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1. Introduction.

Consider the instrumental variable estimation of a single linear relation based on a single
instrument. In that case functions of the instrument may also serve as instruments. A rather
nonparametric way of defining such instruments is to use group indicator functions that group
the observations based on the ordered values of the instrumental variable. The resulting model,
with dummy instruments, has been described in Bekker and Van der Ploeg (1994): B&VdP
in the sequel.

The model is closely related to various fields of recent econometric research, e.g. natural
experiments (Angrist, 1990) and pseudo-panels (Deaton, 1985). In case of homoscedasticity,
where the covariance matrices of the observations do not vary between groups, the model is
also known as the functional relationship model with replicated observations. The model can
also be represented as a simultaneous equations model where the parameters of interest are
given by the coefficients of a single equation.

B&VdP describe a variety of estimators for the coefficients of the model. They give asymptotic
distributions and confidence intervals based on alternative asymptotic parameter sequences,
where the number of instruments, or groups, is allowed to grow as the number of observations
increases. Both Bekker (1994) and B&VdP show these alternative asymptotic distributions to
be more accurate in their approximations to the finite sample distributions of the estimators
compared to large sample approximations. This increased accuracy was found even if the
number of instruments is small.

Such parameter sequences are sometimes referred to as large-K2 asymptotics, which have
been studied with respect to the simultaneous equations model and the functional relationship
model in Kunitomo (1980, 1981, 1982, 1986, 1987), Morimune and Kunitomo (1980), and
Fujikoshi, Morimune, Kunitomo and Taniguchi (1982). However, the number of overidenti-
fying instruments, K2, need not be large for the large-K2 asymptotics to be useful. Therefore,
we follow Angrist and Krueger (1995) and Angrist, Imbens and Krueger (1994), who refer to
such parameter sequences as group-asymptotics.

The main purpose of this paper is to derive efficiency bounds under group-asymptotics.
B&VdP considered the maximum likelihood (ML) estimator under normality, which was not
found to be asymptotically efficient relative to other consistent estimators considered in the
paper. On the other hand, such relative asymptotic efficiency was found for the homoscedastic
case, where LIML is the ML-estimator. This finding is in agreement with Anderson, Kunitomo
and Sawa (1982, p. 1025), where it is said that Kunitomo (1980, 1982) and Morimune and
Kunitomo (1980) have shown that LIML is efficient under group-asymptotics. A similar result
that applies to the case of a single explanatory endogenous variable can be found in Kunitomo
(1987, Theorem 3.1). However, by extending the class of estimators considered by Kunitomo
(1987), we show for the multivariate case that the LIML-estimator can be improved upon
using statistics that arise naturally. That is, LIML is not efficient under group-asymptotics.

The paper is organized as follows. Section 2 describes the model, the group-asymptotics,
and the asymptotic distribution of the statistics on which we base our class of estimators.
Section 3 describes a general approach to derive efficiency bounds that hold under a family
of asymptotic parameter sequences. This approach is applied in Section 4 to derive efficiency
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bounds for grouping estimators. In Section 5 we describe estimators that reach the efficiency
bounds. However, we expect these estimators to be of limited practical value compared
to some estimators given in B&VdP. Section 6 uses continuity arguments to indicate that
no uniformly continuously differentiable estimator can be efficient under all asymptotic
parameter sequences.
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2. The model, the group-asymptotics, and the statistics

The model we consider and its relation to the literature on instrumental variable estimation,
errors-in-variables models, natural experiments, and pseudo-panels has been described in
B&VdP. The same holds true for the asymptotic parameter sequences we consider. However,
there are some differences. In order to derive asymptotic efficiency bounds, we restrict our
analysis to normally distributed observations.

2.1 The model

Consider independent random samples taken from m different (g + 1)-dimensional normal
distributions whose expectations satisfy the same linear relation. Let the data consist of scalars
yi j and g-vectors xi j , i = 1, . . . , nj and j = 1, . . . , m. The vectors (yi j, x ′

i j )
′ = (yi j; xi j) are

independent with normal distributions indexed by j that satisfy E(yi j) = E(x ′
i j)δ, where δ is

the parameter vector of interest. Let E(xi j ) = πj , then

yi j = x ′
i jδ + εi j , i = 1, . . . , nj ,

xi j = πj + vi j , j = 1, . . . , m,
(1)

where (εi j; vi j ) has zero expectation and

Var {(εi j ; vi j )} = 6j =
[

σ 2
j σj12

σj21 6j22

]
.

For the identification of δ we need the restriction that (π1, . . . , πm) has rank g, which implies
m ≥ g.

As noticed by B&VdP, model (1) can be applied in the context of natural experiments (Angrist,
1990) and pseudo-panels (Deaton, 1985). In general, the model can be induced by a single
instrument. That is, if a random sample of vectors (yi, x ′

i , zi ) is taken from a population where
yi = x ′

iδ+εi and E(εi |zi ) = 0, then z is an instrument and functions of z are also instruments.
A rather nonparametric way of defining such functions is to order the observations, such that
the elements zi in the vector z are ordered, and to split up the vector z into m groups. The
indicator functions of the groups may thus serve as instruments, which amounts to model (1).

