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ABSTRACT 

We address the problem of lot splitting for various time bucket lengths in MRP systems. Two 
approaches for lot splitting can be applied: either use the same (equal) or a variable number of 
subbatches. Equal subbatching strategies have logistical and computational advantages. 
Literature states that variable batching strategies are only marginal better. However, these 
results do not take into account the sensitivity for changes in time bucket length. Managers 
have reduced time bucket lengths in planning systems. We examine the sensitivity of lot 
splitting for these changes. Our study reveals that it is not cost-effective to disregard time 
bucket length when deciding on the number of subbatches. Using the same number of 
subbatches per time bucket for all products results in substantial cost-differences, where the 
magnitude is affected by the discontinuity of the total cost curve. For a given time bucket 
length, a cost difference with a variable number of subbatches per operation of only 2.1% can 
be obtained if an appropriate, equal number of subbatches for each product can be found. 
Other equal subbatching strategies show much larger cost differences on average, ranging 
from 4-11%. In order to obtain these results, a new variable subbatch heuristic has been 
designed.  

KEYWORDS: Lot sizing, Lot splitting, Time bucket size, Planning and Control 
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1 INTRODUCTION OF THE PROBLEM 

MRP planning systems use time buckets for time-phasing the co-ordination of several 
stages of production, during each of which one or more operations are being 
performed. The length of the time bucket is an important design parameter, as it 
constrains the replanning frequency of the planning system and affects the length of 
internal work order lead times. Planned lead times in an MRP system are always a 
multiple of the length of the time bucket P. We would therefore expect determination 
of the time bucket length to have received much attention in literature. However, 
important and influential studies on understanding lead times in MRP systems - such 
as Kanet 1986, Karmarkar 1987, and Krajewski et al. 1987 - do not pay attention to 
the length of the time bucket at all. More recent studies by Matsuura et al. 1996, 
Portioli Staudacher 2000, Enns 2001, and Enns 2002 devote attention to the problem 
of setting MRP system design parameters. These studies consider the effect of time 
bucket size on lead time performance and on the costs of system operation. Several 
other papers have studied the effect of time bucket length variation on system 
performance, e.g. Luss 1989, Rees, Huang and Taylor 1989, Yang and Jacobs 1992, 
and Steele et al. 1995. These studies have shown that the length of a time bucket has a 
substantial effect on system performance. Many firms are aware of the benefits of 
time bucket length reduction and managers try to improve cycle times by reducing 
time buckets in the planning systems used (Burbidge 1996). Software developers for 
ERP systems have made it possible to exploit these benefits through the introduction 
of so-called ‘bucketless systems’. Behind the scenes, these systems still use discrete 
time units, but they allow various ordering intervals and make it easier to shorten the 
actual time bucket length that is used in operating the system. Setting the time bucket 
length is an important medium-term decision in planning system design. 

A design parameter that has received much more attention in literature on planning 
system design is the lot size, see e.g. Wemmerlöv 1979, Karmarkar 1987, 
Wemmerlöv 1989, Shtub 1990, and Yeung, Wong and Ma 1998. The lot sizes used 
within an MRP system are either static or dynamic. Dynamic lot sizes cover demand 
during one or more time buckets. The minimum number of periods a lot size has to 
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cover demand is one, in which case it is denoted as Lot for Lot ordering. The size of 
the lot may therefore not be smaller than the demand for this product during one time 
bucket, as the time bucket sets the minimum time between ordering moments. This 
condition holds true both for dynamic and static lot sizes. Therefore, lot sizes in an 
MRP system depend on the time bucket length P.  

The size of the lot influences the amount of time necessary to produce the lot (see 
e.g. Kanet 1986). A decrease of the lot size results in a smaller production time and 
throughput time of the lot in the system. Lot size reduction can be obtained by 
decreasing the minimum time between ordering moments, the time bucket length P. 
Another way to shorten throughput times is by applying lot splitting. We define lot 
splitting as the division of the lot into nb subbatches that can be transferred to the next 
operation as soon as the former operation has been performed for all items in the 
subbatch. Lot splitting may have a substantial effect on the minimal required 
throughput time of the complete lot. Lot splitting affects the required number of 
stages N and hence the total amount of inventory in the system at a certain point in 
time.  

The popularity of lot splitting has grown in practice since the success of cellular 
manufacturing. Olorunniwo 1996 reports that 45.6% of the firms moving towards 
cellular manufacturing apply lot splitting. About 90% of these firms indicate that such 
a change in planning and controlling the system significantly contributes to their 
success. 

