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Abstract

In economic research, it is often important to express the marginal value of a variable in
monetary terms. This marginal monetary value is the ratio of two partial derivatives of the
conditional indirect utility function, which reduces to the ratio of two coefficients if the utility
function is linear. Based on the overwhelming evidence of taste differences among people,
random coefficient models have become increasingly more popular in recent years. In random
coefficient models, the marginal monetary value is the ratio of two random coefficients and is
thus random itself. In this paper, we study the distribution of this ratio and particularly the
consequences of different distributional assumptions about the coefficients. It is shown both
analytically and empirically that important characteristics of the distribution of the marginal
monetary value may be sensitive to the distributional assumptions about the random coefficients.
The median, however, is much less sensitive than the mean.
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1 Introduction

In applied economics one frequently wants to express the value a consumer attaches
to (a change in the value of) a particular variable, such as a product attribute or the
availability of a public good, in monetary terms. The computation of equivalent and
compensating variations is perhaps the best known example of such a procedure. Often
attention is focused on the effect of relatively small changes in the variable. In that
case the monetary valuation can be approximated by the ratio of two partial derivatives
of the utility function: the one in the numerator refers to the particular variable that
changes, and the one in the denominator to price or income (or a closely related variable
such as expenditures). Although this procedure is simple and routinely carried out, for
instance for the evaluation of travel time in transport economic research, it may run
into difficulties when the partial derivatives are random variables. These problems are
usually ignored by researchers, presumably because they are not aware of them. It is
the purpose of this paper to clarify the difficulties and to propose some possibilities of
dealing appropriately with them.

It is widely recognized that individuals differ in their evaluation of product
attributes and income. Some of this variation can be related to differences in observed
characteristics of these individuals. However, in practice there usually remains a
residual amount of heterogeneity, which is often substantial. This can be attributed
to unobserved heterogeneity among these individuals, which means that it can only
be incorporated in the analysis by using random variables. If the random variables
are introduced in the utility function as an additive term, this has no effect on the
welfare calculations. These calculations use the partial derivatives of the utility function,
which remain deterministic. However, it was recognized at least since the end of the
seventies that it might be of considerable importance to allow for the possibility that
the coefficients in the structural relationship are also random variables. For instance,
Hausman and Wise (1978) showed that the restrictive ‘independence of irrelevant
alternatives’ (IIA) property of the multinomial logit model could be avoided by allowing
for variations in tastes for the attributes of the choice alternatives among respondents.
In their approach, the (conditional indirect) utility function is linear in the parameters,
which are assumed to be normally distributed random variables.

Assume that utility is a function of a vector of variablesx, with the first component,
x1, a monetary variable, such as price or income. Throughout, we assume thatx is
nonstochastic. If some elements ofx are stochastic, this means that we condition on
its realized values. Suppose that we want to express the value the consumer attaches
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to a change in thej -th variable,1xj , in monetary terms. That is, we want to find the
change inx1 that would bring utility back to its initial value (i.e., before the change in
xj occurred). As long as the changes are small, we may write as an approximation:

1u = ∂u

∂x1
1x1 + ∂u

∂xj
1xj . (1)

If we set1u equal to zero, this equation can be solved for1x1:

1x1 = −
(
∂u

∂xj

/
∂u

∂x1

)
1xj . (2)

If one allows for variation in tastes across individuals the partial derivatives∂u/∂xm
will in general also become random variables. For instance, Hausman and Wise (1978),
use a linear utility function and the partial derivatives are then equal to the random
coefficients, which they assume to be normally distributed. However, the ratio of two
normal variates is not always well behaved and may be Cauchy distributed which
implies that an expected value does not exist. This suggests that even though the
parameters of the utility function are successfully estimated and have the expected
sign, magnitude, et cetera, it may still be impossible to find a reasonable value of
the average monetary valuation that we are interested in for the purposes of welfare
economic analysis. This paper addresses this issue.

In section 2, the main issues are discussed on the basis of a simple linear utility
function. In section 3, the distribution of the marginal monetary value in a linear
utility model with random coefficients is discussed for a number of convenient choices
for the distributions of the random coefficients. Section 4 devotes attention to some
specification problems in the leading case of a discrete choice model and section 5
gives some results for nonlinear utility models and models with observed heterogeneity.
In section 6, the theoretical results are applied to an empirical data set, for which the
consequences of different distributional assumptions are studied. Finally, section 7 gives
the discussion.

2 Linear utility function with random coefficients

Consider a random utility function that is both linear in variables and linear in
parameters, and assume for simplicity that there are only two variables. The utility
function can be written as

u = βx1 + γ x2 + ε,
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where x1 is a monetary variable, such as price or income,x2 is another variable
of interest, ε is a random error term, andβ and γ are random coefficients. The
generalization to more variables is straightforward and the extension to nonlinear
specifications will be briefly discussed in section 5.

From (2), we have that the marginal monetary value of the attributex2 is −γ /β.
In a model with fixed coefficients, this value can be easily computed and in many
applications, it is routinely reported, for example, the value of time in transportation
economic studies. In our case, however,β andγ are random variables, which implies
that the coefficient ratioγ /β is also a random variable. Of course, this is in line with
every day experience: some people attach more value to travel time than others, some
people are willing to pay more for an accessory than others. Generally, the researcher
will be interested in the distribution of the ratio, or some properties of that distribution,
such as its mean or median, or the proportion of people for which this ratio exceeds
some value.

Evidently, the distribution of the coefficient ratio follows from the joint distribution
of the coefficients. Ifβ andγ are continuously distributed with joint density function
f (β, γ ), then the coefficient ratior = γ /β has density function

g(r) =
∫ +∞

−∞
|β| f (β, rβ) dβ (3)

(cf. Spanos, 1986, p. 103). Traditionally, the normal distribution has been by far the
most frequently used distribution for random coefficients. The distribution of the ratio
of two normally distributed variables has been discussed by several authors. Its mean
and higher moments do not exist and for some parameter values, the density is bimodal.
This poses severe problems in presenting and interpreting the results.

One may note, however, that the problems appear not so much to be related to
the fact that the partial derivative that refers to the monetary variable is a random
variable, but to the possibility that it can be close to zero (i.e. that its density function
is positive around zero). This is an unavoidable consequence of the assumption that the
parameters of the utility function are normally distributed. This suggests, of course, that
the problem should be interpreted as one of model specification.

Economic theory assumes that individuals prefer more income to less and prefer
lower prices to higher. This implies that a specification for the density function of the
monetary variable should be used that has positive support only on the positive half of
the real line, or the negative half for prices. In the following, we assume that the sign of
the monetary variable is chosen such that its coefficient should be positive according to
economic theory. Moreover, the same holds for other variables as well. People prefer
less travel time to more, first class to second class, and so forth. On the other hand,
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some people prefer to live in the city and others in the country, so not all parameters are
restricted in sign. Ideally, the specification of the distributions of the random coefficients
allows sign restrictions for some coefficients, but not for others. In the next section,
some convenient distributions are studied.

3 Distribution of the coefficient ratio

In this section, the distribution of the coefficient ratioγ /β will be discussed for a
number of convenient distributions of the random coefficients. The formula (3) can
be used for distributions not discussed here. In many cases, however, it may not be
possible to obtain an analytical expression of the integral in this formula. In such cases
is will usually be relatively easy to approximate the integral numerically, for example,
by quadrature methods, or to simulate from the density.

Normal denominator

The coefficient in the denominator will typically be the coefficient of income, price,
or some related variable. Therefore, as argued in the previous section, the sign of this
variable should be restricted to be negative (for a price variable) or positive (for an
income variable or if the sign of a price variable is reversed). A normal distribution
is therefore theoretically inappropriate for this coefficient. Nevertheless, the normal
distribution has been used most frequently to model random coefficients. The reasons
for this can possibly be traced back to some form of central limit theorem, the popularity
of the normal distribution in statistics and econometrics for all sorts of problems,
the relatively simple form of the likelihood function for linear models with normally
distributed random coefficients, the relatively straightforward way in which explanatory
variables can be introduced (cf. section 5), and so forth.

Furthermore, if the mean of the random coefficient is far from zero, relative
to its standard deviation, the normal distribution may be a good approximation to
other distributions, such as the gamma distribution or the lognormal distribution, and
convenience may lead to a preference for the normal distribution as an approximation
of the true distribution of the random coefficient.

Given this rationale, the only relevant case to consider is the case in which the
numerator is also normally distributed. The distribution of the ratio of two normal
random variables has been studied by several authors, mainly in the context of the
distribution of the ratio of two means. Its mean, variance, and higher moments do not
exist and for some values of the parameters, the distribution is bimodal. The density
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function is given by Hinkley (1969) and Marsaglia (1965) gives some plots of the
possible shapes of the density function.

If β and γ are jointly normally distributed with meansµ1 andµ2, respectively,
variancesσ 2

1 and σ 2
2 , respectively, and correlationρ, and if µ1 � σ1, then the

distribution of the coefficient ratior ≡ γ /β can be approximated by

Pr(r ≤ w) ≈ 8


 µ1w − µ2√

σ 2
1w

2 − 2σ1σ2ρw + σ 2
2


 ,

where8(·) is the standard normal distribution function (Hinkley, 1969).

Lognormal denominator

It was argued above that the coefficient in the denominator should typically be restricted
to be negative (for price), or positive (for income or if the sign of the price variable
is reversed). Therefore, it seems appropriate to consider distributions that have only
negative or only positive support. Distributions that have only positive support are more
common in the literature, and thus we will assume that the sign of the variable is such
that the coefficient should be positive.

A distribution that has only positive support and that is very convenient as well,
is the lognormal distribution. This is also a well-known distribution in economics,
where it is frequently used to approximate income distributions (see, e.g., Aitchison
& Brown, 1957). It is obtained from the normal distribution in the following way: If
z ∼ N (µ, σ 2), thenx ≡ exp(z) is lognormally distributed:x ∼ LN(µ, σ 2). Its mean
is exp(µ + 1

2σ
2) and its variance is exp(2µ + 2σ 2) − exp(2µ + σ 2). It tends to be

heavily skewed with a thick tail. The median is exp(µ), which may in some cases be
the most appropriate characteristic to report. This distribution has been proposed as a
convenient distribution for random coefficients in discrete choice models by Revelt and
Train (1998) and Train (1998). Kim, Blattberg, and Rossi (1995) compared a lognormal
distribution of the negative of the coefficient of log(price) with a semi-nonparametric
alternative and found strong support for the lognormal distribution.