In order to formulate the model in reduced form, let the observations and disturbances of
the j-th group be stacked in the matrices (yj, Xj ) and (εj , Vj ), resp. Furthermore, let ιnj

be a
vector of nj ones, and let uj = εj + Vjδ (we simply drop the statement j = 1, . . . , m). Then
we have

Yj = (yj, Xj ) = ιnj
π ′

j (δ, Ig) + (uj , Vj ) (2)

The rows of (uj , Vj ) are independently normally distributed with zero mean and covariance
matrix

Var (ui j ; vi j ) = �j =
[

1 δ′

0 Ig

]
6j

[
1 0
δ Ig

]
.
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2.2 The group-asymptotics

Asymptotic distributions will be based on parameter sequences where the number of instru-
ments is allowed to grow as the number of observations increases. In Bekker (1994) and
B&VdP, the resulting approximations (to the finite sample distributions of estimators of δ)
were shown to be more accurate compared to large sample approximations, even if the number
of instruments in the actual sample is small.

Let the number of observations in the j th group be a fixed proportion, wj , of the total number
of observations: njn = wj n. As n → ∞, each group is split up into an increasing number of
kjn subgroups with fjn observations each. The njn = kjn fjn observations in the j -th group
are required to have the same covariance matrix �j . So the number of parameters in the m
matrices �j remains fixed. Thus we have a sequence of samples satisfying

Yj = Z jn A′
jn(δ, Ig) + (uj , Vj ), (3)

where Z jn = Ikj n
⊗ ι fj n

and the Ajn are (g × kjn) matrices.

In the actual sample we have njn = nj , kjn = 1 and Ajn = πj . For the asymptotic parameter
sequences we require, as n → ∞,

kjn

njn

→ αj

wj m
< 1,

Ajn Z ′
jn Z jn A′

jn

n jn

= Ajn A′
jn

kjn

→ 5j5
′
j ,

(4)

where 5j : g × rj , rj ≤ g.

If kjn = 1 is fixed then αj = 0, which corresponds to large sample asymptotics. If αj 6= 0,
then the total number of instruments grows with the total number of observations such that

∑m
j=1 kjn

n
→ ᾱ = 1

m

m∑
j=1

αj .

For an actual approximation we would use 5j = πj (cf. Bekker, 1994). However, to make
comparisons with the literature, we use formulation (4), where

∑m
j=1 wj5j 5

′
j is nonsingular

for identification purposes. The sequences (4) are slightly more general than those considered
by B&VdP, where αj = ᾱ and 5j = πj . On the other hand we assume normality in this paper.

2.3 The statistics

The statistics on which we base our class of estimators can be computed using group mean
vectors and group covariance matrices. Define the projection matrix PZj n

= Z jn(Z ′
jn Z jn)

−1 Z jn
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and let 1

S̄j = 1

n
Y ′

j PZj n
Yj

S⊥
j = 1

n
Y ′

j (Inj n
− PZj n

)Yj .

(5)

Notice the order of these matrices, (g + 1) × (g + 1), remains fixed in the sequence defined
by (4). We consider estimators of δ that are functions of

sj = (s̄j ; s⊥
j ) = ( vec (S̄j ); vec (S⊥

j )).

According to B&VdP we have

n1/2(sj − E(sj ))
A∼ N(0, lim

n→∞ n Var (sj )).

If we restrict our sequences to cases where the difference between the left-hand-sides of (4)
and their limits is of order o(n−1/2), we also have

n1/2(sj − ψj )
A∼ N(0, Vj ), (6)

where

ψj =
(

ψ̄j

ψ⊥
j

)
=

(
plim (s̄j )

plim (s⊥
j )

)
=

(
lim

n→∞ E(s̄j )

lim
n→∞ E(s⊥

j )

)
,

Vj =
[

V̄j 0
0 V⊥

j

]
=

[
lim

n→∞ n Var (s̄j ) 0

0 lim
n→∞ n Var (s⊥

j )

]
.

The block-diagonality of Vj is due to to the normality of the observations.

Using the properties of noncentral Wishart distributions (Muirhead, 1982, Problem 10.8;
Eaton, 1983, Theorem 8.13), we find

1 In the notation of B&VdP we have S̄j = Mj and S⊥
j = Nj − Mj .
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ψ̄j = vec {wj (δ, Ig)
′5j5

′
j (δ, Ig) + αj

m
�j}

= R′−1 vec {wj (0, Ig)
′5j5

′
j (0, Ig) + αj

m
6j },

ψ⊥
j = vec {(wj − αj

m
)�j}

= R′−1 vec {(wj − αj

m
)6j },

V̄j = H [�j ⊗ { αj

2m
�j + wj (δ, Ig)

′5j5
′
j (δ, Ig)}]H

= H R′−1[6j ⊗ { αj

2m
6j + wj (0, Ig)

′5j5
′
j (0, Ig)}]R−1 H,

V ⊥
j = H{�j ⊗ 1

2
(wj − αj

m
)�j}H

= H R′−1{6j ⊗ 1

2
(wj − αj

m
)6j }R−1 H,

with

R =
(

1 0
−δ Ig

)
⊗

(
1 0

−δ Ig

)
,

H = I(g+1)2 + K,

and K is the (g + 1)2 × (g + 1)2 permutation matrix, defined by K vec (M) = vec (M ′) for
any (g + 1) × (g + 1) matrix M . Notice that H and R commute: H R = RH .

Stacking all statistics, we define

s = (s1; . . . ; sm),

ψ = (ψ1; . . . ; ψm),

V =

 V1 0
. . .

0 Vm

 .

Due to the independency of the observations we find

n1/2(s − ψ)
A∼ N(0, V ). (7)
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The asymptotic distribution of s depends on the parameters of the model and on the particular
sequence that is followed. That is, the asymptotic distribution depends on the value of the
vector

α = (α1; . . . ; αm).