Several types of lot splitting have been described in the literature, for example, 
repetitive lots (Jacobs and Bragg 1988), overlapping operations (Graves and Kostreva 
1986), lot streaming (Baker and Pyke 1990), transfer lot sizes (Trietsch 1989) and 
powered nested batching policies (Muckstadt and Roundy 1993).  

A long-standing debate in this literature concerns the size of the subbatches. Size 
can be expressed either in the number of items in the subbatch or in the amount of 
time necessary to process the subbatch. Some authors (e.g., Veral 1995) focus on 
utilization of the equipment and argue that the number of items in the subbatches may 
change between operations if such a change helps maintain a constant amount of time 
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necessary for the subbatch at the operations. Others (e.g., Muckstadt and Roundy 
1993) use consistent subbatches but allow different subbatch combinations at the 
various operations.  

A related point of discussion is the effectiveness of unequally sized subbatches. 
Some authors (e.g., Kropp and Smunt 1990) argue that the logistical complexity of 
various subbatches in the system should be avoided as much as possible. Usage of 
unequally sized subbatches for the products in the system decreases the transparency 
of the planning system. Other authors are more positive. Bogaschewsky, Buscher and 
Lindner 2001 state that for geometrically changing subbatch sizes at subsequent 
operations, total costs may be slightly lower. An important study by Baker and Pyke 
1990 states that the advantage of unequally sized subbatches for flow time 
performance is only marginal (on average 4.6% reduction of make span in their test 
cases). They conclude that decision makers should trade off the complexity increase 
of unequally sized subbatches with these small savings. 

However, in drawing these conclusions concerning the effectiveness of equally 
sized subbatches, the length of the time bucket has not been considered as an 
experimental design factor. In situations where managers reduce time buckets, they 
have also to decide on the appropriateness of the lot splitting approach used. Our 
study supports this decision and examines the effectiveness and appropriateness of an 
equal number of subbatches approach if time bucket length varies.  

We expect that the effectiveness and near optimality of a strategy involving an 
equal number of subbatches depends on the length of the time bucket in the planning 
system and on the type of equal subbatch strategy applied. The objective of this study 
is therefore to explore the effect of time bucket size on the use of an equal subbatch 
strategy. We know that the length of the time bucket affects the total lot size and the 
amount of material transfers per year. An increase in the number of subbatches nb 
increases the number of material transfers within a time bucket P. This leads to larger 
transfer costs and possibly smaller holding costs. Therefore, a cost perspective will be 
useful when analysing the effectiveness of an equal number of subbatches strategy. 
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This paper is organised into six sections. Section 2 specifies the type of planning 
system explored and provides a mathematical model for the relations between the 
design parameters of this planning system. It develops an enumerative search 
heuristic for finding a variable subbatch solution. Section 3 presents the experimental 
design for evaluating several equal subbatch strategies, using a simulation approach. 
Section 4 presents the performance of the equal subbatch strategies for successive 
values of the time bucket length. Section 5 presents our conclusions. 

2 MODELLING THE PLANNING SYSTEM 

The planning system studied in this paper may be characterized according to two 
basic principles. First, for all products and parts this system uses an identical amount 
of time between two order releases (the reorder interval), which equals one time 
bucket P. Second, it is a lot for lot ordering system, i.e., the amount ordered equals 
the demand during the next period of length P. Lots consist of one type of end 
product; hence, the total throughput time of a lot equals the total throughput time of 
the products contained in this lot.  

The number of stages N in the planning system is determined by the number of 
periods of length P a lot remains in the production system in various levels of 
completion. The throughput time of the system is the product of N and P. The basic 
idea is to determine the effect of time bucket length P, number of stages N, and 
number of subbatches nbhi on three relevant cost factors: holding costs HCh in the 
system, ordering or set-up costs SChi, and transfer costs TChi. 

The number of stages N is a function of P and nbhi. These factors directly influence 
the total throughput time TTh needed for a batch qh of product h. We assume for 
simplicity that the operations have to be performed in sequence (a linear product 
structure), so we can use as a lowerbound for TTh : 

1 1
max

h h
n n

h
h hi hi h hti t i hi

qTT s p q p
nb= = +

 +     ≥ + ⋅ + ⋅∑         

 (1) 
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with shi being the set-up time and phi the unit processing time for operation i of 
product h (i=1..nh). The number of stages N is an integer. We assume that the 
planning system uses N stages for all products h.  

Formula (1) models a variable subbatch strategy, as it allows variation of the 
number and size of the subbatches between operations i and i+1.  

An equal subbatch strategy uses the same number of subbatches for any operation. 
It can be modelled using an extra constraint with respect to nbhi, as shown in Formula 
(2) and (3). Equal subbatch strategies of type A use the same number of subbatches 
for all products h. Type B strategies allow the number of subbatches per product to 
vary, but use the same number of subbatches for all operations of a product.  

