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Abstract

We present a model which combines elements of an auction and a rent-seeking
contest. Players compete for a prize. Apart from exerting lobbying efforts, they
also have to submit a bid which is payable only if they win the prize. First, we ana-
lyze the model if the returns-to-scale parameters of both bids and efforts are unity.
We present a necessary and sufficient condition for the existence of a unique Nash
equilibrium. In the equilibrium each player submits the same bid, while the sum of
all efforts equals that bid. Second, we analyze the case in which the returns-to-scale
parameters may differ from unity, and derive the implications of that specification.
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1. Introduction

In many economic situations, a number of contestants try to obtain some prize or rent.
Several mechanisms can be used to assign a prize to one of the competitors. One obvious
way to do so is through a regular auction. Then, all contestants submit a bid and, as a
rule, the one submitting the highest bid obtains the prize, and pays an amount that depends
in some pre-described way on the total vector of bids. In the simplest case, the highest
bidder pays his own bid, whereas the other bidders pay nothing. For recent surveys of this
literature, see e.g. Wolfstetter (1996) or Klemperer (1999). Another possible mechanism
is the following. In the case of policy decisions, the parties involved often exert effort in
an attempt to influence the decision process. This effort can take the form of lobbying,
but can also consist of bribes. Such a process can be modelled as an all-pay auction or a
rent-seeking contest. In an all-pay auction (see e.g. Baye, Kovenock, and de Vries, 1993),
all contestants have to pay for their effort, and the one with the highest effort wins the
auction. In a rent-seeking contest, all players also exert some effort, but the outcome of the
process is stochastic: each contestant wins with a probability that is increasing in his own
effort, but decreasing in that of his competitors. The extensive literature on such contests
started with Tullock (1980). See further e.g. Dixit (1987), Hillman and Riley (1989), and
for a comprehensive survey, Nitzan (1994).

Yet, in practice, we often have situations that lie somewhere between the two extremes
of auctions and rent seeking. Often, when an auction is held, the outcome is not solely
determined by the height of the bid. In most cases, other aspects of the competing offers
also play a role. In public procurement, the quality of the offers made is also taken into
account, usually by some predefined rule that weighs different quantifiable quality criteria
of the offers made. Another example is the procedure by which major sports events, such
as the Olympic Games, are assigned to cities or countries. On the one hand, this decision
is determined by bids the contestants submit, which come in the form of e.g. the quality
or quantity of new stadiums and infrastructure. Yet, there is probably also room for some
lobbying or bribing of the decision makers. A final example is a takeover battle. Suppose
two firms try to take over a third firm. Both firms submit a bid. Shareholders decide whom
to tender their shares to. Yet, they will usually base their decisions not only on the bids
submitted, but also on the extent to which they feel each firm contributes to the long-term
prospects of the firm being taken over.1 Thus, often, even if an auction is held, there is still
room for lobbying or rent seeking to try to influence the outcome of the auction.

In this paper, we try to model this notion. We build on the rent-seeking literature, but
assume that the probability of winning not only depends on the effort exerted, but also
on the bid made. In section 2, we describe our general framework, and show that it can
be seen as an extension of the standard rent-seeking game. In section 3, we consider the
simplest possible version of our model in which returns-to-scale parameters of both bids

1 A related example: in a recent hostile takeover battle, the British telephone company Vodafone bid some
132 billion euro to obtain control of its German rival Mannesmann. Reportedly, both firms set aside a total
amount of 850 million euro for this fight, trying to influence the voting behavior of shareholders. From this
amount, 150 million was reserved for advertising. See The Economist (2000).
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and efforts are equal to unity. For a given number of players, we present a necessary and
sufficient condition for the existence of a unique (Nash) equilibrium in which all players
participate in the contest. We show that in that equilibrium (a) each player submits the
same bid, (b) the sum of all outlays equals that bid, and (c) there is underdissipation of
rent. Furthermore, we give explicit equilibrium solutions for the case of equal valuations,
and for the case in which there are only two contestants. Section 4 uses a more general
model, in which the returns-to-scale parameters of bids and efforts may differ from unity,
and derives the implications of that specification. If an equilibrium in which all players
participate exists, it now has that the sum of all individual ratios of the effort and bid,
equals the ratio of the returns-to-scale parameters associated with efforts and bids. We
further present a sufficient condition for the existence of an equilibrium of this model for
the case of equal valuations. Section 5 concludes.

