to model the current
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yield curve1. The implied mean-variance parameters, which are found by fitting yield curves,

are shown to be closely related to the business cycle and to the equity risk premium.

2 The model and the solution in discrete time

Consider a finite number of assets whose price vector at time ti is given by Sti , i = 0, 1, . . . , n.

Let the vector of gross returns over the separate periods be given by θti = Diag(Sti−1)
−1Sti ,

i = 1, . . . , n. The returns are assumed to be independent over time with finite first and second

moments. Consider frictionless trading and self-financing strategies. That is, if equity positions

at time ti are given in the vector φti , and the portfolio value is given by Vti = ι′φti ,where ι is a

vector of ones, then Vti = ι′φti = θ′tiφti−1 , i = 1, . . . , n. The returns of the strategies are given

by Rtn = Vtn/Vto . Consider strategies with finite first and second moments. They form a linear

space. Consequently, standard one-period mean-variance analysis and its results (cf. Cochrane

2001) apply to the dynamic framework as well.

2.1 The frontier

Let the first two moments be denoted by m = E (Rtn), s2 = E (R2
tn) and let the variance be

given by σ2 = Var (Rtn). The efficient frontier is usually formulated in terms of the Global

Minimum Variance (GMV) portfolio. Let the strategy that minimizes σ2 have moments mGMV

and σGMV2 and let Γ be a third parameter, then the frontier for efficient strategies, where σ2 is

minimal conditional on m, can be formulated as

σ2 = σGMV2 +
(

m−mGMV

Γ

)2

. (1)

Another formulation of the frontier is in terms of the Least Squared Return (LSR) strategy with

moments mLSR and sLSR2, that minimizes s2 . It is given by

s2 = sLSR2 +
(

m−mLSR

F

)2

. (2)

1Based on approximate bond-replicating strategies that hedge against constant claims at varying maturities and
by using appropriate risk premia for the residual risk, I arrive at a model for the current yield curve without making
assumptions about the dynamic evolution of yield curves.
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The relations between the two sets of parameters are easily found by using the optimality of

GMV and LSR in (2) and (1), respectively:

mGMV =
mLSR

1− F 2
,

σGMV2 = sLSR2 − mLSR2

1− F 2
, (3)

Γ2 =
F 2

1− F 2
.

Another useful efficient strategy is found by minimizing σ2/m2 and will be referred to as the

Minimum Risk (MR) strategy. Its expected return is given by

mMR = mLSR +
sLSR2

mLSR
F 2. (4)

2.2 The solution

Define the first two moments of the returns mti ≡ E (θti+1) and Ωti ≡ E (θti+1θ
′
ti+1

), which is

assumed to be nonsingular, and let single period mean-variance parameters, for i = 0, . . . , n−1,

be given by

slsrti

2
=

1
ι′Ω−1

ti ι
, mlsr

ti =
m′

tiΩ
−1
ti ι

ι′Ω−1
ti ι

, f2
ti = m′

ti

(
Ω−1

ti −
Ω−1

ti ιι′Ω−1
ti

ι′Ω−1
ti ι

)
mti . (5)

The solution for the multi-period mean-variance frontier parameters of frontier (2), which will

be derived in the next subsection, is given by

mLSR =
n−1∏
i=0

mlsr
ti , (6)

sLSR2 =
n−1∏
i=0

slsrti

2
, (7)

F 2 =
n−1∑
j=0

f2
tj

n−1∏
i=j+1

mlsr
ti

2

slsrti

2

 , (8)

where
∏n−1

i=n mlsr
ti

2
/slsrti

2
= 1. For n = 1 the multi-period solution coincides with the one-period

solution.
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2.3 The derivation

Describing the LSR strategy and its moments is easy. As the returns are independent the

minimization of s2 amounts to minimization in each period separately, i.e.

