Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

EFFICIENCY BOUNDSFOR
INSTRUMENTAL VARIABLE ESTIMATORS

UNDER GROUP-ASYMPTOTICS

Jan van der Ploeg
and
Paul A. Bekker

Department of Economics
University of Groningen

May 1995

The paper derivesasymptotic efficiency boundsfor estimators of asinglelinear relation, based
on dummy instruments, under asymptotic parameter sequences where the number of instru-
ments is alowed to grow with the number of observations. We assume normality and show
that ML-estimators under homo- and heteroscedasticity, do not reach the efficiency bound. It
is shown that no uniformly continuously differentiable estimator can reach the bound for all
asymptotic parameter sequences considered.

KEYWORDS:Instrumental variable estimators, grouping estimators, natural experiments,
pseudo-panels, LIML, K,-asymptotics, group-asymptotics, alternative asymptotics, asymp-
totic efficiency.

We would like to thank Theo Dijkstra and Tom Wansheek for helpful comments. E-mail:
J.van.der.Ploeg@eco.rug.nl; PA.Bekker@eco.rug.nl


https://core.ac.uk/display/6909123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. I ntroduction.

Consider the instrumental variable estimation of a single linear relation based on a single
instrument. In that case functions of the instrument may also serve as instruments. A rather
nonparametric way of defining such instrumentsisto use group indicator functionsthat group
the observationsbased on the ordered val ues of theinstrumental variable. Theresulting model,
with dummy instruments, has been described in Bekker and Van der Ploeg (1994): B& VdP
in the sequel.

The model is closely related to various fields of recent econometric research, e.g. natural
experiments (Angrist, 1990) and pseudo-panels (Deaton, 1985). In case of homoscedasticity,
where the covariance matrices of the observations do not vary between groups, the model is
also known as the functional relationship model with replicated observations. The model can
also be represented as a simultaneous equations model where the parameters of interest are
given by the coefficients of asingle equation.

B& VdPdescribeavariety of estimatorsfor the coefficientsof themodel. They giveasymptotic
distributions and confidence intervals based on alternative asymptotic parameter sequences,
where the number of instruments, or groups, is allowed to grow asthe number of observations
increases. Both Bekker (1994) and B& V dP show these alternative asymptotic distributionsto
be more accurate in their approximations to the finite sample distributions of the estimators
compared to large sample approximations. This increased accuracy was found even if the
number of instrumentsis small.

Such parameter sequences are sometimes referred to as large-K,, asymptotics, which have
been studied with respect to the simultaneous equations model and the functional relationship
model in Kunitomo (1980, 1981, 1982, 1986, 1987), Morimune and Kunitomo (1980), and
Fujikoshi, Morimune, Kunitomo and Taniguchi (1982). However, the number of overidenti-
fying instruments, K, need not be large for the large-K, asymptoticsto be useful. Therefore,
wefollow Angrist and Krueger (1995) and Angrist, Imbensand Krueger (1994), who refer to
such parameter sequences as group-asymptotics.

The main purpose of this paper is to derive efficiency bounds under group-asymptotics.
B& VdP considered the maximum likelihood (ML) estimator under normality, which was not
found to be asymptotically efficient relative to other consistent estimators considered in the
paper. On the other hand, such relative asymptotic efficiency was found for the homoscedastic
case, whereLIML isthe ML -estimator. Thisfinding isin agreement with Anderson, Kunitomo
and Sawa (1982, p. 1025), where it is said that Kunitomo (1980, 1982) and Morimune and
Kunitomo (1980) have shown that LIML isefficient under group-asymptotics. A similar result
that appliesto the case of asingle explanatory endogenousvariable can be found in Kunitomo
(1987, Theorem 3.1). However, by extending the class of estimators considered by Kunitomo
(1987), we show for the multivariate case that the LIML-estimator can be improved upon
using statistics that arise naturally. That is, LIML is not efficient under group-asymptotics.

The paper is organized as follows. Section 2 describes the model, the group-asymptotics,
and the asymptotic distribution of the statistics on which we base our class of estimators.
Section 3 describes a general approach to derive efficiency bounds that hold under a family
of asymptotic parameter sequences. This approach is applied in Section 4 to derive efficiency



boundsfor grouping estimators. In Section 5 we describe estimators that reach the efficiency
bounds. However, we expect these estimators to be of limited practical value compared
to some estimators given in B&VdP. Section 6 uses continuity arguments to indicate that
no uniformly continuously differentiable estimator can be efficient under all asymptotic
parameter sequences.