2. The general model

Our basic model is the following. There aren players trying to obtain some prize. Player
i values the prize atvi > 0. We thus allow for asymmetric valuations. Each player can
submit a bidbi ≥ 0, and spend effortei ≥ 0. The bidbi only has to be paid ifi wins the
prize. However, outlaysei are sunk. A player cannot retrieve these, regardless of whether
or not he wins the prize. In general, we assume that the probabilitypi that i wins is given
by the logit form contest success function

pi(b1, . . . , bn, e1, . . . , en) = f (bi, ei)∑n
j=1 f (bj , ej )

, i = 1, . . . , n, (1)

if bj > 0 andej > 0 for at least onej, andpi = 0 if that is not the case. Here,f (bi, ei) is
non-negative, and∂f/∂bi, ∂f/∂ei ≥ 0. This implies∂pi/∂bi, ∂pi/∂ei ≥ 0, and∂pi/∂bj ,

∂pi/∂ej ≤ 0 (j 6= i). Thus, based on the bidbi and the outlaysei, a ‘score’f (bi, ei) is
computed for each player. The probability that a certain player wins this contest, is equal
to the share of his score in the total sum of scores. Note that these probabilities sum to
unity.2 Given (1), playeri wants to maximize his expected payoff, which is given by

5i = pi (vi − bi) − ei . (2)

This expression reflects that the bid only has to be paid if the player wins the prize, whereas
the outlays are non-refundable.

A natural assumption is that the scoref (bi, ei) links bi and ei in some multiplicative
fashion. In that way, we capture the idea that there is a trade-off between increasing bid
bi and increasing effortei . In section 3, we simply assumef (bi, ei) = biei , which we
loosely denote as a constant-returns-to-scale score (note that if the size of eitherbi or ei

is increased with a certain multiplicative factor, then the score is increased with this same

2 As long as at least one player both submits a positive bid and exerts a positive effort. We assume that the
contest is cancelled, i.e. the prize is not awarded at all, if none of the players both submits a positive bid and
exerts a positive effort.
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factor as well). Note also that in that case, the probability that playeri wins the prize is
equal to zero if he submits a zero bid or exerts no effort. In section 4, we use a more general
Cobb-Douglas score functionf (bi, ei) = bα

i e
β

i , with α, β > 0 returns-to-scale parameters
of, respectively, the bids and efforts. Such a more general function, however, leads to a less
tractable model.

In a standard rent-seeking model, only some effortei is exerted. Expected payoffs then
equal

πi = g(ei)∑
j g(ej )

vi − ei . (3)

Many papers in this literature assumeg(ei) = ei . Hillman and Riley (1989) analyze this
model, allowing forn contestants and asymmetric valuations. Ellingsen (1991) gives an
application. Our model in section 3 can be seen as a generalization of this approach. Some
papers, including Tullock (1980), use a more general contest success functiong(ei) = er

i ,

with r > 0. Nti (1999) analyzes this model, allowing for asymmetric valuations, but re-
stricting attention to the casen = 2. Our model in section 4 generalizes this approach.
Finally, we refer to Skaperdas (1996) and Kooreman and Schoonbeek (1997) for a gen-
eral discussion of the foundations of logit form contest success functions in rent-seeking
models.

3. A constant-returns-to-scale score

In this section we use (1), with the constant-returns-to-scale scoref (bi, ei) = biei . We
therefore have

5i =
(

biei∑
j bj ej

)
(vi − bi) − ei (4)

if bj > 0 andej > 0 for at least onej , and5i = 0 otherwise. We want to investigate the
(Nash) equilibria of the resulting model.

Without loss of generality, we first order the valuations such thatv1 ≥ v2 ≥ . . . ≥ vn.
Further, we define the following continuous auxiliary function

hn(b) =
n∑

j=1

(
1

vj − b

)
− n − 1

b
, (5)

for 0 < b < vn. Observe thathn(b) is strictly increasing inb. Moreover, limb↓0 hn(b) =
−∞, and limb↑vn

= ∞. This implies thathn(b) has a unique root,b(n) say, on(0, vn), i.e.
hn(b(n)) = 0. Using this, we present the following theorem which provides a necessary
and sufficient condition for the existence of a unique equilibrium in which alln players
participate, and which, moreover, gives general characteristics of such an equilibrium.

Theorem 3.1 Let the valuations bev1 ≥ v2 ≥ . . . ≥ vn. There exists an equilibrium
(b̂1, . . . , b̂n, ê1, . . . , ên) in which all n players participate, i.e. witĥbi > 0 and êi > 0,
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∀i, if and only if the unique rootb(n) of the functionhn(b) as defined in (5) satisfies
b(n) < vn/2. If such an equilibrium exists, it is unique and the bids and efforts satisfy:

(i) b̂i = b̂ = b(n),∀i,

(ii) êi = b̂(vi−2b̂)

(vi−b̂)
, ∀i,

(iii)
∑n

i=1 êi = b̂.

PROOF. See the Appendix. 2

Thus, in this model, where not only efforts but also bids determine the probability of
winning the prize, all players submit the same bid in the equilibrium, regardless of their
valuation. This implies that in equilibrium, the fact that bids are submitted does not play
a role, i.e. differences in the success probabilities are solely determined by differences in
the outlaysêi .

