
A General Treatment of Dynamic Constraints

E.O. de Brock

November 1997

SOM theme A: Intra-firm coordination and change

Abstract
This paper introduces a general, formal treatment of dynamic constraints, i.e., constraints on

the state changes that are allowed in a given state space. Such dynamic constraints can be seen

as representations of "real world" constraints in a managerial context. The notions of transition,

reversible and irreversible transition, and transition relation will be introduced. The link with

Kripke models (for modal logics) is also made explicit. Several (subtle) examples of dynamic

constraints will be given. Some important classes of dynamic constraints in a database context

will be identified, e.g., various forms of cumulativity, non-decreasing values, constraints on

initial and final values, life cycles, changing life cycles, and transition and constant dependen-

cies. Several properties of these dependencies will be treated. For instance, it turns out that

functional dependencies can be considered as "degenerated" transition dependencies. Also, the

distinction between primary keys and alternate keys is reexamined, from a dynamic point of

view.

Keywords: Dynamic constraints, transition (relation), (ir)reversibility, transition dependencies,

constant dependencies, cumulativity, (changing) life cycles, Kripke models

E.O. de Brock

Faculty of Management and Organization

State University of Groningen

P.O. Box 800, 9700 AV Groningen

The Netherlands

Tel. +31.50.3637315

Fax +31.50.3632275

Email: e.o.de.brock@bdk.rug.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6909102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Introduction

In data modelling, constraints play an important role. We can distinguish between static and

dynamic constraints. The requirements on the states are called static constraints, and the

requirements on the state transitions are called dynamic constraints. Traditionally, most

emphasis in the constraints literature is on static constraints. This paper is dedicated to a

general, formal treatment of dynamic constraints.

Although there exist many publications on temporal databases in the literature (see for

example the bibliography in [Kl 93]), the related topic of dynamic constraints received much

less attention. The papers on dynamic constraints usually concentrate on certain standardized

forms of dynamic constraints (see [Vi 87], [Na 89], [Wij 95], and [Je 94], for instance). In our

paper, we address (and solve) the problem of the development of a general theory of dynamic

constraints in which all kinds of dynamic constraints can be neatly treated. We will also

illustrate the richness and relevance of our theory with various (classes of) practical examples.

From a management point of view, it is sometimes inconvenient to treat dynamic constraints as

"ironclad rules". After all, the situation might arise that in the end a certain transaction

appeared to be erroneous or unintentional, while it cannot be undone because of the dynamic

constraints. We say in this case that the transition is irreversible; if it can be undone, the trans-

ition is called reversible. In many cases of non-reversible transition relations, a dynamic

constraint is not used as a "law" but rather as a warning ("Do you really want this?") or as a

condition pertaining to special authorization required to carry out the modification.

All in all, this paper contributes to both the theory and application of dynamic constraints,

among others by establishing a general theoretical foundation for solutions to practical

problems, even in subtle and complex situations.

The paper is organized as follows. The notions of transition, reversible and irreversible trans-

ition, and transition relation will be introduced in Section 1. The link with Kripke models (for

modal logics) is also made explicit here. Several examples of dynamic constraints will be

given in Section 2. Here, the distinction between primary keys and alternate keys is also

reexamined, from a dynamic point of view. The special classes of transition and constant

dependencies will be identified in Section 3. Several properties of these dependencies will be

treated here. In the Appendix our basic notions and notations are established.

1. Transition relations and (ir)reversibility

2

By defining a database universe U (or a state space in general), we establish which states are

formally allowed in an organization. In general, however, not all state transitions between

those (in itself) allowed states are admissible in that organization. We can establish the set of

admissible transitions by means of a subset R of U × U, having the following intuitive

meaning:

(v;vN) 0 R] the direct transition from state v to state vN is allowed.

If (v;vN) ó R then it might still be possible that vN is indirectly reachable from v, namely if vN is

reachable from v via a number of allowed intermediate steps (or formally, if (v;vN) 0 Tcl(R),

where Tcl(R) denotes the transitive closure of R).

An element of U × U is called a transition within U. A set of admissible transitions for the

state space U is called a transition relation on U. Formally:

Definition 1:

If U is a set, then:

(a) p is a transition within U] p 0 U × U;

(b) R is a transition relation on U] R f U × U.

In summary, the requirements on the states in an organization are called static constraints and

determine a state space U, while the requirements on the transitions are called dynamic

constraints and determine a transition relation R on U.

