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Abstract

We consider mixed-integer recourse (MIR) models with a single recourse constraint. We relate the second-
stage value function of such problems to the expected simple integer recourse (SIR) shortage function.
This allows to construct convex approximations for MIR problems by the same approach used for SIR
models.
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1. Introduction

Consider the mixed-integer recourse model

min
x

cx + Q(x)
s.t. x ∈ X := {x ∈ R

n−n′
+ × Z

n′
+ : Ax ≥ b}

where

Q(x) := Eω

[
v(ω − T x)

]
, x ∈ R

n,

and, for s ∈ R,

v(s) := min
y,z

qy + q̄z

s.t. wy + w̄z ≥ s

(y, z) ∈ C
y ∈ R

m−m′
+ , z ∈ Z

m′
+

The function v is the second-stage value function, and the function Q is called the expected
value function. These functions model the (expected) costs of recourse actions to compensate
for infeasibilities associated with the random goal constraint T x ≥ ω. The right-hand side
parameter ω is a random variable with known cumulative distribution function (cdf) F ω.

This model has only a single recourse constraint, i.e., w and w̄ are vectors, and s ∈ R. In
addition, there may be further linear constraints on the second-stage variables y and z, but they
do not involve the first-stage decisions x nor the random parameter ω. Such constraints are
denoted by (y, z) ∈ C.

Our main motivation to study this model is that it is the simplest extension of pure-integer
recourse models, which we studied in a number of papers [4, 5, 8, 18]. In particular, we will
see that the approach which we developed to construct convex approximations for the recourse
function Q in the pure-integer case, can be extended to this mixed-integer recourse model. For
a general description of this modification of recourse data approach, see [17].

In addition, this recourse model can be interpreted as a production planning problem. Using
inputs x and given technological constraints x ∈ X, we wish to produce some good T x to meet
uncertain future demandω, so as to minimize total expected costs cx+Q(x). In case production
falls short of demand, recourse actions y and z can be used to compensate the shortage. The
integer variables z represent batches of various sizes w̄ (e.g., amounts bought from competitors),
whereas the continuous variables y denote ‘fractional’ but more expensive production. We will
return to this interpretation at the end of Section 2.

For a general introduction to recourse models we refer to the textbooks [1, 2, 10], the handbook
[11], and the website [14]. Structural properties of mixed-integer recourse models were studied
in [12, 13]. Surveys of properties, algorithms, and applications for (mixed-)integer recourse
models can be found in [6, 7, 15].
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The remainder of this paper is organized as follows. In Section 2 we analyze the second-stage
value function v, and show that it can be represented as an expected integer shortage function.
The latter function was studied extensively in the context of simple integer recourse models.
In Section 3 we use this knowledge to come up with convex approximations of the recourse
function Q, and show that such approximations can be represented by continuous simple re-
course functions. Section 4 contains a discussion on solution approaches, and a summary and
concluding remarks follow in Section 5.

2. Analysis of the second-stage value function

In addition to the standard assumption that the second-stage value function v is finite-valued
(i.e., the recourse is complete and sufficiently expensive), we assume

(i) v(s) = 0 for s ≤ 0 and v(s) > 0 for s > 0.
(ii) For some period p > 0, the function v satisfies

v(k · p + s) = k · v(p) + v(s), 0 ≤ s < p, k ∈ Z+.
We say that v is semi-periodic on R+: on this interval v is the sum of a periodic function
with period p and a linear function with slope v(p).

Clearly, assumption (ii) means a further restriction of the class of models under study. However,
it is satisfied by e.g. simple recourse models (see Figure 2.1), and more generally, if there exists
a largest batch of size p which provides the cheapest way of compensating a shortage p.

To simplify the presentation, we assume that the period p = 1 and that v(p) = 1, which always
can be obtained by scaling. Then

v(s) =
{

0, s ≤ 0

�s� + v(〈s〉), s ≥ 0
(1)

where 〈s〉 := s − �s� is the fractional part of s ∈ R.

Observing that v(0) = 0, v(1) = 1, and that v is non-decreasing on [0, 1] and lower semi-
continuous (hence left-continuous), we associate v with the left-continuous cumulative distri-
bution function (cdf) Fυ(s) := Pr{υ < s} of a random variable υ with support in [0, 1],

Fυ(s) :=




0, s ≤ 0

v(s), s ∈ [0, 1]
1, s ≥ 1

(2)

Then v(s) = �s�+ + Fυ(〈s〉), s ∈ R, with �s�+ := (�s�)+ denoting the positive part of �s�.
Analogously, we define �s�− := (�s�)− as the negative part of �s�, and 	s
+ := (	s
)+.