We also have that in equilibrium the bid every participant submits, equals the sum of total
outlays. The equilibrium bid is less than one half of the smallest valuation,vn. Further-
more, using (i) of Theorem 3.1 and (5), we see that the equilibrium bid is strictly increas-
ing in the size of the valuations of the players, i.e.∂b̂/∂vi > 0, ∀i (note that for fixedb,
the first term on theRHS of (5) strictly decreases if one marginally increases the valuation
vi , whereas the second term remains constant). It also follows that the equilibrium bid and
efforts are linear homogeneous in the valuations, in the sense that if all valuations increase
with a same factor, then the equilibrium bid and efforts all increase with this factor as well.

Using Theorem 3.1, we further see thatê1 ≥ ê2 ≥ . . . ≥ ên. Thus, the higher the valuation
of a player, the greater the effort he exerts in the equilibrium. It can also be verified that in
the equilibrium the probability that playeri wins the prize equalŝpi = êi/b̂. This implies
that p̂1 ≥ p̂2 ≥ . . . ≥ p̂n > 0. As a result, the player with the highest valuation also has
the highest probability to win the prize. The expected profit of playeri corresponding to
the equilibrium can be expressed as

5̂i = (vi − 2b̂)2

(vi − b̂)
. (6)

Consequently, we obtain that̂51 ≥ 5̂2 ≥ . . . ≥ 5̂n > 0.

Theorem 3.1 considers equilibria in which all players participate in the contest. However,
for arbitrary valuations, the rootb(n) ∈ (0, vn) of hn(b) of (5) does not always satisfy
b(n) < vn/2. 3 In that case, an equilibrium with alln participating players does not exist.
The same kind of problem appears in the standard rent-seeking model with unequal valu-
ations. To handle this problem, Hillman and Riley (1989) propose an intuitively appealing
procedure in which only players with the highest valuations decide to participate in the
contest. Applying a similar procedure to our model, we can state that agentsn, n − 1, . . .

will sequentially drop out of the contest until, for some agentk, we haveb(k) < vk/2,

3 Take e.g.v1 = 5, v2 = 4 andv3 = 2. Thenb(3) ≈ 1.134> v3/2.
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with b(k) the unique root ofhk(b), wherehk(b) is defined as

hk(b) =
k∑

j=1

(
1

vj − b

)
− k − 1

b
, (7)

for 0 < b < vk. In that case the equilibrium bid with thek players 1, . . . , k is given by this
root.

Admittedly, this procedure, although appealing, has a drawback.4 Suppose for example
that n = 5, but there is no equilibrium with all five players participating. Then, rather
for the player with the lowest valuation to drop out, it may also be an equilibrium for the
player with the second-lowest valuation to drop out. If he does, the condition just given
may be satisfied for the player with the lowest valuation.5

In the next two subsections, we demonstrate that the conditionb(n) < vn/2 holds — and
thus that there exists a unique equilibrium in which all players participate — if either all
valuations are equal orn = 2. Note that the latter implies that if we have a case in which
there is no equilibrium withn > 2 players participating, then the above procedure in
which players with the lowest valuations sequentially drop out, certainly provides us with
an equilibrium.

Concluding this section, we discuss the extent of rent dissipation that occurs in the equilib-
rium of Theorem 3.1. First note that, in order to study rent dissipation, we need a definition
for that magnitude in the context of our model. In the rent-seeking literature, the extent of
rent dissipation is defined as the total sum of outlays of the contestants trying to obtain
the prize. Yet, in our model, there is also a bidb̂ paid by the winner. Arguably, this should
not be counted as rent dissipation, since it merely consists of a transfer from the winner
of the prize to the authority selling the prize. On the other hand, one can argue that, when
êi consists of bribes rather than efforts, then these bribes are also merely transfers. We
therefore consider both possibilities. First, suppose that the winning bid is considered as
dissipated rent. Total rent dissipation then equalsD = ∑

i êi + b̂. Using Theorem 3.1, it
follows thatD = 2b̂ < vn. Thus, in this case there is always underdissipation of rent, in
the sense that total rent dissipation is less than the size of (even) the smallest valuation of
the prize. Second, if we suppose that the winning bid is not considered as dissipated rent,
then total rent dissipation,D′ say, satisfiesD′ = 1

2D < 1
2vn. Obviously, again there is

always underdissipation of rent.

3.1 The case of equal valuations

Let us now consider the case in which all players have the same valuation. We then obtain
the following corollary of Theorem 3.1.

4 Note that this proviso also holds for Hillman and Riley (1989) proposition 5, even though they fail to
point this out.

5 To illustrate this possibility for the casen = 3, take again the valuations of footnote 3. There is no
equilibrium in which all three players participate. However, foreachcombination of two players there exists
a well-defined equilibrium. See Corollary 3.2 below.
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Corollary 3.1 If vi = v,∀i, then a unique equilibrium exists. The equilibrium bids and
efforts are given by:

(i) b̂i = b̂ = (n−1)v

(2n−1)
,∀i,

(ii) êi = ê = (n−1)v

(2n−1)n
,∀i.