1 , 1hi hinb nb h i−= ∀ >  (equal subbatch strategy type A) (2) 

11 >∀= − inbnb hihi  (equal subbatch strategy type B) (3) 

Holding costs are incurred from the moment that the required raw material is 
introduced into the system until the moment the finished product leaves the system. 
We assume that all required material is introduced during the first stage of the 
planning system. On average, the raw material will be introduced halfway through the 
first production stage and the final product will be sold or delivered halfway through 
stage N+1. The material worked into a lot qh is therefore, on average, N stages of 
length P present in the system, irrespective of the actual progress in making the 
product. The average total inventory in the system is then ∑h N·qh= N·P·∑h Dh. 
Holding one item of product h in stock during a standard time unit costs HCh, so the 
total cost of holding this inventory during a standard time unit is N·P·∑h HCh ·Dh. 

The second cost factor is costs that will be involved every time a new cycle starts 
irrespective of the number of subbatches or the length of the time bucket. Examples 
of these costs are ordering and set-up costs. The number of cycles is 1/P per standard 
time unit. The set-up costs for an operation are the product of the set-up time for this 
operation shi and its set-up costs per standard time unit SChi. Each operation i of 
product h is performed once per cycle, unless the lot size in one of the cycles is zero. 
We therefore sum up the set-up times for all nh operations of product h. The total set-
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up costs per cycle of length P are ∑h=1..H ∑i=1..nh shi · SChi. Total set-up costs per 
standard time unit can be obtained through dividing this by the length of P. 

Finally, we consider the costs of transferring subbatches to the next operation. 
These costs depend on the number of subbatches of a product h: nbh. TChi reflects the 
cost of transportation and administration effort required at the successive operations. 
If the lot of product h is split at operation i into several subbatches (nbhi>1), the total 
transfer costs increase. The transfer costs TChi may vary per product and operation. 
We assume that the transfer cost is linear with respect to the number of subbatches. 
Therefore, the transfer costs per standard time unit are [∑h=1..H ∑i=1..nh nbhi · TChi] / P. 

We obtain the following non-linear model for finding P and a variable subbatch 
strategy:  

{ }
{ }

1 1

, 1.. 1

h

hi h

nH

hi hi hi hiH
h i

h h
P, nb (h=1..H i n ) h
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=

=
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⋅ ⋅ ⋅∑ =
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 (4) 

=1
 max with as defined in Formula

H
h

hh

TTs.t. N TT
P

+
 ≥   

(1) (5) 

The model searches for the optimal combination of a time bucket length P and a 
variable subbatch strategy nbhi with respect to the sum of holding costs, set-up costs, 
and costs for the transfer of subbatches between operations. The model gives us 
insight into the combined effect of time bucket size and splitting a lot into nbhi 
subbatches. However, no solution methods are available to optimally solve this model 
within polynomial time.  

We can solve a simplified model that fixes P and tries to find a suitable 
subbatching strategy at this time bucket length. Repeatedly applying this model for 
successive values of P will yield an idea of the cost curves as a function of the time 
bucket length P. For fixed P, the problem of finding a suitable subbatching strategy 
can be reformulated as: 
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For this problem, we determine the cost of various subbatch strategies at 
succeeding values of the time bucket length P. We develop an approximate solution 
approach to find a variable number of subbatches strategy and evaluate the effect of 
equal versus varying numbers of subbatches at different time bucket sizes.  

2.1 Finding a variable subbatch solution 

Graves and Kostreva (1986) discuss the problem of finding a suitable number of 
subbatches in a two-machine flow shop with equal processing times p and suggest a 
value equal to  

( )
1

* *
2

i

h ht ht
h t i

h h
hi h
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+

=
⋅ ⋅ ⋅
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∑
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A rounding procedure is proposed in order to find an integer valued number of 
subbatches for the batch of size Q*. For the case of more than two operations, unequal 
processing times phi and fixed period length P, nbhi has to reflect the number of 
subbatches per period of length P. We therefore transform the function to: 

[ ]1
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2
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( is thesmallest integer )

h
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HC
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nb if nb nb nb nb nb

+= ⋅ ⋅ ⋅

= ⋅ ≥ ≤          
= ⋅ < ≥          

%

% % % % %

% % % % %

 (8) 

The reduction in throughput time due to the increase of the number of subbatches at 
operation i is a function of the minimum of the processing times at operations i and 
i+1:  
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  (9) 

We therefore propose to use the minimum of both processing times in Formula (8). 
Note that Formula (8) does not explicitly model the effect of throughput time 
reduction. Furthermore, it does not consider the interdependency between the 
decisions on the number of subbatches at the various operations. For the cost structure 
of our model, both factors have a strong impact. However, no solution approaches are 
known that solve this problem within polynomial time. We develop a heuristic that 
takes the effect of an increase in the number of subbatches at an operation on the 
expected throughput time into account.  