The readers who are familiar with Kripke models for modal logic, will recognize the pair

(U;R) as a so-called world system, where U is a set of possible worlds and R is an accessibility

relation on that set of possible worlds. This means that expressions like "it is necessary that .."

and "it is possible that .." can get a meaning in a given state or "world" v (see [Kr 59] or [Le

77], for example).

3

Example 1:

We define a simple database universe EXU (concerning employees and departments) for a

fictitious company called Dyncons. First, the set-valued functions FE and FD introduce the

(employee and department) attributes and their corresponding value sets. Then WE and WD

determine the set of allowed employee tables and department tables, respectively. The function

HF introduces the table names EMPL and DEP and their corresponding sets of allowed tables.

Finally, EXU determines the set of allowed database states, expressing for instance that each

department manager must be an employee with the proper maturity. (Our notations are defined

in the Appendix.)

FE = { (NO ; ù), . employee number

(NAME ; Chs(40)), . employee name

(SAL ; ù), . salary

(SEX ; {'M', 'F'}), . sex

(DEPNO ; [1 .. 99]), . department number

(MAT ; {'jun','anal','sr-an', . specialisation/maturity

 'mgr','prog','sr-pr'})}; .

FD = { (DNO ; ù), . department number

(NAME ; Chs(45)), . department name

(MANNO; ù)}; . manager number

WE = {T * T f J(FE) and . the set of allowed employee tables

 {NO} is u.i. in T}; .
WD = {T * T f J(FD) and . the set of allowed department tables

 {DNO} is u.i. in T and .
 {NAME} is u.i. in T}; .

HF = { (EMPL ; WE), . employees

(DEP ; WD)}; . departments

EXU = {v * v 0 J(HF) and

 {(DEPNO; DNO)} connects v(EMPL) with v(DEP) and

 {(MANNO; NO)} connects v(DEP) with

 {t * t 0 v(EMPL) and t(MAT) = 'mgr'} }.

4

Suppose now that the following dynamic constraints should hold:

(DC1) Existing department numbers must not expire

(although, for example, the name of a department is allowed to change).

(DC2) An employee must always remain within the same department.

(DC3) Salaries of employees must not decrease.

(DC4) Specialisation/maturity growth develops along the following lines:

 jun 6 anal 6 sr-an 6 mgr

 ` prog 6 sr-pr _

expressing that a jun(ior) can become an anal(ist) or a prog(rammer), an analist can

become a s(enio)r-an(alist), a senior-analist can become a manager, etc.

These constraints can be formally represented by the transition relation EXR on EXU, as

defined below. In order to formalize the constraints (DC2), (DC3), and (DC4), we will assume

that "in the course of time" an employee retains the same identity number.

EXR = {(v;vN) * (v;vN) 0 EXU × EXU and

 v(DEP) Þ{DNO} f vN(DEP) Þ{DNO} and (DC1)

 œt 0 v(EMPL): œtN 0 vN(EMPL):

 [if t(NO) = tN(NO)

 then (t(DEPNO) = tN(DEPNO) and (DC2)

 t(SAL) # tN(SAL) and (DC3)

if t(MAT) … tN(MAT) (DC4)

then (t(MAT); tN(MAT)) 0 { ('jun' ;'anal'),

 ('anal' ;'sr-an'),

 ('sr-an';'mgr'),

 ('jun' ;'prog'),

 ('prog';'sr-pr'),

 ('sr-pr';'mgr')})]}

~ Example 1.

5

Usually, the transition from each state v 0 U to v itself should be allowed. Such a "trivial"

transition might arise when we try to delete something, e.g. an employee tuple, that does not

appear to occur in v. In that case, the state remains the same and the "transition" at hand

happens to be (v;v). In other words, usually we want such a transition relation R to be reflexive

on U, i.e., œv 0 U: (v;v) 0 R.

Note that the transition relation EXR is reflexive on the database universe EXU.

We note that it is sometimes inconvenient to treat dynamic constraints as "ironclad rules".

After all, the situation might arise that in the end a certain transaction appeared to be erroneous

or unintentional, yet cannot be undone because of the dynamic constraints. If for example

department numbers (or order numbers) that are already present must not expire at any time,

then the erroneous addition of a department (or an order) cannot be undone. We say in this

case that the transition is irreversible; if it can be undone, the transition is called reversible:

Definition 2:

If (x;y) is any ordered pair and R is a set of ordered pairs, then:

(a) (x;y) is reversible in R] (y;x) 0 Tcl(R);

(b) (x;y) is irreversible in R] (y;x) ó Tcl(R).