PROOF. Usingvi = v, ∀i, it follows that the rootb(n) of the functionhn(b), defined in
(5), is equal tob(n) = (n − 1)v/(2n − 1), thusb(n) < v/2. From Theorem 3.1, there is
a unique equilibrium. Moreover, from part (i) of Theorem 3.1, the equilibrium bids equal
b̂i = b(n), ∀i, hence part (i) of the corollary. Finally, invoking symmetry, i.e.êi = ê, ∀i,
part (ii) of the corollary follows from part (iii) of Theorem 3.1. 2

Since, for this case, we do have explicit solutions forb̂ andêi , we can also explicitly char-
acterize the extent of rent dissipation that occurs in the equilibrium. From Corollary 3.1,
if the winning bid is considered as dissipated rent, then total rent dissipation is2

3v with
n = 2, and it strictly increases tov asn goes to infinity. If the winning bid is not consid-
ered as dissipated rent, then total rent dissipation is1

3v with n = 2, and it strictly increases
to 1

2v asn goes to infinity.

Next, we recall that total rent dissipation equals(n − 1)v/n in the standard rent-seeking
model, see e.g. Hillman and Riley (1989). Thus, in our model, total rent dissipation is
lower than in the standard rent-seeking model whenb̂ is not considered as dissipated rent,
but higher when̂b is considered as dissipated rent.

For the standard rent-seeking model, in equilibrium it can be shown thate∗
i = e∗ =

(n − 1)v/n2,∀i, see again Hillman and Riley (1989). The expected profit of contestanti

then equalsπ∗
i = v/n2. In our model, using Corollary 3.1, we have

5̂i = v

n

(
1

2n − 1

)
. (8)

In a regular auction, it is easy to see that each player would bid the common valuation of
the prize (v), leaving expected profits equal to zero. Therefore, in our auction with rent
seeking, expected profits for contestants are higher than in a regular auction, but lower
than in a standard rent-seeking contest.

3.2 The case of two players

Next, we return to the general model in which valuations are allowed to differ, but restrict
attention to the case of two contestants, thusn = 2. We then have the following corollary
of Theorem 3.1.

Corollary 3.2 If n = 2, then a unique equilibrium exists. The equilibrium bids and
efforts are given by:

(i) b̂i = b̂ = v1+v2
3 − 1

3

√
(v1 + v2)

2 − 3v1v2,

(ii) êi = b̂(vi−2b̂)

(vi−b̂)
,
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for i = 1, 2. Substitutingb̂ into (ii), we have an explicit solution for̂ei .

PROOF. Takingn = 2, it can be verified that the rootb(2) of the functionh2(b) defined
in (5) is given by

b(2) = v1 + v2

3
− 1

3

√
(v1 + v2)

2 − 3v1v2.

Again, without loss of generality, assume thatv1 ≥ v2. We then have to show thatb(2) <

v2/2, i.e.v2 − 2b(2) > 0. Now,

v2 − 2b(2) = v2 − 2v1

3
+ 2

3

√
(v1 + v2)

2 − 3v1v2. (9)

For this expression to be positive, we need

2
√

(v1 + v2)
2 − 3v1v2 > 2v1 − v2. (10)

With v1 ≥ v2, the RHS of this expression is positive. Taking squares on both sides and
rearranging, (10) simplifies to 3v2

2 > 0, which is always satisfied. Using Theorem 3.1, a
unique equilibrium exists. Parts (i) and (ii) of the corollary follow directly. 2

Suppose we consider the winning bidb̂ as dissipated rent. Total rent dissipation then equals
D = ê1 + ê2 + b̂ = 2b̂. Nti (1999) proposes the following way to study how the extent of
asymmetry in valuation influences total rent dissipation. Without loss of generality, assume
again thatv1 ≥ v2, and writev2 = λv1, with λ ≤ 1. We then have

D = 2

3
v1

(
1 + λ −

√
1 − λ + λ2

)
. (11)

Observe that∂D/∂λ > 0. Thus, the more equal valuations are (i.e. the higherλ is), the
higher total rent dissipation. Yet, this analysis is in terms of a fixedv1. More equal val-
uations then imply a higherv2, while keepingv1 fixed. In this analysis, increased rent
dissipation is not so much due to lower asymmetry, but rather to a higherv2. This can be
seen as follows. Rather than writingv2 = λv1, we can also writev1 = µv2, with µ ≥ 1.

We then have

D = 2

3
v2

(
1 + µ −

√
1 − µ + µ2

)
. (12)

Now, ∂D/∂µ > 0. Thus, this suggests that having more equal valuations (i.e. lowerµ)
leads tolower dissipation, since we now do the analysis in terms of a fixedv2 rather than
a fixedv1.

