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1 Introduction

Over the last decade, the study of the role of social interactions in economic

behavior has become an important area of research. One reason for this is

the power of these models to explain large variations in aggregate behavior

over time and space. Differences in crime rates over states (Glaeser, Sac-

erdote and Scheinkman, 1996), large variation in educational attainment

across school classes (Hoxby, 2000), fashion cycles (Pesendorfer, 1995), fluc-

tuations in stock prices (Bikhchandani, Hirshleifer and Welch, 1998) and

herd behavior (Banerjee, 1992) are all examples of phenomena that cannot

be fully accounted for by economic or cultural differences, but for which

interactions-based models offer an explanation. Almost all of these models

use the notion of strategic complementarity, implying that an increase in the

action of all agents except agent i increases the marginal return to agent i’s

action. A main reason for the popularity of these models is that they are

capable of generating the social multiplier or multiple equilibria that creates

large variations in aggregate behavior.

In models with strategic substitutes, an increase in the action of all agents

except agent i decreases the marginal return to agent i’s action. In contrast

to models with complements, models with strategic substitutes do not gen-

erate multiplier effects or multiple equilibria at the aggregate level.1 One can

think of many instances in which people derive utility from being different

than others. To give an example, most school classes inhabit some pupils

that purposely try to distinguish themselves from the others. Depending on

context, games with best-response functions that are decreasing in the ac-
1As far as I am aware, Glaeser and Scheinkman (2003) present the only example in

which strategic substitutes create multiple equilibria. However, instead of showing how
multiple equilibria can be generated within one group, they introduce a second group which
negatively interacts with the first group such that in equilibrium, aggregate behavior may
differ between the two groups. That is, agents in different groups can make different
choices in equilibrium, but the choices of agents in the same group have to be the same.
Aggregated at the society-level however, all equilibria exhibit the same behavior.
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tions of other players are also refered to as games with negative externalities

or games with negative interactions.

In a general analysis of games with strategic complementarities, Cooper

and John (1988) prove that in games with homogenous agents, strategic

complementarity is a necessary condition for the existence of multiple (sym-

metric) Nash equilibria at the aggregate level. Brock and Durlauf (2001a,

2001b, 2003) derive conditions under which strategic complementarity be-

tween the choices of individual agents leads to multiple equilibria at the

aggregate level in the class of discrete choice interactions models. The lit-

erature on the effects of strategic complements further includes studies on

conformity (Bernheim, 1994), peer effects (Kremer and Levy, 2001) or the

upholding of social norms (Becker and Murphy, 2001).

In this study, instead of considering the consequences of social inter-

actions for aggregate behavior, I will focus on the consequences of social

interactions at the level of the individual. The main contribution of the

paper is a number of propositions on equilibrium behavior in a binary si-

multaneous discrete response model with a limited number of agents. In

this model, an individual agent’s behavior is dependent on the observed

behavior of other agents. This model is closely related to the model esti-

mated in Kooreman and Soetevent (2002). In that paper we use the model

to empirically analyze interaction effects among teenagers in school classes.

Questions that are answered in the present paper concern equilibrium ex-

istence and multiplicity of equilibria. Not only do I look at the case with

strategic complements, but I purposely extend the discussion to encompass

also the case with strategic substitutes. It turns out that the latter case has

some remarkable implications.

For both cases, equilibrium existence is proved. In empirical work on

binary choice interaction models, it is particularly important to account for

the possibility of multiple equilibria. Assumptions concerning equilibrium
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selection are more pivotal when multiple equilibria occur more frequently.

For this reason, the derivation of tight upper bounds on the number of

equilibria given a certain level of complementarity (substitutability) and a

number of agents N is useful. I find that the upper bound for the number

of equilibria grows linearly in N for the case with strategic complements,

but exponentially for the case with strategic substitutes. Besides the for-

mulation of upper bounds, analytical expressions on the expected number

of equilibria are obtained. Surprisingly, for the model with strategic sub-

stitutes (complements), the expected number of equilibria is non-increasing

(non-decreasing) when N ≤ 3, but much more whimsical when N > 3. An-

other result is that in the case of strategic substitutes, two outcomes can

only belong both to the set of equilbria if in both outcomes the aggregate

number of agents choosing a particular action is the same. Finally, I de-

rive some results concerning the differences in model behavior for an even

and an odd number of agents. For an even number of agents, the upper

bound on the number of equilibria is always reached for a high enough level

of substitutability; for an odd number, this is crucially dependent on the

distribution of private utilities of the agents.

In the analysis, I will assume that the number of agents that comprises

the reference group is limited. In its focus on small groups, the paper is

complementary to much of the existing literature. As Moffitt (2001) notes:

“The crude proxies for neighborhood effects that are used in the empirical

literature, which are solely the result of data limitations, should not lead to a

conclusion that no social interactions are present in smaller geographic areas.

More generally, the theory is consistent with a small intervention affecting

only a small number of individuals.” Other studies that pay attention to

small groups are Krauth (2001), who adapts the Brock-Durlauf model to

a small group environment and Ioannides (2003) who derives a number of

general results for bounded social structures using graph theory.
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In a related branch of literature, Tamer (2003) does explicitly allow for

negative externalities in a 2 × 2 binary choice game. His objective is not to

derive equilibrium properties as well as to find an unbiased estimation proce-

dure in the presence of multiple equilibria. In another paper, Tamer (2002)

extends this procedure to situations with more than two agents. In an em-

pirical application he estimates interactions in the decisions of airline com-

panies whether or not to enter a given market. A noteworthy difference with

Tamer’s approach and earlier work on simultaneous discrete choice models

is that I categorize binary choices as {−1, 1}, instead of {0, 1}. Whereas in

standard binary choice models the categorization is immaterial, it is not in

the present context. I will argue that a {0, 1}-support is a natural choice in

simultaneous discrete response models that study firm’s entry decisions to

a certain market – the focus of Tamer’s application – but that the {−1, 1}-
support may be more appropriate when one studies social interactions in

small groups.

Understanding the effects of negative externalities on equilibrium be-

havior is a prerequisite for the incorporation of more general interaction

patterns into economic models. Until now, interactions-based models have

focused on either positive or negative interactions within a social group. In

reality however, it is likely that within a group, some agents are affected by

conformity and others by the desire to distinguish themselves. This leads to

a process in which agent A wants to resemble person B, but person B wants

to behave different than person A. In this case, there does not exist a Nash

equilibrium in pure strategies. Analysis of these kind of models is left for

future research.