B&VdP considered αj = ᾱ and described functions of s as estimators of δ that are consistent
for any 0 ≤ ᾱ < wj m. The ML-estimator is one of them. It is asymptotically efficient under
large sample asymptotics: ᾱ = 0. However, for ᾱ > 0, it was not found to be asymptotically
efficient relative to the other estimators considered.

We also consider the homoscedastic case, where the matrices �j do not vary between groups.
In that case ML is given by the LIML-estimator, which is a function of the statistics

∑m
j=1 s⊥

j

and
∑m

j=1 s̄j . Under homoscedasticity, LIML is consistent for any 0 ≤ ᾱ < wj m and B&VdP
found it to be asymptotically efficient relative to the other estimators considered in that paper.
This finding is in agreement with statements made in the literature (Anderson, Kunitomo
and Sawa, 1982, p.1025) that say that LIML is both consistent and efficient under group
asymptotics. However, here we show that if α 6= 0, then LIML is not asymptotically efficient
within the class of estimators that are functions of s.
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3. A general approach

In order to describe efficiency bounds that hold under a variety of parameter sequences we
first give, in the first subsection, a brief discussion of the main idea of our approach. The
second subsection formally derives lower bounds that will be used in the next section to
derive efficiency bounds for grouping estimators, i.e. estimators of δ that are functions of s as
defined in Section 2.

3.1 A heuristic presentation of the main idea

We consider sequences of vectors of statistics s, of fixed order l, say, such that as n → ∞

n1/2(s − ψ(δ; τ))
A∼ N(0, V (δ, τ )). (8)

Here the probability limits ψ and the asymptotic covariance matrices V depend on a g × 1
parameter vector of interest δ and a vector of nuisance parameters τ1 contained in the h × 1
vector τ = (τ1; τ2). The vector τ2 indicates which sequence has been followed.

In order to derive an estimator δ̂(s) that is consistent and asymptotically efficient, under all
asymptotic parameter sequences indicated by τ2, we may treat the elements of τ2 as if they
were parameters just as the elements of δ and τ1. We can then use the same arguments that
lead to the consistency and asymptotic efficiency of the minimum chi-square estimator

(δ̂; τ̂ ) = arg min
(δ;τ)

(s − ψ(δ; τ))′ V̂ −1(s − ψ(δ; ψ)), (9)

where V̂ is an estimator of V that is consistent for all parameter sequences indicated by τ2. As
a result δ̂ will be consistent and asymptotically efficient for all parameter sequences indicated
by τ2.

An efficiency bound is now given by the asymptotic covariance matrix of n1/2δ̂:

(Ig, 0)(1′V−11)−1(Ig; 0), (10)

where 1 is an l × (g + h) matrix:

1 = (11,12) =
(

∂ψ

∂δ′ ,
∂ψ

∂τ ′

)
. (11)

However, the rather informally derived lower bound (10) becomes a very complicated function
of the parameters of the model when applied to grouping estimators. This makes it very
hard to give an analytical comparison between (10) and the asymptotic covariance matrices
of grouping estimators as described in B&VdP. The next subsection gives a more formal
derivation of another representation of the efficiency bound.

9



3.2 A general formulation of efficiency bounds

Let (δ; τ) ∈ 2, which is an open subset of Rg+h . Furthermore, let ψ : 2 → IRl be differen-
tiable. We assume the vector of statistics s has an asymptotic distribution as indicated in (8)
for any (δ; τ) ∈ 2. However, we do not assume V (δ; τ) to be nonsingular.

Consider the class of all differentiable consistent estimators f (s), so that plim f (s) = δ and
f (ψ(δ; τ)) = δ. Define the g × l matrix F as

F(δ; τ) = ∂ f (ψ)

∂ψ ′ . (12)

By the delta-method we find

n1/2( f (s) − δ)
A∼ N(0, FV F ′). (13)

In order to find an asymptotically efficient estimator within this class of differentiable consis-
tent estimators we notice that

∂ f

∂(δ′, τ ′)
= F1 = (Ig, 0), (14)

where 1 is defined in (11). A lower bound for FV F ′ can now be found using the following
algebraic theorem, where + denotes the Moore-Penrose inverse.

Theorem 3.1 Let F1 = F(11,12) = (Ig, 0) and V V +1 = 1, then FV F ′ ≥ VL, where

VL = (Ig, 0)(1′V+1)+(Ig; 0); (15)

this lower bound is reached for

F ′ = V +1(1′V+1)+(Ig; 0).

If, furthermore, U is a matrix of appropriate order such that

U ′12 = 0,

rank (11, V U,12) = rank (VU,12),

(16)

then

VL = (1′
1U(U ′V U)+U ′11)

−1. (17)

The proof is given in Appendix 1.
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In the next section, and Appendix 2, we will use the representation (17) to derive efficiency
bounds for grouping estimators.
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4. Efficiency bounds for grouping estimators

Returning to model (1) and the asymptotic distribution of the statistics s as given in (6) and
(7), let δ̂(s) be differentiable such that plim δ̂(s) = δ for all parameter sequences (4). That is,
δ̂(s) is consistent for all 0 ≤ αj < wj m.

In the following theorems we assume the matrices �j to be nonsingular. For such cases the

theorems give efficiency bounds, Avar {n1/2δ̂(s)} ≥ VL , under heteroscedasticity, where the
matrices �j vary between groups, and homoscedasticity, �j = �, resp. Let

φj = σj21/σj ,

where we drop the index j in case of homoscedasticity.