2.2 Enumerative search heuristic 
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Figure 1 Discontinuous total cost curve for fixed P 
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The enumerative search heuristic tries to find the most cost effective variable 
batching strategy for a specific value of the time bucket length P. This batching 
strategy has to balance transfer costs (nbhi) and holding costs (N). It takes into account 
that the actual total cost curve is discontinuous, as illustrated in Figure 1. Measures to 
increase the number of subbatches do therefore not directly pay off in a reduction of 
system throughput time, as would have been the case if the total cost curve had been 
continuous. Throughput time reduction is only achieved if the number of stages N 
decreases. If the associated holding cost reduction is still worthwhile depends on the 
increase in transfer costs necessary to achieve the throughput time reduction. The law 
of diminishing marginal returns holds here, illustrated by the shape of the total cost 
curve. The intersection of the minimum cost slope curve and the discontinuous total 
cost curve gives us the optimal balance between holding costs and transfer costs. 
Total costs can be read from the point where this minimum cost slope curve intersects 
with one of the axes.  

The enumerative search heuristic subsequently evaluates suitable variable batching 
strategies for decreasing values of N. The heuristic begins with an initial (large) 
number of stages N, and a subbatch strategy in which all products have only one 
subbatch (nbhi=1). The heuristic directs its attention to finding breakpoints in the cost 
curve - a function of N and nbhi - compares the solutions for these breakpoints, and 
selects the batching strategy that results in the lowest total cost. The heuristic 
considers an increase in the number of subbatches per operation up to a user defined 
maximum number of subbatches at an operation. The decision to increase the number 
of subbatches at an operation is based on information related to the breakpoints’ 
locations and the estimated reduction in the total throughput time. We use the 
lowerbound of Formula (9) for estimating this reduction. All products for which the 
throughput times have to be shortened are considered. The increase in the number of 
subbatches for an operation causes extra transfer costs, but a throughput time 
reduction will eventually reduce holding costs. The ratio between the two cost 
changes, Costhi, drives the selection of a suitable batching strategy. For Costhi, we use 
a ratio of holding costs and transfer costs similar to the one used in Formula (8). 
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This enumerative search heuristic has been compared with the result of Formula (8) 

(Graves and Kostreva modified) for finding a variable subbatch strategy. The 
enumerative search heuristic outperformed Formula (8) in 89.4% of the cases, while 
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in only 2% of the cases the modified Graves and Kostreva formula performed better. 
If the enumerative heuristic was better, the average cost difference was 5.3%. If it 
performed worse, cost difference was only marginal (less than 1%). We therefore use 
the result of the enumerative search heuristic when evaluating the effect of equal 
versus varying numbers of subbatches at different time bucket sizes.  

2.3 Discontinuous total cost curve as a function of P 
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Figure 2 Partial and total cost curves as a function of P 

This subsection discusses the cost behaviour for successive values of the time bucket 
length. Total costs are a function of P as shown in Formula (4). The contribution of 
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set-up and transfer costs to the total costs diminishes if P increases. This is a rather 
familiar pattern, well known from inventory research (see e.g. Silver et al. 1998). The 
reason is that the number of set-ups and transfers are a linear function of the number 
of cycles per year, and this number is inversely proportional to the length of the time 
bucket.  

Holding costs show a less familiar pattern. Usually, holding costs are a linear 
function of the batch size and hence of P as qh=P·Dh. However, holding costs also 
depend on the total time TTh these units stay in the system. If P increases, possibly 
less stages are needed to cover the total throughput time of the batch. If a reduction in 
the number of stages occurs, this reduces the amount of items in the system and hence 
the holding costs. A tendency exists to require a lower number of stages for 
increasing values of P. Each reduction in the number of stages causes a breakpoint in 
the holding costs and total costs curves. 

Figure 2 illustrates the various partial cost curves as well as the total cost curve as a 
function of P. We used the same number of subbatches for all values of P. Hence, the 
discontinuity of the holding cost curve is not caused by changes in the number of 
subbatches. It can only be addressed to changes in P. 

From our analysis we expect that the length of the time bucket P has a strong effect 
on the total cost of a subbatch policy. IF P changes, a different number of stages may 
be required. Accordingly, a different number of subbatches may be appropriate. The 
decision on the number of subbatches is strongly interrelated with the choice of the 
time bucket length. Both choices have direct consequences for the required number of 
stages and resulting total costs. We should therefore examine the performance of 
subbatch strategies for various values of the time bucket length. 

