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Abstract

This paper hammers out the estimation of a fixed effects dynamic panel data model extended

either to include spatial error autocorrelation or a spatially lagged dependent variable. To

overcome the inconsistencies associated with the traditional least squares dummy estimator,

the models are first-differenced to eliminate the fixed effects and then the unconditional

likelihood function is derived taking into account the density function of the first-differenced

observations on each spatial unit. When exogenous variables are omitted, the exact likelihood

function of both models is found to exist. When exogenous variables are included, the pre-

sample values of these variables and thus the likelihood function must be approximated. Two

leading cases are considered: the Bhargava and Sargan approximation and the Nerlove and

Balestra approximation. As an application, a dynamic demand model for cigarettes is

estimated based on panel data from 46 American states over the period 1963 to 1992.
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1 INTRODUCTION

In recent years, there has been a growing interest in the estimation of econometric

relationships based on panel data. In spatial research, panel data refer to observations

made on a number of spatial units over time. In this paper, we focus on dynamic

models for spatial panels, a family of models for which according to Elhorst (2001)

and Hadinger et al. (2002) no straightforward estimation procedure is yet available.

This is (as will be explained below) because existing methods developed for dynamic

but non-spatial and for spatial but non-dynamic panel data models might produce

biased estimates when these methods/models are put together.

The panel data literature has extensively discussed the dynamic (non-spatial)

panel data model (Hsiao, 1986, Ch.4; Baltagi, 2001, Ch.8; Sevestre and Trognon,

1996); a linear regression model extended with a serially lagged dependent variable

and a variable intercept iµ ,

,x'yy itiit1itit ε+µ+β+τ= − (1)

where i (= 1, ..., N) refers to an individual unit, t (= 1, ..., T) to a given time period, yit

is the variable to explain, xit is a K×1 vector of exogenous explanatory variables, and

itε are i.i.d. error terms for all i and t with zero mean and variance 2σ . The scalar τ

and the K×1 vector β are the response parameters of the model. Furthermore, it is

assumed that the initial observations 0iy and 0ix are observable and that the data are

first sorted by time and then by individual unit, i.e., we have T sets of N observations.

The properties of iµ are explained below.

There are a number of reasons why serial lags appear in econometric

equations. A household may not change its consumption level and labor supply

immediately in response to a change in prices or its income. Similarly, a firm may

react with some delay to changes in costs and to changes in demand for its product.

Moreover, lags can arise from imperfect information. Economic agents require time

to gather relevant information, and this delays the decision-making process.

Institutional factors can also result in lags. Households may be contractually obliged

to supply a certain level of labor hours, though other conditions would indicate a
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reduction or increase in labor supply. The reason to consider a spatial dynamic panel

data model, instead of non-spatial model, is that in the case that i refers to spatial

instead of individual units, spatial dependence can be expected when relative location

matters (Bell and Bocksteal, 2000). The main reason that one observation associated

with a location depends on observations at other locations is that distance affects

household and firm behavior. A similar problem when having panel data on

individuals or firms over time is usually not considered. When specifying the spatial

dependence between observations, the model may incorporate a spatial autoregressive

process in the error term, or the model may contain a spatially autoregressive

dependent variable. The first model is known as the spatial error model and the

second as the spatial lag model (for the introduction of these terms, see Anselin and

Hudak, 1992). To avoid repetition, we apply to the spatial error specification in the

main text, while the spatial lag specification is explained in the appendix.

To describe the spatial arrangement of the spatial units we introduce the

matrix W:

Definition 1: The N×N spatial weight matrix W is non-negative with zeros on the

diagonal. W has real characteristic roots, which implies that W is symmetric (before

row-normalizing). It is assumed that the characteristic roots, denoted by ��

(i=1,…,N), are known. This assumption is needed to ensure that the log-likelihood

function of the models below can be computed. Additional properties of W are (see

Griffith, 1988: 44, table 3.1): (i) if W is multiplied by some scalar constant, then its

characteristic roots are also multiplied by this constant; (ii) if �� is added to W,

where � is a real scalar, then � is added to each of the characteristic roots of W;

(iii) the characteristic roots of W and its transpose are the same; (iv) the

characteristic roots of W and its inverse are inverses of each other; and (v) if W is

powered by some real number, each of its characteristic roots is powered by this

same real number.

Starting with W, the dynamic panel data model extended to include spatial error

autocorrelation can be specified as (in stacked form)
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,IE,0E,W,XYY N
2'

tttttttt1tt σ=εε=εε+ϕδ=ϕϕ+µ+β+τ= − (2)

where )Y,...,Y(Y Ntt1t ′= , )X,...,X(X Ntt1t ′′′= , ),...,( N1 ′µµ=µ , ),...,( Ntt1t ′ϕϕ=ϕ ,

),...,( Ntt1t ′εε=ε , and δ is called the spatial autocorrelation coefficient.

Conditional upon the specification of the variable intercept iµ , the regression

equation can be estimated as a fixed or a random effects model. In the fixed effects

model, a dummy variable is introduced for each spatial unit as a measure of the

variable intercept. In the random effects model, the variable intercept is treated as a

random variable that is i.i.d. distributed with zero mean and variance 2
µσ . It has been

argued that the random effects model may not be an appropriate specification in

spatial research, because there is typically no natural order for arranging sample data.

The spatial units of observation should be representative of a larger population, and

the number of units should potentially be able to go to infinity in a regular fashion.

When the random effects model is implemented for a given set of irregular spatial

units, such as all counties of a state or all regions in a country, the population is

sampled exhaustively (Nerlove and Balestra, 1996), and the individual spatial units

have characteristics that actually set them apart from a larger population (Anselin,

1988, p. 51). In addition, the traditional assumption of zero correlation between iµ in

the random effects model and the explanatory variables is particularly restrictive. For

these reasons, the random effects model is often left aside.