The paper proceeds as follows. The model is presented in the next

section. Differences in behavior when using choices with support {0, 1}
instead of {−1, 1} are indicated. Results on the equilibrium properties of

the model are derived in section 3. Section 4 briefly discusses a slightly more
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general model with gender-based interaction terms. Section 5 concludes.

2 The model

Consider a population of N individuals indexed by i, i = 1, 2, . . . , N . Each

player i faces a binary choice and these choices are denoted by an in-

dicator variable yi which has support Yi = {−1, 1}. Yi is the strategy

set of player i and Y = ×N
i=1Yi. Elements of Y are called strategy pro-

files. A full strategy profile is denoted by y = (yi,y−i), where y−i =

(y1, y2, . . . , yi−1, yi+1, . . . , yN )′. Note that the number of elements in Y is

2N . Each individual makes a choice in order to maximize a payoff function

V : Y → R ∪ {−∞}.
In the standard economic approach, the payoff function is dependent

on individual characteristics. Following the notation in Brock and Durlauf

(2001b), I assume that these characteristics can be divided into an observ-

able vector xi and a random shock εi(yi) that is unobservable to the modeller

but observable to agent i. Moreover, in interactions-based models explicit

attention is given to the influence of the behavior of others on each individ-

ual’s choice. Each choice is then described as

max
yi∈Yi

V (yi,xi,y−i, εi(yi)). (1)

Similar to Brock and Durlauf (2001b), I assume that the payoff function V

can be additively decomposed into three terms:

V (yi,xi,y−i, εi(yi)) = u(yi, xi) + S(yi,xi,y−i) + εi(yi), (2)

where the first term u(yi, xi) denotes deterministic private utility, S(yi,xi,y−i)

denotes deterministic social utility and εi(yi) denotes random private utility.

The social utility term is assumed to have the following form

S(yi,xi,y−i) =
γ

2(N − 1)
yi

∑
j �=i

yj.
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Define y−ij = y\{yi, yj} so that (yi,xi, yj,y−ij). Note that

{V (1,xi, 1,y−ij, εi(yi)) − V (−1,xi, 1,y−ij, εi(yi))} −
{V (1,xi,−1,y−ij, εi(yi)) − V (−1,xi,−1,y−ij, εi(yi))}
= {S(1,xi, 1,y−ij) − S(−1,xi, 1,y−ij)} −
{S(1,xi,−1,y−ij) − S(−1,xi,−1,y−ij)}
=

2γ
(N − 1)

Thus, for γ > 0 the utility of choosing yi = 1 (versus yi = −1) when another

individual j chooses yj = 1 as well is larger than the utility of choosing yi = 1

(versus yi = −1) when another individual chooses yj = −1. In this case the

parameter γ measures the strategic complementarity when γ > 0 between

the choice of any pair of individuals, or the extent to which the choices are

strategic substitutes when γ < 0.2 In fact, for γ > 0 (γ < 0), the model

falls into the class of supermodular (submodular) games. Supermodular

(submodular) games are games in which each player’s strategy set is partially

ordered and the marginal returns to increasing one’s strategy rise (decrease)

with increases in the competitors’ strategies.3

Conditional on the choice by individual i, deterministic private utility is

assumed to be a linear function of exogenous characteristics xi, such that:

u(1, xi) = β′
1xi; u(−1, xi) = β′

−1xi.

The best response function of individual i given the choices of the other

individuals can now be represented as


y∗i = β′xi + γ
N−1

∑
j �=i yj + εi

yi = 1 if y∗i > 0
yi = −1 if y∗i ≤ 0

(3)

2When γ = 0, the model reduces to the standard binary choice formulation without
externalities.

3Milgrom and Roberts (1990, p. 1255). See also Vives (1990) and the recent textbook
treatments of Topkis (1998) and Vives (1999). Topkis (p. 11) defines a partially ordered
set as a set X on which there is a binary relation � that is reflexive, antisymmetric, and
transitive.
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where y∗i denotes the difference between the utility individual i derives from

choosing yi = 1 and the utility he derives from choosing yi = −1, conditional

on y−i, that is,

y∗i = V (1,xi,y−i, εi(1)) − V (−1,xi,y−i, εi(−1)),

with β ≡ β1 − β−1; εi ≡ εi(1) − εi(−1).

Define x ≡ (x′
1,x′

2, . . . ,x′
N)′ and ε ≡ (ε1, ε2, . . . , εN )′. A strategy profile

y is a pure Nash equilibrium profile if and only if it is consistent with (3) for

all i, i.e. if after substitution of these values of yi in Si we have y∗i > 0 for all

i with yi = 1, and y∗i ≤ 0 for all i with yi = −1. Let Q(β, γ,x, ε,N) denote

the number of pure Nash equilibria given {β, γ,x, ε} and the population size

N . That is, for N ≥ 2,

Q(β, γ,x, ε, N) = (4)

2N∑
t=1


 N∏

i=1

I


−εi < β′xi +

γ

N − 1

∑
j �=i

yjt




1+yit
2

I


εi ≤ −β′xi − γ

N − 1

∑
j �=i

yjt




1−yit
2



with I(·) an indicator function.4 For each element yit of a strategy profile,

the indicator functions evaluate the relevant condition on εi: −εi < β′xi +

(γ
∑

j �=i yjt)/(N − 1) if yit = 1, and εi ≤ −β′xi − (γ
∑

j �=i yjt)/(N − 1) if

yit = −1. When the relevant condition is satisfied for all elements of a

certain strategy profile yt, the product in (4) is one. In all other cases,

the product is zero. Finally summing over all 2N strategy profiles gives the

number of pure Nash equilibria. In the model without social interactions

(i.e. γ = 0) each combination of {β, γ = 0,x, ε} obviously defines a unique

equilibrium, and thus Q(β, 0,x, ε,N) = 1.

An important feature of the model with social interactions is that, for

a given combination of {β, γ �= 0,x, ε}, several strategy profiles may be

consistent with (3). If γ = 1 and β′x1 + ε1 = β′x2 + ε2 = −1
2 , for example,

4I follow the convention 00 ≡ 1.
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Figure 1: Multiple equilibria in ε-space (N = 2, γ > 0, β′x1 = β′x2 = 0) for
support Yi (left panel) and support Ỹi (right panel).

profiles y = (1, 1)′ and y = (−1,−1)′ are both consistent with (3). In the

left panel of figure 1, equilibrium profiles for the two-person game are drawn

in ε-space. The shaded area is the area with multiple equilibria.

The main objective of this paper is to analyze the relationship between

different values of γ and N on the number and nature of equilibria. I will

derive a number of results regarding the existence and maximum number of

equilibria that can occur, for both the case with a positive as with a negative

value of γ.