Example 2.1 Define the (one-dimensional) mixed-integer simple recourse (MISR) value
function as

v(s) = min{qy + z : y + z ≥ s, y ∈ R+, z ∈ Z+}, s ∈ R,
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Figure 2.1: The MISR function v (dashed) and corresponding cdf Fυ of Example 2.1, for q ∈
{2, 1,∞}.

with q ≥ 1. Then v(s) = min{�s�+ + q〈s〉, 	s
+}, so that Fυ is the cdf of the continuous
uniform distribution on [0, 1/q] (notation: υ ∼ U(0, 1/q)).

Continuous simple recourse corresponds to MISR with q = 1, and has v(s) = (s)+, s ∈ R, so
that Fυ is the cdf of υ ∼ U(0, 1).

With q = +∞ we obtain pure integer simple recourse, with v(s) = 	s
+, s ∈ R, so that Fυ is
the cdf of the degenerated random variable υ with Pr{υ = 0} = 1.

Figure 2.1 shows these MISR functions v and corresponding Fυ . 

Lemma 2.1 Consider a value function v satisfying (1), and let υ be a random variable with
associated cdf Fυ according to (2). Then

v(s) = Eυ

[�υ − s�−]
, s ∈ R.

PROOF. For s ≤ 0 the result follows trivially.

The random variable υ takes values in (0, 1]. Hence, for any fixed s ∈ R, the random variable
s − υ takes values in the interval [s − 1, s), which contains precisely one integer value �s�.
Thus, 	s − υ
 is a two-valued random variable,

	s − υ
 =
{ �s�, if s − υ ≤ �s�;

�s� + 1, if s − υ > �s�,
so that

Eυ [	s − υ
] = �s� + 1 · Pr{υ < 〈s〉} = �s� + Fυ(〈s〉),
which is equal to v(s) for s > 0. For such s, observing that s − υ > −1 so that 	s − υ
 =
	s − υ
+, the result follows since 	t
+ = �−t�−, t ∈ R. �
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We conclude that each value function v under consideration is equivalent to an integer expected
shortage function

H(s) := Eυ

[�υ − s�−]
, s ∈ R,

where the expectation is taken with respect to a random variable υ whose distribution captures
the specific properties of v. The integer expected shortage function is well-studied in the context
of simple integer recourse models. In the next section we will use its properties to derive convex
approximations for the expected recourse function Q.

As mentioned in the Introduction, our recourse model can be seen as a production planning
model. In that context, Lemma 2.1 has an interesting interpretation. On the one hand, v(s) rep-
resents the minimal costs for satisfying deterministic demand s, using a relatively sophisticated
technology with various batch sizes as well as ‘fractional’ production, all with corresponding
unit costs. By Lemma 2.1, the same expected production costs can be obtained by using a very
simple production technology, which allows only a single unit batch size. Indeed, if one intro-
duces a suitable random disturbance υ, and aims to satisfy the stochastic demand s − υ, then
on average the production costs will be the same for these two models. From the producers
perspective, this means that savings on the costs for installing production technology can be
obtained. On the other hand, clients may not be happy with the outcomes of such a ‘virtual’
production technology.

3. The recourse function

We now turn to studying the mixed-integer recourse function Q, which is defined as Q(x) =
Eω [v(ω − T x)] for x ∈ R

n, where the random variable ω represents stochastic demand. To de-
rive properties of this function, we can equivalently study it as a function of the tender variable
T x ∈ R. To this end, we define the one-dimensional function

Q(x) := Eω [v(ω − x)] , x ∈ R.

3.1 Properties

By Lemma 2.1, we have, for x ∈ R,

Q(x) = Eω

[
Eυ

[�υ − (ω − x)�−] ]
= Eυ

[
Eω

[�−ω + (x + υ)�−] ]
= Eυ

[
Eω

[	ω − (x + υ)
+] ]
= Eυ [G(x + υ)] , (3)

where G(t) := Eω

[	ω − t
+]
, t ∈ R, is the integer expected surplus function. This function

G is the counterpart of the integer expected shortage function discussed above, and was also
studied in the context of simple integer recourse models.