A better way to study the effect of a decrease in asymmetry is the following. Suppose the
sum of valuations of both contestants is fixed:v1 + v2 = V. Usingv1 ≥ v2, we may write
v1 = ρV andv2 = (1 − ρ)V, with ρ ∈ [1

2, 1). We can study the effect of decreased
asymmetry as a decrease inρ, without the problem of scale effects that affect the analyses
above.

Total rent dissipation now equals

D = 2

3
V
(
1 −√

1 − 3ρ(1 − ρ)
)

. (13)
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Observe that
∂D

∂ρ
= 1 − 2ρ√

1 − 3ρ(1 − ρ)
V . (14)

Thus, rent dissipation is maximized whenρ = 1
2, i.e. when the two valuations are equal.

Further,∂D/∂ρ < 0 for all ρ ∈ (1
2, 1). Therefore, with two players, we unambiguously

have that more equal valuations lead to higher total rent dissipation. Remark that this result
does not hinge on the definition of rent dissipation. It does not matter whether or not we
countb̂ as dissipated rent. If we do not, total rent dissipation simply equalsD′ = 1

2D.

4. A general Cobb-Douglas score

In the previous section, we analyzed a model where the returns-to-scale parameters as-
sociated with both bidding and rent seeking equal unity. In this section, we use the more
general Cobb-Douglas score functionf (bi, ei) = bα

i e
β

i . The returns-to-scale parameters
satisfyα, β > 0. Hence, the model analyzed in the previous section is a special case of
this model, withα = β = 1. Expected profits of playeri now equal

5i =
(

bα
i e

β

i∑
j bα

j e
β

j

)
(vi − bi) − ei (15)

if bj > 0 andej > 0 for at least onej , and5i = 0 otherwise.

For this model we have the following general result.

Theorem 4.2 Consider an equilibrium(b̂1, . . . , b̂n, ê1, . . . , ên) in which all n players
participate, i.e. withb̂i > 0 and êi > 0, ∀i. We then have: n∑

j=1

êj

b̂j

 = β

α
. (16)

PROOF. See the Appendix. 2

Thus, if we have an equilibrium in which all players participate, then the sum of all individ-
ual ratios of the equilibrium effort and equilibrium bid, equals the ratio of the returns-to-
scale parameters associated with efforts and bids. This theorem has a natural interpretation.
As β, the parameter that reflects returns to scale with respect to the efforts increases, then
efforts become more important, in the sense that the sum of the individual ratios of the
equilibrium effort and equilibrium bid increases. Also, asα, the parameter that reflects
returns to scale with respect to bids increases, then bids become more important, in the
sense that the sum of the individual ratios of the equilibrium effort and equilibrium bid
decreases.

In order to analyse this model further, we make in the next subsection the simplifying
assumption that all contestants have equal valuations. We remark that (even) for the case
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of two players, it is in general not possible to find the equilibrium in closed form.6

4.1 Equal valuations

Suppose that, in the model described above, all players have equal valuations. We then
have the following result.

Theorem 4.3 Suppose thatvi = v,∀i, andβ ≤ 1. Then there exists a unique equilib-
rium. In particular, the equilibrium bids and efforts are given by:

(i) b̂i = b̂ = α(n−1)v

α(n−1)+n
,∀i,

(ii) êi = ê = 1
n

β(n−1)v

α(n−1)+n
,∀i.

PROOF. See the Appendix. 2

In other words, when valuations are equal,β ≤ 1 is a sufficient condition for the existence
of a unique equilibrium, which is given by parts (i) and (ii) of Theorem 4.3.

We make the following remarks with respect to the equilibrium bids and efforts of Theo-
rem 4.3. First, the bids and efforts are linear homogeneous in the valuationv. Second, if the
returns-to-scale parameter of bids,α, increases, then the equilibrium bids strictly increase
as well, whereas the equilibrium efforts strictly decrease. Third, if the returns-to-scale pa-
rameter of efforts,β, increases, then the equilibrium efforts strictly increase; however,
there is no effect on the equilibrium bids. Fourth, in the equilibrium the probability that
playeri wins the prize equalŝpi = 1/n, whereas his expected profit equals

5̂i = 1

n
(v − b̂) − ê = 1

n

(
nv − β(n − 1)v

α(n − 1) + n

)
, (17)

which is positive, because we assumed thatβ ≤ 1.

Using Theorem 4.3, we can again study the extent to which rent is dissipated. To begin
with, suppose that the winning bid is considered as dissipated rent. We then have from
Theorem 4.3 that

D = nê + b̂ = (α + β)(n − 1)v

α(n − 1) + n
. (18)

Consequently, with two contestants, total rent dissipation is(α+β)v/(α+2). The extent of
rent dissipation strictly increases to(α + β) v/(α+1) asn goes to infinity. Rent dissipation
strictly increases inα andβ. In order to see that dissipation is strictly increasing inα, note
that

∂D

∂α
= n − β(n − 1)

(αn − α + n)2 (n − 1) v, (19)

which is positive, since by assumptionβ ≤ 1.