2. Themodd, the group-asymptotics, and the statistics

The model we consider and its relation to the literature on instrumental variable estimation,
errors-in-variables models, natural experiments, and pseudo-panels has been described in
B& VdP. The same holdstrue for the asymptotic parameter sequences we consider. However,
there are some differences. In order to derive asymptotic efficiency bounds, we restrict our
analysisto normally distributed observations.

2.1 The model

Consider independent random samples taken from m different (g + 1)-dimensional normal
distributionswhose expectations satisfy the samelinear relation. Let the dataconsist of scalars
Yij andg-vectorsx,;, i =1,...,n.andj =1,...,m. Thevectors(yij, x{j)’ = (yij; xij) are
independent with normal distributionsindexed by j that satisfy E(y, )= E(xi’j)a, wheres is
the parameter vector of interest. Let E(x; )=, then
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Yij = Xjd+eg, I=1....n,

X; = 7+ j=1...,m,
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For the identification of § we need therestriction that (,, . .., ) hasrank g, whichimplies
m > g.

Asnoticed by B& VdP, model (1) can be appliedin the context of natural experiments(Angrist,
1990) and pseudo-panels (Deaton, 1985). In general, the model can be induced by a single
instrument. That is, if arandom sample of vectors(y;, X/, ) istaken from a populationwhere
Y; = X{8+¢ and E(g;|z) = O, then zisaninstrument and functions of z are also instruments.
A rather nonparametric way of defining such functionsisto order the observations, such that
the elements z in the vector z are ordered, and to split up the vector z into m groups. The
indicator functions of the groups may thus serve asinstruments, which amountsto model (1).

In order to formulate the model in reduced form, let the observations and disturbances of
the j-th group be stacked in the matrices ;> X) and (&), V)), resp. Furthermore, let b, bea
vector of n; ones, and let U =¢ + Vo (we simply drop the statement j = 1, ..., m). Then
we have

The rows of (u;, V) are independently normally distributed with zero mean and covariance

matrix
1 4 1 0



2.2 Thegroup-asymptotics

Asymptotic distributions will be based on parameter sequences where the number of instru-
ments is allowed to grow as the number of observations increases. In Bekker (1994) and
B&VdP, the resulting approximations (to the finite sample distributions of estimators of §)
were shown to be more accurate compared to large sample approximations, evenif the number
of instrumentsin the actual sampleissmall.

L et the number of observationsin the jth group be afixed proportion, w, of thetotal number
of observations: n, | = win. Asn — oo, each group is split up into an increasing number of
k;, subgroups with f;, observations each. The n;, = k;, f;, observationsin the j-th group
are required to have the same covariance matrix 2;. So the number of parametersin the m
matrices j remainsfixed. Thus we have a sequence of samples satisfying

Y, = Z; AL, 1) + (U, V), (3)

jn=n

where Z;, = I, ®; andthe A, are (g x k;,) matrices.

In the actual sample we havenjn =n, kjn =1land A, =m;. For the asymptotic parameter

sequences we require, asn — oo,
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Wherel'lj tgxr,r <0

If k]-n = lisfixed then o =0, which corresponds to large sample asymptatics. If a; #0,
then the total number of instruments grows with the total number of observations such that
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For an actual approximation we would use IT | =7 (cf. Bekker, 1994). However, to make
comparisonswith the literature, we use formulation (4), where ij=1 w; I, I‘[Jf is nonsingular
for identification purposes. The sequences (4) are ightly more general than those considered
by B&VdPR, Whereozj =aand I, = 7;.0n the other hand we assume normality in this paper.

2.3 The statistics

The statistics on which we base our class of estimators can be computed using group mean
vectorsand group covariance matrices. Definetheprojectionmatrix P, = Z;.(Z{,Z, n)‘1Zj "



andlet?
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Notice the order of these matrices, (g + 1) x (g + 1), remains fixed in the sequence defined
by (4). We consider estimators of § that are functions of

5 =(§:§) = (vec(§); vec(§H).

According to B&VdP we have

nY2(s — E(s)) £ N, lim nVar ().

If we restrict our sequences to cases where the difference between the left-hand-sides of (4)
and their limitsis of order o(n~%/2), we also have

n'2(s —y;) 2 N, V), ©)

where
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Vi [ 0 V! } 0 nIim nvar(sh |

The block-diagonality of V, is dueto to the normality of the observations.