The standard estimation method for the fixed effects model is to eliminate the

intercepts 1β and iµ from the regression equation by demeaning the variables (that

is, by taking each variable in the regression equation in deviation from its average

over time, ittT
1

it zz Σ− for z=y,x), then estimate the resulting demeaned equation by

OLS, and subsequently recover the intercepts 1β and iµ (Baltagi, 2001, pp. 12–15).2

This estimator is called the LSDV (least squares dummy variables) estimator. It

should be stressed that only the slope coefficients can be estimated consistently, in the

2 It should be noted that only )( i1 µ+β are estimable, and not 1β and iµ separately, unless a

restriction such as 0ii =µΣ is imposed.
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case of short panels, where T is fixed and ∞→N . The coefficients of the fixed

effects cannot be estimated consistently, because the number of observations

available for the estimation of iµ is limited to T observations. Fortunately, the

inconsistency of iµ is not transmitted to the estimator of the slope coefficients in the

demeaned equation, since this estimator is not a function of the estimated iµ . This

implies that large sample properties ( ∞→N ) do apply for the demeaned equation.

Spatial econometric literature shows that OLS estimation is inappropriate for

models incorporating spatial error autocorrelation ( 0≠δ ). This is important since the

LSDV estimator of the fixed effects models falls back on the OLS estimator of the

response coefficients in the demeaned equation. In the case of spatial error

autocorrelation, the OLS estimator of the response parameters remains unbiased, but

it loses the efficiency property.3 Anselin (1988) suggests overcoming this problem by

using maximum likelihood.

The log-likelihood function corresponding to the demeaned equation

incorporating spatial error autocorrelation when 0=τ is

],)XX(YY)[WI(e,ee
2

1
|WI|lnT)2ln(

2

NT
t

T

1t
ttt

'
t2N

2 β−−−δ−=
σ

−δ−+πσ− �
=

(3)

where )'Y,...,Y(Y .N.1= and )'X,...,X(X '
.N

'
.1= . An iterative two-stage procedure can

be used to maximize this log-likelihood function (Anselin, 1988, pp. 181–182).

Alternately, estimate δ by numerical optimization of the concentrated log-likelihood

function of δ , and β and 2σ , given δ , by OLS after the data have been transformed

according to

)YY)(WI(Y t
*
t −δ−= and )XX)(WI(X t

*
t −δ−= , (4)

until convergence.

3 In the case where the specification contains a spatially lagged dependent variable, the OLS
estimator of the response parameters not only loses the property of being unbiased, but it is
also inconsistent. The latter is a minimal requirement for a useful estimator.
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Lee (2001a,b) proves that the asymptotic properties of the maximum

likelihood estimator depend on the characteristic features of the spatial weight matrix.

Two types of spatial weight matrices are commonly used in practice: a binary

contiguity matrix and an inverse distance matrix. In a binary contiguity matrix, wij=1

is used to indicate that two spatial units are contiguous, whereas wij=0 is used to

indicate separation between two spatial units. In an inverse distance matrix all the off-

diagonal elements are positive and defined by 1/dij, where dij denotes the distance

between two spatial units i and j. According to Lee (2001a), the row and column sums

should not diverge to infinity at a rate equal to or faster than the rate of the sample

size N in the cross-section domain. When the spatial weight matrix is a binary

contiguity matrix, this condition is automatically satisfied. Normally, no spatial unit is

assumed to be a neighbor to more than a given number, say q, of other spatial units.

When the spatial weight matrix is an inverse distance matrix, this condition is also

satisfied, which can be seen as follows. Consider an infinite number of spatial units

that are linearly arranged (to simulate one particular row of the spatial weight matrix).

The distance of each spatial unit to its first left and right hand neighbor is 1, to its

second left and right hand neighbor the distance is 2, and so on. When the off-

diagonal elements of W are of the form 1/dij, the row sum of W equals ij
N

1i d/2=Σ ,

representing a series that is not finite. By contrast, the ratio 0d/2 ij
N

1iN
1 →Σ = as N

goes to infinity. Another condition that must be satisfied, according to Lee (2000b), is

that the model contains at least one spatially varying regressor, implying that its

coefficient is unequal to zero. The adoption of a dynamic panel data model with a

serially lagged dependent variable ( 0≠τ ) has the side effect that this condition is

automatically satisfied.

A serious estimation problem caused by the introduction of a serially lagged

dependent variable is that the OLS estimator of the response coefficients in the

demeaned equation, in this case consisting of τ and β , using the transformation

derived in (4) is inconsistent if T is fixed, regardless of the size of N (see Hsiao, 1986,

Ch.4; Baltagi, 2001, Ch.8). Two procedures to remove this inconsistency are being

intensely discussed in the panel data literature.
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The first procedure considers the unconditional likelihood function of the

model formulated in levels. Regression equations that include variables lagged one

period in time are often estimated conditional upon the first observations. When

estimating these models by ML it is also possible to obtain unconditional results by

taking into account the density function of the first observation of each time-series of

observations. This so-called exact likelihood function has shown to exist when

applying this procedure to a standard linear regression model without exogenous

explanatory variables (Hamilton, 1994; Johnston and Dinardo, 1997, pp.229-230),

and on a random effects model without exogenous explanatory variables (Ridder and

Wansbeek, 1990; Hoogstrate, 1998; Hsiao et al., 2002). Unfortunately, the exact

likelihood function does not exist when applying this procedure on the fixed effects

model without exogenous explanatory variables. The reason is that the coefficients of

the fixed effects cannot be estimated consistently, since the number of these

coefficients increases as N increases. The standard solution to eliminate these fixed

effects from the regression equation by demeaning the Y and X variables also does

not work, because this technique creates a correlation of order (1/T) between the

serial lagged dependent variable and the demeaned error terms (Nickell, 1981; Hsiao,

1986: 73-76), as a result of which the common parameter τ cannot be estimated

consistently. Only when T tends to infinity, does this inconsistency disappear.

If exogenous explanatory variables are included, then the exact log-likelihood

function of the standard linear regression model and of the random effects model also

does not exist. This is because the log-likelihood under this circumstance depends on

pre-sample values of the exogenous explanatory variables and additional assumptions

have to be made to approach these values.