2.1 Choice of support {−1, 1} versus {0, 1}

It is of some importance to discuss the choice of support Yi = {−1, 1}
instead of the alternative Ỹi = {0, 1}. The latter is the common choice

in standard binary choice models where the difference is just a matter of

scaling and therefore immaterial. In this section, I will show that the specific

choice of support does affect the equilibrium properties of binary choice
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interaction models. This fact has hitherto not been explicitly recognized

in the literature. Krauth (2001) for example, taciturnly switches to Ỹi as

support in his development of the small sample analog of the Brock-Durlauf

model, whereas these authors themselves employ Yi. Key idea is that in using

support Yi, the model is symmetric and therefore invariant with respect to

interchanging the two choices. This is not the case with Ỹi.

This difference between the two models becomes clear when one com-

pares the equilibria for the two-person game in ε-space under the assumption

that exogenous variables are irrelevant (β′x1 = β′x2 = 0). The left panel of

figure 1 uses support Yi and is symmetric with respect to the line ε1+ε2 = 0.

The right panel, which uses support Ỹi, is not.

Compared to the left panel of figure 1, one observes that in the right

panel the shaded area with multiple equilibria is reduced and restricted to

the points where the private utility difference of smoking for both players

is negative (β′xi + εi = εi < 0, i = 1, 2). When using Ỹi, one implicitly

assumes that only positive choices have a social effect. One justification

for this is from an evolutionary point of view, for example by arguing that

everybody starts as a non-smoker, such that only the teenagers that start

smoking give a signal and the number of non-smokers is irrelevant. Note,

however, that the decision not to smoke can convey just as strong a signal

to others, especially in environments with many smokers.5

In other contexts however, Ỹi may be the preferred support. Consider

for example the context in which firms have to make a decision to enter

a certain market (Tamer, 2002). It is plausible that this decision is only
5To give an example, suppose that in a class with 9 teenagers, 3 of them would smoke

were social interactions absent (γ = 0), that is, y∗
i = β′xi + εi > 0 for three of them

and y∗
i ≤ 0 for the others. How would one interpret in this instance the observation

of zero smokers in this class? A natural explanation is that due to a social effect, the
six non-smokers keep the potential smokers from smoking. Support Yi allows for this
explanation, since the difference in social utility of smoking when nobody else smokes
equals γ

N−1

∑
j �=i yj = γ −8

8
< 0 for γ > 0. On the contrary, with Ỹi as underlying

support, γ
N−1

∑
j �=i yj = 0 irrespective of γ, such that social interactions cannot offer an

explanation.
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dependent on how many other firms decide to enter the market and that

the number of firms that decide not to enter is irrelevant. All results in the

sequel are derived while working with support Yi.

3 Equilibrium properties

3.1 Existence

Define zi ≡ β′xi + εi and k ≡∑N
i=1 yi, that is, k is the net number of agents

choosing y = 1.6 Rank observations on basis of the values of zi. Denote the

ordered values as z[1] ≥ z[2] ≥ . . . ≥ z[N ]. Denote the corresponding values

of y for the agent with z[j] as y[j]. Note that the latter are not ordered,

such that it is not precluded that e.g. y[j] < y[j+1]. The following propo-

sition guarantees equilibrium existence for model (3) in case of strategic

complements as well as strategic substitutes.

Proposition 1 Equilibrium existence

For every combination {β, γ,x, ε} there exists at least one vector y ≡ (y1, y2,

. . . , yN )′ for which (3) holds.

Proof: See the Appendix.

In the proof, explicit equilibria are derived for every combination {β, γ,x, ε},
although for the case with strategic complements, an alternative proof can

be given, based on the supermodular character of the game. It is worth

mentioning that for the equilibria given in the proof, |k| = |∑N
i=1 yi| de-

creases monotonically to 0 (1) as γ → −∞ for N even (N odd). In the next

subsection, it will become clear that this result holds more generally: in equi-

librium, the difference between the number of agents choosing y = 1 and
6Note that given N , only those values of k for which N + k is an even number are

possible. This follows from the observation that k = a · 1− (N − a), a ∈ {0, 1, . . . , N} can
be rewritten as N + k = 2a.
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the number of agents choosing y = −1, is smaller when γ is more negative,

other things equal.

3.2 Multiple equilibria

In section 2, we observed that multiple equilibria may occur for certain

combinations of variables and parameter values. In this section, I will derive

strict upper bounds for Q(β, γ,x, ε,N). It turns out that the situation with

strategic substitutes (γ < 0) is characterized by fundamentally different

equilibrium behavior than the one with strategic complements (γ > 0).

Moreover, it makes a difference whether the population has an even or an

odd number of members. In section 3.3, two examples are provided which

illustrate the results for the case with strategic substitutes.

The proof of proposition 2 for strategic complements uses the following

lemma that was first formulated in Kooreman and Soetevent (2003).

Lemma 1 Let γ > 0. Suppose model (3) has an equilibrium y. Then

min
{i|yi=1}

zi − max
{i|yi=−1}

zi >
2γ

N − 1
,

where zi ≡ β′xi + εi.

The lemma’s effect is that it restricts the maximum number of potential

equilibria to N + 1. The following observation is an immediate consequence

of lemma 1:

1 In any equilibrium the agents with yi = 1 are those with the largest

values for zi.

Now consider two vectors y and ỹ that differ in one element only. With-

out loss of generality, assume that yi = 1 and ỹi = −1 for some i. Define

y−i ≡ (y1, y2, . . . , yi−1, yi+1, . . . , yN )′ and ỹ−i ≡ (ỹ1, ỹ2, . . . , ỹi−1, ỹi+1, . . . , ỹN )′.

Since y−i = ỹ−i, it follows that y∗i = zi + γ
N−1

∑
j �=i yj = zi + γ

N−1

∑
j �=i ỹj =
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ỹ∗i given a combination of {β, γ,x, ε}. This implies that yi = ỹi and we ar-

rive at a contradiction. Note that this result holds irrespective of γ being

positive or negative. The following observation is thus obtained:

2 Two vectors y and ỹ that differ in only one element cannot belong both

to the set of equilibria.

The following proposition states that for a situation with strategic com-

plements, the maximal number of equilibria grows linearly in N . The second

part ensures that the upper bound on the number of equilibria is strict.

Proposition 2 Maximum number of equilibria (strategic comple-

ments)

For every combination {β, γ > 0,x, ε}, the discrete interaction model (3)

with N agents can have at most d(N) distinct equilibria, with

d(N) = �N

2
+ 1	. (5)

Moreover, for every number N , there exists a combination of {β, γ > 0,x, ε}
for which Q(β, γ,x, ε,N) = d(N).