Using the properties of noncentral Wishart distributions (Muirhead, 1982, Problem 10.8;
Eaton, 1983, Theorem 8.13), we find

1 Inthenotation of B&VdPwehave § = M; and §- = Nj — M.



o
¥ = vec{w;(, |g)’njn;(3,|g)+ﬁ’91}
= R lvec{w (0, )'TI T, (O, | )+ﬂ2}
= Wt g T i
L _ ¢
v = VeC{(u)]-—E)QJ—}
= R lvec{( —ﬁ)z}
= Wi = =i
V. = H[Q ®{ﬂsz +w (8, 1) TI,IT/(8, 1 )}]H
iT e B A it
C{.
= HRZ® {%zj +w; (0, 1)'TL I} (0, 1)}]RH,
1 o
vt = H{Qj®§(wj—aj)§2j}H
1 o
_ /—1 J —1
= HRZ @ 5w - % IRTH,
with
1 0 1 0
== (Sn)e(Sn)
—5 g =
Ho = lgme+K

and K isthe (g + 1) x (g + 1)? permutation matrix, defined by K vec (M) = vec(M’) for
any (g + 1) x (g + 1) matrix M. Noticethat H and R commute: HR = RH.

Stacking all statistics, we define
S = (S---:S
Vo= ¥,

A 0
V = .
0 vV,

Due to the independency of the observations we find

nY2s— y) £ N@©, V). @)



The asymptotic distribution of s depends on the parameters of the model and on the particular
sequence that is followed. That is, the asymptotic distribution depends on the value of the
vector

a=(ag;...;0q,.

B&VdP considered o = & and described functions of s as estimators of § that are consistent
forany0 < a < w;m. The ML-estimator is one of them. It is asymptotically efficient under
large sample asymptotics: @ = 0. However, for & > 0, it was not found to be asymptotically
efficient relative to the other estimators considered.

We a so consider the homoscedastic case, where the matrices j do not vary between groups.

In that case ML is given by the LIML-estimator, whichis afunction of the statistics ) ; s

and Z;“zl §;. Under homoscedasticity, LIML isconsistent for any 0 < @ < w;mand B&VdP
found it to be asymptotically efficient relative to the other estimators considered in that paper.
This finding is in agreement with statements made in the literature (Anderson, Kunitomo
and Sawa, 1982, p.1025) that say that LIML is both consistent and efficient under group
asymptotics. However, here we show that if « # 0, then LIML is not asymptotically efficient
within the class of estimators that are functions of s.



3. A general approach

In order to describe efficiency bounds that hold under a variety of parameter sequences we
first give, in the first subsection, a brief discussion of the main idea of our approach. The
second subsection formally derives lower bounds that will be used in the next section to
derive efficiency boundsfor grouping estimators, i.e. estimators of § that are functionsof s as
defined in Section 2.

3.1 A heuristic presentation of the main idea

We consider sequences of vectors of statistics s, of fixed order |, say, such that asn — oo

nY2(s — ¥ (8: 7)) ~ N(O, V(5. 7). 6)

Here the probability limits i and the asymptotic covariance matrices V dependonag x 1
parameter vector of interest § and a vector of nuisance parameters r; contained intheh x 1
vector T = (1;; 7,). The vector 7, indicates which sequence has been followed.

In order to derive an estimator §(s) that is consistent and asymptotically efficient, under all
asymptotic parameter sequences indicated by z,, we may treat the elements of 7, asiif they
were parameters just as the elements of § and ;. We can then use the same arguments that
lead to the consistency and asymptotic efficiency of the minimum chi-square estimator

(6; ) = argmin (s — ¥ (8; 7)) V(s — ¥ (8; ¥)), )

8;7)

where V isan estimator of V that is consistent for all parameter sequencesindicated by 7,.As

aresult § will be consistent and asymptotically efficient for all parameter sequencesindicated
by z,.

An efficiency bound is now given by the asymptotic covariance matrix of n/2s:
(I O(A'VTA) X1 0), (10)

where A isan| x (g + h) matrix:

oy a‘”). (12)

A= 8)= <a_5 P

However, therather informally derived lower bound (10) becomesavery complicated function
of the parameters of the model when applied to grouping estimators. This makes it very
hard to give an analytical comparison between (10) and the asymptotic covariance matrices
of grouping estimators as described in B&VdP. The next subsection gives a more formal
derivation of another representation of the efficiency bound.



3.2 A general formulation of efficiency bounds

Let (8; 7) € ©, which is an open subset of R9*". Furthermore, let ¢ : ® — R' be differen-
tiable. We assume the vector of statistics s has an asymptotic distribution as indicated in (8)
for any (8; ) € ®. However, we do not assume V (§; t) to be nonsingular.