The second procedure first differences the model to eliminate the fixed effects

and then applies GMM (generalized method-of-moments) using a set of appropriate

instruments.4 The objection to GMM from a spatial econometric point of view is that

this approach tends to overestimate the coefficient δ in case the fixed effects model

4 Although these instruments can be obtained from the moment conditions in principle, the
number and kind of moment conditions, and therefore the number and kind of instruments
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is extended to include spatial error autocorrelation (or a spatially lagged dependent

variable). This is because δ is bounded from above using ML, whereas it is

unbounded using GMM; the transformation of the estimation model from the error

term to the dependent variable contains a Jacobian term, |WI|lnT δ− (see eq.(3)),

which the ML approach takes into account but the GMM approach does not (Anselin,

1988: 81-88).

Recently, Hoogstrate (1998) and Hsiao et al. (2002) have suggested a third

procedure that combines the preceding two. This procedure first differences the

model to eliminate the fixed effects and then considers the unconditional likelihood

function of the first-differenced model. Hsiao et al. (2002) prove that this procedure

yields a consistent estimator of the scalar τ and the response parameters β when the

cross-sectional dimension N tends to infinity, regardless of the size T. It is also shown

that the ML estimator is asymptotically more efficient that the GMM estimator.

The advantage of the last procedure is that it also opens the possibility to

estimate a fixed effects dynamic panel data model extended to include spatial error

autocorrelation (or a spatially lagged dependent variable), which is the objective of

this paper.5 Since a spatial panel has two dimensions, it is possible to consider

asymptotic behavior as ∞→N , ∞→T , or both. Generally speaking, it is easier to

increase the cross-section dimension of a spatial panel. If as a result ∞→N is

believed to be the most relevant asymptotics, it follows from Hsiao et al. (2002) and

Lee (2001a,b) that the parameter estimates of τ and β derived from the

unconditional likelihood function of the fixed effects dynamic panel data transformed

into first differences and extended to include spatial autocorrelation (or a spatially

lagged dependent variable) are consistent, provided that the row and column sums of

the spatial weight matrix W do not diverge to infinity at a rate equal to or faster than

the rate of the sample size N in the cross-section domain. We recall that the

coefficients of the fixed effects cannot be estimated consistently, unless the time

involved, are in a state of flux (Arrelano, 1989; Arrelano and Bond, 1991; Blundell and Smith,
1991; Ahn and Schmidt, 1995, 1997; Blundell and Bond, 1998; Hahn, 1999).
5 Dynamics in space and time within a standard linear regression framework (µ= 0) have been
discussed recently by Elhorst (2001).
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dimension T also goes to infinity. This problem does not necessarily matter when τ
and β are the coefficients of interest and iµ are not, which is the case in many

empirical applications.

The remainder of this paper consists of one technical, one empirical, one

concluding section and one appendix. In the technical section, we consider the

dynamic panel data model extended to include spatial error autocorrelation. The

unconditional likelihood function of this model is derived first excluding and then

including exogenous explanatory variables. This is done because exogenous

explanatory variables further complicate the analysis due to the fact that different

approaches have been suggested in the econometric literature to deal with the pre-

sample values of these variables in a dynamic context. In the empirical section, a

dynamic demand model for cigarettes is estimated based on panel data from 46

American states over the period 1963 to 1992. The concluding section recapitulates

our major findings. In the appendix, we derive the unconditional likelihood function

of the fixed effects dynamic panel data model extended with a spatially lagged

dependent variable.
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2 SPATIAL ERROR SPECIFICATION

2.1 NO EXOGENOUS EXPLANATORY VARIABLES

In this section exogenous explanatory variables are omitted. Although this model will

probably seldom be used in applied work, it is still interesting because the exact log-

likelihood function exists. Taking first differences of (2), the dynamic panel data

model excluding exogenous explanatory variables ( 0=β ) extended to include spatial

error autocorrelation changes into

,BYY t
1

1tt ε∆+∆τ=∆ −
− (5)

where WIB N δ−= . tY∆ is well defined for t=2,…,T, but not for 1Y∆ because 0Y∆

is not observed. To be able to specify the maximum likelihood function of the

complete sample tY∆ (t=1,…,T), the probability function of 1Y∆ must be derived

first. Therefore, we repeatedly lag equation (5) by one period. For mtY −∆ (m≥1) we

get

.BYY mt
1

)1m(tmt −
−

+−− ε∆+∆τ=∆ (6)

Then, by substitution of 1tY −∆ into (5), next 2tY −∆ into (5) up to )1m(tY −−∆ into (5),

we get

].)1(...)1()1([BY

)7(B...BBYY

mt
1m

)1m(t
2m

2t1tt
1

mt
m

)1m(t
11m

1t
1

t
1

mt
m

t

−
−

−−
−

−−
−

−

−−
−−

−
−−

−

ετ−ετ−τ++τε−τ+ε−τ+ε+∆τ=

=ε∆τ++ε∆τ+ε∆+∆τ=∆

Since 0)(E t =ε (t=1,…T) and the successive values of tε are uncorrelated,

mt
m

t Y)Y(E −∆τ=∆ and ,'BBv)Y(Var 11
b

2
t

−−σ=∆ (8)

where the scalar vb is defined as

).1(
1

2
v 1m2

b
−τ+

τ+
= (9)
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Two assumptions with respect to 1Y∆ can be made (cf. Hsiao et al., 2001):

[I] The process started in the past, but not too far back from the 0th period, and the

expected changes in the initial endowments are the same across all spatial units.

Note that this assumption, although restrictive, does not impose the even stronger

restriction that all spatial units should start from the same initial endowments.

Under this assumption, N01 1)Y(E π=∆ , where 1N denotes a N×1 vector of unit

elements and 0π is a fixed but unknown parameter to be estimated.

[II] The process has started long ago (m approaches infinity) and 1|| <τ . Under this

assumption, 0)Y(E 1 =∆ , while vb reduces to )1/(2v b τ+= .

It can be seen that assumption [I] is more general than assumption [II]; the second

assumption reduces to the first one, when 00 =π , 1|| <τ , and m is sufficiently large

so that the term mτ becomes negligible. Therefore, we consider the unconditional

log-likelihood function of the complete sample under assumption [I].