Proof Proposition 2: From observations 1 and 2 it directly follows that the

number of equilibria for a given combination of {β, γ > 0,x, ε} can be at

most d = �N
2 + 1	, where �w	 denotes the largest integer not larger than

w. To give an example, assume that the number of agents N = 8. Due to

observations 1 and 2, the strategy profiles of the different equilibria must be

strictly ordered and differ in at least two elements. This leaves the following

five strategy profiles as the only candidates:

(1, 1, 1, 1, 1, 1, 1, 1)′ ; (1, 1, 1, 1, 1, 1,−1,−1)′ ; (1, 1, 1, 1,−1,−1,−1,−1)′ ;
(1, 1,−1,−1,−1,−1,−1,−1)′ ; (−1,−1,−1,−1,−1,−1,−1,−1)′ .

According to the proposition, the maximum number of equilibria can indeed

be at most 5, since �N
2 + 1	 = 5 when N = 8.
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The proof of the second part – the upper bound on the number of equi-

libria is strict – runs as follows. Denote the d equilibria that are to be

sustained as7

y1 = (1, 1, . . . , 1)′

y2 =
{

(1, . . . , 1,−1,−1)′ if N is even,
(1, . . . , 1,−1,−1,−1)′ if N is odd,

...

yj =
{

(1, . . . , 1N−2(j−1),−1N−2(j−1)+1, . . . ,−1)′ if N is even,

(1, . . . , 1N−2(j−1)−1,−1N−2(j−1), . . . ,−1)′ if N is odd,

with j = 3, . . . , d − 1.

yd = (−1,−1, . . . ,−1)′.

First note that y1 can be sustained as an equilibrium outcome if and

only if z[N ] > −γ and that yd can be sustained as an equilibrium outcome

if and only if z[1] ≤ γ. Further note that yd−i, i = 1, . . . , d − 2 can be

sustained as equilibria if and only if z[2i] > γ N−4i+1
N−1 and z[2i+1] ≤ γ N−4i−1

N−1 .

The fact that these necessary and sufficient conditions on the values of z

can be satisfied simultaneously completes the proof. �

In the proof of the corresponding proposition for the case with strategic

substitutes, I will make use of the following two lemma’s:

Lemma 2 If for a given combination {β, γ < 0,x, ε}, y and ỹ are both

equilibria of (3), then
∑N

i=1 yi =
∑N

i=1 ỹi.

The proof of lemma 2 uses the following result:

Lemma 3 If for a given combination {β, γ < 0,x, ε} there exists an equi-

librium y with y[j] = −1 and y[j+1] = 1, then there also exists an equilibrium

ỹ with ỹ[j] = 1 and ỹ[j+1] = −1 and ỹ[i] = y[i] for i �= j, j + 1.
7When N is odd, there has to be one equilibrium that differs in at least three elements

when compared to any of the other equilibria. Without loss of generality I assume the
last three elements of y to be the three elements that move together.
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Proofs Lemma 2 and 3: See the Appendix.

The message of lemma 2 is that for a given value of γ < 0, two different

equilibria y and ỹ can co-exist only if
∑N

i=1 yi =
∑N

i=1 ỹi. That is, both

equilibria must have the same number of subjects with outcome +1 and

with outcome −1.

Repeated application of lemma 3 shows that a strategy profile y with∑N
i=1 yi = k can only be an equilibrium if the ordered (with respect to the

zi’s) strategy profile y = (11, 12, . . . , 1k,−1k+1, . . . ,−1N )′ is an equilibrium.

This result will prove to be useful later on in deriving upper bounds for the

number of equilibria that may be sustained for a given value of γ.

Proposition 3 Maximum number of equilibria (strategic substi-

tutes)

For every combination {β, γ < 0,x, ε}, the discrete interaction model (3)

with N agents can have at most d(N) distinct equilibria, with

d(N) = de(N) =
N !

(N/2)!(N/2)!
if N is even, and

d(N) = do(N) =
N !

{(N + 1)/2}!{(N − 1)/2}! if N is odd.

Moreover, for every even (odd) number N , there exists a combination of

{β, γ < 0,x, ε} for which Q(β, γ,x, ε,N) = de(N) (Q(β, γ,x, ε,N) = do(N)).

Proof Proposition 3: The first part follows from lemma 2 by noting that the

maximum number of possible equilibria subject to the condition
∑N

i=1 yi = k

is obtained when k is chosen to equal 0 (+1 or −1) when N is even (odd).

In that case, there are N/2 (N/2 + 1 or N/2 − 1) agents choosing +1 and

the others choosing −1, giving the upper bounds on the number of possible

equilibria as given by d(N) in proposition 3.

What is left to show is that there exists a combination of {β, γ < 0,x, ε}
for which the maximum number of equilibria is obtained. From lemma 2

15



we know that, given a combination of {β, γ < 0,x, ε}, every element in the

equilibrium set must have the same number of agents choosing y = 1. For

N is even, the set can thus only have de(N) elements when the set contains

all strategy profiles for which the number of agents choosing y = 1 equals

the number of agents choosing y = −1. For each of these profiles to be an

equilibrium, it must be optimal for each agent i to choose yi = 1 given that∑
j �=i yj = −1 and to choose yi = −1 given that

∑
j �=i yj = 1. In particular,

it must hold that

z[1] + γ
1

N − 1
≤ 0 and;

z[N ] + γ
−1

N − 1
> 0.

For γ negative enough, this condition is satisfied irrespective of the values

of z[1], . . . z[N ].

For N is odd, the equilibrium set can only contain do(N) elements when

the set contains all strategy profiles for which
∑N

i=1 yi = 1 or all strategy

profiles for which
∑N

i=1 yi = −1. The necessary and sufficient conditions for

each of the profiles with
∑N

i=1 yi = 1 to be an equilibrium, are

z[1] + γ
2

N − 1
≤ 0 and z[N ] > 0, (6)

and the corresponding conditions for the strategy profiles with
∑N

i=1 yi = −1

are

z[1] ≤ 0 and z[N ] + γ
−2

N − 1
> 0. (7)

From these conditions it follows that the equilibrium set with do(N) ele-

ments for which
∑N

i=1 yi = 1 (
∑N

i=1 yi = −1) is only obtainable when all z

values are positive (non-positive). Together this proves proposition 3. �

Proposition 3 states that for the case with strategic substitutes — as in

the case with strategic complements — the upper bound on the number of

equilibria is strict. However, a notable difference with proposition 2 is that
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the maximal number of equilibria does not grow linearly but exponentially

in N . Note that de(N)
do(N−1) = 2 for all even N and limN→∞

do(N)
de(N−1) ↑ 2 for N

odd. That is, (in the limit) adding one agent to the population doubles the

upper bound on the number of equilibria.