E (R2
tn) =

n∏
i=1

E


(

θ′tiφti−1

ι′φti−1

)2


is minimized by

φLSR
ti =

Ω−1
ti ι

ι′Ω−1
ti ι

V LSR
ti , (9)

i = 0, . . . , n− 1. Consequently,

mLSR =
n∏

i=1

E

(
θ′tiΩ

−1
ti−1

ι

ι′Ω−1
ti−1

ι

)
=

n∏
i=1

m′
ti−1

Ω−1
ti−1

ι

ι′Ω−1
ti−1

ι
=

n−1∏
i=0

mlsr
ti ,

sLSR2 =
n∏

i=1

E


(

θ′tiΩ
−1
ti−1

ι

ι′Ω−1
ti−1

ι

)2
 =

n∏
i=1

1
ι′Ω−1

ti−1
ι

=
n−1∏
i=0

slsrti

2
,

which amounts to (6) and (7).

To derive (8) consider the strategy that minimizes E {(Vtn − 1)2}. As E Vtn = Vtom and

VarVtn = V 2
toσ

2, it follows that E {(Vtn−1)2} = (Vtom−1)2+V 2
toσ

2, which is minimized for fixed

m and σ2 by Vto = m/s2. For this optimal value of Vto the minimum of E {V tn−1)2)} = σ2/s2

is found by investing Vto in the MR strategy that minimizes both σ2/m2 and σ2/s2. Therefore,

the portfolio value at time ti will be indicated as V MR
ti . Cochrane (2001) refers to its return as

the constant-mimicking return.

Alternatively, the initial value V MR
to = mMR/sMR2 can be found as follows. Due to the

optimality of the portfolio, V MR
tn − 1 is orthogonal to any other portfolio, in particular to RLSR

tn ,

i.e.

E
{
RLSR

tn (V MR
tn − 1)

}
= 0. (10)

Similarly, due to its optimality, RLSR
tn is orthogonal to any portfolio with initial value equal to

0, in particular to V MR
tn /V MR

to −RLSR
tn ,

E

{
RLSR

tn

(
V MR

tn

V MR
to

−RLSR
tn

)}
= 0. (11)
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Combining (10) and (11) the initial value is found as

V MR
to =

mLSR

sLSR2 . (12)

Consequently, the expected portfolio value at maturation is given by

E (V MR
tn ) =

mMRmLSR

sLSR2 . (13)

Due to (4) the problem is solved once this expectation is expressed in the mean-variance pa-

rameters of the separate periods.

To achieve this goal the equity positions φMR
ti of the portfolio have to be found. To start

with to, φMR
to satisfies ι′φMR

to = V MR
to as given by (12). Now, the steps that led to this result can

be repeated with ι replaced by another, arbitrary vector ρ, say. That is, consider the LSR-ρ

portfolio that minimizes E {(V LSR−ρ
tn )2} under the restiction ρ′φLSR−ρ

to = 1. Similar to (6) and

(7) the first two moments of this portfolio are found as

E (V LSR−ρ
tn ) =

m′
toΩ

−1
to ρ

ρ′Ω−1
to ρ

n−1∏
i=1

mlsr
ti , (14)

E {(V LSR−ρ
tn )2} =

1
ρ′Ω−1

to ρ

n−1∏
i=1

slsrti

2
. (15)

Furthermore, (10) holds if RLSR
tn is replaced by RLSR−ρ

tn and similar to (11),

E

{
RLSR−ρ

tn

(
V MR

tn

ρ′φMR
to

−RLSR−ρ
tn

)}
= 0 (16)

must hold, and so, similar to (12),

ρ′φMR
to = ρ′Ω−1

to mto

n−1∏
i=1

mlsr
ti

slsrti

2 .