From its definition, it is immediately clear that the ratio of two lognormally
distributed coefficients is also lognormally distributed: Letβ = exp(η1) and γ =
exp(η2), whereη1 and η2 are jointly normally distributed with meansµ1 and µ2,
respectively, variancesσ 2

1 andσ 2
2 , respectively, and correlationρ. Then

r ≡ γ

β
= exp(η2)

exp(η1)
= exp(η2 − η1) = exp(η̃),
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whereη̃ ≡ η2 − η1, which is normally distributed with meanµ2 − µ1 and variance
σ 2

1 + σ 2
2 − 2ρσ1σ2. Hence, it follows that

r ∼ LN(µ2 − µ1, σ
2
1 + σ 2

2 − 2ρσ1σ2).

Consequently, the mean ofr is

E(r) = exp
[
(µ2 − µ1)+ 1

2(σ
2
1 + σ 2

2 − 2ρσ1σ2)
]
,

its variance is

Var(r) = exp
[
2(µ2 − µ1)+ 2(σ 2

1 + σ 2
2 − 2ρσ1σ2)

]
− exp

[
2(µ2 − µ1)+ (σ 2

1 + σ 2
2 − 2ρσ1σ2)

]
,

and its median is exp(µ2 − µ1).
If the coefficient in the numerator follows a normal distribution, the distribution of

the ratio is not as easily expressible. There does not seem to be a closed form expression
of its density. The density function can, however, be easily approximated with high
precision by using Gaussian quadrature (see, e.g., Press, Teukolsky, Vetterling, &
Flannery, 1992, pp. 140–155). The moments of this distribution are easily derived. In
particular, letβ = exp(η1) andγ = η2, whereη1 andη2 are jointly normally distributed
with meansµ1 andµ2, respectively, variancesσ 2

1 andσ 2
2 , respectively, and correlation

ρ. Let r ≡ γ /β. Then the mean and variance ofr are

E(r) = exp(−µ1 + 1
2σ

2
1 )[µ2 − ρσ1σ2];

Var(r) = exp(−2µ1 + 2σ 2
1 )[µ2

2 + σ 2
2 − 2ρ2σ 2

2µ1 + 4ρ2σ 2
1σ

2
2 − 4ρσ1σ2µ2]

− exp(−2µ1 + σ 2
1 )[µ2 − ρσ1σ2]2.

Furthermore, simulation from this distribution is also straightforward.

Gamma denominator

Another distribution that has only positive support and that is very convenient is the
gamma distribution. A standard gamma variatex with shape parameterα > 0 has
probability density function

g(x;α) = 1

0(α)
xα−1e−x
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and cumulative distribution function

G(x;α) = 1

0(α)

∫ x

0
tα−1e−t dt. (4)

A two-parameter gamma variatey with shape parameterα and scale parameterτ can
be obtained fromx asy = τx. Note, however, that frequently,λ ≡ 1/τ is defined as
the scale parameter.

The mean of the two-parameter gamma distribution isτα and its variance isτ 2α.
The gamma distribution is skewed with a somewhat lighter tail than the lognormal
distribution (its kurtosis is smaller for a given skewness).

The gamma distribution is frequently used to model heterogeneity in duration
models (e.g., Lancaster, 1990, pp. 65–70) and count data models (e.g., Cameron &
Trivedi, 1998, pp. 100–101). In those cases, however, the model contains a factor
exp(β ′x)ν, whereν is gamma distributed andβ is a vector of nonrandom coefficients.
Thus, the heterogeneity is additive in the form exp(β ′x + ε), where exp(ε) is gamma
distributed, whereas in our case the coefficientsβ themselves are gamma distributed.

A difficulty with the gamma distribution is that there is no natural way in which
dependent gamma variates can be defined. It is very likely that different random taste
parameters are correlated, and both negative and positive correlations are conceivable.
An intuitively appealing way to define multivariate dependent gamma variates is given
by Moran (1969). He defines a bivariate gamma distribution as follows. Letz1 andz2

be correlated normally distributed random variables with mean zero and variance one,
then define two gamma variatesx1 andx2 as

x1 ≡ τ1G
−1 [8(z1);α1] ; (5a)

x2 ≡ τ2G
−1 [8(z2);α2] , (5b)

whereG(· ; ·) is defined in (4) and8(·) denotes the standard normal distribution
function. Clearly, x1 and x2 are dependent and their marginal distributions are
two-parameter gamma. Note that this idea can be applied to obtain dependent
multivariate distributions with arbitrary marginal distributions (see, e.g., Meijerink,
1996, who developed nonlinear structural equation models as univariate nonlinear
transformations from normality). More specifically, ifβ is assumed to be gamma
distributed andγ is assumed to be normally distributed, and possiblyβ and γ are
dependent, they may be assumed to be generated according to

β ≡ τ1G
−1 [8(z1);α1] ; (6a)

γ ≡ µ2 + σ2z2. (6b)
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If β andγ are assumed to be generated according to (5), the density function of the
ratio r ≡ γ /β is not expressible in closed form. Thek-th moment ofr exists ifk < α1,
the shape parameter of the distribution ofβ. The moments are not expressible in closed
form, but can be easily approximated with great precision by Gaussian quadrature or
simulation. In the special caseρ = 0, i.e., r is the ratio of twoindependentgamma
variates, the density ofr is

g(r) = 0(α1 + α2)

0(α1)0(α2)

ψα2rα2−1

(1 + ψr)α1+α2
, (7)

where ψ ≡ τ1/τ2. Hogg and Klugman (1983) call this thegeneralized Pareto
distribution. The well-known class ofF -distributions is a subset of this class of
distributions. Ifρ = 0, the moments ofr are

E(rk) = 0(α1 − k)0(α2 + k)

0(α1)0(α2)ψk
,

providedk < α1, the shape parameter of the distribution ofβ. If k > α1, this moment
does not exist. In particular, ifα1 > 2, the mean and variance ofr are

E(r) = α2

(α1 − 1)ψ
;

Var(r) = α2(α1 + α2 − 1)

(α1 − 1)2(α1 − 2)ψ2
.

If β andγ are assumed to be generated according to (6), the density function of the
ratio r ≡ γ /β is not expressible in closed form. Thek-th moment ofr exists ifk < α1,
the shape parameter of the distribution ofβ. The moments are not expressible in closed
form, but can be easily approximated with great precision by Gaussian quadrature or
simulation. In the special caseρ = 0, i.e., r is the ratio of independentnormal
and gamma variates, the moments ofr are easily found from E(rk) = E(γ k)E(β−k),
providedk < α1, the shape parameter of the distribution ofβ. If k > α1, this moment
does not exist. In particular, ifα1 > 2, the mean and variance ofr are

E(r) = µ2

α1 − 1
;

Var(r) = µ2
2 + (α1 − 1)σ 2

2

(α1 − 1)2(α1 − 2)
.

Latent class approach

The latent class approach is frequently used in marketing applications (e.g., Kamakura
& Russell, 1989; Wedel & DeSarbo, 1994). It assumes that there areM types (classes
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or segments) of consumers, each with its own (nonrandom) taste parameters(βm, γm),
m = 1, . . . ,M. The proportion of them-th class in the population isπm. It is not
known which individuals belong to which class. Hence, the distribution of(β, γ ) is
discrete and(β, γ ) = (βm, γm) with probabilityπm. Consequently, the distribution of
r ≡ γ /β is also discrete,r = γm/βm with probabilityπm, and the mean ofr and other
characteristics of its distribution can be easily computed using standard formulas for
discrete distributions. Note that the randomness of the taste parameters originates from
the assumption that the researcher does not know to which class a consumer belongs. If
the class is known, the taste parameters follow deterministically.

Latent class methods are extremely useful to divide the market into a number
of relatively homogeneous segments, for which specific marketing strategies can be
developed (e.g., Wedel & Kamakura, 1998). If the number of classesM is allowed
to increase with sample size, this approach is a nonparametric approach to estimation
of the distribution of the taste parametersβ and γ . In finite samples, however, the
estimated discrete distributions tend to be quite coarse and may not cover possibly
interesting small niches among the consumers, see, e.g., Allenby, Arora, and Ginter
(1998). See also Wedel et al. (1999) for an extensive discussion about discrete and
continuous representations of heterogeneity.

To overcome the drawbacks of the standard latent class methods, Allenby et al.
(1998) proposed a mixture distribution in which there is random (normal) taste variation
within each class. The distributions of the random coefficients are generally smooth,
whereas the latent class approach is still a special case (with variances equal to zero),
as well as normally distributed coefficients (with only one class). Hence, it is easy to
compare the results with these special cases. In their examples, Allenby et al. find that
the coefficients are generally smoothly nonnormally distributed. In the general case,r

is a mixture of ratios of normally distributed variables, which leads to very complicated
formulas. We will not discuss these further.

Other distributions

Obviously, many other distributions may be used to model the distributions of the
random coefficients. This applies not only to the coefficients that are restricted in sign,
but also to the other coefficients. Examples of distributions for positive coefficients are
the Weibull distribution and the inverse Gaussian distribution and possible distributions
for coefficients that are not restricted in sign are the Gumbel distribution and the
t-distribution. For all these distributions, the theoretical and empirical consequences
can be studied analogously to the distributions studied above.

If one wants to avoid arbitrary distributional assumptions, the latent class approach
gives a nonparametric alternative. As mentioned above, however, the estimated
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distributions tend to be quite coarse, whereas taste heterogeneity may be expected to
be smooth. A useful approach that results in smooth estimates of the density functions
is the semi-nonparametricapproach of Gallant and Nychka (1987), see also Gallant
and Tauchen (1989). In this approach, the density function of a general random vector
x that is estimated isf (x) = [PK(x)]2f0(x), wherePK(x) is a polynomial of degree
K of the elements ofx andf0(x) is a base density, for example, the density function
of a multivariate standard normally distributed vector. In order forf to be a density
function, the coefficients of the polynomialP should satisfy some restrictions. Gallant
and Nychka showed that, if the degreeK of the polynomial is allowed to increase with
sample size, the densityf is a consistent estimator of (nearly) any smooth density. Sign
restrictions are most easily incorporated by taking the exponential of the corresponding
element of the vector, as with the lognormal distribution above. A detailed discussion
of the application of this approach to random parameter models is given by Davidian
and Gallant (1993).

The seminonparametric approach is especially useful as alternative hypothesis to
test the adequacy of a given parametric choice densityf0, which corresponds toK = 0.
For the alternative hypothesis,K is set to a higher value and nonrejection of the null
hypothesis implies that the parametric density gives an adequate description of the
distribution of the random coefficients (Kim et al., 1995).