Lemma 2 and the observation that for the equilibria in the proof of

proposition 1, |k| = |∑N
i=1 yi| monotonically decreases as γ → −∞, together

lead to the corollary8 that for all equilibria, |k| decreases monotonically to 0

(1) as γ → −∞, given N even (odd). This result is consonant with intuition:

variation in behavior increases when the utility derived from being different

increases.

Corollary 1 For the equilibria y of the discrete choice interaction model

given by (3),

|
N∑

i=1

yi| ↘ 0 as γ → −∞ and N is even,

|
N∑

i=1

yi| ↘ 1 as γ → −∞ and N is odd.

3.3 Examples

In order to provide some further intuition for the results derived for strategic

substitutes, I will present two examples in this section.

Example 1 Consider four agents with private utilities z[1] = 4, z[2] =

2.5, z[3] = 2 and z[4] = −3. Thus, without interactions (γ = 0), the unique

equilibrium is y = (1, 1, 1,−1) and k =
∑4

i=1 yi = 2. How does the set

of equilibria change when γ decreases? From corollary 1 we know that

|k| decreases monotonically to zero (since N is even) as γ → −∞. For

this reason, it is natural to ask first for the conditions under which other
8The corresponding result for positive interactions is that |∑N

i=1 yi| ↗ N as γ → ∞.
That is, in the limit all agents conform to y = 1 or to y = −1 regardless of their private
utility such that variation in behavior is minimized.
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Figure 2: Development of the number of equilibria as γ decreases in a group
of four agents, with z[1] = 4, z[2] = 2.5, z[3] = 2 and z[4] = −3.

equilibria with k = 2 are admissible. Consider the outcome in which the

y-values of agents 3 and 4 have switched, y = (1, 1,−1, 1). For this outcome

to be an equilibrium, the utility difference of smoking has to be non-positive

for agent 3 and positive for agent 4. That is: a) z[3] + γ k+1
N−1 = 2 + γ ≤ 0,

and b) z[4] + γ k−1
N−1 = −3 + γ/3 > 0. (See the solid lines in figure 2.) It

folllows (from the figure) that the second condition cannot be satisfied for

γ < 0 and for this reason, no other equilibria with k = 2 are obtained when

γ decreases.

Moreover, one knows (see figure 2) that all equilibria with k = 2 become

infeasible when, given k = 2, the third agent’s utility from smoking turns

negative, that is z[3] + γ k−1
N−1 = 2 + γ/3 ≤ 0, which happens at −γ = 6.

Thus, for values of −γ ≥ 6, only those equilibria are admissible in which

at least two agents choose y = −1. The equilibrium is unique for values of

−γ slightly larger than 6: agent 3 and 4 choose y = −1 and the other two

y = +1. As −γ becomes larger than 7.5, a second equilibrium is possible
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Figure 3: Development of the number of equilibria as γ decreases in a group
of four agents, with z[1] = 4, z[2] = 2.5, z[3] = 2 and z[4] = 1.

(y = (1,−1, 1,−1)), since now z[2] + γ k−1
N−1 = 2.5+ γ/3 ≤ 0. If −γ gets lager

than 9, again an equilibrium is added (y = (1,−1,−1, 1)) since — given the

choice of the other agents — the utility difference to choosing y = 1 is now

positive for agent 4. Eventually, the number of equilibria in the set doubles

when −γ ≥ 12 (and attains it’s maximum value de(N) = 6; see the dashed

lines in figure 2).

Example 2 The previous example might lead to the impression that the

set of possible equilibria increases as −γ increases. In general, this is not the

case. Consider the slightly different example with z[1] = 4, z[2] = 2.5, z[3] = 2

and z[4] = 1. (See figure 3.) For values of −γ just below 3, the equilibrium

set consists of 3 different equilibria, all having one agent choosing y = −1:

y = (1, 1, 1,−1),y = (1, 1,−1, 1) and y = (1,−1, 1, 1). For values of −γ just

above 3, given that exactly one agent chooses y = −1, this agent must be

agent 4, since then z[4] + γ/3 < 0.
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Figure 4: The expected number of equilibria of model (3) for N ∈ {3, 4, 5, 6},
β′xi = 5 and εi ∼ N(0, 1), ∀i.

3.4 Expected number of equilibria

In section 3.2, upper bounds for the number of admissible equilibria were

derived for every combination of {β, γ,x, ε}. In this section, I will focus on

the expected number of equilibria given a combination {β, γ,x, N}.
With independently and identically distributed disturbances εi, the ex-

pected number of equilibria can be expressed as

E[Q(β, γ,x, N)] =
∫

Q(β, γ,x, ε,N)dF (ε).

Equation (4) for Q(·) implies that E[Q(β, γ,x, N)] reduces to

2N∑
t=1


 N∏

i=1


1 − F


−β′xi − γ

N − 1

∑
j �=i

yjt






1+yit
2

F


−β′xi − γ

N − 1

∑
j �=i

yjt




1−yit
2

 ,

with F (·) the cumulative distribution function of the εi’s.

Using this expression and making some fairly general assumptions on

the distribution of the ε’s, proposition 4 can be derived. This proposition
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describes how the expected number of equilibria changes with γ for a binary

choice game with N agents.

Proposition 4 Expected number of equilibria

Assume that the εi’s in (3) are i.i.d. distributed according to a symmetric

p.d.f. f(·).
Then for N ≤ 3, ∂E[Q(β, γ,x, N)]/∂γ is non-positive for γ ∈ (−∞, 0) and

non-negative for γ ∈ (0,+∞). In particular,

∂E[Q(β, 0,x, N)]
∂γ

= 0 , and,

lim
γ→−∞

∂E[Q(β, γ,x, N)]
∂γ

= lim
γ→+∞

∂E[Q(β, γ,x, N)]
∂γ

= 0.

For N > 3, ∂E[Q(β, γ,x, N)]/∂γ may change sign at points other than

γ = 0.

Proof: See the Appendix.

In figure 4, the expected number of equilibria is plotted for N = 3, 4, 5

and 6 for the specific case where agents are homogenous with respect to

deterministic private utility (β′xi = 5, ∀i) and where the ε’s are assumed

to be i.i.d. N(0, 1) distributed. One observes that E[Q(β, γ,x, 3)] (the

solid line) is nonincreasing in the domain γ ∈ (−∞, 0) but that in the

same domain, E[Q(β, γ,x, N)] has decreasing as well as increasing parts for

N ∈ {4, 5, 6}. These oscillations are a consequence of changes in the set

of equilibria as γ changes value. Example 2 in the previous section gives a

particular example of how the number of equilibria may increase as well as

decrease as gamma becomes more negative. Note that proposition 4 imposes

no assumptions on the value of the β′xi’s.