Consider the class of al differentiable consistent estimators f (s), so that plim f(s) = § and
f (¥ (8; 1)) = 6. Definethe g x | matrix F as

oty
F;t) = oy (12

By the delta-method we find
nY2(f(s)—8) £ N, FVF). (13)

In order to find an asymptotically efficient estimator within this class of differentiable consis-
tent estimators we notice that

of _F
a8, )

A= (14,0, (14)

where A isdefined in (11). A lower bound for FV F’ can now be found using the following
algebraic theorem, where + denotes the Moore-Penrose inverse.

Theorem3.1 Let FA=F(A;,A) = (I3, 0 and VV*tA = A, then FVF’ >V, where
VL =y, 0)(A/V+A)+(|g; 0); (15)
this lower bound is reached for
F = V+A(A’V+A)+(|g; 0).

If, furthermore, U isa matrix of appropriate order such that

U'A, =0,
(16)
rank (A;, VU, A,) =rank (VU, A)),
then
V, = (AJUU'VUYTU'A) L (17)

The proof is givenin Appendix 1.

10



In the next section, and Appendix 2, we will use the representation (17) to derive efficiency
boundsfor grouping estimators.

11



4.  Efficiency boundsfor grouping estimators

Returning to model (1) and the asymptotic distribution of the statistics s as given in (6) and
(7), let 5(s) bedifferentiablesuch that plims(s) = & for all parameter sequences (4). That i,

5(s) isconsistent for al 0 < o) < w;m.
In the following theorems we assume the matrices Q; to be nonsingular. For such cases the

theorems give efficiency bounds, Avar {(n%/25(s)} > V,, under heteroscedasticity, where the
matrices ; vary between groups, and homoscedasticity, Q; = Q,resp. Let

b = 0j21/0j

where we drop theindex j in case of homoscedasticity.

Theorem 4.1 Under heteroscedasticity, where the matrices 2 are nonsingular, the effi-
ciency bound for differentiable consistent estimators 3(s) is given by

-1
m

Vi o= |:ZEAI(AJ+BJ)+Aj}j| :
i=1
-2

A= o tw I, (18)
o) *wiey /

BT e 20

J

The proof is givenin Appendix 2.

12



Theorem 4.2 Under homoscedasticity, where Q=Q is nonsingular, the efficiency bound
for differentiable consistent estimators 3(s) is given by

V., = cX(JAA+B*TA)
J = Lm®|g,
A 0
A = .. A = w II.TT (19)
. ’ ] e A
0 A,
B =(%mmao+ﬁiwmq®@2—ww

The proof is givenin Appendix 2.

Notice that the nonsingularity of Q implies the nonsingularity of both % and i — &
Consequently, if o >0 the Moore-Penroseinversesin Theorems4.1 and 4.2 can be replaced
by regular inverses.

The lower bounds V| in Theorems4.1 and 4.2 hold for esti mators §(s) that are consistent for
al 0 < o; < w;m. However, if we restrict this set to subsetswhere either « = %, or o, = @,
we do not find lowerboundsthat are smaller than V| asgivenintheorems4.1and 4.2, i.e. the
lowerbounds remain valid in these cases. In particular, in case of large sample asymptotics,
where« = 0, we find under heteroscedasticity,

m -1
Vv, = ( a]-_zwj I'Ij Hj) ;
i=1

under homoscedasticity o2 can be replaced by 2. Comparing these resultswith the asymptotic
covariance matrices of the ML -estimators, as described in B& VdP, we find the expected result
that these estimators are indeed efficient if « = 0.

However, if we consider parameter sequences where o # 0, we find a different result. Under
heteroscedasticity V, can be rewritten asfollows. Let

A, 0 B, 0
J=1,®1,, A= - , B= - ,

13



then
V =[JAA+BTAI.? (20)
Now consider the projection matrix

P=(A+B)Y2J(WJ'(A+ B)J)1J(A+ B2

We find
A < [JAA+B™2pA+B)*Y2Al]E
= (JA) VI(A+BIITADT,
i (21)
_ -2
JAJ = Eaj w; T, TS,
]:
J(A+B)J = Xm: —2 nn/+m(2 — ¢ )
- L o “wi wm—a 12 ) (-
]:

Foro; =« the right-hand-side of (21) is equal to the asymptotic covariance matrix of the
ML -estimator as givenin B&VdP.,

Under homoscedasticity we find, in asimilar way,

v, < o2(JA)TIV(A+BIIAN,
m
JAJ = _Xl:winjn., 22)
]:
m @
JA+B)I = Q_wT)+ 11—y — 9.
j=1

Now the right-hand-side of (22) is equal to the asymptotic covariance matrix of the LIML-
estimator as givenin B&VdP.