Most choices of the distributions of the random coefficients lead to analytically
intractable densities of the ratior with distributional characteristics (moments,
quantiles) that have no closed-form expression. Usually, however, it is easy to obtain
an arbitrary close approximation by Gaussian quadrature or by simulation from the
density. Moreover, as the model will frequently have to be estimated by simulation
methods (e.g., Gouri´eroux & Monfort, 1991), drawings from the distribution of the
random coefficients will be readily available and these can be used to estimate the
required characteristics of the distribution of the ratio. One problem is, however, that the
moments may not exist, and hence the estimated moments are useless. Therefore, it has
to be proved first whether certain moments exist. Fortunately, this is usually relatively
easy.

4 Specification issues in a discrete choice model

An important application of random utility models with random coefficients is in
discrete choice models. The specific characteristics of discrete choice models, however,
invoke additional specification issues. Consider first a binary choice context. An
economic agent chooses one option (e.g., buys one product or chooses one behavioral
option) from a set of 2 alternatives. It is assumed that the agent attaches a utilityuj to
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each alternativej = 1,2, and that the alternative with the highest utility is chosen. This
choice is observed by the researcher.

The utilities of option 1 and option 2 are

u1 = βx11 + γ x21 + ε̃1;
u2 = βx12 + γ x22 + ε̃2.

The researcher only observes whetheru1 > u2 or u1 < u2, or equivalently, whether

u = βx1 + γ x2 + ε̃

is positive or negative, whereu ≡ u2−u1, x1 ≡ x12−x11, x2 ≡ x22−x21, andε̃ ≡ ε̃2−ε̃1.
Write ε̃ = σε, whereσ is a scale parameter andε is a random variable with known
variance. For example, if̃ε is assumed to be normally distributed,ε is conveniently
chosen to be standard normally distributed (with variance one), or ifε̃ is assumed to be
logistically distributed,ε is conveniently chosen to be standard logistically distributed
(with varianceπ2/3). Hence, the utility function can be written as

u = βx1 + γ x2 + σε. (8)

Because it can only be observed whetheru > 0 or u < 0, the parameters on the right
hand side of (8) may be multiplied by an arbitrary positive number. This leads to an
equivalent model. Therefore, in applications of binary choice models,σ is usually
chosen as one.

It turns out, however, that in random coefficients models, the parameters of the
distributions ofβ and γ frequently diverge to (plus or minus) infinity, especially
with so-calledstated preferenceor conjoint choicedata. These are data for which
respondents were asked to state their most preferred alternative (product, transportation
mode, environmental situation) from a set of hypothetical alternatives that are described
by a number of characteristics (attributes).

Revelt and Train (1998), based on a suggestion by Ruud (1996), assumed that
the coefficient (β in our case) of the monetary variable is nonrandom, which solved
the technical problems. Moreover, this specification is very convenient, because the
problems associated with the ratio of two random variables disappear if it can be
assumed that the one in the denominator is a (nonzero) constant instead of a random
variable. In that case the characteristics of the distribution of the numerator essentially
determine all the characteristics of the distribution of the ratio.

This ‘solution’ is, however, not very satisfactory. A priori it appears at least as likely
that the coefficients in the utility function that refer to the monetary variable are random
variables, as that those referring to any other variable are. From (8), it can be seen that,
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if σ ↓ 0, β andγ diverge to infinity if the model is scaled toσ = 1. It seems likely
that in stated preference contexts,σ may be close to zero, because the alternatives are
completely specified by the given attributes. Hence, differences in choices are mostly
due to differences in tastes and not to unobserved characteristics and completely random
disturbances, as captured inε.

If σ = 0, the model is

u = βx1 + γ x2

= β0x1 + γ x2 + (β − β0)x1

= β0x1 + γ x2 + ε∗,

whereβ0 ≡ E(β) andε∗ ≡ (β − β0)x1. This equation is of the same form as (8), with
the additional restriction thatβ0 is nonrandom. In this case, however, the error term is
clearly heteroskedastic and ifβ andγ are not independent, the distributions ofγ and
ε∗ are not independent as well, whereas it is usually assumed thatε∗ is i.i.d. across
different individuals and independent ofγ . Hence, the model with a constant monetary
coefficient is different from the model (8). It is well-known that if heteroskedasticity
is neglected in logit and probit models, the resulting estimators are inconsistent. In our
view, it is better to use (8) as the primary model specification, scaled withσ = 1. If
the estimated parameters of the distribution ofβ andγ are very large, the model can
be reestimated with a different scaling (e.g., with the mean ofβ equal to plus or minus
one), with an estimation algorithm that allowsσ to be equal to zero. Then, it can be
tested whetherσ = 0.

If the number of alternatives from which the economic agent chooses is larger
than two, we arrive at multinomial (or possibly ordered) discrete choice models. The
above discussion still largely applies, except that now, different variances of the error
terms for different alternatives are identified, except that there remains always at least
one arbitrary scaling. Furthermore, the error terms for different alternatives may be
correlated. These issues invoke some technical complications, but do not alter the
general discussion in this paper.

5 Nonlinearity and observed heterogeneity

The discussion thus far concentrated mainly on utility functions that are both linear in
coefficients and linear in variables. Frequently, however, such a bilinear specification is
not satisfactory on theoretical and/or empirical grounds. Economic theory and data
frequently suggest nonlinear specifications. In such cases, the general ideas of the
previous sections can be used to derive the distribution of the marginal monetary value
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of a variable. The specific distributional results given above, however, will not hold
anymore. The formula of interest is (2). General results can not be obtained, but we
will now give some illustrative examples.

Kim et al. (1995) derived the utility function

u = β log(x1)+ γ x2 + ε,

where x1 is price andx2 is quality. For this model, the marginal monetary value
is −(γ /β)x1 and the discussion of the previous sections applies, except that the
distributions should be multiplied (for the individual in question) by the observed
constantx1. If x1 is a price that is common to all individuals, the distribution of
the marginal monetary value in the population is the same as the distribution for
one individual. If x1 is income or some other monetary variable that varies over
individuals, the distribution of the marginal monetary value in the population is obtained
by aggregating over the population distribution ofx1.

If the utility function is

u = βx1 + γ1x2 + γ2x
2
2 + ε,

the marginal monetary value is−(γ1/β) − (γ2/β)x2. Depending on the assumed joint
distribution ofβ, γ1, andγ2, this may or may not lead to an easy expression givenx2.
The distribution of the marginal monetary value in the population is again obtained by
aggregating overx2.

Apart fromunobservedheterogeneity operationalized as random coefficients, there
is in many cases also a large amount ofobservedheterogeneity in the form of
characteristics of the individuals, typically demographic variables. In such cases, it
is customary to explain part of the heterogeneity by these characteristics. For example,
large cars will be (more) preferred by large households and small cars will be (more)
preferred by people who live in the city. Traditionally, such effects are modeled as

βj = w′δj + ζj , (9)

whereβj is the j -th (random) coefficient of the utility function,w is a vector of
explanatory variables (such as person characteristics),δj is a vector of (nonrandom)
parameters, andζj is a random residual. The effect of the explanatory variables is
that of shifting the mean of the distribution ofβ: this is noww′δj , which differs
between people, because their characteristicsw are different, instead of a constant. This
specification is particularly useful if the random coefficients are normally distributed.
In that case,βj ∼ N (w′δj , σ 2) and the previous observations in section 3 still hold,
except that the means are now (deterministic) functions of the exogenous variables.
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For other distributions, this specification is not so natural. For example, the
specification (9) will generally not guarantee positiveness of the coefficients. For
nonnormal distributions, other parametrizations are more natural. With the lognormal
distribution, for example, a natural parametrization is

βj = exp(w′δj + ζj ) = exp(w′δj )exp(ζj ), (10)

βj ∼ LN(w′δj , σ 2) and the previous observations in section 3 still hold, except that the
parameters are now (deterministic) functions of the exogenous variables. However, the
effect of the explanatory variables is now multiplicative instead of additive.

Apparently, the choice of parametric distribution has also implications for the most
natural functional form of the observed heterogeneity in the model. It is, however,
possible to specify different functional forms for the same distributions. This is
analogous to the problem of the choice of link function in generalized linear models
(McCullagh & Nelder, 1989), where the canonical link function is the “natural” link
function for a given distribution, but other link functions are still possible.

6 Empirical application

In this section we report estimation results of a number of model specifications with
random coefficients. The data we use are stated preferences of 235 respondents, which
were obtained in 1987 by Hague Consulting Group for the national Dutch Railways
(NS)1, from experiments in which two options for traveling by train had to be compared.
Each respondent made a sequence of choices among two possibilities for traveling by
train that differed in some or all of the following attributes: fare, journey time, number
of rail-to-rail transfers (interchanges), and comfort level. The sample was composed
of persons who had recently traveled from the city of Nijmegen (located in the eastern
part of the Netherlands) to Amsterdam, Rotterdam, or The Hague, which are in the
Randstad (the core region of the Netherlands located in the western part of the country).
The number of decisions differed over the respondents and was on average equal to
12.5. A total number of 2929 choices were registered. These data have also been used
in the first case study reported in Ben-Akiva, Bolduc, and Bradley (1993).

Our basic specification is the logit model, which is obtained from an extension of (8)
to more variables by normalizingσ = 1 and by assuming thatε is standard logistically
distributed. As is well known, this gives the following formula for the probability that

1We thank Theo van der Star of NS Reizigers/MOA Consult for permission to use these data.
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alternative 1 is chosen:

p1 = exp(1V )

1 + exp(1V )
,

with

1V = β ′1x.

In these equations,p1 denotes the probability that alternative 1 is chosen,1V the
difference in the systematic part of utility attached to both alternatives (i.e. the
systematic part of utility of alternative 1 minus that of alternative 2), which is further
specified as a linear function of the differences in the attribute levels mentioned above,
1x. The coefficientsβ have to be estimated and can be used to compute the implied
value of travel time by train. This value of time isβ2/β1. The probability that
alternative 2 is chosen is, of course, 1− p1. The data that we use refer to individualsi,
i = 1, . . . ,235. Each individual makes a sequence ofKi choices. We let1xik denote
the value of1x for the k-th choice of individuali. We allow for the possibility that
the parametersβ are random variables, with a distribution that can be characterized by
parametersθ . If we let yik denote an indicator variable that equals 1 if alternative 1
is chosen and 0 otherwise, we can denote the likelihood of the observed sequence of
choices made by respondenti as

Li(θ) =
∫
D

Ki∏
k=1

exp
(
yikβ

′1xik
)

1 + exp(β ′1xik)
dF(β; θ)

= E

[
Ki∏
k=1

exp
(
yikβ

′1xik
)

1 + exp(β ′1xik)
; θ

]
, (11)

whereF(β; θ) is the distribution function ofβ given the parameter vectorθ andD is the
domain ofβ. Because the integral is difficult to compute in a number of cases we want
to consider, we approximate the expectation in (11) by simulation from the distribution
of β. We do so by taking a large numberR of drawings from the distributionF(β; θ).
The expectation in (11) is then replaced by the average of theR drawings. Denoting
the value ofβ in ther-th drawing asβr(θ), thereby recognizing its dependence on the
parametersθ , we can write the simulated value of the likelihood as:

L∗
i (θ) = 1

R

R∑
r=1

[
Ki∏
k=1

exp
[
yikβr(θ)

′1xik
]

1 + exp[βr(θ)′1xik ]

]
. (12)
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The simulated loglikelihood of the sample equals the sum of the logarithms of the
individual simulated likelihoods given by (12). The parametersθ are estimated by
minimizing the value of the simulated loglikelihood of the sample. This estimation
method is calledsimulated maximum likelihood. It is asymptotically equivalent to
maximum likelihood if the number of replicationsR is allowed to grow with the sample
sizeN such thatN/R → 0 (e.g., Gouri´eroux & Monfort, 1991).

