
Some Operations on Database Universes

E.O. de Brock

September 1997

SOM theme A: Intra-firm coordination and change

Abstract
Operations such as integration or modularization of databases can be considered as

operations on database universes. This paper describes some operations on database

universes. Formally, a database universe is a special kind of table. It turns out that

various operations on tables constitute interesting operations on database universes as

well.

Keywords:Databases, database universes, operations on universes.

E.O. de Brock

Faculty of Management and Organization

State University of Groningen

P.O. Box 800, 9700 AV Groningen

The Netherlands

Tel. +31.50.3637315

Fax +31.50.3632275

Email: e.o.de.brock@bdk.rug.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6909236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Introduction

In practice, we are often concerned with integration of databases, modularization of

databases, renaming tables, and so on. These manipulations can be considered as

operations on database universes. Therefore, we are interested in operations that assign to

one or more DB universes a DB universe again.

Since a DB universe is a set, notions such as subset, union, intersection and difference

also apply to DB universes. For the most part, such operations yield DB universes once

again, namely over the original DB schema; the reader is referred to the cases (1), (2),

and (3) of Theorem 2 below for details.

Furthermore, Theorem 1 states that each DB universe over a set-valued function g is also

a table over dom(g). This means, therefore, that all concepts, notations and operations

that have been defined for tables, apply to DB universes as well!

Hence, in particular, the table operations of projection, natural join, and renaming are

also applicable to DB universes, each producing tables, according to well-known results.

But does the application of such an operation to DB universes yield aDB universeonce

again, and, if so, over which DB schema? From part (4) of Theorem 2 on, we will

investigate this matter, resulting in several interesting results.

First of all, however, we will briefly describe what those operations on tables amount to,

when applied to DB universes:

- Projection (on a set of table names) corresponds to the "restriction" of the DB

universe (and of the DB states) to a "module" or "subscheme" of table names

(that are related in some sense).

- The join of two DB universes having joinable DB schemas corresponds to the

"integration" of all possible pairs of DB states having the same (table) value for

the same table names. Each "integration" results in a DB state containing all

table names of the two original DB states.

- Finally, renaming in the case of DB universes amounts to the renaming of

tables.

1



1. Basic notions

In this section, we start by establishing our definitions of the important basic notions of

table, database state, and database universe.

By a table over a set A we mean a set of functions over A, i.e., functions with A as their

domain:

Definition 1:

If A is a set, then:

T is a table over A ⇔ T is a set and∀ t ∈ T: t is a function over A.

An element of T is called atuple and an element of A is called anattribute of T.

Since every table is a (special) set, every concept defined for sets also applies to tables.

Thus, for example, the notions of union and intersection of two tables make sense.

A database skeleton (or database schema) can be considered as a set-valued function,

assigning to each table name its set of attributes. As a frame of reference we present the

simple but also well-known and widely used example in the database literature concer-

ning suppliers, parts and shipments (cf. [Da 95]). The suppliers/parts/shipments-example

has the following DB skeleton, which we will call g1:

g1 = { (S ; {S#, SNAME, STATUS, CITY}), suppliers

(P ; {P#, PNAME, COLOR, WEIGHT, CITY}), parts

(SP ; {S#, P#, QTY})} shipments

Here S# stands for supplier number, P# for part number, and QTY for quantity.

We define the concept of a DB state for any set-valued function g:

2



Definition 2:

If g is a set-valued function, then:

v is a DB state overg ⇔ v is a function over dom(g) and

∀ E ∈ dom(g): v(E) is a table over g(E).

Since every DB state is a function, every concept defined for functions also applies to

DB states. Thus we can speak about the domain and the range of a DB state, for

instance. In our example above, dom(v) = {S, P, SP} for every DB state v over g1.

The set of admissible states (to be determined by the organization in question) is

therefore some set of DB states over g1. We call such a set a database universe (or

briefly DB universe) over g1. In general:

Definition 3:

If g is a set-valued function, then:

U is a DB universe overg ⇔ U is a set of DB states over g.

If U is a DB universe over g, then we call gthe DB skeleton(or "database schema")of

U, an element E of dom(g) atable index(or "table name")of U, g(E) the heading ofE

in U, and an element of g(E) anattribute (or "attribute name")of E in U. We call an

element of U aDB state consistent withU.

Since every DB universe is a (special) set, each concept defined for sets applies to DB

universes as well. Moreover, formally speaking, a DB universe over a set-valued

function g is also a table over dom(g):

Theorem 1:

If g is a set-valued function and U is a DB universe over g, then U is a table over

dom(g).

Proof:

From Definition 3 it follows that U is a set, and

from Definition 2 it follows that each element of U is a function over dom(g).

Hence U satisfies Definition 1.

3



Thus, the table indices of U act as the attributes of the "super table" U, the DB states as

the tuples of that table, and the tables in such a DB state as the (non-1NF) "attribute

values" in the table U. For example, any DB universe over g1 is a table over {S, P, SP}.

We will denotefunction compositionby f g (f after g). We call the functions f and g

joinable iff f and g match on dom(f)∩ dom(g), i.e., iff∀ a ∈ dom(f) ∩ dom(g) : f(a) =

g(a).