6 In the special case whereβ = 1, bids are again equal among agents, regardless of the size ofα. This
follows from (A.19) of the Appendix. The results given in section 3 can easily be generalized to this special
case. However, ifβ 6= 1, bids are no longer equal among agents.
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Next, suppose we do not count the winning bid as dissipated rent. From Theorem 4.3 we
then obtain

D′ = nê = β(n − 1)v

α(n − 1) + n
. (20)

With two contestants, total rent dissipation now equalsβv/(α + 2). The extent of rent
dissipation strictly increases toβv/(α + 1) asn goes to infinity. Rent dissipation strictly
decreases inα, but strictly increases inβ.

We conclude with two remarks. First, we see that total rent dissipation strictly increases in
α if the winning bid is considered as dissipated rent, whereas total rent dissipation strictly
decreases inα if the winning bid is not regarded as dissipated rent. Second, it is easy to
verify that if the winning bid is considered as dissipated rent, then in equilibrium there is
underdissipation of rent. Obviously, this conclusion then also holds if the winning bid is
not considered as dissipated rent.

5. Conclusion

In this paper, we presented a model which combines elements of an auction and a rent-
seeking contest. The model considers a situation in which players compete for a prize. The
probability that a player wins the prize depends not only on the amount of effort exerted,
but also on the bid submitted. The bid only has to be paid if the player wins the prize, the
effort outlays are sunk.

First, we discussed the model with constant returns to scale in both bids and outlays.
We presented a necessary and sufficient condition for the existence of a unique (Nash)
equilibrium in which all players participate. We found that in the equilibrium all players
will submit the same bid, regardless of their valuations, and that total outlays equal that bid.
Moreover, we found underdissipation of rent, even if the winning bid is also considered as
dissipated rent. For the two player case, we showed that the extent of total rent dissipation
is strictly decreasing in the extent of asymmetry in valuations.

Second, we studied a more general model, in which the probability of success depends on
a general Cobb-Douglas function in bids and efforts. For that model, we demonstrated that
the sum of the individual ratios of the equilibrium effort and equilibrium bid is equal to
the ratio of their respective returns-to-scale parameters. Focusing on the case of equal val-
uations, we showed that the model has an equilibrium if the returns-to-scale parameter of
efforts is not greater than unity. We showed that in the equilibrium there is underdissipation
of rent, even if the winning bid is also considered as dissipated rent. Total rent dissipation
strictly increases in the returns-to-scale parameter of efforts. Finally, if the winning bid is
considered as dissipated rent, then total rent dissipation strictly increases in the returns-to-
scale parameter of bids, whereas if the winning bid is not considered as dissipated rent,
total rent dissipation is strictly decreasing in this parameter.
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Appendix: Proofs of Theorems 3.1, 4.2 and 4.3

Proof of Theorem 3.1
To begin with, we state the first-order conditions for an interior solution of the expected
profit maximization problem of playeri, given the bidsbj and effortsej (j 6= i) of his
rivals, i.e.

∂5i

∂bi

=
(∑

j bj ej

)
ei (vi − 2bi) − bie

2
i (vi − bi)(∑

j bj ej

)2 = 0 (A.1)

and

∂5i

∂ei

=
(
bi

(∑
j bj ej

)
− b2

i ei

)
(vi − bi)(∑

j bj ej

)2 − 1 = 0. (A.2)

Note that while stating these first-order conditions, we assume thatbj > 0 andej > 0 for
at least onej 6= i.

Now, assume that(b̂1, . . . , b̂n, ê1, . . . , ên) is an equilibrium withb̂i > 0 andêi > 0, ∀i.

We then have to show thatb(n) < vn/2 — whereb(n) is the root ofhn(b) as defined in (5)
— and that equilibrium bids and efforts satisfy parts (i), (ii) and (iii) of the theorem. Using
the first-order conditions (A.1) and (A.2), in the equilibrium we must haveb̂i < vi/2, ∀i.
Further, evaluated in the equilibrium, (A.1) implies that∑

j 6=i

b̂j êj

(vi − b̂i

)
= b̂i

∑
j

b̂j êj

 , (A.3)

whereas (A.2) yields∑
j 6=i

b̂j êj

 b̂i

(
vi − b̂i

)
=
∑

j

b̂j êj

2

. (A.4)

Substituting (A.3) into (A.4) yieldŝb2
i

(∑
j b̂j êj

)
=
(∑

j b̂j êj

)2
, thus

b̂2
i =

∑
j

b̂j êj . (A.5)

TheRHS of (A.5) is a constant, independent ofi. Using this we can writêb for the bid of
each player. Hence, the conditionb̂i < vi/2, ∀i, reduces tôb < vn/2. Further, from (A.5)
we immediately have

b̂ =
∑

j

êj . (A.6)
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In turn, usingb̂i = b̂, ∀i, and (A.6), (A.3) implies
(
b̂2 − b̂êi

)
(vi − b̂) = b̂3, so we can

solveêi, ∀i, as a function of̂b,

êi = b̂(vi − 2b̂)

(vi − b̂)
. (A.7)

Substituting (A.7) into (A.6) yields∑
j

(
vj − 2b̂

vj − b̂

)
= 1, (A.8)

thus
∑

j

(
1 − b̂

vj −b̂

)
= 1, or

b̂
∑

j

(
1

vj − b̂

)
= n − 1. (A.9)

From (A.9),b̂ is a root ofhn(b) of (5). Sincehn(b) has a unique root,̂b = b(n), and we
must haveb(n) < vn/2. Part (i) of the theorem is now obvious, and parts (ii) and (iii)
follow from, respectively, (A.7) and (A.6).