Writing the residuals of the model as 1ttt YYe −∆τ−∆=∆ for t=2,…,T and,

using assumption [I], N011 IYe π−∆=∆ for t=1, we have 11
b

2
1 'BBv)e(Var −−σ=∆ ,

112
t 'BB2)e(Var −−σ=∆ (t=2,…,T), 112

1tt 'BB)e,e(Covar −−
− σ−=∆∆ (t=2,…,T), and

zero otherwise. This implies that the covariance matrix of e∆ can be written as

)'BBG()e(Var 11
v

2
b

−−⊗σ=∆ , by which bv is given in (9) and the T×T matrix

bvvv |G = is defined as

Definition 2: ,

21.000

12.000

......

00.210

00.121

00.01v

G v

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
−

−
−−

−

≡

with its subelement in the first row and first column set to v. The determinant of the

matrix Gv is (Hsiao et al., 2002) : .vTT1|G| v ×+−= The inverse of Gv is
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[ ].)G)T1(G(vG)T1(
vTT1

1
G 1

0
1

1
1

0
1

v
−−−− −−+−×

×+−
=

The inverse matrices 0v
1

v
1

0 |GG =
−− = and 1v

1
v

1
1 |GG =

−− = can easily be calculated and

are characterized by a specific structure. The determinant of the matrix Nv IG ⊗ is

N
Nv )vTT1(|IG| ×+−=⊗ . Let p denote a NT×1 vector, which can be partitioned in T

block-rows of length N. When pt denotes the tth block-row (t=1,…,T) of p, then

��
= =

−− =⊗
T

1t

T

1t
t

'
t21

1
v

1
Nv

1 2

21bb
pp)t,t(Gp)IG('p ,

where )t,t(G 21
1

vb

− represents the element of 1
vb

G− in row t1 and column t2.

In sum, we have 6

*,e)IG(*'e
2

1
|G|log

2

N
|B|logT)2log(

2

NT
Llog 1

Nv2v
2

bb
∆⊗∆

σ
−−+πσ−= − (10a)

where

�
�
�
�

�

�

�
�
�
�

�

�

∆τ−∆

∆τ−∆
π−∆

=∆

− )YY(B

.

)YY(B

)1Y(B

*e

1TT

12

N01

, ).IG()*'e*e(E Nv
2

b
⊗σ=∆∆ (10b)

This log-likelihood function is well-defined, satisfies the usual regularity conditions

and contains four unknown parameters to be estimated: 0π , τ , δ and 2σ . An

appropriate value of m should be chosen in advance. 2σ can be solved from its first-

6 The joint probability function is

∏
=

−−−−− ∆⊗∆
σ

−⊗πσ
N

1i

1
Nv2

11
v

2 *)e)IG(*'e
2

1
exp(|'BBG|)2(

b

2
1

b

2
T

. We also have

T11N
v

11
v |'BB||G||'BBG|

bb

−−−− =⊗ (Magnus and Neudecker , 1988, p.29), so that

|B|logT|G|log
2

N
|]B|logT2|G|logN[

2

1
|'BBG|log

bb

2
1

b vv
11

v +−=−−=⊗ −−− .
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order maximizing condition, *e)IG(*'eNT1ˆ 1
Nv

2
b

∆⊗∆=σ − . On substituting 2σ̂

in the log-likelihood function and using the matrix properties of [W] and [Gv] given

in definition 1 and 2, the concentrated log-likelihood function of 0π , τ and δ is

obtained as

)),1(
1

2
TT1log(

2

N
)1log(T

ee)t,t(Glog
2

NT
CLogL

1m2
N

1i
i

T

1t

T

1t

*
t

*'
t21

1
vC

1 2

11b

−

=

= =

−

τ+
τ+

×+−−δω−+

�
�
�

�

�
�
�

�
∆∆−=

�

��
(11)

where C is a constant ( )2log1(2NTC π+−= ). As the first-order maximizing

conditions of this function are nonlinear, a numerical iterative procedure must be used

to find the maximum for 0π , τ and δ .

2.2 EXOGENOUS EXPLANATORY VARIABLES

In this section explanatory variables are added to the model. They are assumed to be

strictly exogenous and to be generated by a stationary process in time. By taking first

differences and continuous substitution, we can rewrite the dynamic panel data model

(2) extended to include spatial error autocorrelation as

.XeY

XB...BBYY

*
tmt

m

1m

0j
jt

j
)1m(t

11m
1t

1
t

1
mt

m
t

+∆+∆τ

=β∆τ+ε∆τ++ε∆τ+ε∆+∆τ=∆

−

−

=
−−−

−−
−

−−
− �

(12)

As Xt is stationary, we have 0XE t =∆ and thus mt
m

1 Y)Y(E −∆τ=∆ . This expectation

is determined under assumption [I] or [II]. By contrast, )Y(Var 1∆ is undetermined,

since X* is not observed. This implies that the probability function of 1Y∆ is also

undetermined. The panel data literature has suggested different assumptions about X*

leading to different optimal estimation procedures. We consider two leading cases:

the Bhargava and Sargan approximation and the Nerlove and Balestra approximation.
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2.2.1 THE BHARGAVA AND SARGAN APPROXIMATION

Bhargava and Sargan (1983) suggest predicting X* when t=1 by all the exogenous

explanatory variables in the model subdivided by time over the observation period. In

other words, when the model contains K1 time varying and K2 time invariance

explanatory variables over T time periods, X* is approached by K1×T+K2 regressors.

Lee (1981), Ridder and Wansbeek (1990), and Blundell and Smith (1991) use a

similar approach. Hsiao et al. (2002) apply this approximation on the fixed effects

model formulated in first differences.