5



−1 0 1

0

1

2

Figure 3.1: The functionQ of Example 3.1

Alternatively, defining the random variable δ := ω − υ, we obtain

Q(x) = Eδ

[	δ − x
+]
, x ∈ R, (4)

where δ has cdf Fδ ,

Fδ(t) =
∫ 1

0
Fω(t + s)dFυ(s), t ∈ R.

The identities (3) and (4) show, that properties of the mixed-integer recourse functionQ follow
trivially from those of the integer expected surplus functionG. Moreover, they provide an easy
way to evaluate Q, given the formula

G(t) =
∞∑
k=0

(
1 − Fω(t + k)

)
, t ∈ R.

For the derivation of this formula and properties of the functionG, we refer to [8] and [16].

Example 3.1 Consider the MISR value function v(s) = min{�s�+ + q〈s〉, 	s
+}, s ∈ R. As
shown in Example 2.1, for finite q ≥ 1 the associated cdf Fυ is that of the uniform distribution
on [0, 1/q], so that

Fδ(t) = q

∫ 1/q

0
Fω(t + s)ds, t ∈ R.
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It follows that the random variable δ has a probability density function (pdf) f δ ,

fδ(t) = q
(
Fω(t + 1/q)− Fω(t)

)
, t ∈ R. (5)

For example, assuming q = 2 and that ω is discrete with equally likely realizations 0 and 0.7, it
follows by straightforward computation that δ is uniformly distributed on two disjunct intervals:

fδ(t) =
{

1, t ∈ [−0.5, 0] ∪ [0.2, 0.7]
0, otherwise.

See Figure 3.1 for the graph of the MISR recourse function Q(x) = E δ

[	δ − x
+]
, x ∈

R. 

We are particularly interested in convexity of the recourse function Q. From (3) and (4) it is
clear, that this is directly related to convexity of the function G. In [5] it is shown that G is
convex if and only if the underlying random variable ω has a pdf f satisfying

f (t) = F(t + 1)− F(t), t ∈ R, (6)

where F is an arbitrary cdf with finite mean value.

Corollary 3.1 Consider a value function v satisfying (1), and let υ be a random variable
with associated cdf Fυ according to (2). Then the recourse function Q(x) = Eω [v(ω − x)],
x ∈ R, is convex if and only if the random variable δ := ω − υ has a pdf satisfying (6).

In particular,Q is convex if ω has a pdf satisfying (6).

Remark 3.1 It is well-known that the continuous simple recourse function Q, i.e., the spe-
cial case of MISR with q = 1, is convex for every distribution ofω. This indeed follows trivially
from Corollary 3.1 and (5).

Corollary 3.1 shows that the mixed-integer recourse function Q is convex only in exceptional
cases. Therefore, we are interested in convex approximations of this function, which is the
subject of the next section.

3.2 Convex approximations

Corollary 3.1 suggest that, to obtain convex approximations of a non-convex recourse function
Q, we can perturb the distribution of the underlying random variable in such a way that the
resulting distribution has a pdf satisfying (6). This approach, which has been applied to pure
integer recourse models in [5, 18], will be extended to the current mixed-integer case below.

In principle, any suitable perturbation of the distribution can be used for this purpose, but – as
in the pure integer case – we restrict to the following class.
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Figure 3.2: The MISR functionQ (dashed) and the α-approximationsQα (left) andQα (right),
for q = 3, ω exponentially distributed with parameter 3, and α = 0.1.

Definition 3.1 For each α ∈ [0, 1), the α-approximation of a random variable ϕ with cdf F ϕ
is the continuous random variable ϕα with pdf fϕα ,

fϕα (t) := Fϕ(�t�α + 1)− Fϕ(�t�α), t ∈ R,

where �t�α := �t − α� + α is the round down of t with respect to α + Z.

Obviously, every pdf fϕα , α ∈ [0, 1), satisfies (6). With Fϕα denoting the cdf of ϕα, it is easy to
see that Fϕα (α + k) = Fϕ(α + k), k ∈ Z. Further properties of α-approximations are discussed
in [5].