3 EXPERIMENTAL DESIGN 

In order to investigate the cost differences between several types of equal subbatch 
strategies and a variable subbatch policy as a function of the time bucket length, a 
simulation study has been performed. The problem set contained 40 randomly 
generated problems for which several subbatch strategies have been evaluated at 80 
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different time bucket lengths. A problem consisted of three product types with each 
12 operations that had to be performed successively. We used a fixed demand rate 
that remained constant over the experiments. We assumed that each operation had to 
be performed at a different machine, because scarce capacity was not an issue in our 
study. The time needed at an operation was therefore influenced only by the randomly 
generated set-up and processing time, the time bucket length (affecting qh), and the 
subbatch policy applied. Operation processing and set-up times were normally 
distributed with mean as described in Table 1 and standard deviation equal to 1/3 of 
its mean.  

Table 1 Set-up and processing time data used in experiments (years) 

Operation 
number 

 Set-up time
Process time 

product 1 
Process time 

product 2 
Process time 

product 3 
1 Mean 0.00125 0.00025 0.00020 0.00060 
2  0.00225 0.00025 0.00025 0.00025 
3  0.00050 0.00030 0.00030 0.00030 
4  0.00050 0.00025 0.00025 0.00025 
5  0.00200 0.00030 0.00025 0.00030 
6  0.00000 0.00025 0.00025 0.00025 
7  0.00000 0.00050 0.00050 0.00050 
8  0.00100 0.00060 0.00075 0.00060 
9  0.00050 0.00030 0.00030 0.00030 

10  0.00100 0.00075 0.00075 0.00075 
11  0.00100 0.00060 0.00060 0.00060 
12  0.00000 0.00050 0.00050 0.00050 

 Sum 0.01 0.00485 0.00490 0.00520 

Table 2 gives details on the experimental design settings. Product 2 has a higher 
demand but a smaller mean processing time than product 3. It therefore depends on 
the randomly generated set-up and processing times and on the actual length of the 
time bucket which product will have the longest throughput time. 
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Table 2 Experimental design data 

Demand (year) Time bucket Costs 

Product 
1 

1000 Minimum value 
(year) 

0.001 Costs for holding one unit for 
one year  

2.88 

Product 
2 

1500 Step value (year) 0.001 Set-up costs per operation 720 

Product 
3 

1250 Number of steps 80 Costs per transfer of a subbatch 0.20833 

3.1 Types of equal subbatch strategies 

The first equal subbatch policies that we consider do not consider the effect of 
changes in the time bucket size. No matter what time bucket length, the same number 
of subbatches is used. These policies are denoted by AI-nb=1, AI-nb=2, AI-nb=3 and 
AI-nb=4, indicating the number of subbatches that are used. These strategies are of 
type A, indicating that they use the same number of subbatches for all products, 
resulting in a batching policy that is very transparent and easy to use. However, type 
A policies may result in unnecessary high costs, as they do not distinguish between 
products for which throughput time reduction should or should not be realised 
through lot splitting. Type B policies consider equal subbatches that differ per 
product. 

Second, an intuitively attractive strategy is introduced that considers the effect of 
time bucket size. It uses at the specified time bucket size the equal subbatch strategy 
that performs on average best. We denote the strategy as AII-MinAvg. The results of 
the AI strategies for all randomly generated problems were used to determine the on 
average best policy at a specific time bucket length. This policy presumes the 
existence of knowledge on what is in general optimal at a specific time bucket length, 
independent of the characteristics of the product to be made. Example of such 
knowledge is to use no more than two subbatches if the time bucket length is less than 
a week. Equal subbatch strategies like this are very often applied in practice. 
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Table 3 Subbatch strategies 

Subbatch Strategy 
Time bucket 
dependent 

Problem 
dependent 

Identical per 
product (A/B) 

Identical per 
operation 

AI-nb=x 
(x=1,2,3,4) 

No 
No 

(standard) 
Yes (A) Yes    (Equal) 

AII-MinAvg Yes 
No 

(average) 
Yes (A) Yes    (Equal) 

AII-AlmostMin Yes 
No 

(average) 
Yes (A) Yes    (Equal) 

AIII-Min Yes Yes Yes (A) Yes    (Equal) 

BIII-OptEqual Yes Yes No  (B)  Yes    (Equal) 

Variable Subbatch Yes Yes No  (B) No (Variable) 

The inherent danger of the above mentioned strategy is that unnoticed the wrong 
equal subbatch strategy is used. In practice, this may be caused when changes in 
product characteristics or time bucket length occur without reconsidering the 
subbatch strategy used. This results in cost differences, which we measure by 
considering the use of the on average second best equal subbatch strategy AII-
AlmostMin. 