The predictor of X* under assumption [I] is ξ+π∆++π∆+π TT11N0 X...X1 ,

where )IN(0,~ N
2
ξσξ , 0π is a scalar, and tπ (t=1,…,T) are K×1 vectors of

parameters. When the kth variable of X is time invariant, the restriction

Tkk1 ... π==π should be imposed. In addition to this, the condition N>1+K×T should

hold, otherwise the number of parameters used to predict X* must be reduced. We

thus have

,eX...X1Y 1TT11N01 ∆+π∆++π∆+π=∆ where ,Be j1

1m

0j

j1
1 −

−

=

− ε∆τ+ξ=∆ � (13a)

),T,...,3t(0)ee(E,'BB)ee(E,0)e(E '
t1

112'
211 ==∆∆σ−=∆∆=∆ −− (13b)

.'B)Iv'BB(B'BBvI)ee(E 1
Nb

21211
b

2
N

2'
11

−−−−
ξ +θσ≡σ+σ=∆∆ (13c)

Instead of estimating 2
ξσ and 2σ , it is easier to estimate 2θ ( 222 σσ=θ ξ ) and 2σ ,

which is allowed as there exists a one-to-one correspondence between 2
ξσ and 2θ .

Let N
1m22

Nb
2

BS I)1(
1

2
'BBIv'BBV −τ+

τ+
+θ=+θ= , then the covariance

matrix of e∆ can be written as )]'BI(H)BI[()e(Var 1
TV

1
T

2
BS

−− ⊗⊗σ=∆ , by which

the NT×NT matrix
BSVVV |H = is defined as
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Definition 3: ,
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with its submatrix in the first block-row and first block-column set to the N×N matrix

V. The determinant of the matrix HV is: .|VTITI||H| NNV ×+×−= The inverse of

HV is

),VD()G)T1(G(()DG)(T1(H 11
0

1
1

11
0

1
V

−−−−−− ⊗−−+⊗−=

where .VTITID NN ×+×−= The matrix 1
VH − can be partitioned in T block-rows

and T block columns, by which the submatrix )t,t(H 21
1

V
− (t1,t2=1,…,T) equals

.)VD()t,t(G)T1()t,t(G(D)t,t(G)T1()t,t(H 1
21

1
021

1
1

1
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1
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1
V
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The last equation is used to obtain the matrix 1
VH − computationally.

Using the matrix properties of [W] and [HV] given in definition 1 and 3, the log-

likelihood function is obtained as
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This log-likelihood function is well-defined, satisfies the usual regularity conditions

and contains KT+K+5 unknown parameters to be estimated: δτθπβππ ,,,,,,..., 2
0T1

and 2σ . An appropriate value of m should be chosen in advance. πσ ,2 and β can be

solved from their first-order maximizing conditions
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On substituting πσ ˆ,ˆ 2 and β̂ in the log-likelihood function, the concentrated log-

likelihood function of τθ ,2 and δ is obtained. A numerical iterative procedure must

be used to find the maximum for these parameters.

2.2.2 THE NERLOVE AND BALESTRA APPROXIMATION

Starting with a regression equation formulated in levels, Nerlove and Balestra (1996)

and Nerlove (1999 or 2000) suggest replacing the unknown variance of X*,

βΣ= −
−

= jt
1m

0j X*)X(Var , by βΣβ X' , where XΣ denotes the covariance matrix of the
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explanatory variables X, which may be determined from the sample data in advance.

Suppose that each explanatory variable Xtk (k=1,…,K) follows a well-specified

common stationary time series model

,XX tk1tXtk k
γ+τ= − where ).I,0(N~ N

2
Xt kγσγ (16)

Then the random variable X* in (12) has a well-defined variance *XΣ , which is a

function of β and 2
XX kk

, γστ (k=1,…,K). Although it would be possible to determine

the resulting log-likelihood function based on *XΣ , this covariance matrix depends on

so many parameters that its practical value in empirical applications is almost nil

(unless K is very small). Nerlove and Balestra (1996) and Nerlove (1999 or 2000)

have pointed out that it is not necessary to go that far. Since we are not really

interested in the parameters
kXτ and 2

Xkγσ (k=1,…,K), we can suppress these

parameters and restrict the log-likelihood to the remaining parameters. While omitting

estimation of
kXτ and 2

Xkγσ (k=1,…,K) leads to a loss of efficiency, the ML

estimates obtained in this way remain consistent as long as the random variables have

well-defined variances and covariances, which they will if the explanatory variables

are generated by a stationary process.

Following Nerlove and Balestra, but then for a regression equation

formulated in first differences, )Y(Var 1∆ might be approached by

.'B)'BB
'

)
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1
(Iv(B
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then the covariance matrix of e∆ can be written as

)]'BI(H)BI[()e(Var 1
TV

1
T

2
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−− ⊗⊗σ=∆ , by which the matrix
NBVVV |H = is given
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in definition 3. Using the matrix properties of [W] and [HV] given in definition 1 and

3, the log-likelihood function is obtained as
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This log-likelihood function is well-defined, satisfies the usual regularity conditions

and contains K+4 unknown parameters to be estimated: δτπβ ,,, 0 and 2σ . An

appropriate value of m should be chosen in advance. In contrast to the preceding

models, none of the parameters can be solved analytically from the first-order

maximizing conditions. This implies that a numerical iterative procedure must be

used to find the maximum for all the parameters simultaneously.



18

3 CIGARETTE DEMAND IN AMERICAN STATES

Baltagi and Levin (1986, 1992) and Baltagi et al. (2000) estimate a dynamic demand

model for cigarettes based on a panel from 46 American states. In Baltagi et al.

(2000), the dataset covers the period 1963-1992. We investigate the following

dynamic demand equation

(29),T1,...,t);(46N1,...,i

,PnlnYlnPlnClnCln ittiit4it3it21t,i1it

==
ε+λ+µ+β+β+β+β+α= − (19)

where Cit is real per capita sales of cigarettes by persons of smoking age (14 years and

older). This is measured in packs of cigarettes per capita. Pit is the average retail price

of a pack of cigarettes measured in real terms. Yit is real per capita disposable income.