If R contains only reversible elements, then R itself is also called reversible:

Definition 3:

If R is a set of ordered pairs, then:

R is reversible] œp 0 R: p is reversible in R.

We note that the transition relation EXR on EXU from Example 1 is not reversible, due to the

dynamic constraint (DC1).

In many cases of non-reversible transition relations, a dynamic constraint is not used as a "law"

but rather as a warning ("Do you really want this?") or as a condition pertaining to special

authorization required to carry out the modification. In these cases this means that these

dynamic constraints cannot be used as genuine transition invariants.

2. Some special classes of dynamic constraints

6

In this section we discuss some general forms of dynamic constraints, each introduced by some

real world situation. Each form will also be illustrated by the database universe EXU or the

transition relation EXR from Example 1.

Suppose we have a database skeleton g, a database universe U over g, E 0 dom(g), S f g(E),

B f g(E), C f g(E), a 0 g(E), and b 0 g(E), where the a-values for E are numbers. We will

express each form of constraint in terms of an arbitrary transition (v;vN) within U.

(F1) Cumulativity of tuples

Some data should not be changed or deleted anymore once they are in the database,

e.g. historical data. This dynamic constraint belongs to the following general class:

The E-table is cumulative, i.e., no E-data will be deleted or modified. In brief, no

E-tuples must expire:

v(E) f vN(E).

It is interesting to note that this dynamic constraint can also be regarded as a

connection requirement concerning two different "points in time":

id(g(E)) connects v(E) with vN(E).

This would be quite a severe demand for E = DEP in EXU, implying that a depart-

ment (number) must not expire, that the corresponding department name must not be

altered, and also that the manager of that department must not be replaced. In fact the

insertion of completely new departments is the only allowed modification of the

department-table.

If the E-table is intended for recording historical data or logging activities for

example, then this severe demand of cumulativity can be realistic, however.

(F2) Cumulativity of all primary attribute value combinations

Let us now suppose that a department number should not expire and the correspon-

ding department name may not change in our company Dyncons from Example 1, but

that the manager can be replaced (and new departments can also be added). This

dynamic constraint is a special case of the following:

7

No single combination of values of primary attributes - i.e. attributes belonging to a

minimal key - may expire in the E-table. When we denote the set of all primary

attributes of the table index E in the database universe U by Prim(E,U), we can write

this dynamic constraint as follows:

id(Prim(E,U)) connects v(E) with vN(E).

For E = DEP in EXU this means:

id({DNO,NAME}) connects v(DEP) with vN(DEP).

In other words, a department number should not expire and the corresponding

department name may not change; however, the manager can be replaced (and new

departments can also be added).

Note that the requirement (F1) implies the requirement (F2). In other words, (F2) is

weaker than (F1).

(F3) Cumulativity of attribute value combinations

Sometimes, entities such as orders or payments should not be deleted anymore once

they are recorded in the database - which indicates cumulativity of object identifica-

tions - and, moreover, some of their attribute values may not be changed either, e.g.

creation date. This dynamic constraint belongs to the following class:

The E-table is cumulative with respect to S, that is, no S-values are allowed to

expire:

v(E) Þ S f vN(E) Þ S.

Again, this can be rephrased as a connection requirement:

id(S) connects v(E) with vN(E).

In our order example above, S will consist of order number and creation date.

Another example of a dynamic constraint of this form is the requirement (DC1) from

Example 1, where E = DEP and S = {DNO}.

If S contains only primary attributes, e.g., if S is a minimal key of E in U, then S f

Prim(E,U); in that case the requirement (F2) implies the requirement (F3).

(F4) Transition dependency

8

Sometimes entities such as orders or payments may be deleted once they are in the

database, but the initial values of some of their attributes may not be changed anymo-

re, e.g. creation date. This dynamic constraint is of the following general form:

For each B-value remaining in the E-table, the corresponding C-values must remain

constant:

œt 0 v(E): œtN 0 vN(E): if t j B = tN j B then t j C = tN j C.

In our order example above, B will consist of the order number and C of the creation

date. The requirement (DC2) from Example 1 is also a special case of this form.