The third type of equal subbatch strategy searches the appropriate number of 
subbatches dependent on the product characteristics. For each problem situation, 
instead of a general policy a specific equal batching strategy is being determined and 
applied to problems that belong to this category. We denote the results of this equal 
subbatch strategy as type III results. Two variants are distinguished: AIII-Min and 
BIII-OptEqual. AIII-Min uses the same number of subbatches for all products, while 
BIII-OptEqual allows the number of subbatches per product to vary.  

Note that a variable subbatch policy allows variation between the operations of the 
same product, contrary to BIII-OptEqual. An optimal variable subbatch policy will 
lead to the lowest cost solution possible. Unfortunately, such a solution is both 
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difficult and time-consuming to find, and we need to use a heuristic procedure to find 
an approximation of that solution. The enumerative search heuristic that we 
developed in order to find this approximation gives us a lowerbound on the cost 
increase if an equal subbatch strategy is used. We used it to obtain variable subbatch 
solutions for successive values of the time bucket length. 

4 RESULTS 

First, the performance of the four equal subbatch strategies AI-nb=1, AI-nb=2, .., AI-
nb=4 was compared with the solution found with the heuristic for the problems 
generated.  

Figure 3 and Table 4 show for all four equal subbatch strategies of type AI, at each 
time bucket size, the average distance to the cost of the variable subbatch strategy. 
For very small lengths of the time bucket (< 0.005 year) there is no difference in the 
effect of equal and variable subbatch strategies. This is not surprising, as the batch 
size in such a short time bucket is also very small and often cannot be split. The 
difference begins increasing at a time bucket length of 0.007 years. The variable 
subbatch strategy increases the number of subbatches at certain operations, which 
results in less costs than obtained when applying an equal subbatch strategy with 
nbhi=1. The cost difference can only be attained by reducing the number of stages 
(total throughput time), as a consequence of the increased number of subbatches at 
these operations. Applying this increased number of subbatches for all operations 
(nbhi=2) results in large cost differences (10-25%) for these small time bucket lengths. 
Hence, the flexibility of a variable subbatch strategy at small time bucket sizes pays.  
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Sensitivity of performance equal subbatch 
strategies for change in time bucket size
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Figure 3 Cost effectiveness of equal subbatch strategies independent of P 

For time bucket sizes of almost a week (P=0.015 year), lot splitting becomes for these 
products almost necessary in order to avoid huge cost differences. The use of an equal 
subbatch strategy of nbhi=2, instead of a variable subbatch strategy, results in a cost 
difference of between 5 and 10%. For P=0.025 and larger, three equal subbatches 
result in still higher cost differences (>10%). However, if no change were made 
towards an increase in the number of subbatches (nbhi still equal to 2), the cost 
difference would increase much faster. For large time bucket lengths, the cost 
differences with an equal subbatch strategy of nbhi=4 tend to decrease. The variable 
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subbatch policies at these high time bucket lengths do not change anymore, but the 
relative contribution of the transfer costs to the total costs steadily decreases. 

Table 4 Sensitivity of equal subbatch strategies AI to time bucket size 

  AI-nb=1 AI-nb=2 AI-nb=3 AI-nb=4 
From-

P -To Mean St.Dev Mean St.Dev Mean St.Dev Mean St.Dev 
0.001 0.005 0.02% 0.05% 23.87% 1.90% 48.44% 3.23% 73.26% 4.68% 
0.006 0.010 0.88% 0.94% 16.75% 2.54% 36.35% 4.40% 57.48% 6.08% 
0.011 0.015 4.67% 2.68% 9.95% 2.33% 23.14% 3.78% 39.43% 5.46% 
0.016 0.020 12.85% 4.43% 6.88% 2.92% 14.92% 3.17% 26.64% 4.03% 
0.021 0.025 24.85% 6.32% 8.47% 4.11% 11.68% 3.39% 19.80% 3.85% 
0.026 0.030 37.94% 7.02% 12.28% 5.16% 10.72% 4.10% 16.29% 3.76% 
0.031 0.035 51.49% 6.98% 16.62% 6.11% 11.46% 5.50% 13.82% 3.14% 
0.036 0.040 62.51% 8.21% 19.49% 7.29% 11.32% 6.91% 11.87% 2.50% 
0.041 0.045 71.80% 8.95% 22.59% 8.29% 11.61% 7.94% 10.19% 2.06% 
0.046 0.050 80.82% 10.11% 25.58% 9.41% 12.41% 9.03% 8.76% 1.74% 
0.051 0.055 87.07% 11.31% 27.34% 10.27% 12.41% 9.86% 7.68% 1.44% 
0.056 0.060 93.10% 12.30% 29.15% 11.20% 12.64% 10.65% 6.73% 1.19% 
0.061 0.065 98.31% 13.35% 30.83% 12.00% 13.52% 11.31% 5.91% 1.02% 
0.066 0.070 102.54% 14.24% 32.38% 12.61% 13.34% 11.82% 5.23% 0.89% 
0.071 0.075 105.96% 15.05% 33.46% 13.26% 13.39% 12.30% 4.66% 0.76% 
0.076 0.080 108.93% 15.80% 34.30% 13.79% 13.73% 12.69% 4.21% 0.67% 