Pnit denotes the minimum real price of cigarettes in any neighboring state. This last

variable is a proxy for the casual smuggling effect across state borders. It acts as a

substitute price attracting consumers from high-tax states to cross over to low-tax

states. There are reasons given in Baltagi and Levin (1986, 1992) to assume the

state-specific effects ( iµ ) and time-specific effects ( tλ ) are fixed, in which case one

includes state dummy variables and time dummies for each year in equation (19).

We have decided to investigate this particular model for four reasons. First,

the dataset can be downloaded freely from www.wiley.co.uk/baltagi/. Second, the

analysis of cigarette consumption is interesting because of the policy importance of

the price elasticity of demand in affecting tax revenues and discouraging

consumption. Third, an interesting methodological question is to what degree can

elasticity differences be attributable to the manner in which applied econometricians

analyze a given body of data. Specifically, this study analyses to what extent the

inclusion of the first observation of each time-series of observations and spatial

dependence among the observations matter. Baltagi and Levin (1986, 1992) and

Baltagi et al. (2000) have investigated the effect of the price level in any neighboring

state. Although this variable accommodates the effect of spatial dependence among

the observations to a certain degree, we want to investigate whether or not this effect

has been completely captured by extending the equation with spatial error
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autocorrelation.7 Fourth, the time dimension of the spatial panel gives the opportunity

to compare the results of short and long panel estimations.

We have seen that in each model an appropriate value of m should be chosen

in advance. Although 1963 is the first year in which cigarette demand was observed,

it is clear that the process of selling packs of cigarettes started prior to 1963.

According to the Encyclopædia Britannica, the cigarette industry developed after

1880 when J.A. Bonsack was granted a U.S. patent for the first cigarette machine.

Improvements in cultivation and processing, which lowered the acid content of

cigarette tobacco and made it easier to inhale, helped bring a major expansion in

cigarette smoking during the first half of the 20th century. During World War I, the

prejudice against smoking by women was overcome, and the practice became

widespread among women in Europe and the U.S. in the 1920s. Based on this

information, m is set to 63. As ∞→N is believed to be the most relevant

asymptotics and m and T are fixed, it is not necessary to assume 1|B| <τ in the

estimations. In spite of this, this restriction always appeared to be satisfied.

The spatial weight matrix has been specified as a binary contiguity matrix; its

elements are posited as being 1 if two states share a common border and 0 otherwise.

The elements of this spatial weight matrix have then been divided by its largest

characteristic root, with the effect that the largest characteristic root of this

normalized matrix equals 1 and the smallest characteristic root lies between -1 and 0.

Note that this normalization makes no difference from a mathematical viewpoint, but

only from an interpretative viewpoint; it has the effect that δ will not be greater than

1.

All the econometric results presented in section 2 have been derived under the

assumption that the regression equation contains regional fixed effects but not time

period fixed effects. If the regression equation, just as the cigarette demand equation,

also contains time period fixed effects, the econometric results are still applicable,

provided that each variable in the regression equation is taken in deviation from its

average over all regions within each time period. This can be explained as follows.

7 In Baltagi and Levin (1992) the maximum neighboring price and both the minimum and
maximum neighboring prices have also been investigated.
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The standard method for estimating the fixed effects model, in most textbooks spelled

out for fixed effects in the cross-sectional domain, is to eliminate the fixed effects by

taking each variable in deviation from its average over time ( ittT
1

it zz Σ− ) and then

to estimate the resulting equation. In the case of time period fixed effects, this implies

that each variable should be taken in deviation from its average over all cross-

sectional units within each time period ( itiN
1

it zz Σ− ). First-differencing a regression

equation formulated in levels to eliminate the fixed effects in the cross-sectional

domain, does not eliminate the time period fixed effects, but the structure of these

first-differenced time period fixed effects is such that common time dummies can

replace them. In summary, when the regression equation formulated in levels also

contains time period fixed effects, the variables in the first-differenced regression

equation should be taken in deviation from their first-differenced averages over all

cross-sectional units within each time period )zz(zz 1ititiN
1

1itit −− −Σ−− . There is

one difference. This procedure not only eliminates the time period fixed effects, but

also the intercept 0π . This implies that 0π cannot be estimated using the transformed

equation, but that it must be recovered afterwards.

Table 1 reports the estimation results based on the complete sample of 1334

observations (T=29). The first row shows the results of the LSDV estimator applied

on the regression equation formulated in levels. Recall that this estimator does not

utilize the first cross-section of observations and does not account for spatial error

autocorrelation. The results obtained can also be found in Baltagi et al. (2000, table 1)

and can easily be reproduced using standard econometric software on panel data. As

pointed out in the introduction to this paper, the estimates of the response parameters

in a dynamic panel data model using the LSDV estimator are inconsistent. The next

two estimators, which utilize the first cross-section of observations successively

according to the Bhargava and Sargan (BS) approximation and the Nerlove and

Balestra (NB) approximation (eq.(14) and eq.(18) with 0=δ ), throw more light onto

the magnitude of the bias. The bias in the response parameters of lnPit, lnPnit and lnYit

amounts to 3.4, 11.4 and 3.7 percent compared to the BS approximation and 40.8,

74.3 and 16.8 percent compared to the NB approximation.
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Spatial scientists might argue that spatial effects must be included since the

data has a locational component. The fourth, fifth and sixth estimators show what

happens when the first three estimators are corrected for spatial error autocorrelation.

Remarkably, whereas the spatial autocorrelation coefficient appears to be statistically

different from zero when the first cross-section of observations is ignored (fourth

estimator), it turns insignificant when the first cross-section of observations is utilized

(fifth and sixth estimator). Just as the estimates of the response parameters in a

dynamic panel data model using the LSDV estimator are inconsistent, so are the

response parameters when the LSDV estimator is corrected for spatial error

autocorrelation. The bias in the response parameters of lnPit, lnPnit and lnYit in this

case amounts to 25.3, 0.0 and 41.0 percent compared to the BS approximation and

48.8, 82.6 and 33.3 percent compared to the NB approximation.