Note that our formulation of the likelihood function takes into account explicitly that
a number of choices are made by each individual and is different from the likelihood
function that would result when all observations were treated as being independent.

Specifications of the distributions of the coefficients

The basic specification of the model refers to the situation in which all parameters are
fixed scalars. This standard model will be referred to in what follows as model I. This is
the only model to be considered in which there is no need to take into account explicitly
the fact that each individual makes a sequence of choices. All the alternatives to the
basic model that will be described below relax the assumption of a single value for the
coefficients. Three of them do so by using parameterized specifications of the random
coefficients. We estimated models in which some or all of the parameters were random
variables with a

– normal (model II),

– lognormal (III), or

– gamma density function (IV).

For these three models with different distribution functions we estimated four variants,

(a) cost parameter fixed, all other parameters random, diagonal covariance matrix,

(b) cost parameter fixed, all other parameters random, unrestricted covariance matrix,

(c) all parameters random, diagonal covariance matrix,

(d) all parameters random, unrestricted covariance matrix.

For all these variants our estimator used simulation. For each random parameter we
usedR = 250 independent drawings from the four-variate standard normal distribution
as our basic drawings and transformed them to drawings from lognormally or gamma
distributed variates when necessary. This procedure was intended to make the results
for the various specifications as comparable as possible.
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Let zr , r = 1, . . . , R, be these basic drawings. Then, for the normal model (II), the
random coefficientsβr(θ) are computed as

βr(θ) = µ+ Lzr,

whereµ is the mean vector ofβ andL is a lower triangular matrix, the Cholesky root
of the covariance matrix6 of β (i.e.,6 = LL′). The parameter vectorθ consists of
the elements ofµ andL. The variants (a)–(d) are obtained by imposing restrictions on
L: In (a), L is diagonal with its first element zero; in (b), the first column ofL is zero
but the diagonal and subdiagonal elements of the remaining columns are unrestricted;
in (c),L is diagonal without further restrictions; and in (d),L is lower triangular without
further restrictions.

For the lognormal model (III), the random coefficients were analogously computed
as

βr(θ) = exp(µ+ Lzr).

For the gamma model (IV), the computation is slightly more complicated, because the
transformation is not straightforward. The general formula is (5), with slightly different
notation, and extended to a four-variate distribution. The steps of the computation are
as follows. First, the uncorrelated standard normal random variableszr are transformed
to correlated normal random variables with mean zero and variance one, according to
the formula

z̃r = DLzr,

whereL is a lower triangular matrix that is normalized by setting its diagonal elements
to one andD is a diagonal matrix with elementsDjj = [(LL′)jj ]−1/2, so that the
covariance matrix6 = DLL′D of z̃r has diagonal elements equal to one. Second, the
random coefficients are computed by solving the univariate equations

G[βrj (θ)/τj ;αj ] = 8(z̃rj ),

where8 denotes the standard normal distribution function andG is defined in (4).
Evidently, for the variants (a) and (c) with independent coefficients, the first step can be
omitted and only the second step is performed. For the gamma model, the parameters
are the unrestricted subdiagonal elements ofL and the parametersτj andαj of the
gamma distribution.

Finally, we estimated latent class models (V). In these models the population is
treated as a mixture of a finite number of homogeneous classes. For each of these classes
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a standard logit model is valid. Alternatively, as discussed above, one can regard a latent
class model as giving a nonparametric alternative to the three parametric distributions
of models II, III, and IV by approximating the unknown distribution of the random
coefficientsβ by a finite number of mass points. For this model, simulation is not
needed. The likelihood functionLi(θ) given in (11) reduces to a weighted average of
the likelihoods of theM latent classes:

Li(θ) =
M∑
m=1

πm

[
Ki∏
k=1

exp
(
yikβ

′
m1xik

)
1 + exp

(
β ′
m1xik

)
]
,

whereβm is the vector of parameters of them-th latent class andπm is the fraction of
the population belonging to that class. The values of theπm’s have to be estimated as
well. This can be done by the computationally convenient reparameterization

πm = exp(λm)∑M
n=1 exp(λn)

,

where one of theλ’s (theM-th) is set equal to 0, and the others are estimated. Note that
also in this case it has been taken into account explicitly that each respondent made a
number of choices.

Results

The first striking result is that all likelihood ratio tests for nested models are highly
significant (p < 0.0001). The values of the likelihood ratio test statistics are given in
Table 1. This means that the hypothesis that the cost coefficient is nonrandom and the
hypothesis that the different coefficients are independent are rejected. Closer scrutiny
of the detailed estimation results gives an indication that the most flexible models
(variant d) may be a little overparametrized, but this will not be studied in detail, as
it is outside the scope of this paper to find the optimal model. (Similarly, the observed
heterogeneity in the form of the sex, age, and trip purpose of the respondents are not
taken into account.)

Note that the likelihood ratio test statistics are much larger than those found on the
same data by Ben-Akiva et al. (1993), who estimated slightly different models, with
only one (lognormally distributed) random coefficient. This difference occurs partly
because they treat the repeated choices of the same respondent as independent, whereas
we treat them as dependent, see (11). Estimation of their model specification with
our dependence structure gives likelihood ratio statistics of 65 and 93, respectively, for
their Model 1 and Model 2, with one degree of freedom, compared to 3.0 and 5.7 in
Ben-Akiva et al. (1993). See appendix A for a detailed discussion of these differences.
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A summary of fit statistics (loglikelihood, AIC, and CAIC) is given in table 12
in the appendix. In what follows, we focus on the consequences of the different
parametrization for (characteristics of) the value of time (VOT) distribution. Detailed
estimation results are documented in the appendix.

Table 1 Likelihood ratio tests for nested models.

Test Degrees of Freedom Model
Normal(II) Lognormal(III) Gamma(IV)

(a) – Model I 3 384 606 606
(b) – (a) 3 28 116 94
(c) – (a) 1 308 206 206
(d) – (b) 4 322 120 140
(d) – (c) 6 42 30 28
Note. All tests significant atp < 0.0001.

Standard logit

In the standard logit model (model I) the coefficientsβ are interpreted as constants.
Table 2 reports the results of estimating this specification of the model. All coefficients
have the expected negative sign and are statistically different from zero. The implied
value of time is−0.0287/ − 0.1483= 0.19 Dutch guilder per minute or 11.59 Dutch
guilder per hour.

Table 2 Results for the basic model.

Variable Parameter Standard error Abs.t-value
Cost −0.1483 0.0068 21.9
Travel time −0.0287 0.0026 10.9
Interchanges −0.3263 0.0591 5.5
Comfort level −0.9457 0.0655 14.4
Loglikelihood: -1724.15.

Our a priori expectations of the signs of all four coefficients are clearly supported by
the estimation results of the standard logit model. There is therefore no need to consider
specifications in which some of the coefficients are normal (because they are allowed to
have either a positive or negative sign) whereas others are lognormal or gamma (because
they are expected to have a definite sign).
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Normally distributed parameters

When the cost parameter is fixed and the travel time parameter is distributed normally,
the value of time is also normally distributed. The distribution of the value of time when
the cost parameter is also normally distributed is discussed in section 3, and for these
cases the expected value and variance do not exist. However, the density functions of
the implied values of time can be plotted for all four cases. Figure 1 shows the results.
There is little difference between the distribution of the value of time that results from
estimating the variants in which the cost parameter is fixed (i.e. variants IIa and IIb).
In these cases the expected value of time is 0.26 and 0.27 Dutch guilder, respectively.
This is considerably (more than 30%) higher than the point estimate provided by the
standard logit model I. The models IIa and IIb also indicate a substantial amount of
heterogeneity in the valuation of time: the estimated standard deviations are 0.29 and
0.31, respectively. This implies, among other things, that almost 20% of the valuations
are on the negative part of the real line. Whether this is a property of the data or
a consequence of the restrictive properties (for the present purposes) of the normal
distribution remains to be seen.

It has been noted above that for the ratio of two normally distributed random
variables no expected value, variance or higher moments exist. However, we can
compare the modes and median values for all four variants. For (a) and (b) the modes
and medians are equal to the expected values given above. For (c) and (d) considerably
lower values of the modes are found: 0.13 and 0.12 respectively. This is more than 30%
lower than the value of 0.19 implied by the standard logit model. The medians for (c)
and (d) were estimated by simulation (250 replications) from the estimated distribution.
The estimated medians were 0.16 and 0.13, respectively, which are higher than the
corresponding modes, but still lower than the values for the standard logit model.

The part of the density shown in the figure (that covers the interval from−0.4 to
1.1) covers 98% for variants IIa and IIb, whereas for IIc and IId it covers 90% and
93%, respectively. This is, of course, the pattern one would expect given that the means
and variances do not exist in the latter two cases. The striking difference shown in the
figure is illustrated by a comparison of the parts of the four densities on the interval
(0.0–0.4). These cover 0.49, 0.48, 0.67, and 0.76 for the variants (a)–(d), respectively.
In this sense, the variants with random cost and time parameters clearly imply less
heterogeneity in the valuation of time than the other two. It is, moreover, remarkable
that negative valuations of time are less common for the variants in which both cost and
time parameters are stochastic, and especially so for the clearly asymmetric distribution
that results when the full covariance matrix is estimated (variantd).

Table 3 shows the correlation matrices that are implied by the estimation results
of variants (b) and (d). The table shows that the correlation coefficients that appear in
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both matrices are markedly different. This suggests that conclusions about relationships
between, for instance, the valuation of time and of comfort level are heavily dependent
on the way the cost coefficient is treated. For the data used here, fixing the cost
coefficient results in an estimated positive correlation between the coefficients of time
and number of interchanges, whereas treating the cost coefficient as random results in a
large negative correlation.