Theorem 4.1 Under heteroscedasticity, where the matrices �j are nonsingular, the effi-

ciency bound for differentiable consistent estimators δ̂(s) is given by

VL =
[

m∑
j=1

{
Aj (Aj + Bj )

+ Aj

}]−1

,

Aj = σ−2
j wj5j 5

′
j ,

Bj = σ−2
j wjαj

mwj − αj

(6j22 − φjφ
′
j ).

(18)

The proof is given in Appendix 2.
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Theorem 4.2 Under homoscedasticity, where �j = � is nonsingular, the efficiency bound

for differentiable consistent estimators δ̂(s) is given by

VL = σ 2(J ′ A(A + B)+ A J)−1,

J = ιm ⊗ Ig,

A =

 A1 0
. . .

0 Am

 , Aj = wj5j5
′
j ,

B = ( 1
m Diag (α) + 1

m2(1−ᾱ)
αα′) ⊗ (622 − φφ′).

(19)

The proof is given in Appendix 2.

Notice that the nonsingularity of �j implies the nonsingularity of both 6j and 6j22 − φjφ
′
j .

Consequently, if αj > 0 the Moore-Penrose inverses in Theorems 4.1 and 4.2 can be replaced
by regular inverses.

The lower bounds VL in Theorems 4.1 and 4.2 hold for estimators δ̂(s) that are consistent for
all 0 ≤ αj < wj m. However, if we restrict this set to subsets where either α = α0, or αj = ᾱ,
we do not find lowerbounds that are smaller than VL as given in theorems 4.1 and 4.2, i.e. the
lowerbounds remain valid in these cases. In particular, in case of large sample asymptotics,
where α = 0, we find under heteroscedasticity,

VL =
(

m∑
j=1

σ−2
j wj5j5

′
j

)−1

;

under homoscedasticity σ 2
j can be replaced by σ 2. Comparing these results with the asymptotic

covariance matrices of the ML-estimators, as described in B&VdP, we find the expected result
that these estimators are indeed efficient if α = 0.

However, if we consider parameter sequences where α 6= 0, we find a different result. Under
heteroscedasticity VL can be rewritten as follows. Let

J = ιm ⊗ Ig , A =

 A1 0
. . .

0 Am

 , B =

 B1 0
. . .

0 Bm

 ,
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then

VL = [J ′ A(A + B)+ A J].−1 (20)

Now consider the projection matrix

P = (A + B)1/2 J(J ′(A + B)J)−1 J ′(A + B)1/2.

We find

VL ≤ [J ′ A(A + B)+1/2 P(A + B)+1/2 A J]−1

= (J ′ A J)−1 J ′(A + B)J(J ′ A J)−1,

J ′ A J =
m∑

j=1

σ−2
j wj5j 5

′
j ,

J ′(A + B)J =
m∑

j=1

{
σ−2

j wj 5j5
′
j + σ−2

j wjαj

wj m − αj

(6j22 − φjφ
′
j )

}
.

(21)

For αj = ᾱ the right-hand-side of (21) is equal to the asymptotic covariance matrix of the
ML-estimator as given in B&VdP.

Under homoscedasticity we find, in a similar way,

VL ≤ σ 2(J ′ A J)−1 J ′(A + B)J(J ′ A J)−1,

J ′ A J =
m∑

j=1

wj5j5
′
j ,

J ′(A + B)J = (

m∑
j=1

wj5j5
′
j ) + ᾱ

1 − ᾱ
(622 − φφ′).

(22)

Now the right-hand-side of (22) is equal to the asymptotic covariance matrix of the LIML-
estimator as given in B&VdP.

So the ML-estimators do not reach the asymptotic efficiency bounds as given in Theorems 4.1
and 4.2. In particular for the homoscedastic case this result contradicts earlier statements made
in the literature (Anderson, Kunitomo and Sawa (1982, p. 1025) and Kunitomo (1987)), where
it is said that LIML is asymptotically efficient under group-asymptotics. The question is how
these earlier results relate to our result that says that ML is inefficient under group-asymptotics.

The problem is easily resolved. We consider the asymptotic performance of the LIML-
estimator relative to the estimators that are functions of the statistics s̄j and s⊥

j , j, . . . , m,
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whereas Kunitomo’s (1987) efficiency result holds only relative to estimators that are functions
of 6m

j=1s̄j and 6m
j=1s⊥

j . If we only consider this subset of estimators then, indeed, LIML is
efficient. That is, we may simply apply Theorem 4.2 with the number of groups m equal to one
and A1 = 6m

j=1wj5j 5
′
j . In that case the lower bound VL is equal to the asymptotic covariance

matrix of the LIML-estimator. However, if we consider the larger set of estimators based on s̄j

and s̄⊥
j , we find a smaller lower bound VL . In fact, in the next section we consider an estimator

that reaches this lower bound VL . So LIML is inefficient under group-asymptotics.
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5. Efficient grouping estimators

In section 3 we already indicated, (2), how an efficient estimator might be formulated. Here
we consider a more simple asymptotically efficient estimator. Let

a = (a1; . . . ; am), aj = (āj; a⊥
j ),

āj = S̄j (1; −δ) − αj

m
γj ,

a⊥
j = S⊥

j (1; −δ) − (wj − αj

m
)γj .