As ρ is arbitrary, the initial equity positions of the MR portfolio are given by

φMR
to = Ω−1

to mto

n−1∏
i=1

mlsr
ti

slsrti

2 . (17)
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To derive the equity positions for ti, i = 1, . . . , n − 1, first consider the LSR-i and MR-i

portfolios that are defined similar to the LSR and MR portfolios with the difference that the

former portfolios start at ti instead of to. Similar to (9) and (17) the initial equity positions are

given by

φLSR−i
ti =

Ω−1
ti ι

ι′Ω−1
ti ι

, φMR−i
ti = Ω−1

ti mti

n−1∏
j=i+1

mlsr
tj

slsrtj

2 . (18)

The positions of the MR portfolio at time ti will be different in general from φMR−i
ti due to the

fact that the initial value of the MR-i portfolio is not restricted, whereas φMR
ti should satisfy

ι′φMR
ti = V MR

ti .

So, the MR portfolio for tj , j = i, . . . , n, can be defined as the solution to the problem of

minimizing E (Vtn − 1)2 conditional on Vti = V MR
ti . As Vtn = V MR−i

tn +(Vtn −V MR−i
tn ) and due to

the orthogonality of V MR−i
tn −1 to any other portfolio, in particular to Vtn−V MR−i

tn , the definition

of the MR portfolio for tj , j = i, . . . , n amounts to minimizing

E (Vtn − 1)2 = E (V MR−i
tn − 1)2 + E(Vtn − V MR−i

tn )2,

conditional on Vti = V MR
ti . Then, clearly, Vti − V MR−i

ti should be invested in the LSR-i strategy,

i.e. V MR
tj − V MR−i

tj = V LSR−i
tj (V MR

ti − V MR−i
ti ) for j = i, . . . , n. As a result we find the equity

positions of the MR portfolio for all ti equal to

φMR
ti = φMR−i

ti + φLSR−i
ti (V MR

ti − V MR−i
ti )

= Ω−1
ti mti

n−1∏
j=i+1

mlsr
tj

slsrtj

2 +
Ω−1

ti ι

ι′Ω−1
ti ι

V MR
ti −

n−1∏
j=i

mlsr
tj

slsrtj

2

 ,

= vti

n−1∏
j=i+1

mlsr
tj

slsrtj

2 + wtiV
MR
ti , (19)

where (18) has been used for the second equality and

vti ≡
(

Ω−1
ti −

Ω−1
ti ιι′Ω−1

ti

ι′Ω−1
ti ι

)
mti , (20)

wti ≡
Ω−1

ti ι

ι′Ω−1
ti ι

. (21)
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Finally, (19) can be used to describe the MR portfolio values recursively:

V MR
ti+1

= θ′ti+1
vti

n−1∏
j=i+1

mlsr
tj

slsrtj

2 + θ′ti+1
wtiV

MR
ti .

Consequently, the final portfolio value is given by

V MR
tn =

n−1∏
i=0

θ′ti+1
wti

mlsr
ti

slsrti

2

+
n∑

j=1

θ′tivtj−1

n−1∏
i=j

θ′ti+1
wti

mlsr
ti

slsrti

2

 .

As the returns are independent and E (θ′ti+1
vti) = f2

ti and E (θ′ti+1
wti) = mlsr

ti , as in (5), the

expectation of the final portfolio value is given by

E (V MR
tn ) =

n−1∏
i=0

mlsr
ti

2

slsrti

2 +
n∑

j=1

f2
tj−1

n−1∏
i=j

mlsr
ti

2

slsrti

2

 .

Using (4) and (13) the result (8) follows.

3 Mean-variance efficiency in continuous time

In order to formulate the efficient mean-variance frontier in continuous time, along with two

efficient strategies, consider the returns θt+∆t over a period ∆t, where ∆t = (T − to)/n and

T = tn is fixed as ∆t → 0. Let the first two moments of the returns be given by

Ωt = mtm
′
t + Σt∆t and mt = ι + µt∆t,

and the limit process by

dSt = Diag(St)(µtdt + Σ1/2
t dWt),

where Wt is multivariate Brownian motion and µt and Σt vary deterministically over time and

Σt is assumed to be nonsingular for all t ∈ [t0, T ]. Finally, define instantaneous mean-variance

parameters

α2
t =

1
ι′Σ−1

t ι
, βt =

µ′
tΣ

−1
t ι

ι′Σ−1
t ι

, γ2
t = µ′

t

(
Σ−1

ti − Σ−1
t ιι′Σ−1

t

ι′Σ−1
t ι

)
µt, (22)
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which are assumed to be bounded and integrable over [t0, T ].