We have used the approximation formula derived by Hinkley (1969) and given in
section 3 in order to see whether this gives a useful approximation to the densities of the
VOT implied by variants (c) and (d). This was not the case, which is not too surprising
given the fact that the approximation was derived for the case in which the expected
value of the cost coefficient should be much larger than its standard deviation.

Table 3 Correlation matrices of variants IIb and IId.

Variant (b) Variant (d)
Cost Time Inter- Comfort Cost Time Inter- Comfort

changes level changes level
Cost – 1.00
Time – 1.00 −0.30 1.00
Interchanges – 0.28 1.00 −0.51−0.56 1.00
Comfort level – 0.29 0.19 1.00 −0.16 0.07 −0.01 1.00

Lognormally distributed parameters

The variants of model III that we estimated correspond to those of model II. In all four
variants the implied value of time is a lognormally distributed variable. Table 4 gives
the modes, medians, expectations, and standard deviations of these distributions, the
densities of which are shown in Figure 2.

Table 4 Some characteristics of the density of the VOT with lognormally distributed
parameters (model III).

Variant Mode Median Expected value Standard deviation
(a) 0.033 0.166 0.372 0.744
(b) 0.019 0.164 0.483 1.341
(c) 0.044 0.175 0.351 0.611
(d) 0.039 0.168 0.349 0.638

The modes are considerably lower than in model II. The median of the value of time
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Figure 1 Density of the value of time with normally distributed parameters.

that is implied by model III is also somewhat lower than that of the standard model or
variants (a) and (b) of model II. However, it is higher than the medians of variants (c)
and (d) of model II. The expectations of the value of time implied by model III are all
much higher than that of the standard logit model and variants (a) and (b) of model II.
The standard deviations are also much higher than variants (a) and (b) of model II would
suggest.

Figure 2 depicts the distribution of the value of time according to the four variants of
the lognormal model. The differences between the variants are much smaller than those
for the normal model (note that the horizontal axis refers only to the interval 0–0.4).

Gamma distributed parameters

The variants of model IV that we estimated correspond to those of models II and III.
The implied value of time is a gamma distributed variable in variants (a) and (b), is
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Figure 2 Density of the value of time with lognormally distributed parameters.

distributed with density (7) in variant (c), and is distributed more complicatedly (the
density has no closed form expression) in variant (d). Table 5 gives the medians,
expectations, and standard deviations of these distributions, the densities of which are
shown in Figure 3. The expectations and standard deviations of variants (a)–(c) were
computed analytically by using the formulas given in the text. The expectation of
variant (d) and the medians were approximated by generating 100,000 replications from
the estimated model.

The models with a random cost parameter indicate higher values of time than the
models with a fixed cost parameter. Compared with the corresponding characteristics
from model III, The medians, means, and standard deviations of model IV tend to be
smaller for variants (a) and (b) and larger for variants (c) and (d). The differences
are, however, relatively small for the medians and considerably larger for the expected
values and standard deviations. For variants IVa and IVb, the medians are much smaller
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Table 5 Some characteristics of the density of the VOT with gamma distributed
parameters (model IV).

Variant Median Expected value Standard deviation
(a) 0.147 0.280 0.362
(b) 0.158 0.360 0.520
(c) 0.179 0.446 does not exist
(d) 0.174 0.537 does not exist

than for variants IIa and IIb, but the means and standard deviations are (much) larger.
Figure 3 depicts the density of the value of time according to the variants of the

gamma model. The differences in shape between the variants are remarkable: The
densities of variants (a) and (b) are monotonically decreasing, whereas the densities of
variants (c) and (d) have a single mode at approximately 0.05.

Latent class approach

We used Akaike’s information criterion (AIC) to determine the optimal number of latent
classes. This turned out to be 9. The solution is not very satisfactory, however. First, for
9 and 10 latent classes, we had some computational problems that had to be overcome
before a solution could be found. Second, some parameters are very large in absolute
value and have huge standard errors at the same time. Therefore, in practice, one may
probably prefer the 7- or 8-class solutions, despite their slightly larger AIC values.

Table 6 gives the AIC and the average values of time implied by the latent class
models with up to 10 classes. Note that the model with one latent class is the standard
logit model (model I).

The large increase in the average value of time that is related to the introduction of
a third latent class is due to the very high value of time of this new class (5.35 Dutch
guilders per minute). When the number of classes is increased further, one class has
always a much higher value of time than the others.

For the latent class model with 9 latent classes, the mode and median of the value
of time are 0.162, the mean is 0.418 and the standard deviation is 1.034. The median
is relatively close to the medians of models III and IV (with lognormal and gamma
distributrions). The mean and standard deviation are, however, much larger than the
means and standard deviations of most other models.

Figure 4 shows the probability mass function of this model. The general shape is
similar to the density functions of the preferred variants of the other models, skewed to
the right with a long tail and with a single mode. Note, however, that there is one (small)
class with a large negative value of time, which is due to a nonsignificant positive cost
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Figure 3 Density of the value of time with gamma distributed parameters.

coefficient, which is of course theoretically unrealistic. This illustrates the problems
with this solution.

Comparison of the different distributions

The medians of most estimated distributions are relatively close, roughly between 0.16
and 0.18 Dutch guilder per minute. The medians of the normal models, however, vary
considerably more, between 0.13 and 0.27. The expectations and standard deviations
are much more sensitive to distributional and model specification. For some models,
the expectation and standard deviation of the value of time do not exist. For others, the
standard deviations do not exist, but the expectations do exist, but for most models, both
expectation and standard deviation exist. Among the models in which expectation and
standard deviation exist, the estimated values differ greatly.

In Figure 5 the density functions of the value of time as implied by the preferred
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Table 6 Akaike’s information criterion and average value of time for the latent class
models with 1–10 latent classes (model V).

Number of classes AIC Average value of time
1 1.1800 0.193
2 1.0625 0.279
3 1.0105 0.659
4 0.9727 0.699
5 0.9454 0.501
6 0.9207 0.561
7 0.9166 0.572
8 0.9136 0.421
9 0.9046 0.418

10 0.9048 0.496

variants of the models II–IV are plotted jointly. The preferred variants are the most
flexible versions of the various parametric distributions that have been used.

From this figure, it can be seen that the shapes of the density (or probability mass)
functions of the preferred variants of the different models are qualitatively similar,
skewed to the right with a long tail and a single mode, but there are considerable
differences between model II on the one hand and models III and IV on the other. This is
especially important if a researcher or policy maker is interested in the proportion of the
population that has a value of time that exceeds a certain threshold, i.e., the proportion
of the population that has a (very) small or (very) large value of time. The estimated
proportions are sensitive to distributional assumptions, especially small proportions. It
is, however, striking how close the densities of models III and IV are.

7 Conclusion

In this paper, we have studied the marginal monetary value of a variable in a
microeconomic model. This is defined as (minus) the ratio of the partial derivatives
of the conditional indirect utility function with respect to this variable and a monetary
variable, respectively. If the conditional indirect utility function is linear in both
variables and coefficients, it is (minus) the ratio of the two relevant coefficients.

In a model with random coefficients, this means that the marginal monetary
value of a variable is also a random variable. Different assumptions about the joint
distribution of the random coefficients lead to a different estimated distribution of the
marginal monetary value. Traditionally, random coefficients are typically assumed to
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Figure 4 Probability mass function of the value of time with latent class approach.

be normally distributed, but in many cases, economic theory and common sense restrict
the coefficients in sign. Therefore, distributions that are only defined for positive
(or negative) values, such as the lognormal or gamma, may be more appropriate for
some coefficients. Nonparametric estimates can be obtained by using a latent class or
seminonparametric approach.

To investigate the sensitivity of (characteristics of) the distribution of the marginal
monetary value to assumptions about the joint distribution, we estimated mixed logit
models for a stated preference data set with different distributions of the coefficients.
In the questionnaire, people were (repeatedly) asked to choose a hypothetical train trip
from two alternatives. Of key interest was the distribution of the value of time, which is
the ratio of the time and cost coefficients.

We used five different distributional models: (I) standard logit, fixed coefficients,
(II) normally distributed coefficients, (III) lognormally distributed coefficients, (IV)
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Figure 5 Densities of the value of time with various distributions of the parameters.

gamma distributed coefficients, (V) latent class approach, with a discrete distribution of
the coefficients, with a finite number of mass points. For models (II)–(IV), we estimated
variants with dependent and independent coefficients and with a fixed or random cost
coefficient. For model (V), the optimal number of mass points was chosen by using
Akaike’s information criterion (AIC).

From the empirical results, it follows that the choice of joint distribution of random
coefficients may have a large impact on the distribution of the value of time (VOT).
Treating the coefficient of the monetary variable as a fixed constant, which has been
advocated by several authors, gives markedly different distributions of the VOT and
can therefore not be recommended. Allowing all parameters to be random may cause
computational problems, however. In many cases, the means of the distributions of
the random coefficients diverge to infinity in discrete choice models. As discussed in
section 4, this is generally due to (almost) deterministic choices, given the values of
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the random coefficients. If this occurs, an algorithm and a parametrization should be
chosen that allow the variance of the random error to become zero.

In our empirical example, it was also clear that random coefficients of different
variables are correlated and that neglecting this correlation may also influence results
and thus the conclusions drawn from these. Hence, we recommend that the random
coefficients should be allowed to correlate. In some cases, economic theory or empirical
evidence may suggest a simpler structure (e.g., Elrod & Keane, 1995; Haaijer, Wedel,
Vriens, & Wansbeek, 1998), which may alleviate the computational burden posed by
(many) correlated coefficients.

The specific distribution that is chosen also has a clear impact on the distribution of
the marginal monetary values. The theoretical consequence may be that the mean and
higher moments of this distribution do not exist. In practice, the shape of the distribution
may also be different and questions of the form “How many people would be willing
to pay an additional amount ofX to get an improved alternativeY?” may be answered
quite differently for different distributions of the random coefficients. On the other hand,
the densities of the preferred gamma and lognormal models are very close, although
their expectations are not. Estimated moments are much more sensitive to distributional
specification than densities or medians.