Figure 4 shows that for a broad range of γ, the expected number of

equilibria is well below the upper bound. In particular, the range for which
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this holds seems to increase with N . Notice that especially for positive

values of γ, multiple equilibria do not seem to be an important issue.9

4 Extension to more general interactions

The model considered so far only allows for identical interactions between all

individuals in the population. One can think of more general interactions,

where the degree of interaction between two given individuals depends on

e.g. their socio-economic characteristics. In this section, I will briefly discuss

the consequences of one particular extension of the model given by (3), in

which the degree of interaction is made gender-dependent. This leads to

four different interaction parameters: γGB gives the effect of boys on girls;

γBG from girls on boys, and γGG and γBB the intra-gender effects between

girls and boys, respectively. Specify


y∗i = β′xi + Si + εi

yi = 1 if y∗i > 0,
yi = −1 if y∗i ≤ 0,

(8)

where

Si =

{
(γGG

∑N
j=1,j �=i y

G
j +γGB

∑N
j=1 yB

j )/(N − 1) if i is a girl,
(γBG

∑N
j=1 yG

j +γBB
∑N

j=1,j �=i y
B
j )/(N − 1) if i is a boy,

with yG
j ≡ yj · I(j is a girl) and yB

j ≡ yj · I(j is a boy), ∀j, and I(·) an

indicator function. See Kooreman and Soetevent (2003) for an empirical

application of this model.

Corollary 2 For every combination {β, γBB ≥ 0, γGG ≥ 0, γGB , γBG,x, ε}
there exists at least one vector y ≡ (y1, y2, . . . , yN )′ for which (8) holds.

Proof: See the Appendix.

The equivalent of proposition 2 for the extended model follows automat-

ically:
9This is consonant with the result in section ??, where in most cases the probability

of an unique equilibrium was estimated to be larger than 80 percent.
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Corollary 3 For every combination {β, γBB > 0, γGG > 0, γGB , γBG,x, ε},
the discrete interaction model given by (8) with NG girls and NB boys can

have at most d∗(NB , NG) distinct equilibria, where

d∗(NB , NG) = �NB

2
+ 1	 · �NG

2
+ 1	.

Moreover, for all NG and NB, there exists a combination of {β, γBB >

0, γGG > 0, γGB , γBG,x, ε} for which the maximum number of equilibria is

obtained.

It is noteworthy that the values of the cross-gender interaction parame-

ters γGB and γBG do not play a role in determining the maximum number

of equilibria.

5 Conclusions

In this paper, a number of equilibrium properties were derived for the binary

choice interaction model with a finite number of agents. Both for the case

with strategic complements and strategic substitutes, equilibrium existence

was proved and tight upper bounds were derived for the number of equilibria,

given the number of agents and the degree of interaction between them.

For the case with strategic substitutes, I showed that two outcomes can

only be both an equilibrium outcome if for each of them the same number

of agents chooses +1. When the number of agents is larger than 3, the

expected number of equilibria is non-monotone with respect to changes in

the degree of interaction γ. I also briefly discussed the consequences for the

equilibrium set when the model is extended to allow for gender-dependent

interactions. The main finding here is that the introduction of cross-gender

interactions does not affect the upper bounds for the number of equilibria.

One major challenge for future research is to incorporate more general

interaction structures in empirical work, by allowing interaction parameters
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to depend on socio-economic characteristics. Another is to develop an effi-

cient algorithm for finding all equilibria in games with strategic substitutes.
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6 Appendix: Proofs

Proof of Proposition 1: Equilibrium existence

The case for γ = 0 is obvious. I prove proposition 1 for the game with strate-

gic complements (γ > 0) and the game with strategic substitutes (γ < 0)

separately. For the first case, existence can be readily proved by showing

that the game described in section 2 belongs to the class of supermodular

games. Existence then immediately follows from using Theorem 5 in Mil-

grom and Roberts (1990, p. 1265). In this appendix however, I will follow

for both cases the alternative route of proving equilibrium existence through

finding an explicit equilibrium for all combinations of {β, γ,x, ε}. The main

reason is that this procedure gives more insight into some of the peculiarities

of the model.

Strategic complements (γ > 0)

Every possible combination of {β, γ > 0,x, ε} clearly falls into one of the

three following categories

(i) z[1] ≤ 0;

(ii) z[N ] > 0;

(iii) z[1] > 0, z[N ] ≤ 0.

I show that for each z in every category there is an associated y for which

(3) holds, for all values γ > 0.

(i) z[1] ≤ 0:

yi = −1, i = 1, 2, . . . , N (k = −N) is an equilibrium solution, since

y∗[1] = z[1] − γ N−1
N−1 ≤ 0. This implies that y∗[i] ≤ 0 ∀i since γ N−1

N−1 is a

constant and z[i] weakly decreases with i.
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(ii) z[N ] > 0:

yi = 1, i = 1, 2, . . . , N (k = N) is an equilibrium solution, since y∗[i] =

z[i] + γ N−1
N−1 > 0,∀i.

(iii) z[1] > 0, z[N ] ≤ 0:

Define M ≡ 0 if z[j] ≤ −γ (2j−N−1)
N−1 ,∀j, j ∈ {1, 2, . . . , N} and M ≡

arg maxi

(
z[j] > −γ (2i−N−1)

N−1 ;∀j ≤ i
)

otherwise. Five examples of se-

quences of z[i] with N = 6 and γ = 1 are plotted in figure 5 together

with the corresponding values of M . The solid line represents the

equation z[i] = −γ (2i−N−1)
N−1 .

If M = 0, y[i] = −1, i = 1, 2, . . . , N is an equilibrium solution, since

y∗[i] = z[i] − γ ≤ z[1] − γ ≤ 0, ∀i. (See the +-sequence in figure 5.)

If M > 0, y[i] = 1 for i = 1, 2 . . . ,M and y[i] = −1 for i = M +

1,M + 2, . . . , N (k = M − [N − M ] = 2M − N) is an equilibrium

solution, since y∗[i] = z[i] + γ 2M−N−1
N−1 > 0 for i = 1, 2, . . . ,M and

y∗[j] ≤ y∗[M+1] = z[M+1] + γ 2M−N+1
N−1 = z[M+1] + γ 2(M+1)−N−1

N−1 ≤ 0 for

all j = M + 1,M + 2, . . . , N .