According to Corollary 3.1, we can choose to either replace ω or δ by an α-approximation. The
resulting functions, defined for each α ∈ [0, 1),

Qα(x) := Eδα

[	δα − x
+]
, x ∈ R,

and

Qα(x) := Eυ

[
Eωα

[	ωα − (x + υ)
+]]
, x ∈ R,

= Eυ [Gα(x + υ)] ,

are called α-approximations of the recourse function Q; similarly, the function Gα is an α-
approximation of G. By construction, Qα and Qα are convex approximations of the mixed-
integer recourse functionQ. See Figure 3.2.

As shown in [5], each α-approximation Gα, α ∈ [0, 1), is piecewise linear and coincides with
G on the set {α + Z}. Hence, the same is true for the α-approximations Qα , but not for Qα .
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Properties of the latter α-approximations depend on the distribution of υ, i.e., on the value
function v.

Next we state bounds, uniform in α ∈ [0, 1), for the respective approximation errors ofQα and
Qα , for the case that the random variables involved are continuously distributed. If δ = ω−υ is
not continuously distributed, e.g., if ω is a discrete random variable and the value function v is
discontinuous, then we can only prove the trivial upper bound 1 for both approximation errors.

For t ∈ R, let 	t
α := 	t − α
 + α denote the round up of t with respect to α + Z.

Theorem 3.1 If δ = ω−υ has a pdf fδ which is of bounded variation, then, for all α ∈ [0, 1),

∣∣Q(x)−Qα(x)
∣∣ ≤ min {x − �x�α, 	x
α − x} |�|fδ

2
≤ |�|fδ

4
, x ∈ R,

where |�|fδ denotes the total variation of fδ .

If ω has a pdf fω which is of bounded variation, then, for all α ∈ [0, 1),

∣∣Q(x)−Qα(x)
∣∣ ≤ min {x − �x�α, 	x
α − x} |�|fω

2
≤ |�|fω

4
, x ∈ R.

Moreover, |�|fδ ≤ |�|fω with strict inequality in most cases. Thus, measured by the bounds
above, the approximation of Q by Qα is at least as good as that by Qα .

PROOF. The bounds on the approximation errors follow immediately from the corresponding
result for the functionGα , see [5].

Referring to the definition of total variation, let U := {u0, u1, . . . , uN } ⊂ R be such that

|�|fδ − ε <

N∑
i=1

|fδ(ui)− fδ(ui−1)| (7)

for every ε > 0. Then

|�|fδ − ε <

N∑
i=1

∣∣∣∣∣
∫ 1

0

(
fω(ui + s)− fω(ui−1 + s)

)
dFυ(s)

∣∣∣∣∣
≤

∫ 1

0

N∑
i=1

∣∣fω(ui + s)− fω(ui−1 + s)
∣∣ dFυ(s)

≤ |�|fω,
where the last inequality is strict unless the sets {U + s} yield |�|fω (in the sense of (7)) for
Fυ -almost all s. �
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Remark 3.2 Actually, the bounds derived in Theorem 3.1 apply to α-approximations of the
expectation of the scaled value function v(ps)/v(p), s ∈ R, where p is the period of the
semi-periodic function v restricted to R+. It follows by straightforward calculation that for the
general case, the error bounds of Theorem 3.1 are multiplied by a factor pv(p).

For many distributions, the total variation of the pdf decreases as the variance of the distribu-
tion increases. For example, the total variation of the normal distribution is proportional to the
inverse of its standard deviation. Thus, we would expect that the α-approximationsQα andQα

become better as the variance in the respective underlying distributions become larger.

3.3 Continuous simple recourse representation

It follows from the assumed semi-periodicity on R+ of v, that every convex approximation
Qα(x) or Qα(x), α ∈ [0, 1), has an asymptote (with slope −1) for x −→ −∞. Moreover,
both functions decrease to 0 as x −→ −∞, so that each of them is Lipschitz continuous on R.
In [3] we showed that every such function can be represented as a continuous simple recourse
function

q+
Eψ

[
(ψ − x)+

] + q−
Eψ

[
(ψ − x)−

]
, x ∈ R,

with known distribution of the random variable ψ . Below we apply this result to the α-approx-
imations Qα andQα .

Corollary 3.2 For α ∈ [0, 1), consider the α-approximation

Qα(x) := Eδα

[	δα − x
+]
, x ∈ R,

where δα is the α-approximation of the random variable δ := ω − υ, ω has cdf Fω , and υ has
cdf Fυ .