Theoretical considerations may imply that signs of coefficients should be
restricted. These, combined with empirical evidence and technical and interpretational
convenience, may lead to a preferred specification of the joint distribution of the random
coefficients. In view of the discussion above, it may be wise to assess the sensitivity of
the main results of an empirical study to the distributional assumptions by comparing
results using alternative distributions. A comparison with a seminonparametric
alternative may also give more insight in the appropriateness of the chosen specification.
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Appendix: Detailed estimation results

The tables are largely self-explanatory, although the meaning of some of the symbols
must be inferred from the text. The figures between parentheses are the standard errors
of the parameters in the lines immediately above. Only the elements of the matrixL that
are not fixed are given in the tables. This matrix was discussed in section 6. It is a lower
triangular matrix, so the elements above the diagonal are fixed to zero. Moreover, for
variants (a) and (c), it is diagonal, so the elements below the diagonal are also fixed to
zero. In addition, for variants (a) and (b), the first column is fixed to zero. For model IV
the diagonal is fixed to one.

Table 7 Results of Model I (Basic model)

Cost Travel time Interchanges Comfort level
Fixed −.1483 −.0287 −.3263 −.9457

(.0068) (.0026) (.0591) (.0655)
Loglikelihood: -1724.
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Table 8 Results of Model II (Normally distributed parameters)

Cost Travel time Interchanges Comfort level
Variant (a)
Fixed −.3243

(.0135)
µ −.0843 −.8743 −2.7070

(.0098) (.1853) (.2454)
L .0968

(.0073)
1.6009
(.1594)

−2.7463
(.2145)

Loglikelihood: -1532
Variant (b)
Fixed −0.3400

(0.0140)
µ −0.0880 −0.9380 −2.9229

(0.0102) (0.2064) (0.2624)
L 0.1041

(0.0078)
0.5299 1.8325
(0.1875) (0.1622)
0.8382 0.3207 −2.7687
(0.2544) (0.1655) (0.2211)

Loglikelihood: -1518
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Table 8 Results of Model II (Normally distributed parameters, continued)

Cost Travel time Interchanges Comfort level
Variant (c)
µ −0.5851 −0.1188 −1.6518 −4.0576

(0.0394) (0.0088) (0.2073) (0.3105)
L 0.3851

(0.0290)
0.0830
(0.0087)

−2.1050
(0.1853)

−3.4339
(0.2884)

Loglikelihood: -1378
Variant (d)
µ −0.6346 −0.1211 −1.5285 −3.8793

(0.0394) (0.0083) (0.1830) (0.3112)
L 0.3380

(0.0257)
−0.0203 0.0637
(0.0064) (0.0094)

−0.8246 −1.2602 −0.6253
(0.1959) (0.2102) (0.2443)

−0.5681 0.0814 0.6937 −3.4202
(0.2424) (0.2400) (0.2955) (0.2974)

Loglikelihood: -1357
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Table 9 Results of Model III (Lognormally distributed parameters)

Cost Travel time Interchanges Comfort level
Variant (a)
Fixed (ln) −0.8692

(0.0371)
µ −2.6645 −0.9055 1.1468

(0.1151) (0.2905) (0.0840)
L 1.2692

(0.0724)
1.8279
(0.1676)

1.4195
(0.0656)

Loglikelihood: -1421
Variant (b)
Fixed (ln) −0.7148

(0.0342)
µ −2.5234 −0.5307 1.0410

(0.1235) (0.2172) (0.0863)
L 1.4706

(0.0979)
0.8932 1.8832
(0.0925) (0.1664)
0.6477 0.3490 1.1374
(0.0580) (0.0446) (0.0722)

Loglikelihood: -1363
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Table 9 Results of Model III (Lognormally distributed parameters, continued)

Cost Travel time Interchanges Comfort level
Variant (c)
µ −0.4807 −2.2214 −0.0703 1.2279

(0.0749) (0.0953) (0.1783) (0.0852)
L 0.8195

(0.0488)
0.8478
(0.0735)

1.0825
(0.1282)

1.2234
(0.0813)

Loglikelihood: -1318
Variant (d)
µ −0.3074 −2.0918 0.0514 1.2201

(0.1011) (0.1121) (0.1851) (0.1104)
L 0.9312

(0.1068)
0.1741 0.9582
(0.1195) (0.0743)
0.1833 0.1362 1.2580
(0.1288) (0.1040) (0.1333)
0.1993 0.4492 0.3332 1.0782
(0.1175) (0.0814) (0.0692) (0.0787)

Loglikelihood: -1303
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Table 10 Results of Model IV (Gamma distributed parameters)

Cost Travel time Interchanges Comfort level
Variant (a)
Fixed −0.4285

(0.0158)
−τ −0.2004 −19.5840 −13.7209

(0.0206) (4.2948) (1.5660)
α 0.5981 0.1707 0.5232

(0.0728) (0.0277) (0.0482)
Loglikelihood: -1421
Variant (b)
Fixed −0.4719

(0.0156)
−τ −0.3545 −10.8104 −11.4205

(0.0368) (1.5278) (1.5269)
α 0.4798 0.2353 0.5168

(0.0565) (0.0348) (0.0537)
L 0.4670

(0.0940)
0.5720 0.3861
(0.1012) (0.0719)

Loglikelihood: -1374

38



Table 10 Results of Model IV (Gamma distributed parameters, continued)

Cost Travel time Interchanges Comfort level
Variant (c)
−τ −0.4417 −0.0794 −8.0434 −4.7868

(0.0759) (0.0146) (1.5288) (0.8524)
α 1.6823 1.6912 0.3255 1.0772

(0.2221) (0.2978) (0.0598) (0.1505)
Loglikelihood: -1318
Variant (d)
−τ −0.7182 −0.0979 −9.0201 −5.2471

(0.1448) (0.0182) (1.7205) (0.8182)
α 1.3644 1.6721 0.3772 0.9828

(0.1852) (0.2747) (0.0621) (0.1211)
L 0.0855

(0.1039)
0.1144 0.0422
(0.0685) (0.0523)
0.2492 0.3430 0.1578
(0.1247) (0.1336) (0.1346)

Loglikelihood: -1304
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Table 11 Results of Model V (Latent class approach)

Class λ Cost Travel time Interchanges Comfort level
1 1.9201 −0.8803 −0.1162 −0.7436 −0.4800

(0.7643) (0.2123) (0.0357) (0.5802) (0.4809)
2 2.5280 −0.3362 −0.0543 −0.6217 −4.3356

(0.6649) (0.0321) (0.0085) (0.1764) (0.4433)
3 1.0598 −0.1033 −0.4437 0.5641 −1.8289

(0.7069) (0.919) (0.1335) (0.7841) (1.0217)
4 1.7567 −0.2226 −0.0312 −3.8702 −2.2499

(2.5516) (0.0302) (0.0133) (0.5858) (0.2828)
5 2.3162 −0.5016 −0.1513 −0.8494 −1.5781

(0.6771) (0.0505) (0.0180) (0.2671) (0.2542)
6 1.5241 −0.1471 −0.1572 −2.1660 −7.5264

(0.6968) (0.0394) (0.0386) (0.4817) (1.7894)
7 1.9921 −1.2318 −0.0572 −0.7738 −2.6373

(0.7178) (0.2789) (0.0174) (0.3722) (0.6875)
8 0.2705 0.0440 −0.0877 −1.8181 −0.8001

(0.8472) (0.0694) (0.0661) (2.4945) (2.1620)
9 0 −13.9303 −1.4182 −69.6924 −16.8089

(–) (166.28) (8.2341) (1098.26) (89.3170)
Loglikelihood: -1281
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Table 12 Summary of fit measures of the various models

Model Parameters Loglikelihood AIC CAIC
I 4 -1724 1.1800 1.1895

IIa 7 -1532 1.0509 1.0676
IIb 10 -1518 1.0434 1.0672
IIc 8 -1378 0.9464 0.9655
IId 14 -1357 0.9362 0.9695

III a 7 -1421 0.9751 0.9918
III b 10 -1363 0.9375 0.9614
III c 8 -1318 0.9054 0.9245
III d 14 -1303 0.8993 0.9327

IVa 7 -1421 0.9751 0.9918
IVb 10 -1374 0.9450 0.9689
IVc 8 -1318 0.9054 0.9245
IVd 14 -1304 0.9000 0.9333

V (9 classes) 44 -1281 0.9046 1.0096

41



A Comparison with the results of Ben-Akiva et al.

Ben-Akiva et al. (1993) estimated models with randomly distributed values of time on
the same data. However, their specifications differ somewhat from those employed by
us, and a brief comparison is appropriate. Ben-Akiva et al. report estimation results for
three specifications in their first case study (entitled Intercity Rail SP data). Their ‘Fixed
VOT’ specification is identical to our basic model and so are the results. The model they
refer to as ‘Lognormal 1’ has one lognormally distributed coefficient, the one for travel
time. Their ‘Lognormal 2’ model has three perfectly correlated lognormally distributed
coefficients: those for travel time, number of transfers and comfort level. When we
tried to reproduce the results reported by Ben-Akiva et al. for these two models by
maximizing appropriately restricted variants of our likelihood specification (12), we
reached coefficient estimates and loglikelihood values that are different from theirs.
However, we were able to reproduce their results by maximizing a somewhat different
specification of the likelihood, viz. one that does not take into account the fact that some
of the choices are made by the same persons and should therefore be explained by the
same preferences. In the approach adopted in this paper, we take the sequence of choices
made by a single respondent as the basic element of our likelihood function and when
we estimate by simulation, we average over the likelihoods of observing the sequence
of choices of this respondent under different drawings. The alternative approach, which
reflects the numerical integration procedure of Ben-Akiva et al., would be to regard
each choice as basic and to average over the likelihoods of observing these choices
under various drawings. This means that instead ofL∗

i (θ) in (12), one would use

L∗∗
i (θ) =

Ki∏
k=1

[
1

R

R∑
r=1

exp
[
yikβr(θ)

′1xik
]

1 + exp[βr(θ)′1xik]

]
. (13)

The difference between this specification and (12) can be interpreted as a hypothesis
of the stability of trade-offs between the various aspects of train transport of a single
individual. Equation (12) assumes that these trade-offs are unknown to the researcher
and therefore modelled as random, but stable in the sense that the same trade-offs
direct all choices made by the same individual. The formulation (13) assumes that
the trade-offs themselves are random in the sense that they differ as much among the
various choices made by the same individual as they do among the choices made by
different individuals. We can relate likelihood (13) to (12) by means of the following
elaboration. First rewrite (13) as

L∗∗
i (θ) =

Ki∏
k=1

[
1

R

R∑
r=1

pikr

]
,
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with pikr implicitly defined. We can write

L∗∗
i (θ) = 1

RKi

Ki∏
k=1

R∑
r=1

pikr

= 1

RKi

∑
ρ(r)

Ki∏
k=1

pik r(k),

whereρ(r) denotes any combination{r(1), r(2), . . . , r(Ki)} of Ki integers at least
equal to 1 and at most equal toR. The summation proceeds over all these combinations.
We denote asA the set of combinationsρ(r) with the property that all elements are
equal. This allows us to split the set of allρ(r)’s into two parts:

L∗∗
i (θ) = 1

RKi

∑
ρ(r)∈A

Ki∏
k=1

pik r(k) + 1

RKi

∑
ρ(r) 6∈A

Ki∏
k=1

pik r(k)

= 1

RKi

R∑
r=1

Ki∏
k=1

pikr + 1

RKi

∑
ρ(r) 6∈A

Ki∏
k=1

pik r(k)

= 1

RKi−1
L∗
i (θ)+ 1

RKi

∑
ρ(r) 6∈A

Ki∏
k=1

pik r(k).