Note that for sequences of z[i]’s for which M = N (like the sequence

of circles and x-es in figure 5), y[i] = −1, i = 1, 2, . . . , N is another

equilibrium solution if and only if z[1] ≤ γ. In figure 5, this condition

holds for the sequence of x-es but not for the sequence of circles. �

Strategic substitutes (γ < 0)

In this case, I distinguish between the case where the number of subjects N

is even and the case where this number is odd.

N even Let γ < 0. Define m ≡ arg maxi

(
z[i] > 0

)
. Suppose that m >

N/2, that is, the majority of the subjects have a value of z greater than

zero. Define the non-overlapping non-empty intervals I0 ≡
[
0, z[m](N−1)

2m−N−1

)
;
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Figure 5: Five examples of z[i]-sequences and the corresponding solutions

for M ≡ arg maxi

(
z[j] > −γ (2i−N−1)

N−1 ;∀j ≤ i
)

for the case with N = 6 and
γ = 1.

Im−N/2 ≡
[

z[N/2+1](N−1)

2(N/2+1)−N−1 ,∞
)

= [z[N/2+1](N − 1),∞) and, if m > N/2 + 1,

Ir ≡
[

z[m−r+1](N−1)

2(m−r+1)−N−1 ,
z[m−r](N−1)

2(m−r)−N−1

)
, for r = 1, 2, . . . ,m − N/2 − 1.

First consider the case m > N/2 + 1. Since the intervals are non-

overlapping and since I0∪I1∪. . .∪Im−N/2 = [0,∞), −γ is in one and only one

of these intervals. If −γ ∈ I0, y = (1, 1, . . . , 1m,−1, . . . ,−1)′, (k = 2m−N)

is an equilibrium, since for this solution y∗[1] ≥ . . . ≥ y∗[m] = z[m]+γ 2m−N−1
N−1 >

0 and y∗[N ] ≤ . . . ≤ y∗[m+1] = z[m+1] + γ 2m−N+1
N−1 ≤ 0. If −γ ∈ Ir, for

r = 1, 2, . . . ,m−N/2−1, y = (1, 1, . . . , 1m−r,−1, . . . ,−1)′ (k = 2(m−r)−N)

is an equilibrium, since for this solution y∗[1] ≥ . . . ≥ y∗m−r = z[m−r] +

γ 2(m−r)−N−1
N−1 > 0 and y∗[N ] ≤ . . . ≤ y∗[m−r+1] = z[m−r+1] + γ 2(m−r)−N+1

N−1 ≤ 0.

If −γ ∈ Im−N/2, y = (1, 1, . . . , 1N/2,−1, . . . ,−1)′ (k = 0) is an equilib-

rium, since for this solution y∗[1] ≥ . . . ≥ y∗[N/2] = z[N/2] + γ −1
N−1 > 0 and

y∗[N ] ≤ . . . ≤ y∗[N/2+1] = z[N/2+1] + γ 1
N−1 ≤ 0.

If m = N/2 + 1, then I0 ∪ Im−N/2 = I0 ∪ I1 = [0,∞). Applying similar
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reasoning, one can verify that y = (1, 1, . . . , 1N/2+1,−1, . . . ,−1)′, (k = 2)

is an equilibrium when −γ ∈ I0 and that y = (1, 1, . . . , 1N/2,−1, . . . ,−1)′

(k = 0) is an equilibrium when −γ ∈ I1.

If m = N/2, then y = (1, 1, . . . , 1N/2,−1, . . . ,−1)′ is an equilibrium for

all −γ ∈ (0,∞), since y∗[1] ≥ . . . ≥ y∗[N/2] = z[N/2] + γ −1
N−1 > z[N/2] > 0 and

y∗[N ] ≤ . . . ≤ y∗[N/2+1] = z[N/2+1] + γ 1
N−1 < z[N/2+1] ≤ 0.

Due to symmetry, the above argument can be applied for m < N/2 with

m replaced by m̃ ≡ N − m ≥ N/2 and the roles of the outcomes +1 and -1

interchanged.

N odd The above argument can also be applied for odd N . Suppose that

m > (N+1)/2 and define I0 ≡
[
0, z[m](N−1)

2m−N−1

)
, Im−(N+1)/2 ≡

[
z[(N+1)/2+1](N−1)

2(N+1
2

+1)−N−1
,∞
)

=[
z[(N+1)/2+1](N−1)

2 ,∞
)

and, if m > (N+1)/2+1, Ir ≡
[

z[m−r+1](N−1)

2(m−r+1)−N−1 ,
z[m−r](N−1)

2(m−r)−N−1

)
,

for r = 1, 2, . . . ,m − (N + 1)/2 − 1.

Taking the case that m > (N + 1)/2 + 1, it follows that for −γ ∈
I0, y = (1, 1, . . . , 1m,−1, . . . ,−1)′ (k = 2m − N) is an equilibrium; for

−γ ∈ Ir, r = 1, 2, . . . ,m − (N + 1)/2 − 1, y = (1, 1, . . . , 1m−r,−1, . . . ,−1)′

(k = 2(m − r) − N) is an equilibrium; and for −γ ∈ Im−(N+1)/2, y =

(1, 1, . . . , 1(N+1)/2,−1, . . . ,−1)′ (k = 1) is an equilibrium.

If m = (N + 1)/2+ 1, then I0 ∪ Im−(N+1)/2 = I0 ∪ I1 = [0,∞). Applying

similar reasoning, one can verify that y = (1, 1, . . . , 1(N+1)/2+1,−1, . . . ,−1)′

(k = 3) is an equilibrium when −γ ∈ I0 and that y = (1, 1, . . . , 1(N+1)/2,−1, . . . ,−1)′

(k = 1) is an equilibrium when −γ ∈ I1.