After some algebraic manipulations I find

m′
tΩ

−1
t ι =

1 + βt∆t

α2
t ∆t(1 + γ2

t ∆t) + (1 + βt∆t)2
,

ι′Ω−1
t ι =

1 + γ2
t ∆t

α2
t ∆t(1 + γ2

t ∆t) + (1 + βt∆t)2
,

m′
tΩ

−1
t mt =

α2
t γ

2
t (∆t)2 + (1 + βt∆t)2

α2
t ∆t(1 + γ2

t ∆t) + (1 + βt∆t)2
.

Thus, the parameters (5) can be expressed as

slsrt

2
= 1 + (2βt + α2

t − γ2
t )∆t + o(∆t),

mlsr
t = 1 + (βt − γ2

t )∆t + o(∆t),

f2
t = γ2

t ∆t + o(∆t),

and the the frontier parameters (6), (7) and (8) are given in continuous time by

sLSR2
= exp

{∫ T

to
(2βt + α2

t − γ2
t )dt

}
, (23)

mLSR = exp

{∫ T

to
(βt − γ2

t )dt

}
, (24)

F 2 =
∫ T

to
γ2

t exp

{
−
∫ T

t
(α2

u + γ2
u)du

}
dt. (25)

Notice that, although Σt was assumed to be nonsingular in the derivation, the solution allows αt

to be arbitrary close to 0. Due to continuity the expressions where αt is replaced by 0 represent

the parameters that describe the frontier in the presence of a riskless asset.

If αt, βt and γt are constant, the parameters (23), (24) and (25) equal

sLSR2
= exp

{
(2β + α2 − γ2)(T − to)

}
,

mLSR = exp
{
(β − γ2)(T − to)

}
,

F 2 =
γ2

α2 + γ2

[
1− exp

{
−(α2 + γ2)(T − t0)

}]
,

respectively. For example, the problem of finding the minimum variance for a portfolio value
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satisfying E (VT ) = 1, which is given by

σMR2

mMR2 =
sLSR2

mMRmLSR
− 1,

converges to the finite value α2/γ2 as T →∞.

To describe the LSR and MR processes, for which the discrete versions have been given in

(9) and (19), respectively, consider the limits of (20) and (21):

vt →
(

Σ−1
t − Σ−1

t ιι′Σ−1
t

ι′Σ−1
t ι

)
µt,

wt → Σ−1
t ι

ι′Σ−1
t ι

−
(

Σ−1
t − Σ−1

t ιι′Σ−1
t

ι′Σ−1
t ι

)
µt.

Consequently, the following limits are found:

µ′
tvt → γ2

t ,

µ′
twt → βt − γ2

t ,

and

v′tΣ
−1
t vt → γ2

t ,

v′tΣ
−1
t wt → −γ2

t ,

w′
tΣ

−1
t wt → α2

t + γ2
t .

Based on these moments the processes are given by

dV LSR
t = V LSR

t

{
(βt − γ2

t )dt +
√

α2
t + γ2

t dW
(1)
t

}
,

dV MR
t = V MR

t

{
(βt − γ2

t )dt +
√

α2
t + γ2

t dW
(1)
t

}
+ (γ2

t dt + γtdW
(2)
t ) exp

{
−
∫ T

t
(βt + α2

t )dt

}
,

where W
(1)
t and W

(2)
t are Brownian motions with deterministically varying correlation equal to

−
√

γ2
t

α2
t +γ2

t
. Notice the correlation equals −1 if αt = 0, t ∈ [tto , T ]. In that case the MR strategy

reduces to investment in a riskless asset.
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