Qα(x) = Eψα

[
(ψα − x)+

]
, x ∈ R,

where the random variable ψα has cdf 	α ,

	α(t) =
∫ 1

0
Fω (�t�α + s) dFυ(s), t ∈ R.

Since 	α is constant on every interval [α + k, α + k + 1), k ∈ Z, the random variable ψα is
discrete with support in {α + Z}.

Corollary 3.3 For α ∈ [0, 1), consider the α-approximation

Qα(x) := Eυ

[
Eωα

[	ωα − (x + υ)
+]]
, x ∈ R,

where ωα is the α-approximation of the random variable ω with cdf Fω, and υ has cdf Fυ .

Qα(x) = Eϕα

[
(ϕα − x)+

]
, x ∈ R,
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where the random variable ϕα has cdf 
α ,


α(t) =
∫ 1

0
Fω (�t + s�α) dFυ(s), t ∈ R.

4. Solving mixed-integer recourse models

Returning to the recourse function Q(x) = Eω [v(ω − T x)], x ∈ R
n, we conclude that convex

approximations can be obtained by α-approximations. Moreover, each such function Q α(x) or
Qα(x), α ∈ [0, 1), can be represented as a continuous simple recourse function with random
right-hand side parameter, whose distribution is known. In particular, for each function Q α the
corresponding distribution is discrete.

Hence, to approximately solve the mixed-integer recourse problem

min
x∈X cx + Q(x) (8)

we can solve instead the continuous simple recourse problem

min
x∈X cx + Qα(x) (9)

or

min
x∈X cx + Qα(x), (10)

for one or more values of the parameter α. If all first-stage variables are continuous, then this
can be done by existing algorithms (see e.g. [9]), which are very efficient. If not, then one could
apply a branch and bound scheme, and use these algorithms to solve subproblems.

It is easy to see that the bounds presented in Theorem 3.1 also apply to the respective approxi-
mation errors in the optimal values of (9) and (10). Depending on the application, this guaranty
on the approximation error may be satisfactory or not. If not, then one could solve approxi-
mating problems (9) or (10) for a number of parameter values α, yielding respective optimal
solutions xα, and compare them by calculating the true objective values cx α + Q(xα).
As we will show next, the evaluation of Q(xα)may not be necessary if xα is an optimal solution
of (9). For each α ∈ [0, 1), the random variable ψα underlying the continuous simple recourse
function Qα is discrete with support in α + Z by Corollary 3.2. As is well known, the function
Qα is therefore polyhedral, and it is non-linear at x if and only if T x belongs to the support of
ψα . Hence, if xα is a free optimal solution of (9), then T xα ∈ α + Z, so that Qα(xα) = Q(xα)
as discussed in Section 3.2.

For this reason, and moreover since

(i) solving (9) is in general easier than solving (10), which according to Corollary 3.3
involves a random variable with arbitrary distribution type;
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(ii) by Theorem 3.1, the approximation obtained by (9) is at least as good as that of (10),

we conclude that the convex approximations Qα are preferable over Qα for the purpose of
approximately solving the mixed-integer recourse model (8).

5. Summary and concluding remarks

For a restricted class of mixed-integer recourse models, we showed that the second-stage value
function v is equivalent to an expected integer shortage function H , where the expectation is
taken with respect to a distribution which reflects the particular value function. Thus, the mixed-
integer recourse function Q(x) := Eω [v(ω − T x)], x ∈ R

n, can be seen as the expectation of
H(ω − T x), allowing to derive its properties from those of H , which is well-studied in the
context of simple integer recourse models.

In particular, we showed that convex approximations of Q can be obtained by suitable pertur-
bations of the distributions involved. This approach, first developed for simple integer recourse
models [5] and later extended to general pure integer recourse models [18], is thus shown to be
applicable to some mixed-integer recourse models too.

Next, we showed that the convex approximations obtained can be represented as recourse func-
tions of continuous simple recourse models. Thus, instead of solving such a mixed-integer
recourse model directly, we can

(i) modify the recourse structure (in particular, get rid of integrality constraints in the
second-stage problem), and

(ii) perturb the underlying distribution,

to obtain a continuous simple recourse model which is easy to solve, and provides an approxi-
mate solution of the original model. The results presented in this paper extend this modification
of recourse data approach [17], which was previously applied to pure integer (and continuous
multiple simple) recourse models, to a class of mixed-integer recourse models.

In future research we hope to further extend this approach to more general mixed-integer re-
course models.
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