If m = (N +1)/2, then y = (1, 1, . . . , 1(N+1)/2,−1, . . . ,−1)′ is an equilib-

rium for all −γ ∈ (0,∞), since y∗[1] ≥ . . . ≥ y∗[(N+1)/2] = z[(N+1)/2] + γ · 0 > 0

and y∗[N ] ≤ . . . ≤ y∗[(N+1)/2+1] = z[(N+1)/2+1] + γ 2
N−1 < z[N/2+1] ≤ 0. Again,

the case with m < (N + 1)/2 follows from symmetry. �
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Proof of Lemma 1

Consider an agent i with yi = 1 and an agent j with yj = −1. Suppose

zj ≥ zi − 2γ
N−1 . Then y∗j = zj + γ

(
k+1
N−1

)
≥ zi + γ

(
k−1
N−1

)
= y∗i . But since

yi = 1 and yj = −1 implies y∗i > 0 ≥ y∗j , we have a contradiction. �

Proof of Lemma 2

Suppose that y with
∑N

i=1 yi = k and ỹ with
∑N

i=1 ỹi = k̃ and k̃ �= k are

both equilibria of (3), given a combination {β, γ < 0,x, ε}. From lemma 3

it follows that this is true only if yk = (11, 12, . . . , 1N+k
2

,−1N+k+2
2

, . . . ,−1N )

and yk̃ = (11, 12, . . . , 1N+k̃
2

,−1N+k̃+2
2

, . . . ,−1N ) are both equilibria given

{β, γ < 0,x, ε}. Assume without loss of generality that k̃ > k, that is:

k̃ − k ≥ 2. Let ν be the first subject whose choice is −1 in equilibrium yk

and +1 in equilibrium yk̃. Then, for this subject

z[ν] + γ
k + 1
N − 1

≤ 0 and z[ν] + γ
k̃ − 1
N − 1

> 0.

But also

z[ν] + γ
k̃ − 1
N − 1

= z[ν] + γ
k̃ − k + k + 1 − 2

N − 1
= z[ν] + γ

k + 1
N − 1︸ ︷︷ ︸

≤0

+ γ
(k̃ − k) − 2

N − 1︸ ︷︷ ︸
≤0

≤ 0,

and the contradiction follows. �

Proof of Lemma 3

From the fact that y is an equilibrium with y[j] = −1 and y[j+1] = 1, it

follows that

y∗[j] = z[j] + γ
k + 1
N − 1

≤ 0

y∗[j+1] = z[j+1] + γ
k − 1
N − 1

> 0.

However, since γ < 0, we have

ỹ∗[j] = z[j] + γ
k − 1
N − 1

≥ z[j+1] + γ
k − 1
N − 1

> 0

ỹ∗[j+1] = z[j+1] + γ
k + 1
N − 1

≤ z[j] + γ
k + 1
N − 1

≤ 0.
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It then follows that ỹ with ỹ[i] = y[i] for i �= j, j + 1 and ỹ[j] = 1 and

ỹ[j+1] = −1 is also an equilibrium. �

Proof of Corollary 2

Define ∀i, zG
i ≡ β′xi +

γGB
∑N

j=1 yB
j

N−1 + εi if i is a girl and zB
i ≡ β′xi +

γBG
∑N

j=1 yG
j

N−1 + εi if i is a boy. Denote the ordered values of zG
i (zB

i ) as zG
[i]

(zB
[i]) such that zG

[1] ≥ zG
[2] ≥ . . . ≥ z[NG] (zB

[1] ≥ zB
[2] ≥ . . . ≥ z[NB ]), with NG

(NB) denoting the total number of girls (boys) in the sample.

The line of reasoning used in the proof of proposition 1 now can be

applied to the subset of girls (boys), with z[i] replaced by zG
[i] (zB

[i]) and γ

replaced by γGG (γBB). �

Proof of Proposition 4

Suppose the disturbances εi are i.i.d. according to a symmetric p.d.f. f(·),
such that f(−x) = f(x). Define mit ≡ ∑

j �=i yjt/(N − 1) for all i =

1, 2, . . . , N and t = 1, 2, . . . , 2N . Then

E[Q(β, γ,x, N)] =
2N∑
t=1

N∏
i=1

F (β′xi + γmit)
1+yit

2 F (−β′xi − γmit)
1−yit

2 .

It then follows that

∂E[Q(β, γ,x, N)]
∂γ

=

2N∑
t=1




N∑
i=1




∏

j �=i

F (β′xj + γmjt)
1+yjt

2 F (−β′xj − γmjt)
1−yjt

2


 ·

(
∂[F (β′xi + γmit)

1+yit
2 F (−β′xi − γmit)

1−yit
2 ]

∂γ

)]}
.

In this expression, ∂[F (β′xi + γmit)
1+yit

2 F (−β′xi − γmit)
1−yit

2 ]/∂γ can be

rewritten as

1 + yit

2
mitf(β′xi + γmit)F (β′xi + γmit)

yit−1

2 F (−β′xi − γmit)
1−yit

2 −

1 − yit

2
mitf(−β′xi − γmit)F (−β′xi − γmit)−

yit+1

2 F (β′xi + γmit)
yit+1

2
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=
mit

2

(√
F (β′xi + γmit)

F (−β′xi − γmit)

)yit

f(β′xi + γmit)·
[

F (−β′xi − γmit)/F (β′xi + γmit) − 1√
F (−β′xi − γmit)/F (β′xi + γmit)

+ yit

(
F (−β′xi − γmit)/F (β′xi + γmit) + 1√

F (−β′xi − γmit)/F (β′xi + γmit)

)]

= yitmitf(β′xi + γmit).

The correctness of the last equation is easily verified by inserting yit = 1

and yit = −1. As a result

∂E[Q(β, γ,x, N)]

∂γ
=

2N∑
t=1




N∑
i=1


(yitmitf(β′xi + γmit

) ·

∏

j �=i

F (β′xj + γmjt)
1+yjt

2 F (−β′xj − γmjt)
1−yjt

2






 .

For N = 2, ∂E[Q(β, γ,x, N)]/∂γ reduces to

[F (β′x2 + γ) − F (β′x2 − γ)]f(β′x1 + γ)+

[F (−β′x2 + γ) − F (−β′x2 − γ)]f(β′x1 − γ)+

[F (β′x1 + γ) − F (β′x1 − γ)]f(β′x2 + γ)+

[F (−β′x1 + γ) − F (−β′x1 − γ)]f(β′x2 − γ),

and for N = 3 to

[F (β′x2 + γ)F (β′x3 + γ) − F (β′x2)F (β′x3)]f(β′x1 + γ)+

[F (β′x1 + γ)F (β′x3 + γ) − F (β′x1)F (β′x3)]f(β′x2 + γ)+

[F (β′x1 + γ)F (β′x2 + γ) − F (β′x1)F (β′x2)]f(β′x3 + γ)+

[F (−β′x2 + γ)F (−β′x3 + γ) − F (−β′x2)F (−β′x3)]f(β′x1 − γ)+

[F (−β′x1 + γ)F (−β′x3 + γ) − F (−β′x1)F (−β′x3)]f(β′x2 − γ)+

[F (−β′x1 + γ)F (−β′x2 + γ) − F (−β′x1)F (−β′x2)]f(β′x3 − γ).

One readily observes that for γ < 0 (γ > 0) the terms within brackets are

all non-positive (non-negative). In the same way, one can show that this is

not true for values of N > 3. This completes the proof. �
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