So the ML -estimators do not reach the asymptotic efficiency boundsas givenin Theorems4.1
and4.2. In particular for the homoscedastic case thisresult contradictsearlier statements made
intheliterature (Anderson, Kunitomo and Sawa (1982, p. 1025) and Kunitomo (1987)), where
itissaid that LIML is asymptotically efficient under group-asymptotics. The question is how
theseearlier resultsrelateto our result that saysthat ML isinefficient under group-asymptotics.

The problem is easily resolved. We consider the asymptotic performance of the LIML-
estimator relative to the estimators that are functions of the statistics§J and sji, Jyeer, m,

14



whereas Kunitomo’s (1987) efficiency result holdsonly relativeto estimatorsthat arefunctions
of 21,5 and ;5" If we only consider this subset of estimators then, indeed, LIML is
efficient. That is, we may simply apply Theorem 4.2 with the number of groups m equal to one
and A; = X0, w; IT, IT; . Inthat case the lower bound V,_ isequal to the asymptotic covariance
matrix of the LIML-estimator. However, if we consider the larger set of estimators based ons§

and §', wefind asmaller lower bound V, . Infact, in the next section we consider an estimator

that reaches this lower bound V, . So LIML isinefficient under group-asymptotics.

15



5. Efficient grouping estimators

In section 3 we already indicated, (2), how an efficient estimator might be formulated. Here
we consider amore simple asymptotically efficient estimator. Let

a = @;...1ay). & =@:q)
~ = Q
§ = §@-9H-—n

a.

Then, for Y, = (1 =), we find plima = 0. Dueto the asymptotic normality of s, (6) and
(7), wefind

n2a £ N, W),

W ° W 0
W: s VV] :|: 0] WJ- i|,

0 W, .
o 2 p— % 2 1 1y
W = wolG g TG 1) + 72+ () () 2.
L _ 9% 2 1 1y
Wir = o= @+ () s ) S0

where the expressions for V_V] and V\/jL can be verified by Lemma11.1in B&VdP.

In the following theorems we again assume the matrices j to be nonsingular. Furthermore,
we restrict the parameter sequences (4) to cases where a; > 0.1n that case the matrices V_\/j
and V\/jL areinvertible and we have the following result.

Theorem 5.1 Under heteroscedasticity, where the matrices Q; are nonsingular, and for
parameter sequences with a; >0, lety = (yy;...; vy and define

6; 7; &) = argmina'(s; y; ) W™a(s; y; ),
G;y;)

where W is a consistent estimator of W. Then

nY2(5 —8) 2 N0, V).

16



where V| isgivenintheorem4.1.
The proof is givenin Appendix 3.

Theorem 5.2 Under homoscedasticity, where Q =Q is nonsingular, and for parameter
sequences where o >0, let Y, =V and define

6 p; &) = argmina’(s; y; o) W™ta(s; y; ),
G;y;)

where W is a consistent estimator of W. Then

n2(5 —8) £ N, V).

where V| isgivenintheorem4.2.

The proof is givenin Appendix 3.

The estimators defined in theorems 5.1 and 5.2 serve interesting theoretical purposes. they
reach the asymptotic efficiency bound V|, . However, the assumptions that lead to the invert-
ibility of W are quite restrictive. If a matrix @ issingular, or o; =0, the estimators are not
well-defined. If ©; is close to singularity, or «; close to zero, the matrix W will be close to

singularity and the inversion W—1 may lead to all kinds of difficulties. No such difficulties
are encountered for the ML-estimators, which are consistent over the full parameter space.
However, they are efficient only for @ = 0. The problem whether or not there exist estimators
that are asymptotically efficient over the full parameter space and for all sequences (4) with
0 < o < w;misfurther discussed in the next section.

17



6. Efficiency on the full parameter space

Consider estimators §(s) that are consistent for § over the full parameter space, without
excluding cases where Q; is singular or o = 0. Examples are given in B&VdP If § is

a uniformly continuously differentiable function of s, § will have an asymptotic normal
distribution,

N2 — 8) £ N, V),

where V is a continuous function in the interior of the parameter space and has a continuous
extension to the parameters (§; ; w; «), as defined in Appendix 2.

If § is efficient for points (§; 7; w; @) in the interior of the parameter space, where Qj is
nonsingular and «;; > 0, then, according to theorems 4.1 and 4.2, V =V, for such interior
points. For both the homoscedastic case and the heteroscedastic case V, can be represented
(cf. (19) and (20)) for such interior points as

V, = (JAA+B) AL
Due to the continuity of the inverse, this is, indeed, a continuous function of the parameter

points on the interior of the parameter space.