We conclude that the length of the time bucket has a strong impact on the 
performance of the distinct equal subbatching strategies. The use of equal subbatches 
independent of the time bucket length results in substantial cost differences and is not 
effective. 

We conclude further that the size of the cost difference with a variable subbatch 
strategy also depends on the length of the time bucket. 
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Table 5 Results of equal subbatch strategies dependent on time bucket size 

  AII-MinAvg AII-AlmostMin AIII-Min BIII-OptEqual 
From-P -To Mean St.Dev Mean St.Dev Mean St.Dev Mean St.Dev

0.001 0.005 0.02% 0.05% 23.87% 1.90% 0.02% 0.05% 0.02% 0.05%
0.006 0.010 0.88% 0.94% 16.75% 2.54% 0.88% 0.94% 0.87% 0.93%
0.011 0.015 4.67% 2.68% 9.95% 2.33% 4.63% 2.61% 3.27% 1.67%
0.016 0.020 6.88% 2.92% 11.81% 3.42% 6.74% 2.85% 3.28% 2.23%
0.021 0.025 8.47% 4.11% 11.68% 3.39% 8.14% 3.78% 3.34% 1.97%
0.026 0.030 10.72% 4.10% 12.28% 5.16% 9.51% 3.77% 3.23% 2.06%
0.031 0.035 11.46% 5.50% 13.82% 3.14% 8.76% 3.21% 2.95% 1.85%
0.036 0.040 10.94% 6.03% 12.25% 4.11% 7.49% 2.95% 2.29% 1.62%
0.041 0.045 10.19% 2.06% 11.61% 7.94% 6.50% 2.53% 2.05% 1.34%
0.046 0.050 8.76% 1.74% 12.41% 9.03% 5.75% 2.26% 1.72% 1.18%
0.051 0.055 7.68% 1.44% 12.41% 9.86% 4.99% 1.96% 1.53% 1.04%
0.056 0.060 6.73% 1.19% 12.64% 10.65% 4.39% 1.78% 1.35% 0.89%
0.061 0.065 5.91% 1.02% 13.52% 11.31% 3.96% 1.55% 1.23% 0.81%
0.066 0.070 5.23% 0.89% 13.34% 11.82% 3.46% 1.38% 1.06% 0.69%
0.071 0.075 4.66% 0.76% 13.39% 12.30% 3.07% 1.23% 0.96% 0.62%
0.076 0.080 4.21% 0.67% 13.73% 12.69% 2.80% 1.13% 0.85% 0.56%

The sensitivity to time bucket size changes does also occur for AII type policies. The 
mean and standard deviation of the distance of the AII-MinAvg solution to the best 
solution found is shown in the first column of Table 5. Changes in the number of 
subbatches took place at 0.015, 0.025, and 0.045 years. The results show clearly that 
the mean cost difference is not constant over a broad range of time bucket sizes. The 
average cost difference varies between 4 and 11%. Note also that variation increases 
if the average cost distance is higher. The largest cost difference we found in our 
experiments was 22%.  

If product characteristics or time bucket have changed without notice, the chance 
exists that the ‘wrong’ equal subbatch strategy is being used. The strategy AII-
AlmostMin indicates the cost of not using the best equal subbatch strategy. Table 5 
shows that the cost difference with the best variable subbatch solution is generally 
around 12%, but is much higher for very small time bucket lengths (< P=0.010). The 
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average cost difference does not fluctuate strongly with P, but its standard deviation 
does increase as a function of P. For specific product configurations, AII-AlmostMin 
proved to be more cost effective than the AII-MinAvg policy. Our experiments 
showed that the magnitude of the cost difference between the AII-MinAvg solution 
and the AII-AlmostMin solution was 34.85% in favour of the AII-AlmostMin 
solution (see Figure 4). Due to the fact that at very small time bucket sizes (P<0.03) 
AII-MinAvg almost always outperforms AII-AlmostMin, the 34.85% share will be 
realised in the mid and end range of time bucket sizes. Within this range, the inherent 
danger of applying AII-MinAvg is therefore substantial.  