Then, for γj = �j (1; −δ), we find plim a = 0. Due to the asymptotic normality of s, (6) and
(7), we find

n1/2a
A∼ N(0, W),

W =

 W1 0
. . .

0 Wm

 , Wj =
[

W̄j 0
0 W⊥

j

]
,

W̄j = wjσ
2
j (δ, Ig)

′5j5
′
j (δ, Ig) + αj

m
(σ 2

j �j + �j

(
1

−δ

)(
1

−δ

)′
�j ),

W⊥
j = (wj − αj

m
)(σ 2

j �j + �j

(
1

−δ

)(
1

−δ

)′
�j),

where the expressions for W̄j and W⊥
j can be verified by Lemma 11.1 in B&VdP.

In the following theorems we again assume the matrices �j to be nonsingular. Furthermore,

we restrict the parameter sequences (4) to cases where αj > 0. In that case the matrices W̄j

and W⊥
j are invertible and we have the following result.

Theorem 5.1 Under heteroscedasticity, where the matrices �j are nonsingular, and for
parameter sequences with αj > 0, let γ = (γ1; . . . ; γm) and define

(δ̂; γ̂ ; α̂) = arg min
(δ;γ ;α)

a′(δ; γ ; α)Ŵ−1a(δ; γ ; α),

where Ŵ is a consistent estimator of W. Then

n1/2(δ̂ − δ)
A∼ N(0, VL),
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where VL is given in theorem 4.1.

The proof is given in Appendix 3.

Theorem 5.2 Under homoscedasticity, where �j = � is nonsingular, and for parameter
sequences where αj > 0, let γj = γ and define

(δ̂; γ̂ ; α̂) = arg min
(δ;γ ;α)

a′(δ; γ ; α)Ŵ−1a(δ; γ ; α),

where Ŵ is a consistent estimator of W. Then

n1/2(δ̂ − δ)
A∼ N(0, VL),

where VL is given in theorem 4.2.

The proof is given in Appendix 3.

The estimators defined in theorems 5.1 and 5.2 serve interesting theoretical purposes: they
reach the asymptotic efficiency bound VL . However, the assumptions that lead to the invert-
ibility of W are quite restrictive. If a matrix �j is singular, or αj = 0, the estimators are not
well-defined. If �j is close to singularity, or αj close to zero, the matrix W will be close to

singularity and the inversion Ŵ−1 may lead to all kinds of difficulties. No such difficulties
are encountered for the ML-estimators, which are consistent over the full parameter space.
However, they are efficient only for α = 0. The problem whether or not there exist estimators
that are asymptotically efficient over the full parameter space and for all sequences (4) with
0 ≤ αj < wj m is further discussed in the next section.
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6. Efficiency on the full parameter space

Consider estimators δ̂(s) that are consistent for δ over the full parameter space, without
excluding cases where �j is singular or αj = 0. Examples are given in B&VdP. If δ̂ is

a uniformly continuously differentiable function of s, δ̂ will have an asymptotic normal
distribution,

n1/2(δ̂ − δ)
A∼ N(0, V ),

where V is a continuous function in the interior of the parameter space and has a continuous
extension to the parameters (δ; π; ω; α), as defined in Appendix 2.

If δ̂ is efficient for points (δ; π; ω; α) in the interior of the parameter space, where �j is
nonsingular and αj > 0, then, according to theorems 4.1 and 4.2, V = VL for such interior
points. For both the homoscedastic case and the heteroscedastic case VL can be represented
(cf. (19) and (20)) for such interior points as

VL = (J ′ A(A + B)−1 A J)−1.

Due to the continuity of the inverse, this is, indeed, a continuous function of the parameter
points on the interior of the parameter space.

As V is a continuous function, we may derive from the equality V = VL , which holds on the
interior, the value of V on the boundary where B is singular: B = B∗, say. That is, we may
consider a path from the interior to the boundary such that B = B∗ + λC, with λ > 0, λ → 0
and C > 0. It follows from Lemma 6.1 in Appendix 4 that in that case

lim
λ→0

A(A + B∗ + λC)−1 A = A(A + B∗)+ A.

Consequently, if V is continuous and V = VL on the interior, then V should take the form

V = (J ′ A(A + B)+ A J)−1, (23)

on the full parameter space.

However, it follows from Lemma 6.2 in Appendix 4 that V as given in (23) is not a continuous
function of the elements of B, which is a contradiction, since V is continuous. Consequently,
there is no uniformly continuously differentiable consistent estimator of δ, based on the
statistics s, that is efficient under group asymptotics over the full parameter space.

On the other hand if we consider a single asymptotic parameter sequence where α = α0 6= 0,
say, then we find, as is shown in sections 4 and 5, that the sequence of ML estimators is not
Best Asymptotically Normal. Here the incidental parameters in the matrices Ajn , (3), do not
affect the consistency of ML, but instead affect its asymptotic efficiency.
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Appendix 1
Proof of Theorem 3.1

Projecting V 1/2 F ′ on V+1/21, we find

FV F ′ ≥ FV 1/2
(
V +1/21(1′V +1)+1′V +1/2

)
V 1/2 F ′

= (Ig, 0)(1′V +1)+(Ig; 0),

which is (15).

To prove (17) we notice that (16) implies the existence of matrices A and B such that

1 = (V U,12)

[
A 0
B Ih

]
,

and

1′V +1 = (A, 0)′U ′V U(A, 0) + (B, Ih)
′1′

2V +12(B, Ih).