As V isacontinuous function, we may derive from the equality V = V|, which holds on the
interior, the value of V on the boundary where B is singular: B = B*, say. That is, we may
consider apath from the interior to the boundary such that B = B* + AC, withA > 0,A. — 0
and C > 0. It followsfrom Lemma 6.1 in Appendix 4 that in that case

lim A(A+B" + AC) A= A(A+ BHTA.
Consequently, if V iscontinuousand V = V, ontheinterior, then V should take the form

V=(JAA+BTANT, (23)

on the full parameter space.

However, it followsfrom Lemma6.2in Appendix 4 that V asgivenin (23) isnot a continuous
function of the elementsof B, whichisacontradiction, since V is continuous. Consequently,
there is no uniformly continuously differentiable consistent estimator of §, based on the
statistics s, that is efficient under group asymptotics over the full parameter space.

On the other hand if we consider a single asymptotic parameter sequencewherea = o # 0,
say, then we find, asis shown in sections 4 and 5, that the sequence of ML estimators is not
Best Asymptotically Normal. Here the incidental parameters in the matrices Apns (3), do not
affect the consistency of ML, but instead affect its asymptotic efficiency.

18



Appendix 1

Proof of Theorem 3.1

Projecting VY?F’ on V+1/2 A, wefind

FVE > Fvl/z (V+1/2A(A/V+A)+A/V+1/2) V1/2 =4

(I O(A'VTA)Y (I 0),

whichis (15).
To prove (17) we notice that (16) implies the existence of matrices A and B such that

A:(VU,AZ)[Q '?1]

and
A'VTA = (A, 0/U'VU(A,0) + (B, I,,) ALVTAL(B, I,,).

As FA = (14, 0), we have FVUA = I,. So V12U A must have full column rank and
A'U’VU A must be nonsingular. Using general results on Schur-complements, as collected in
Ouellette (1981, theorem 4.6 (iii)), we find

V, = (AU'VUA)™.

AsU’A, = U'VUA, wefind the result as givenin (17). |

19



APPENDIX 2
Proof of theorems 4.1 and 4.2

First we proof the theorems for cases where a > 0. Then, at the end of the proofs, it is

indicated that the same arguments can be used for cases where o =a, ora = af, in

particular a; = 0. For the regular cases, where a >0 and Q; > 0, avector x satisfies
x’\_/j =0, or x’\/jL = 0, if and only if X’"H = 0. So the singularity of V is due only to the
symmetry of the statistics § and qi. Asaresultwehave VVTA = HHTA = A, whichwe
need in order to apply Theorem 3.1.

We use the following notation:

A= ((An’ A (Apys Amz)) )

A, A AW ¥ A v
(Ajl,Aj2)=[A£ Ag]:( ,

08 T A, @, )
7= vec(Ily;...; 1),
o = vech(R),
o = (ag;...5 ),

where vech (Q2) is a stacking of the diagonal and subdiagonal elements of Q2. We also use

_ dvec(Q)
"~ 9vech’(Q)°

Noticethat vec(Q) = R~1vec(%).

In each proof we give the matrices Ajy and Ajp, which were found by application of the
rules of differential matrix calculus (e.g. Balestra, 1976). Then matrices U = (Uj; Uji) are
given, which build the matrix U = (U,; ...; U,), suchthat U'A, = Z}":l UjA;, = 0. Next
we give the matrices Vi U; = (V,U;; Vi*U/) sothat VU = (V,Uy; ... V,U,). Finally, we
show that if a vector x satisfies both x'VU = 0and x'A, = 0, it also satisfiesx’A; = 0. In
that case the matrix U satisfies condition (16) of Theorem 1 so that the asymptotic efficiency
bound is given by (17).

Proof of Theorem4.1 Wefind

A1) A,-1=< A ) _ ( w]-HR/—l(el®(|2)) I, IT; )

0

20



where e, isthefirst column of |

A,
(A2) An=<A%>=

g+1’

wjeg®[HR’—1{(g)®(g)](nj®|g)] LeeT i

ej( ® VeC(Qj)

0 (w; —HERT —1€ ® vec(R))

1
m

where g isthe jth columnof I . Now let

T e{ —0j12
(AS) Uj = ( llijL ) = |: aj]ejf :| ® |:H R{el® |: sz :|}:| .
i o —muyj g

It can be easily verified that U’A, = 0. Furthermore, we find

I y—1 0 ¢ / /
jUj = ej/ ® [ZH R {Zje1® <|g }(E(Ej22_¢j¢j) +wjnjnj)] s

€

o 0
vty = e ® [2(wj - E’)H R/‘1{2je1® < )}(2j22 —¢j¢;)].