This elaboration shows that it is a priori unclear which of the two formulations will lead
to the highest likelihood. Which of the two models should be preferred is therefore an
empirical issue. What we find is that formulation (12) results in much higher values
of the loglikelihood than (13). Table 13 shows the results for the various models. We
interpret these as evidence in favour of the hypothesis that the trade-offs between the
various aspects of travel by train are a characteristic of an individual, although they
differ among individuals. However, note that the estimates of the various parameters
are close to each other, especially for travel cost and time. This is analogous to linear
regression analysis under heteroskedasticity, where OLS gives unbiased and consistent
estimates, but incorrect standard errors andF -statistics. Further investigation of this
issue may be worthwhile, but is outside the scope of the present paper.
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Table 13 Results of alternative model specifications with lognormally distributed
parameters.

Cost Travel time Interchanges Comfort level
Lognormal 1-independenta

Fixed (ln) −1.7843 −0.9603 0.0695
(0.0634) (0.1812) (0.0852)

µ −4.0554
(0.2779)

σ 1.4424b

(0.3885)
Loglikelihood: -1721
Lognormal 1-dependenta

Fixed (ln) −1.7619 −0.8830 0.1051
(0.0357) (0.1416) (0.0560)

µ −4.1140
(0.2568)

σ 1.3394b

(0.1618)
Loglikelihood: -1659
Note.See the next page for the notes to this table.
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Table 13 Results of alternative model specifications with lognormally distributed
parameters (continued).

Cost Travel time Interchanges Comfort level
Lognormal 2-independenta

Fixed (ln) −1.7159
(0.0605)

µ −3.8558 −1.4762 −0.2719
(0.1622) (0.2152) (0.1468)

σ 1.4110b b b

(0.2631)
Loglikelihood: -1719
Lognormal 2-dependenta

Fixed (ln) −1.6625
(0.0290)

µ −3.8802 −1.2978 −0.0663
(0.1522) (0.1479) (0.1336)

σ 1.1453b b b

(0.1028)
Loglikelihood: -1631
Notes.
Differences between the estimates reported here and those in Ben-Akiva et al. (1993) are due to a
logarithmic transformation, division of the other parameters by that for travel costs and, in Lognormal 2,
also by travel time, and their use of an hour as the unit of time. If the appropriate transformations are
made, our results are very close to theirs. The largest differences occur in the parametersσ , for which no
transformations are needed.
a “independent” denotes the specification (13) and “dependent” denotes the specification (12).
b The lower triangular matrixL has only one nonzero element in the case of model Lognormal 1, the
second diagonal element. In model Lognormal 2 three elements are nonzero, the second diagonal element
and the third and fourth element of the second column. However, these elements are restricted to have the
same value. The single estimated value is referred to asσ in the table.
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B The density of the ratio of two correlated normal variates

Let β and γ be jointly normally distributed with meansµ1 and µ2, respectively,
variancesσ 2

1 andσ 2
2 , respectively, and correlationρ. Then, the density of the coefficient

ratio r = γ /β is (Hinkley, 1969)

g(r) =
√

1 − ρ2

πσ1σ2a
2(r)

exp
− c

2(1 − ρ2)


+ b(r)d(r)√

2π σ1σ2a3(r)

[
8

 b(r)

a(r)
√

1 − ρ2

 −8

− b(r)

a(r)
√

1 − ρ2


]
,

where8(·) is the cumulative distribution function of the standard normal distribution,
and

a(r) =
(
r2

σ 2
2

− 2ρr

σ1σ2
+ 1

σ 2
1

)1/2

,

b(r) = µ2r

σ 2
2

− ρ(µ2 + µ1r)

σ1σ2
+ µ1

σ 2
1

,

c = µ2
2

σ 2
2

− 2ρµ1µ2

σ1σ2
+ µ2

1

σ 2
1

,

d(r) = exp

 b2(r)− ca2(r)

2(1 − ρ2)a2(r)

 .
Marsaglia (1965) gives some plots of the possible shapes of the density function. Its
mean, variance, and higher moments do not exist and for some values of the parameters,
the distribution is bimodal.

C The density of the ratio of a normal variate and a
lognormal variate

Let β = exp(η1) andγ = η2, whereη1 andη2 are jointly normally distributed with
meansµ1 andµ2, respectively, variancesσ 2

1 andσ 2
2 , respectively, and correlationρ.

From (3), the coefficient ratior = γ /β has density function

g(r) =
∫ +∞

−∞
|β| f (β, rβ) dβ,
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wheref (· , ·) is the joint density function of(β, γ ). This can in its turn be written as a
function of the bivariate normal density function. Leth(· , ·) be the density of(η1, η2):

h(η1, η2) = 1

2πσ1σ2

√
1 − ρ2

exp

− 1

2(1 − ρ2)

[(
η1 − µ1

σ1

)2

− 2ρ

(
η1 − µ1

σ1

)(
η2 − µ2

σ2

)
+

(
η2 − µ2

σ2

)2
] .

Then, the joint density of(β, γ ) follows as

f (β, γ ) =
∣∣∣∣ 1

β

∣∣∣∣ 1

2πσ1σ2

√
1 − ρ2

exp

− 1

2(1 − ρ2)

[(
log(β)− µ1

σ1

)2

− 2ρ

(
log(β)− µ1

σ1

) (
γ − µ2

σ2

)
+

(
γ − µ2

σ2

)2
] .

Hence, the density function of the coefficient ratio is

g(r) =
∫ +∞

−∞
|β| f (β, rβ) dβ

=
∫ +∞

0

1

2πσ1σ2

√
1 − ρ2

exp

− 1

2(1 − ρ2)

[(
log(β)− µ1

σ1

)2

− 2ρ

(
log(β)− µ1

σ1

) (
rβ − µ2

σ2

)
+

(
rβ − µ2

σ2

)2
] dβ.

An alternative formula can be obtained as follows. Let the cumulative distribution
function of r beG(R) ≡ Pr(r ≤ R). Then,g(r) is obviously the derivative ofG
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with respect toR. The distribution function can be derived as

G(R) ≡ Pr(r ≤ R)

= Eη1 Pr(r ≤ R | η1)

= Eη1 Pr(η2 ≤ R exp(η1) | η1)

=
∫ +∞

−∞
8


R exp(η1)− µ2 − ρσ2

(
η1 − µ1

σ1

)
σ2

√
1 − ρ2


1

σ1
φ

(
η1 − µ1

σ1

)
dη1

=
∫ +∞

−∞
1

σ1
φ

(
η1 − µ1

σ1

)

×8

 1√
1 − ρ2

[
R exp(η1)− µ2

σ2
− ρ

(
η1 − µ1

σ1

)] dη1, (14)

where we have used

η2 | η1 ∼ N
(
µ2 + ρσ2

(
η1 − µ1

σ1

)
, σ 2

2 (1 − ρ2)

)
.

By differentiating (14), we find the alternative expression for the density ofr:

g(r) =
∫ +∞

−∞
exp(η1)

σ1σ2

√
1 − ρ2

φ

(
η1 − µ1

σ1

)

× φ

 1√
1 − ρ2

[
r exp(η1)− µ2

σ2
− ρ

(
η1 − µ1

σ1

)] dη1.

D The moments of the ratio of a normal variate and a
lognormal variate

In this appendix, we will derive the moments of the random variabler = y/ exp(x),
wherex and y are correlated normally distributed random variables. In order to do
so, we need the expectation of the termzk exp(cz), wherez is a normally distributed
variable. More specifically, letz ∼ N (µ, σ 2). Then,

E
[
zk exp(cz)

] =
∫ +∞

−∞
zk exp(cz)

1√
2π σ

exp

− 1
2

(
z− µ

σ

)2
 dz

= exp
(
cµ+ 1

2c
2σ 2

) ∫ +∞

−∞
zk

1√
2π σ

exp

− 1
2

(
z − µ− cσ 2

σ

)2 dz

= exp
(
cµ+ 1

2c
2σ 2

)
E(z̃k),
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where z̃ ∼ N (µ + cσ 2, σ 2). This derivation follows the derivation of the moment
generating function of the normal distribution in Mood, Graybill, and Boes (1974,
pp. 109–110). From the moments of the normal distribution, it follows that

E(z̃0) = 1,

E(z̃1) = µ+ cσ 2,

E(z̃2) = (µ+ cσ 2)2 + σ 2,

E(z̃3) = (µ+ cσ 2)3 + 3(µ+ cσ 2)σ 2,

E(z̃4) = (µ+ cσ 2)4 + 6(µ+ cσ 2)2σ 2 + 3σ 4.

Hence,

E[exp(cz)] = exp
(
cµ+ 1

2c
2σ 2) ,

E[z1 exp(cz)] = exp
(
cµ+ 1

2c
2σ 2) (µ+ cσ 2),

E[z2 exp(cz)] = exp
(
cµ+ 1

2c
2σ 2

) [(µ+ cσ 2)2 + σ 2],
E[z3 exp(cz)] = exp

(
cµ+ 1

2c
2σ 2) [(µ+ cσ 2)3 + 3(µ+ cσ 2)σ 2],

E[z4 exp(cz)] = exp
(
cµ+ 1

2c
2σ 2) [(µ+ cσ 2)4 + 6(µ+ cσ 2)2σ 2 + 3σ 4].

Now, we are ready to derive the moments ofr = y/ exp(x), where(
x

y

)
∼ N

[(
µx
µy

)
,

(
σ 2
x σxσyρxy
σxσyρxy σ 2

y

)]
.

Definez = −x, soz ∼ N (−µx, σ 2
x ). Then,y can be written as

y = a + bz+ ε,

wherea = µy+bµx , b = −ρxyσy/σx, andε ∼ N (0, σ 2
y (1−ρ2

xy)), which is independent
of z. It follows that

r = y exp(z) = a exp(z)+ bz exp(z)+ ε exp(z).