Next, assume thatb(n) < vn/2. We then have to prove that there exists an equilib-
rium in which all players participate. We will show that such an equilibrium is given by
(b̂1, . . . , b̂n, ê1, . . . , ên), whereb̂i = b̂ = b(n) andêi = b̂(vi − 2b̂)/(vi − b̂), ∀i. Remark
that these bids and efforts satisfyb̂i > 0 andêi > 0, ∀i. It remains to be shown that each
playeri maximizes his expected profit by chosingbi = b̂ andei = êi , given the choices
b̂j andêj (j 6= i) of his rivals.

Consider the maximization problem faced by playeri, given these choices of his rivals.
First, notice that if playeri choosesbi = 0, then his corresponding optimal effort is equal
to zero, and his expected profit amounts to zero. Second, if playeri choosesei = 0, then
his expected profit equals zero irrespective of the size of his bid. Third, examine positive
bidsbi and positive effortsei of playeri, which satisfy the first-order conditions (A.1) and
(A.2). It is convenient to writeci = ∑

j 6=i b̂j êj . Note thatci > 0. Using (A.1) and (A.2),
it follows that for such bids and efforts of playeri we must have

ci(vi − bi) = bi(biei + ci) (A.10)

and

cibi(vi − bi) = (biei + ci)
2. (A.11)

From (A.10) we directly obtain thatbi < vi/2. Further, (A.10) and (A.11) imply that

b3
i = ci(vi − bi) (A.12)

and

ei = ci(vi − 2bi)

b2
i

. (A.13)
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Define the continuous auxiliary functionki(b) = b3 − ci(vi − b) for 0 < b < vi . By
assumption, 0< b̂ < vi/2 and êi > 0. Further, note that the first-order conditions of
playeri are satisfied if he choosesbi = b̂ andei = êi. As a result,b = b̂ must be a root
of ki(b), i.e. ki(b̂) = 0. Moreover, one can easily verify thatki(b) has no other roots. By
implication, besidesbi = b̂ andei = êi , there exist no other positive bidbi and positive
effort ei which satisfy the first-order conditions of playeri. Finally, we observe that the
expected profit of playeri corresponding tobi = b̂ andei = êi is equal to

5̂i =
(

êi

b̂

)(
vi − b̂

)
− êi = (vi − 2b̂)2

(vi − b̂)
(A.14)

which is clearly positive. As a result, playeri indeed globally maximizes his expected
profit by choosingbi = b̂ andei = êi . 2

Next, we present the proofs of Theorems 4.2 and 4.3. We first make some preliminary
remarks. The first-order conditions of an interior solution of the expected profit maximiza-
tion problem of playeri in the model of section 4, given the bidsbj and effortsej (j 6= i)

of his rivals, are given by

∂5i

∂bi

=
(∑

j bα
j e

β

j

)(
αbα−1

i e
β

i (vi − bi) − bα
i e

β

i

)
− αb2α−1

i e
2β

i (vi − bi)(∑
j bα

j e
β

j

)2 = 0(A.15)

and

∂5i

∂ei

=
βbα

i e
β−1
i

(∑
j bα

j e
β

j

)
− βb2α

i e
2β−1
i(∑

j bα
j e

β

j

)2 (vi − bi) − 1 = 0, (A.16)

where we assume thatbj > 0 andej > 0 for at least onej 6= i. We observe that (A.15)
reduces to

α

∑
j 6=i

bα
j e

β

j

 (vi − bi) = bi

∑
j

bα
j e

β

j

 , (A.17)

whereas (A.16) reduces to

(vi − bi)βbα
i e

β−1
i

∑
j 6=i

bα
j e

β

j

 =
∑

j

bα
j e

β

j

2

. (A.18)

Using these conditions we present the proofs of Theorems 4.2 and 4.3.