i i Ig

Consider vectors X = (X;; ... Xp)» X, = (% xi), such that xX’A, = 0 and X' VU = 0. We
will prove that x also satisfies x'A; = 0. For cases where X, and x;- are vectorizations of
skew-symmetric matrices, so that XiH = x]-l/ H = 0, the proof istrivial. Asany square matrix
can be written as a sum of a symmetric and a skew-symmetric matrix, we only need consider
cases where X and ij are vectorizations of symmetric matrices. Let

bl

a.
- a— j j
X; R vec [ bj Cj ] ,

b
1
; Rvec[ : C’J]

where & and Cj are symmetric g x g matrices. Asx’A, = Oimplies

(A4)

x
1
[@REgON

21



I 4 0
| (1) (1) m et =o

(A5) 177

Y a b N
m[bj o + W) m) e |=0@

O

For theimplications of xX’'VU = 0 we consider

IAVAE / ¢ /
ViU = g @40 +013,0)( (T — ¢ 9) + w TTT)),
L\LypL a]-e]( | 2py A /
X Viup = —— ® 4(wj — 0705 + 071, (Zj5, — ¢ ¢))-
&)1

m
XVU(g ® 1) = (lex,-’\/,-uj><q®|g>

J:

= 407 +011,C) (L (S — 919) + T T+

A, L )
m(wi - a—n'])(aizbi/ +0i1,C) (i — 1))

/ ’ 4o / 1
= 40w b T} + W'(Uizbi +01,C)(Zipp — 99—

doy o , /
o — rl‘ﬂwi El(aizbi +011,G) (Zig — #4),

where the latter equality is dueto (A5). So, if xX’VU = 0, then
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X'VU(g ® 1) (0b, + Cioj5)

= 4o'w BT T by +

4.
Fl(aizbi/ +011,C) (Zigp — #0070, + Cioi5) +

A2
m(‘ﬁzb{ +011,C)(Zigy — 46 (07D + Ciojp) = 0.

In the expressions above, the three terms are nonnegative so b/ TT; IT;b, = 0, which holds if
andonly if b/TT; = 0. As

I/ A _ / /
xjAjl_ijbjl'Ijl'Ij,

we find, indeed, that X’ A, = 0and x’VU = 0imply XA, = 0.

As aresult the efficiency bound V, is given by (17), where the submatrices of A and U are
givenin (A1) and (A3). This amountsto the bound (18) givenin Theorem 4.1.

Noticethat if o, = @, thelast m columnsof A, reduceto asingle column: v is differentiated
with respect to the scalar @. In that case both U and (A5) are not affected, so the proof isthe
same; which also holds true if the vector « isfixed, « = «©, and v is not differentiated with
respect to «. One may verify that if o =0, the columns of A are till located in the space
spanned by the columnsof V, so VVTA = A. m|

Proof of theorem 4.2 Wefind Ajy equal to (A1) and

w;g @[HR™! {(I‘:) ® (,‘;)] (T; ® 1) aT ie ® vec(Q)
ORI
J
0 (w; — HT —Ze ® vec(Q)
Let
(A7) sz[ 5} :|®[HR{el®[%}}].
m(a—1) g

Then it can be easily verified that U'A, = 0 and
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o 1 0 Qj , ,
VU =€ ® [ZH RYZe ® (lg)}(a(ﬁzz—qﬁd))+ijjHj)]’

Lyl _ ' 9 1 0 Y
VU = e ® [2w, - HHR(ze,® (Ig ) — 69)].
Definevectorsx = (X5 ...; X)), X, = (X ij), analogousto (A4). Then X'A, = 0implies,
dlightly different from (A5):
G =0,
(A8)
Moo a b
4 ] i ] 9 I =
Zim[b C-}—le )[b c]} 0
j=1 ] ] ]
For theimplications of xX’VU = 0 consider
IAVAR / ¢ / /
anv = € ®4c% —|—012Cj)(ml(222—¢¢)—I-wjl'IjHj),
LyLyyL o % 2 = /
WY T ma—p @ T W oS e 00

XVUE® 1) = Q xVU)Eely
j=1

= 402 + alzci)(a—n;(z22 — ') +w, T, T+
4O‘ei - ¢ N ~ ’
ma—D ]_le(w,- = @0 +03,C) (S5 — ¢¢))

Ao
= Ao wbiTL T, + ﬁ(azb{ +01,C)(Zyy — ¢9)—

4a; L' ) /
m@— 1) ; EJ("zbi +01,C)(Ep, — ¢9),

where the latter equality follows from (A8). So, if X'VU = 0, then
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m
D X'VU(g ® l)(a?b, + Coyy)
i=1

m
= 4ov“zwib;1'1i1'[;bi +
i=1

m
o / /
4‘ EI(GZbi + 01,C)(Zyy — ¢ (%D, + Cioyy) +
i=

1

Ol]- Zb/ , 2b o2
T (@0 +03,C) (Ep = ¢9) (07 + Cogy) - =0.