Thus, the moments ofr can be expressed as sums of terms of the form
d E(εk)E[zl exp(mz)]; E(εk) follows from the moments of the normal distribution and
E[zl exp(mz)] has been derived above. The expressions for the first four moments ofr
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are:

E(r) = exp(−µx + 1
2σ

2
x )[µy − ρxyσxσy];

E(r2) = exp(−2µx + 2σ 2
x )[µ2

y + σ 2
y − 2ρ2

xyσ
2
y µx + 4ρ2

xyσ
2
x σ

2
y − 4ρxyσxσyµy];

E(r3) = exp(−3µx + 9
2σ

2
x )[µy(µ2

y + σ 2
y )+ 9ρxyσxσy(µ

2
y + σ 2

y )+ 27ρ2
xyσ

2
x σ

2
y µy

+ 27σ 3
x σ

3
y ];

E(r4) = exp(−4µx + 8σ 2
x )[µ4

y + 6µ2
yσ

2
y + 3σ 4

y + 16ρxyσxσyµy(µ
2
y + 3σ 2

y )

+ 96ρ2
xyσ

2
x σ

2
y (µ

2
y + σ 2

y )+ 256ρ3
xyσ

3
x σ

3
y (µy + ρxyσxσy)].

Hence, the variance ofr is

Var(r) ≡ E(r2)− (E(r))2

= exp(−2µx + 2σ 2
x )[µ2

y + σ 2
y − 2ρ2

xyσ
2
y µx + 4ρ2

xyσ
2
x σ

2
y − 4ρxyσxσyµy]

− exp(−2µx + σ 2
x )[µy − ρxyσxσy]2.

The skewness and kurtosis can also be computed using the above formulas.

E The density of the ratio of two jointly bivariate gamma
variates

Let β = τ1G
−1[8(η1);α1] andγ = τ2G

−1[8(η2);α2], whereη1 andη2 are jointly
normally distributed with means zero, variances one, and correlationρ. Let h(· , ·) be
the density of(η1, η2):

h(η1, η2) = 1

2π
√

1 − ρ2
exp

− 1

2(1 − ρ2)

[
η2

1 − 2ρη1η2 + η2
2

]
= 1√

1 − ρ2
φ(η1) φ

(
η2 − ρη1√

1 − ρ2

)
,

whereφ(·) is the standard normal density function. The jacobian of the transformation
is

J = ∂η1

∂β

∂η2

∂γ

=
∂8−1

[
G

(
β

τ1
;α1

)]
∂β

∂8−1

[
G

(
γ

τ2
;α2

)]
∂γ
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= ∂8−1(u1)

∂u1

∂G(t;α1)

∂t1

1

τ1

∂8−1(u2)

∂u2

∂G(t;α2)

∂t2

1

τ2

= 1

φ
[
8−1(u1)

] (
1

0(α1)
t
α1−1
1 e−t1

)
1

τ1

1

φ
[
8−1(u2)

] (
1

0(α2)
t
α2−1
2 e−t2

)
1

τ2

= 1

φ

8−1

[
G

(
β

τ1
;α1

)]
1

0(α1)

(
β

τ1

)α1−1

exp

(
− β

τ1

)
1

τ1

× 1

φ

8−1

[
G

(
γ

τ2
;α2

)]
1

0(α2)

(
γ

τ2

)α2−1

exp

(
− γ

τ2

)
1

τ2
,

wheret1 ≡ β/τ1, t2 ≡ γ /τ2, u1 ≡ G(t1;α1), andu2 ≡ G(t2;α2) have been used in the
intermediate equalities. Hence, the probability density function of(β, γ ) is

f (β, γ ) ≡ |J |h[η1(β), η2(γ )]

= 1

τ1τ20(α1)0(α2)
√

1 − ρ2

(
β

τ1

)α1−1 (
γ

τ2

)α2−1

exp

(
− β

τ1
− γ

τ2

)

×
φ

8−1

[
G

(
γ

τ2
;α2

)]
− ρ8−1

[
G

(
β

τ1
;α1

)]
√

1 − ρ2


φ

8−1

[
G

(
γ

τ2
;α2

)] .
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Consequently, the probability density function ofr = γ /β is

g(r) ≡
∫ +∞

0
βf (β, rβ)dβ

=
∫ +∞

0
β

1

τ1τ20(α1)0(α2)
√

1 − ρ2

(
β

τ1

)α1−1 (
rβ

τ2

)α2−1

exp

(
− β

τ1
− rβ

τ2

)

×
φ

8−1

[
G

(
rβ

τ2
;α2

)]
− ρ8−1

[
G

(
β

τ1
;α1

)]
√

1 − ρ2


φ

8−1

[
G

(
rβ

τ2
;α2

)] dβ

= ψα2rα2−1

0(α1)0(α2)
√

1 − ρ2

∫ +∞

0
wα1+α2−1 exp[−(1 + ψr)w]

×
φ

8−1 [G(ψrw;α2)] − ρ8−1 [G(w;α1)]√
1 − ρ2


φ

8−1 [G(ψrw;α2)]
 dw,

whereψ ≡ τ1/τ2. In the special caseρ = 0, this reduces to

g(r) = ψα2rα2−1

0(α1)0(α2)

∫ +∞

0
wα1+α2−1 exp[−(1 + ψr)w] dw

= ψα2rα2−1

0(α1)0(α2)(1 + ψr)α1+α2

∫ +∞

0
vα1+α2−1e−v dv

= 0(α1 + α2)

0(α1)0(α2)

ψα2rα2−1

(1 + ψr)α1+α2
.

Hogg and Klugman (1983) call this thegeneralized Paretodistribution. The well-known
class ofF -distributions is a subset of this class of distributions. Note that, becauseg(r)

must integrate to one, this implicitly proves∫ +∞

0

ψα2rα2−1

(1 + ψr)α1+α2
dr = 0(α1)0(α2)

0(α1 + α2)
.
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Hence, ifρ = 0, the moments ofr are

E(rk) ≡
∫ +∞

0
rkg(r)dr

=
∫ +∞

0
rk
0(α1 + α2)

0(α1)0(α2)

ψα2rα2−1

(1 + ψr)α1+α2
dr

= 0(α1 + α2)

0(α1)0(α2)ψk

∫ +∞

0

ψk+α2rk+α2−1

(1 + ψr)α1+α2
dr

= 0(α1 + α2)

0(α1)0(α2)ψk

0(α1 − k)0(α2 + k)

0(α1 + α2)

= 0(α1 − k)0(α2 + k)

0(α1)0(α2)ψk
,

providedk < α1, the shape parameter of the distribution ofβ. If k > α1, this moment
does not exist. In particular,

E(r) = 0(α1 − 1)0(α2 + 1)

0(α1)0(α2)ψ

= α2

(α1 − 1)ψ
;

E(r2) = 0(α1 − 2)0(α2 + 2)

0(α1)0(α2)ψ2

= α2(α2 + 1)

(α1 − 1)(α1 − 2)ψ2
,

and the variance ofr is

Var(r) = α2(α1 + α2 − 1

(α1 − 1)2(α1 − 2)ψ2
.

F The density of the ratio of a normal variate and a gamma
variate

Let β = τ1G
−1[8(η1);α1] andγ = µ2 + σ2η2, whereη1 andη2 are jointly normally

distributed with means zero, variances one, and correlationρ. Leth(· , ·) be the density
of (η1, η2):

h(η1, η2) = 1

2π
√

1 − ρ2
exp

− 1

2(1 − ρ2)

[
η2

1 − 2ρη1η2 + η2
2

]
= 1√

1 − ρ2
φ(η1) φ

(
η2 − ρη1√

1 − ρ2

)
,
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whereφ(·) is the standard normal density function. The jacobian of the transformation
is

J = ∂η1

∂β

∂η2

∂γ

=
∂8−1

[
G

(
β

τ1
;α1

)]
∂β

∂
γ − µ2

σ2

∂γ

= ∂8−1(u)

∂u

∂G(t;α1)

∂t

1

τ1

1

σ2

= 1

φ
[
8−1(u)

] (
1

0(α1)
tα1−1e−t

)
1

τ1

1

σ2

= 1

φ

8−1

[
G

(
β

τ1
;α1

)]
1

0(α1)

(
β

τ1

)α1−1

exp

(
− β

τ1

)
1

τ1

1

σ2
,

wheret ≡ β/τ1 andu ≡ G(t;α1) have been used in the intermediate equalities. Hence,
the probability density function of(β, γ ) is

f (β, γ ) ≡ |J |h [η1(β), η2(γ )]

= 1

φ

8−1

[
G

(
β

τ1
;α1

)]
1

0(α1)

(
β

τ1

)α1−1

exp

(
− β

τ1

)
1

τ1

1

σ2

1√
1 − ρ2

× φ

8−1

[
G

(
β

τ1
;α1

)] φ


γ − µ2

σ2
− ρ8−1

[
G

(
β

τ1
;α1

)]
√

1 − ρ2


= 1

σ2τ10(α1)
√

1 − ρ2

(
β

τ1

)α1−1

exp

(
− β

τ1

)

× φ

 γ − µ2 − ρσ28
−1

[
G

(
β

τ1
;α1

)]
σ2

√
1 − ρ2

.
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Consequently, the probability density function ofr = γ /β is

g(r) ≡
∫ +∞

0
βf (β, rβ)dβ

=
∫ +∞

0
β

1

σ2τ10(α1)
√

1 − ρ2

(
β

τ1

)α1−1

exp

(
− β

τ1

)

× φ

 rβ − µ2 − ρσ28
−1

[
G

(
β

τ1
;α1

)]
σ2

√
1 − ρ2

 dβ

= τ1

σ20(α1)
√

1 − ρ2

∫ +∞

0
wα1e−w φ

τ1rw − µ2 − ρσ28
−1[G(w;α1)]

σ2

√
1 − ρ2

 dw.

In the special caseρ = 0, this reduces to

g(r) = τ1

σ20(α1)

∫ +∞

0
wα1e−w φ

τ1rw − µ2

σ2

 dw.

Because the numerator and denominator are independent in this case, the moments are
easily found from E(rk) = E(γ k)E(β−k), providedk < α1, the shape parameter of the
distribution ofβ. If k > α1, this moment does not exist. In particular,

E(r) = E(γ )E(β−1)

= µ2
0(α1 − 1)

0(α1)

= µ2

α1 − 1
;

E(r2) = E(γ 2)E(β−2)

= (µ2
2 + σ 2

2 )
0(α1 − 2)

0(α1)

= µ2
2 + σ 2

2

(α1 − 1)(α1 − 2)
,

and, consequently, the variance ofr is

Var(r) = µ2
2 + (α1 − 1)σ 2

2

(α1 − 1)2(α1 − 2)
.
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