Cost difference between AII-ALmostMin and AII-MinAvg
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Figure 4 Cost difference between AII-MinAvg and AII-AlmostMin strategies 

Finally, we performed an analysis using equal subbatch strategies that take product 
characteristics into account when they are used to determine the appropriate number 
of subbatches. We compared strategy AIII-Min with BIII-OptEqual. Note that B 
allows the number of subbatches per product to vary, which results in lower costs. 
Table 5 presents the results. Both strategies realise a significant cost difference in 
relation to the other equal subbatch strategies. If we compare AIII with AII-MinAvg, 
the cost difference is an average of approximatley 2%. The difference with BIII is 
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higher, more than 5.5%. Taking product characteristics into account results, therefore, 
in lower costs. However, note that the efforts to achieve such a solution are also 
higher. The cost advantage of varying the number of equal subbatches per product 
(strategy B instead of A) is substantial. The largest average cost difference with the 
best known solution is around 4%, with a mean of 2%. It also has a positive effect on 
the standard deviation of the cost difference with the best known solution, indicating 
that the results it produces are more stable. Compared to the efforts needed for 
obtaining a variable subbatch strategy, equal subbatch strategies that allow different 
numbers of subbatches per product seem to be a good alternative.  

5 CONCLUSION 

The length of the time bucket has an important effect on the performance of equal 
subbatch strategies. The effectiveness of using the same equal subbatch is highly 
sensitive with respect to an increase in the time bucket length. Hence, from a cost 
perspective, it would be inappropriate to use equal subbatch strategies that specify the 
number of subbatches independent of the time bucket length. 

If one changes to another equal subbatch strategy at appropriate lengths of the time 
bucket (i.e., equal subbatch strategies that depend on the time bucket length), large 
differences with a variable subbatch strategy can be avoided. In our experiments, 
changes at 0.015, 0.025 and 0.045 years were required for strategy AII-MinAvg. In 
that case, the average cost differences with the best solution found were still between 
4 and 11 %. The problem is to determine at what length of the time bucket a change 
in the number of subbatches should be considered. If the change takes place too late, 
cost differences grow rapidly, as shown through strategy AII-AlmostMin. Thus, the 
inherent danger of this intuitively attractive strategy is that product characteristics or 
time bucket may have changed, while consequences for the number of equal 
subbatches have not been considered. 

Equal subbatch strategies that take notice of the product characteristics at a specific 
time bucket size perform even better (on average 2.0%) than AII-MinAvg. We 
compared an equal subbatch strategy that used the same number of subbatches for all 
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products with a strategy that allowed this number to vary. The cost difference 
between both strategies was substantial, on average 3.8%. The average cost advantage 
of a variable subbatch strategy, which also allows the number of subbatches per 
operation to vary, is 2.1%.  

We obtained the variable subbatch solution using the heuristic search procedure, as 
described in Section 2.2. The presented cost difference is therefore a lowerbound for 
the cost difference with the unknown optimal solution. The heuristic outperformes the 
modified formula of Graves and Kostreva 1986 for finding a variable subbatch 
solution in almost 90% of the cases with an average cost difference of 4.7%. 

We conclude that determination of the number of subbatches should receive careful 
attention of senior operations management in relation to the decision on the time 
bucket length. The cost difference with a variable subbatch solution depends strongly 
on the characteristics of the equal subbatch strategy used. Scientific studies 
comparing the performance of equal versus variable subbatch strategies should 
clearly delineate the assumptions behind the evaluated strategies. The performance 
differences that we found between the various equal subbatch strategies make general 
conclusions on the effectiveness of equal subbatch strategies worthless. 

Summarizing our conclusion, our study reveals that: 

 Using the same equal number of subbatches for various time bucket lengths results 
in substantial cost inefficiencies. 
 Selecting the in general most cost effective equal subbatch strategy at a specific 

time bucket length interval still results in an average cost difference of between 4 
and 11%, as compared to the result of our variable subbatch search heuristic. 
 Equal subbatch strategies that determine the number of subbatches based on 

product characteristics and time bucket length perform 2.0% better, on average, 
than AII-MinAvg. 
 Equal subbatch strategies that allow the number of subbatches per product to vary 

are the most cost effective. Mean cost difference with the best solution known is 
only 2.1%. Cost improvements compared to equal subbatch strategies that use the 
same number of subbatches for all products were, on average, 3.8%. 
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