The restriction of a tuple t to an attribute set B is denoted by t B and the remaining

elements constitute the set t ~ B:

t B = { (a;w) (a;w) ∈ t and a∈ B }

t ~ B = { (a;w) (a;w) ∈ t and a∉ B }

The projection of a table T on an attribute set B is denoted by T B and the remaining

columns constitute the table T ~ B:

T B = { t B t ∈ T }

T ~ B = { t ~ B t ∈ T }

The natural join of the tables T and T’ is denoted by T T’:

T T’ = {t ∪ t’ t ∈ T and t∈ T’ and t and t’ are joinable }.

Another useful way to obtain a table from another table is by substituting new "column

names" for "old" column names. We are now faced with the question of how to formally

define this operation on tables. For that purpose we use anattribute transformation(or

"renaming function") h that assigns to each "new" column name b the old column name

that has to be replaced by b. For instance, suppose that we want to obtain a table over

{SUPNO, PARTNO, QTY} by renaming the attributes S# and P# of the SP-table of a

given DB state v over the DB skeleton g1 described before. Then we can use the

following attribute transformation h1 in combination with the table v(SP):

h1 = {(SUPNO;S#), (PARTNO;P#), (QTY;QTY)}

We denote the "renamed table" in this case as v(SP)∞ h1. In general, the formal

definition is as follows:

4



If T is a set of functions and h is a function, then:

T ∞ h = { t h t ∈ T }

As an illustration we give a representation of a table T1 over {S#, P#, QTY} and the

resulting table T1∞ h1 over {SUPNO, PARTNO, QTY}, where we applied the attribute

transformation h1 above:

T1: T1 ∞ h1

S# P# QTY SUPNO PARTNO QTY

S1 753 100 S1 753 100

S1 901 388 S1 901 388

S2 467 467 S2 467 467

2. Operations on Database Universes

The following theorem contains the main results of this paper.

Theorem 2:

If g and g’ are set-valued functions, U and V are DB universes over g, U’ is a DB

universe over g’, D⊆ U and X ⊆ dom(g), and h is a function, then:

(1) D is a DB universe over g;

(2) U ∩ V is a DB universe over g and

U − V is a DB universe over g;

(3) U ∪ V is a DB universe over g;

(4) U X is a DB universe over g X;

(5) U U’ is a DB universe over g∪ g’ provided that g and g’ are joinable;

(6) U ∞ h is a DB universe over g h;

(7) U ~ X is a DB universe over g ~ X.

5



Proof:

(1) Each element of U is a DB state over g, so each element of D is one too.

(2) This follows immediately from (1).

(3) Each element of U is a DB state over g and

each element of V is a DB state over g,

so each element of U∪ V is one as well.

(4) Each element of U X is of the form v X, for some v∈ U.

It holds that dom(v X) = X = dom(g X),

hence v X is a function over dom(g X).

It also holds for each E∈ dom(g X) that (v X)(E) = v(E).

Now v(E) is a table over g(E),

so (v X)(E) is a table over g(E), i.e., over (g X)(E).

Then v X is a DB state over g X, according to Definition 2.

Then U X is a DB universe over g X, according to Definition 3.

(5) Each element of U U’ is of the form v∪ v’, where v ∈ U and v’ ∈ U’ and

v and v’ are joinable. It holds that

dom(v ∪ v’) = dom(v) ∪ dom(v’) = dom(g)∪ dom(g’) = dom(g∪ g’),

hence v∪ v’ is a function over dom(g∪ g’).

It also holds for each E∈ dom(g∪ g’) that

- E ∈ dom(v), hence (v∪ v’)(E)=v (E), being a table over g(E), or

- E ∈ dom(v’), hence (v∪ v’)(E) = v’(E), being a table over g’(E).

Since g and g’ are joinable,

in either case (v∪ v’)(E) is a table over (g∪ g’)(E).

Then v∪ v’ is a DB state over g∪ g’, according to Definition 2.

Then U U’ is a DB universe over g∪ g’, according to Definition 3.

(6) Each element of U∞ h is of the form v h, where v∈ U.

Since dom(v) = dom(g), we have that dom(v h)= dom(g h),

hence v h is a function over dom(g h).

We also have for each E∈ dom(g h) that (v h)(E) = v(h(E)),

which is a table over g(h(E)), i.e., over (g h)(E).

Then by Definition 2, v h is a DB state over g h.

Then by Definition 3, U∞ h is a DB universe over g h.

(7) The proof of this part is analogous to the proof of (4).

6



In the literature we find various properties of the operations treated in Theorem 2,

applied to tables (e.g., [Da 95] or section 2.1.1 of [Br 95], which contains extensive lists

of properties). Note that these properties remain valid when applied to DB universes!

Conclusion

When looking for operations on database universes, it turns out that various operations

on tables constitute interesting operations on database universes as well. Operations such

as integration or modularization of databases are examples of such operations on

database universes.

References

[Br 95] E.O. de Brock:Foundations of semantic databases.

Prentice Hall International Series in Computer Science, London, 1995

[Da 95] C.J. Date:An introduction to database systems.

Addison-Wesley, Reading (Mass.), 1995

7