As F1 = (Ig, 0), we have FV U A = Ig. So V 1/2U A must have full column rank and
A′U ′V U A must be nonsingular. Using general results on Schur-complements, as collected in
Ouellette (1981, theorem 4.6 (iii)), we find

VL = (A′U ′VU A)−1.

As U ′11 = U ′VU A, we find the result as given in (17). 2
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APPENDIX 2
Proof of theorems 4.1 and 4.2

First we proof the theorems for cases where αj > 0. Then, at the end of the proofs, it is
indicated that the same arguments can be used for cases where αj = ᾱ, or α = α0, in
particular αj = 0. For the regular cases, where αj > 0 and �j > 0, a vector x satisfies

x ′ V̄j = 0, or x ′V⊥
j = 0, if and only if x ′ H = 0. So the singularity of V is due only to the

symmetry of the statistics S̄j and S⊥
j . As a result we have V V +1 = H H+1 = 1, which we

need in order to apply Theorem 3.1.

We use the following notation:

1 = (
(111,112); . . . ; (1m1,1m2)

)
,

(1j1,1j2) =
[

1̄j1 1̄j2
1⊥

j1 1⊥
j2

]
=

(
∂(ψ̄j ; ψ⊥

j )

∂δ′ ,
∂(ψ̄j ; ψ⊥

j )

∂(π ′, ω′, α′)

)
,

π = vec (51; . . . ; 5m),

ω = vech (�),

α = (α1; . . . ; αm),

where vech (�) is a stacking of the diagonal and subdiagonal elements of �. We also use

T = ∂ vec (�)

∂ vech ′(�)
.

Notice that vec (�) = R′−1 vec (6).

In each proof we give the matrices 1j1 and 1j2, which were found by application of the

rules of differential matrix calculus (e.g. Balestra, 1976). Then matrices Uj = (Ūj ; U⊥
j ) are

given, which build the matrix U = (U1; . . . ; Um), such that U ′12 = ∑m
j=1 U ′

j1j2 = 0. Next

we give the matrices Vj Uj = (V̄j Ūj ; V⊥
j U⊥

j ) so that VU = (V1U1; . . . ; VmUm). Finally, we
show that if a vector x satisfies both x ′V U = 0 and x ′12 = 0, it also satisfies x ′11 = 0. In
that case the matrix U satisfies condition (16) of Theorem 1 so that the asymptotic efficiency
bound is given by (17).

Proof of Theorem 4.1 We find

(A1) 1j1 =
(

1̄j1
1⊥

j1

)
=

(
wj H R′−1

(
e1 ⊗ ( 0

Ig

))
5j5

′
j

0

)
,
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where e1 is the first column of Ig+1;

(A2) 1j2 =
(

1̄j2
1⊥

j2

)
=

 wj e
′
j ⊗ [H R′−1

{( 0
Ig

)⊗ ( 0
Ig

)}
(5j ⊗ Ig)]

αj

m e′
j ⊗ T 1

m e′
j ⊗ vec (�j )

0 (wj − αj

m )e′
j ⊗ T − 1

m e′
j ⊗ vec (�j)

 ,

where ej is the j th column of Im . Now let

(A3) Uj =
(

Ūj

U⊥
j

)
=

[
e′

j
αj e′

j

αj −mwj

]
⊗

[
H R{e1 ⊗

[ −σj 12

σ 2
j

Ig

]
}
]

.

It can be easily verified that U ′12 = 0. Furthermore, we find

V̄j Ūj = e′
j ⊗

[
2H R′−1{6j e1 ⊗

(
0

Ig

)
}(αj

m
(6j22 − φjφ

′
j ) + wj5j5

′
j )

]
,

V ⊥
j U⊥

j = αj e
′
j

αj − mwj

⊗
[
2(wj − αj

m
)H R′−1{6j e1 ⊗

(
0

Ig

)
}(6j22 − φjφ

′
j )

]
.

Consider vectors x = (x1; . . . ; xm), xj = (x̄j ; x⊥
j ), such that x ′12 = 0 and x ′V U = 0. We

will prove that x also satisfies x ′11 = 0. For cases where x̄j and x⊥
j are vectorizations of

skew-symmetric matrices, so that x̄ ′
j H = x⊥′

j H = 0, the proof is trivial. As any square matrix
can be written as a sum of a symmetric and a skew-symmetric matrix, we only need consider
cases where x̄j and x⊥

j are vectorizations of symmetric matrices. Let

(A4)

x̄j = R vec
[

aj b′
j

bj Cj

]
,

x⊥
j = R vec

[
ãj b̃′

j

b̃j C̃j

]
,

where Cj and C̃j are symmetric g × g matrices. As x ′12 = 0 implies
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x̄ ′
j H R′−1

{(
0

Ig

)
⊗

(
0

Ig

)}
(5j ⊗ Ig) = 0,

(
αj

m
x̄ ′

j + (wj − αj

m
)x⊥′

j )T = 0,

we find

(A5)
Cj5j = 0,

αj

m

[
aj b′

j

bj Cj

]
+ (wj − αj

m
)

[
ãj b̃′

j

b̃j C̃j

]
= 0.

For the implications of x ′VU = 0 we consider

x̄ ′
j V̄j Ūj = e′

j ⊗ 4(σ 2
j b′

j + σj12Cj )(
αj

m
(6j22 − φjφ

′
j ) + wj5j5

′
j ),

x⊥′
j V ⊥

j U⊥
j = αj e

′
j

αj − mwj

⊗ 4(wj − αj

m
)(σ 2

j b̃′
j + σj12C̃j )(6j22 − φjφ

′
j ).