The estimation results obtained for lnPit, lnPnit and lnYit shown in table 1

reflect short-term elasticities. Long-term estimated elasticities can be obtained from

the short-term estimated elasticities by multiplying the latter by )ˆ1/(1 τ− , where τ̂ is

the coefficient estimate of lagged consumption (see the numbers in square brackets in

table 1). The long-term own price elasticities of the first five estimators appear to

range from -1.61 to –1.80. Only the sixth estimator really produces a different long-

term own price elasticity of -1.02. The long-term neighboring price elasticities range

from 0.21 to 0.35 using the LSDV estimator or the second or fourth estimator based

on the BS approximation, and from 0.05 to 0.09 using the third or fifth estimator

based on the NB approximation. Finally, the long-term income elasticities range from

0.58 to 0.87.

In table 2, the above analysis is repeated but then for T=5 instead of T=29 to

simulate the situation that the researcher has the availability over only a short panel.

We have found that the precise sub-sample period in this respect does not really alter

the results.

The most striking result is that a short panel causes the coefficient on lagged

consumption to decline from 0.83 to 0.39 when using the simple LSDV estimator and

from 0.80 to 0.34 when using the LSDV estimator corrected for spatial error

autocorrelation. These coefficients are no doubt biased, because they are correlated to
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the demeaned error terms. When the first cross-section of observations is utilized, we

find a lagged-consumption estimate that ranges from 0.54 to 0.78.

When comparing the NB and the BS approximation, we see one notable

difference. The short-term as well as the long-term elasticities in table 2 and table 3

tend to be closer to each other when using the NB approximation.

Another criterion taken from Baltagi et al. (2000) is the forecast properties of

the alternative estimators. Table 3 gives the root mean squared error (RSME) of the

predictions obtained by applying the parameter estimates reported in table 2. Because

the ability of an estimator to characterize short-term as well as long-term responses is

at issue, the RSME is calculated across the 46 states at a forecast horizon of one year,

five years and ten years.8 Three results emerge from table 3. First, a substantial

improvement in the forecast performance occurs when the first cross-section of

observations is utilized. The average reduction of the RSME amounts to almost 50%.

We may therefore draw the conclusion that unconditional estimators are preferred to

estimators conditional on the first cross-section of observations especially when

panels are short. Second, additional reduction in the forecast RSME is obtained by

also accounting for spatial error autocorrelaton.9 The average reduction amounts to

almost 25%. Although none of the spatial autocorrelation coefficients reported in

table 2 appears to be statistically different from zero, the accounting for spatial error

autocorrelation apparently still helps to improve the forecast performance of these

models. Third, the forecast performance of estimators utilizing the first cross-section

of observations according to the NB approximation is better than that according to the

BS approximation. The average reduction amounts to 18%. In summary, the best

forecast performance for all time horizons is obtained by the estimator accounting for

spatial error autocorrelation and utilizing the first cross-section of observations

according to the NB approximation.

8 Predictions were intercept-adjusted for each state. Additionally, it is assumed that all
estimators have zero forecast errors in the last year of the sub-sample.
9 Correcting the LSDV estimator for spatial error autocorrelation does not appear to be of
(much) help.
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4 CONCLUSIONS

The possession of spatial panel data and the wish to be able to estimate a dynamic

spatial panel data models is now widely recognized. To overcome the inconsistencies

associated with the traditional least squares dummy estimator, the models have been

transformed into first differences to eliminate the fixed effects and then the

unconditional likelihood function has been derived taking into account the density

function of the first-differenced observations on each spatial unit. This procedure

yields a consistent estimator of the response parameters ( τ and β ) and the spatial

autocorrelation coefficient ( δ ) when the cross-sectional dimension N tends to

infinity, regardless of the size of T, and provided that the row and column sums of the

spatial weight matrix W do not diverge to infinity at a rate equal to or faster than the

rate of the sample size N in the cross-section domain. Only the coefficients of the

fixed effects cannot be consistently estimated, since the number of these coefficients

increases as N increases. To model the pre-sample values of the exogenous variables

for the first-differenced observations on each spatial unit, we have worked out and

investigated both the Bhargava and Sargan approximation and the Nerlove and

Balestra approximation.

From the case study on cigarette demand, it appeared that the need to utilize

the first cross-section of observations is to be recommended especially when the time

series dimension of the panel is short. We also found that the Nerlove and Balestra

approximation outperforms the Bhargava and Sargan approximation. Short-term and

long-term elasticities obtained from short panel estimations compared to those

obtained from long panel estimations appeared to be closer, and the root mean

squared error of predictions at a forecast horizon of one year, five years and ten years

appeared to be smaller. The explanation for these empirical findings is that the NB

approximation approaches the (variance of the) unobserved pre-sample values of the

exogenous variables by the response parameters β consistent with the derivation

given below equation (12), whereas the BS approximation exploits a new set of

parameters π independent of β .
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In the case study on cigarette demand, it has also been found that the spatial

autocorrelation coefficient is not statistically different from zero using estimators that

utilize the first-cross section of observations. The fact that the cigarette demand

model contains the minimum real price of cigarettes in any neighboring state as one

of the explanatory variables is apparently sufficient to accommodate the effect of

spatial dependence among the observations. The lesson of this finding is that adding

explanatory variables, which reflect the market conditions in neighboring regions, is

in some cases more promising than to include spatial error autocorrelation. On the

other hand, when the model is also used for forecasting purposes, accounting for

spatial error autocorrelation is to be recommended even when the spatial

autocorrelation coefficient will not be statistically different from zero. The reason is

that the RSME of the predictions under these circumstances may be lower.

Finally, it should be noted that the estimators presented in this paper might

also be used to estimate the parameters of a random effects dynamic panel data

model, as they are consistent. One objection is that the number of time series

observations on each spatial unit is reduced by one through first-differencing.