Proof of Theorem 4.2
Suppose that(b̂1, . . . , b̂n, ê1, . . . , ên) is an equilibrium in which alln players participate.
In the equilibrium each player’s expected profit must be nonnegative, for otherwise the
player will not participate in the contest. This implies that we must haveb̂i < vi, ∀i. We
further know that the equilibrium must satisfy the first-order conditions (A.17) and (A.18).
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Using this, we obtain

b̂α+1
i ê

β−1
i = α

β

 n∑
j=1

b̂α
j ê

β

j

 . (A.19)

Note that theRHS of this equality is a constant, independent ofi. Thus, the products
b̂α+1

i ê
β−1
i are a constant. As a result, (A.19) yields n∑

j=1

êj

b̂j

 = β

α
, (A.20)

which completes the proof.2

Proof of Theorem 4.3
Assume thatvi = v, ∀i, andβ ≤ 1. We will show that there exists a unique equilibrium,
which is given by parts (i) and (ii) of the theorem.

To begin with, we remark that the equilibrium must be symmetric, i.e.bi = b andei = e,
∀i. It is obvious that the situation withbi = b = 0 and/orei = e = 0, ∀i, is not an
equilibrium. Further, substitutingei = e > 0 andbi = b > 0, ∀i, into then first-order
conditions (A.17) and (A.18), it follows directly thatb = b̂ ande = ê, where

b̂ = α(n − 1)v

α(n − 1) + n
(A.21)

and

ê = 1

n

β(n − 1)v

α(n − 1) + n
. (A.22)

This implies that there is only one possible equilibrium, i.e.bi = b̂i = b̂ andei = êi = ê,
∀i. In order to demonstrate that this indeed constitutes an equilibrium, we have to prove
that playeri maximizes his expected profit by choosingbi = b̂ and ei = ê, given the
choicesb̂j = b̂ andêj = ê (j 6= i) of his rivals.

Take the maximization problem faced by playeri, given these choices of his rivals. First,
we see that if playeri choosesbi = 0, then his corresponding optimal effort is zero, and
hence his expected profit equals zero. Second, if playeri choosesei = 0, then his expected
profit is zero independent of the size of his bid. Third, let us examine positive bidsbi and
positive effortsei of playeri which satisfy the first-order conditions (A.17) and (A.18). In
that case, (A.17) and (A.18) reduce to

αdi(v − bi) = bi(b
α
i e

β

i + di) (A.23)

and

diβbα
i e

β−1
i (v − bi) = (bα

i e
β

i + di)
2, (A.24)

where for notational convenience we have defineddi = ∑
j 6=i b̂

αêβ . Note thatdi > 0. It
follows directly from (A.23) that we must havebi < αv/(1 + α).
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Observe that (A.23) and (A.24) are satisfied if playeri choosesbi = b̂ andei = ê (note
that 0< b̂ < αv/(1+ α) andêi > 0). We further remark that the expected profit of player
i corresponding to these choices equals

5̂i = 1

n
(v − b̂) − ê = 1

n

(
nv − β(n − 1)v

α(n − 1) + n

)
, (A.25)

which is positive, sinceβ ≤ 1. The proof is completed if we show that besidesbi = b̂i

andei = êi , there exist for playeri no other bidbi with 0 < bi < αv/(1 + α) and effort
ei > 0, which satisfy (A.23) and (A.24). In order to show that, we distinguish two cases,
i.e.β = 1 andβ < 1.

First, take the caseβ < 1. From (A.23), we obtain thatei = si(bi), where the continuous
auxiliary functionsi(b) is defined as

si(b) = (
di(αv − (α + 1)b)b−(α+1)

) 1
β , (A.26)

for 0 < b < αv/(1+ α). Observe thatsi(b) is strictly decreasing inb, and, moreover, that
limb↓0 si(b) = ∞ and limb↑ αv

(1+α)
si(b) = 0.

Next, substitution of (A.23) into (A.24) yields

βbα+1
i e

β−1
i = α(bα

i e
β

i + di), (A.27)

which, in turn, with (A.23) implies that

α2di(v − bi) = βbα+2
i e

β−1
i . (A.28)

The latter gives thatei = ti (bi), where the continuous auxiliary functionti(b) is defined as

ti (b) =
(

α2di

β
(v − b)b−(α+2)

) 1
β−1

, (A.29)

for 0 < b < αv/(1 + α). Since in this case we haveβ < 1, ti(b) is strictly increasing in
b, and limb↓0 ti (b) = 0. As a result, the functionssi(b) and ti(b) have a unique point of
intersection. By implication, this unique point of intersection is given byb = b̂. It follows
that for playeri there exist a unique bid 0< bi < αv/(1 + α) and a unique effortei > 0
which satisfy (A.23) and (A.24), i.e.bi = b̂ andei = êi .

Second, take the caseβ = 1. It then follows from (A.23) and (A.24) that

ei = di(αv − (α + 1)bi )

bα+1
i

(A.30)

and

α2di(v − bi) = bα+2
i . (A.31)

It is easy to verify thatbi = b̂ is the unique solution of (A.31). In turn, we can conclude
that for playeri there exist a unique 0< bi < αv/(1 + α) and a unique effortei > 0
which satisfy (A.23) and (A.24), i.e.bi = b̂ andei = êi . 2
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