So,

x ′V U(ei ⊗ Ig) = (

m∑
j=1

x ′
j Vj Uj )(ei ⊗ Ig)

= 4(σ 2
i b′

i + σi12Ci )(
αi

m
(6i22 − φiφ

′
i) + wi5i5

′
i)+

4αi

αi − mwi

(wi − αi

m
)(σ 2

i b̃′
i + σi12C̃i )(6i22 − φiφ

′
i )

= 4σ 2
i wi b

′
i5i5

′
i + 4αi

m
(σ 2

i b′
i + σi12Ci )(6i22 − φiφ

′
i)−

4αi

αi − mwi

αi

m
(σ 2

i b′
i + σi12Ci )(6i22 − φiφ

′
i ),

where the latter equality is due to (A5). So, if x ′VU = 0, then
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x ′V U(ei ⊗ Ig)(σ
2
i bi + Ciσi21)

= 4σ 4
i wi b

′
i5i5

′
i bi +

4αi

m
(σ 2

i b′
i + σi12Ci )(6i22 − φiφ

′
i )(σ

2
i bi + Ciσi21) +

4α2
i

m(mwi − αi )
(σ 2

i b′
i + σi12Ci )(6i22 − φiφ

′
i)(σ

2
i bi + Ciσi21) = 0.

In the expressions above, the three terms are nonnegative so b′
i5i5

′
i bi = 0, which holds if

and only if b′
i5i = 0. As

x̄ ′
j1̄j1 = 2wj b

′
j5j5

′
j ,

we find, indeed, that x ′12 = 0 and x ′VU = 0 imply x ′11 = 0.

As a result the efficiency bound VL is given by (17), where the submatrices of 1 and U are
given in (A1) and (A3). This amounts to the bound (18) given in Theorem 4.1.

Notice that if αj = ᾱ, the last m columns of 12 reduce to a single column: ψ is differentiated
with respect to the scalar ᾱ. In that case both U and (A5) are not affected, so the proof is the
same; which also holds true if the vector α is fixed, α = α0, and ψ is not differentiated with
respect to α. One may verify that if αj = 0, the columns of 1 are still located in the space
spanned by the columns of V , so V V +1 = 1. 2

Proof of theorem 4.2 We find 1j1 equal to (A1) and

(A6)
1j2 =

 wj e
′
j ⊗ [H R′−1

{( 0
Ig

) ⊗ ( 0
Ig

)}
(5j ⊗ Ig)

αj

m T 1
m e′

j ⊗ vec (�)

0 (wj − αj

m )T − 1
m e′

j ⊗ vec (�)

 .

Let

(A7) Uj =
[

e′
j

α′
m(ᾱ−1)

]
⊗ [H R{e1 ⊗

[ −σ12
σ 2

Ig

]
}].

Then it can be easily verified that U ′12 = 0 and
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V̄j Ūj = e′
j ⊗

[
2H R′−1{6e1 ⊗

(
0

Ig

)
}(αj

m
(622 − φφ′) + wj5j5

′
j )

]
,

V ⊥
j U⊥

j = α′

m(ᾱ − 1)
⊗

[
2(wj − αj

m
)H R′−1{6e1 ⊗

(
0

Ig

)
}(622 − φφ′)

]
.

Define vectors x = (x1; . . . ; xm), xj = (x̄j ; x⊥
j ), analogous to (A4). Then x ′12 = 0 implies,

slightly different from (A5):

(A8)
Cj5j = 0,

m∑
j=1

{αj

m

[
aj b′

j

bj Cj

]
+ (wj − αj

m
)

[
ãj b̃′

j

b̃j C̃j

]}
= 0.

For the implications of x ′VU = 0 consider

x̄ ′
j V̄j Ūj = e′

j ⊗ 4(σ 2b′
j + σ12Cj )(

αj

m
(622 − φφ′) + wj5j5

′
j ),

x⊥′
j V ⊥

j U⊥
j = α′

m(ᾱ − 1)
⊗ 4(wj − αj

m
)(σ 2b̃′

j + σ12C̃j )(622 − φφ′).

So,

x ′V U(ei ⊗ Ig) = (

m∑
j=1

x ′
j Vj Uj )(ei ⊗ Ig)

= 4(σ 2b′
i + σ12Ci)(

αi

m
(622 − φφ′) + wi5i5

′
i )+

4αi

m(ᾱ − 1)

m∑
j=1

(wj − αj

m
)(σ 2b̃′

j + σ12C̃j )(622 − φφ′)

= 4σ 2wi b
′
i5i5

′
i + 4αi

m
(σ 2b′

i + σ12Ci )(622 − φφ′)−

4αi

m(ᾱ − 1)

m∑
j=1

αj

m
(σ 2b′

j + σ12Cj )(622 − φφ′),

where the latter equality follows from (A8). So, if x ′VU = 0, then
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m∑
i=1

x ′VU(ei ⊗ Ig)(σ
2bi + Ciσ21)

= 4σ 4
m∑

i=1

wi b
′
i5i5

′
i bi +

4
m∑

i=1

αi

m
(σ 2b′

i + σ12Ci )(622 − φφ′)(σ 2bi + Ciσ21) +

4

1 − ᾱ

m∑
i=1

m∑
j=1

αj

m
(σ 2b′

j + σ12Cj )(622 − φφ′)(σ 2bi + Ciσ21)
αi

m
= 0.