-
NgE

Asall threeterms are nonnegative, wefind ", b/TT, TT/b, = 0, whichimpliesb/TI, = 0. As
I/ A _ / /
XA = ijbj I, IT;,,

we find that xX’A, = 0 and xX'VU = 0imply X’A; = 0. So V, is given by (17), where the
submatricesof A, and U aregiven by (A1) and (A7), which amountsto the bound (19) given
in Theorem 4.2.

The remarks made at the end of the proof of Theorem 2 with respect to special cases where

o =, 0= a0, or a; =0, also apply in the homoscedastic case. O

25



Appendix 3
Proofs of Theorems 5.1 and 5.2

In both proofs we use the fact, known from minimum chi-square estimation,
n2(6:9:8) - G yi@) 2 NO (AWA) Y,

where Y, = Qj (L, =8 and A = (A}, Ay);

A, = plim (22 A, = plim (22
1_p 98 ’ Z_p 8()//,05/) :

So the asymptotic distribution of n/2§ is given by

n23 —5) £ N(O, (I3 O (AW A (1 0)).

Now let U be a matrix such that U'A, = 0, U’A, has full column rank and U'WU is
nonsingular, then

A/w—lA A’W_l/z(Wl/ZU(U’WU)_lU’Wl/Z)W_l/ZA

v

_ [ asuuwuytua; o
0 0|

Using resultson the positive semi- definiteness of partitioned matrices (Bekker, 1988, Theorem
3), wefind

(A9) (I O(A'WTA) (15 0) < (AJUU'WU)TU'A) ™

For both the hetero- and the homoscedastic case we give such matrices U for which the
right-hand-side of (A9) isequal to V| asgivenin Theorems 2 and 3, respectively. AsV, isa
lower bound, it followsthat (A9) is an equality, which proves Theorems 5.1 and 5.2.

proof of Theorem5.1:  We find
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s
=
1
=3
3
A/
QJ‘ o8
2|8
N——
|

[ T a0
_(wj - %)Qj G 1y

(A10)

e
N
|

Ay ) —HOW — g g5y

LetU = (U ...; U,

m

eJ( -1 /
U] = Oljel( ® [ Q] (53 Ig) ]1
&

—mwi
then it can be easily verified that U'A, = O and
(A UU'wu)tu'A)TT =V,
where V| equals (18) as givenin Theorem 3.1.

Proof of Theorem5.2: Wefind Ajy equal to (A10), with Q; replaced by €2, and

o 1
N T )
27| -, e® iy

] m

LetU = (U ...; U,

m

e

U = ¥ ®[Q7G. 1],
m@—1)

then it can be easily verified, if y = Q(1; —§), that U'A, = Oand

(A UU'wutu'A) T =V,

where V| equals (19) as givenin Theorem 3.2.

Ik

a 1

]
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Appendix 4

Lemma6.l LetA>0, C >0, A >0, x=AA"X, then

lirr?)x/(AJr AC) Ix = X' A*x.

PrOOF. As

XAfx o x] _[ XA* " 0
[ X A+Ac}—[ | }A(AX")H(,)C(O,I)zO,

we find (Bekker, 1988, Theorem 1) that
X'(A+1C)"Ix < X' ATx.
Astheleft-hand-sideisincreasing as A — 0, wefind that itslimit exists:
(Al11) ll_r)r?) X' (A+AC)"Ix = q < X Atx.
Furthermore

X' (A+ AC)~1x X'
[ X A+1.C } z0.

So the limit of this matrix is positive semi-definite:

q x
[ X A } = 0.
Hence
(Al2) g=>xAfx

Together (A11) and (A12) imply theresultin Lemma®6.1. a

For the application in Section 6 noticethat if x = Ay, for some vector y, so that AATx = x,
and0 < A < A+ B* thenalso x = (A+ B*)(A+ B 'x.
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Lemma6.2 Letx andy bevectorssuch that rank (x, y) = 2. Let y — X, then

)I/irrl X'(xX' +yy)tx =1#x2xx)tx = 1/2.

ProoF. If rank (x, y) = 2, wefind (Ouellette, 1981, Theorem 4.3)

rank L X =
X xx'+yy |
rank (xx' 4+ yy") + rank (1 — X' (xx’' + yy)™x) = 2.

So, X'(xx’ + yy)tx =1,forany y # x # 0.
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