Consequently, the estimators presented in this paper when µ would really be random,

while consistent, are not as efficient as the ML estimators of the random effects

model formulated in levels (instead of first differences) and taking into account the

joint density function of the first cross-section of observations also in levels. The

derivation of these ML estimators is a subject for further research.
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APPENDIX SPATIAL LAG SPECIFICATION

The dynamic panel data model extended with a spatially lagged dependent variable

reads as

.IE,0E,XWYYY N
2'

tttttt1tt σ=εε=εε+µ+β+δ+τ= − (A1)

First, the exact log-likelihood function for the model excluding exogenous

explanatory variables is determined ( 0=β ). Taking first differences of (A1), the

model changes into

.YWYY tt1tt ε∆+∆δ+∆τ=∆ − (A2)

tY∆ is well defined for t=2,…,T, but not for 1Y∆ because 0Y∆ is not observed. To

be able to specify the maximum likelihood function of the complete sample tY∆

(t=1,…,T), the probability function of 1Y∆ must be derived first. By continuous

substitution, we can rewrite (A2) as

,BBA

...BAAYB

B...BYBYB

mt
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(A3)

where N
1 IBA −τ= − and WIB N δ−= . Since 0)(E t =ε (t=1,…T) and the successive

values of tε are uncorrelated, we have

mt
)1m(m

t YB)YB(E −
−− ∆τ=∆ and ,V)YB(Var b

2
t σ=∆ (A4)

where the N×N matrix Vb is defined as

.'BB

'A'B))B'B(I(BA

'A))B'B(I(AIV

)1m(1m)1m(1m

)1m(1m112
N

)1m(1m

112
NNb

−−−−−−
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−−

ττ

+ττ−τ

−τ−+=

(A5)

When the matrix W is symmetric, Vb reduces to
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))B(I()BI(*2V 1m21
N

11
Nb

−−−− τ+τ+= . (A6)

Just as in the spatial error model, we assume that the process has started in the past

not too far back from the 0th period and that the expected changes in the initial

endowments are the same across all spatial units. Under this assumption,

N01 1)YB(E π=∆ , where 1N denotes a N×1 vector of unit elements and 0π is a fixed

but unknown parameter to be estimated.

Writing the residuals of the model as N011 IYBe π−∆=∆ for t=1 and

1ttt1ttt YYBYWYYe −− ∆τ−∆=∆δ−∆τ−∆=∆ for t=2,…,T, we have

1
b

12
1 'BVB)e(Var −−σ=∆ , 112

t 'BB2)e(Var −−σ=∆ (t=2,…,T),

112
1tt 'BB)e,e(Covar −−

− σ−=∆∆ (t=2,…,T), and zero otherwise. This implies that the

covariance matrix of e∆ can be written as )]'BI(H)BI[()e(Var 1
TV

1
T

2
b

−− ⊗⊗σ=∆ ,

by which the matrix
bVVv |H = is given in definition 3. In sum, we have

,eH'e
2

1
|H|log
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1
|B|logT)2log(

2

NT
Llog 1

V2V
2

bb
∆∆

σ
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where
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−1TT
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YYB

.

YYB

1YB

e , .H)'ee(E
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2σ=∆∆ (A8)

2σ can be solved from its first-order maximizing condition, eH'eNT1ˆ 1
V

2
b
∆∆=σ − .

On substituting 2σ̂ in the log-likelihood function and using matrix properties of [W]

and [HV] given in definition 1 and 3, the concentrated log-likelihood function of 0π ,

τ and δ is obtained as
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[ ]
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(A9)

where C is a constant ( )2log1(2NTC π+−= ).

By taking first differences and continuous substitution, the dynamic panel data model

including exogenous explanatory variables and extended with a spatially lagged

dependent variable can be rewritten as

)10A(.XeYB

XBB...BYBYB

*
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As Xt is stationary, we have 0XE t =∆ and thus

mt
)1m(m

1 YB)YB(E −
−− ∆τ=∆ . )YB(Var 1∆ is undetermined, since X* is not observed.

We use the Bhargava and Sargan approximation as well as the Nerlove and Balestra

approximation below to approach the probability function of 1YB∆ .

The optimal predictor of X* when t=1 according to the Bhargava and Sargan

approximation is ξ+π∆++π∆+π TT11N0 X...X1 , where )IN(0,~ N
2
ξσξ . See

section 2.2.1 for potential restrictions on the parameters π. This implies that

,eX...X1YB 1TT11N01 ∆+π∆++π∆+π=∆ where �
−

=
−

− ε∆τ+ξ=∆
1m
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1 .Be (A11a)
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.222 σσ=θ ξ (A11d)
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Let bN
2

BS VIV +θ= with Vb specified as in (A4) or (A5), then the covariance

matrix of e∆ can be written as )]'BI(H)BI[()e(Var 1
TV

1
T

2
BS

−− ⊗⊗σ=∆ , by which

the matrix
BSVVV |H = is given in definition 3. Using the matrix properties of [W] and

[HV] given in definition 1 and 3, the log-likelihood function is obtained as
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This log-likelihood function contains KT+K+5 unknown parameters to be estimated:

δτθπβππ ,,,,,,..., 2
0T1 and 2σ . πσ ,2 and β can be solved from their first-order

maximizing conditions
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On substituting πσ ˆ,ˆ 2 and β̂ in the log-likelihood function, the concentrated log-

likelihood function of τθ ,2 and δ is obtained.

According to the Nerlove and Balestra approximation, )YB(Var 1∆ might be

approached by

),
1

V(*)X(Var)e(Var)YB(Var *X2b
2

11 Σ
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+σ=+∆=∆ (A14a)

where .)'BI)('BI(')BI()BI( 11
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(A14b)

When the matrix W is symmetric, *XΣ reduces to

.))B(I()BI(' 2m1
N

21
NX*X

−−−
∆ τ−τ−βΣβ=Σ (A15)

Let *X
2

bNB 1VV Σσ+= with Vb specified as in (A4) or (A5), then the covariance

matrix of e∆ can be written as )]'BI(H)BI[()e(Var 1
TV

1
T

2
NB

−− ⊗⊗σ=∆ , by which

the matrix
NBVVV |H = is given in definition 3. Using matrix properties of [W] and

[HV] given in definition 1 and 3, the log-likelihood function is obtained as
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This log-likelihood function contains K+4 unknown parameters to be estimated:

δτπβ ,,, 0 and 2σ . None of these parameters can be solved analytically from the first-

order maximizing conditions.
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