As all three terms are nonnegative, we find
∑m

i=1 b′
i5i5

′
i bi = 0, which implies b′

i5i = 0. As

x̄ ′
j1̄j1 = 2wj b

′
j5j5

′
j ,

we find that x ′12 = 0 and x ′V U = 0 imply x ′11 = 0. So VL is given by (17), where the
submatrices of 11 and U are given by (A1) and (A7), which amounts to the bound (19) given
in Theorem 4.2.

The remarks made at the end of the proof of Theorem 2 with respect to special cases where
αj = ᾱ, α = α0, or αj = 0, also apply in the homoscedastic case. 2
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Appendix 3
Proofs of Theorems 5.1 and 5.2

In both proofs we use the fact, known from minimum chi-square estimation,

n1/2
(
(δ̂; γ̂ ; α̂) − (δ; γ ; α)

)
A∼ N(0, (1′W−11)−1),

where γj = �j (1; −δ) and 1 = (11,12);

11 = plim

(
∂a

∂δ′

)
, 12 = plim

(
∂a

∂(γ ′, α′)

)
.

So the asymptotic distribution of n1/2δ̂ is given by

n1/2(δ̂ − δ)
A∼ N(0, (Ig, 0)(1′W−11)−1(Ig; 0) ).

Now let U be a matrix such that U ′12 = 0, U ′11 has full column rank and U ′WU is
nonsingular, then

1′W−11 ≥ 1′W−1/2(W1/2U(U ′WU)−1U ′W1/2)W−1/21

=
[

1′
1U(U ′WU)−1U ′11 0

0 0

]
.

Using results on the positive semi- definiteness of partitioned matrices (Bekker, 1988, Theorem
3), we find

(A9)
(Ig, 0)(1′W−11)−1(Ig; 0) ≤ (1′

1U(U ′WU)−1U ′11)
−1.

For both the hetero- and the homoscedastic case we give such matrices U for which the
right-hand-side of (A9) is equal to VL as given in Theorems 2 and 3, respectively. As VL is a
lower bound, it follows that (A9) is an equality, which proves Theorems 5.1 and 5.2.

proof of Theorem 5.1: We find
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(A10)

1j1 = plim

(
∂aj

∂δ′

)
=

[ −wj (δ, Ig)
′5j5

′
j − αj

m �j (0; Ig)

−(wj − αj

m )�j(0; Ig)

]
,

1j2 = plim

(
∂aj

∂(γ ′, α′)

)
=

[ −e′
j ⊗ αj

m Ig+1 −e′
j ⊗ 1

m γj

−e′
j ⊗ (wj − αj

m )Ig+1 e′
j ⊗ 1

m γj

]
.

Let U = (U1; . . . ; Um),

Uj =
[

e′
j

αj e′
j

αj −mwj

]
⊗ [ �−1

j (δ, Ig)
′ ],

then it can be easily verified that U ′12 = 0 and

(1′
1U(U ′WU)−1U ′11)

−1 = VL,

where VL equals (18) as given in Theorem 3.1. 2

Proof of Theorem 5.2: We find 1j1 equal to (A10), with �j replaced by �, and

1j2 =
[ − αj

m Ig+1 −e′
j ⊗ 1

m γ

−(wj − αj

m )Ig+1 e′
j ⊗ 1

m γ

]
.

Let U = (U1; . . . ; Um),

Uj =
[

e′
j

α′
m(ᾱ−1)

]
⊗ [ �−1(δ, Ig)

′ ],

then it can be easily verified, if γ = �(1; −δ), that U ′12 = 0 and

(1′
1U(U ′WU)−1U ′11)

−1 = VL,

where VL equals (19) as given in Theorem 3.2. 2
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Appendix 4

Lemma 6.1 Let A ≥ 0, C > 0, λ > 0, x = AA+x, then

lim
λ→0

x ′(A + λC)−1 x = x ′ A+x .

PROOF. As

[
x ′ A+x x ′

x A + λC

]
=

[
x ′ A+

I

]
A(A+x, I ) + λ

(
0

I

)
C(0, I ) ≥ 0,

we find (Bekker, 1988, Theorem 1) that

x ′(A + λC)−1x ≤ x ′ A+x .

As the left-hand-side is increasing as λ → 0, we find that its limit exists:

(A11) lim
λ→0

x ′(A + λC)−1 x = q ≤ x ′ A+x .

Furthermore

[
x ′(A + λC)−1x x ′

x A + λC

]
≥ 0.

So the limit of this matrix is positive semi-definite:

[
q x ′

x A

]
≥ 0.

Hence

(A12) q ≥ x ′ A+x .

Together (A11) and (A12) imply the result in Lemma 6.1. 2

For the application in Section 6 notice that if x = Ay, for some vector y, so that AA+x = x ,
and 0 ≤ A ≤ A + B∗, then also x = (A + B∗)(A + B∗)+x .
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Lemma 6.2 Let x and y be vectors such that rank (x, y) = 2. Let y → x, then

lim
y→x

x ′(xx ′ + yy ′)+x = 1 6= x ′(2xx ′)+x = 1/2.

PROOF. If rank (x, y) = 2, we find (Ouellette, 1981, Theorem 4.3)

rank
[

1 x ′

x xx ′ + yy ′

]
=

rank (xx ′ + yy ′) + rank (1 − x ′(xx ′ + yy ′)+x) = 2.

So, x ′(xx ′ + yy ′)+x = 1, for any y 6= x 6= 0. 2
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