(Take U = EXU, E = EMPL, B = {NO} and C = {DEPNO}.)

If B is a key of E in U and S = B c C in (F3), then that requirement (F3) implies (F4),

i.e., then (F4) is weaker than (F3).

We will treat this class of dynamic constraints in more detail in Section 3.

(F5) Non-decreasing attribute values

The values of "cumulatively counting" attributes (such as Total number of treated

patients of a department) should typically be non-decreasing. In general:

The a-value of each E-tuple in the new state must be greater than or equal to the

a-value of each E-tuple with the same S-value in the old state:

œt 0 v(E): œtN 0 vN(E): if t j S = tN j S then t(a) # tN(a).

Here, S is usually a key of E in U, e.g., as in requirement (DC3) in Example 1.

If B = S and C = { a } in (F4), then that requirement (F4) implies the requirement

(F5).

(F6) Non-decreasing number of tuples

Suppose that the number of courses that our faculty offers is not allowed to decrease

(although any course can be replaced by an other one), then we might have a dynamic

constraint of the form below.

The number of E-tuples is not allowed to decrease:

v(E) # *vN(E)*.

9

For E = DEP in EXU this would mean that departments cannot expire all of a sudden,

although they can apparently be replaced by other departments.

If S in (F3) is a key of E in U, then the requirement (F3) implies the requirement

(F6), i.e., then (F6) is weaker than (F3).

(F7) Constraints on initial values

A constraint such as the requirement that each new invoice must have the status

"open" is a dynamic constraint, with the following general form:

For each initial value for the key S of the E-table, the tuple concerned has to satisfy a

certain requirement n (in our case the requirement that the status is "open"). In other

words, the S-values in the E-table of the new state vN for which the tuples do not

satisfy n must already have occurred in the E-table of the old state v. This dynamic

constraint on the admissible initial values can therefore be formulated as a connection

requirement:

id(S) connects { tN 0 vN(E) * ¬ n(tN) } with v(E).

Our invoice-example above would result in something like:

id({INV-NO}) connects { tN 0 vN(INV) * tN(STATUS) … "open" } with v(INV).

We will also illustrate this class of dynamic constraints (concerning initial values)

with a concrete instance based on Example 1. Suppose that we require that no new

employee can immediately start as a department manager. Here,

E = EMPL, S = {NO}, and n(tN) = (tN(NO) ó {a(MANNO) * a 0 vN(DEP)}). This

results in the following dynamic constraint:

id({NO}) connects { tN 0 vN(EMPL) * tN(NO) 0 {a(MANNO) * a 0 vN(DEP)} } with

v(EMPL).

(F8) Constraints on final values

The requirement that an invoice can only be deleted when the status is "ready" or

"exit" is also a dynamic constraint, with the following general form:

A value for the key S of the E-table can only disappear when the tuple concerned

satisfies a certain requirement n. In other words, the S-values in the E-table of the old

state v for which the tuples do not satisfy n must still occur in the E-table of the new

10

state vN. This dynamic constraint on the final values can therefore also be formulated

as a connection requirement:

id(S) connects { t 0 v(E) * ¬ n(t) } with vN(E).

Our invoice-example above would result in something like:

id({INV-NO}) connects { t 0 v(INV) * t(STATUS) ó {"ready", "exit"} }

with vN(INV).

We will also illustrate this class of dynamic constraints (concerning final values) with

a concrete instance based on Example 1. Suppose that we require that a department

can only disappear when it has no employees anymore. Here,

E = DEP, S = {DNO}, and n(t) = (t(DNO) ó {y(DEPNO) * y 0 v(EMPL)}). This

results in the following dynamic constraint:

id({DNO}) connects { t 0 v(DEP) * t(DNO) 0 {y(DEPNO) * y 0 v(EMPL)} } with

vN(DEP).

Note that this dynamic constraint formally rules out the possibility of a proper casca-

ding delete here (considered as one atomic transaction).

(F9) Life cycles

Sometimes, tuples contain some kind of "status" attribute for which only certain status

transitions are allowed during their "life time", thus enforcing certain "life cycle"

constraints. A classical example of such an attribute is marital status.

Generally, for a "status" attribute b (with value set M), proper status transitions are

only allowed within a given L f M × M (for old and new tuples with the same value

for a key S of the E-table):

{ (t(b);tN(b)) * (t;tN) 0 v(E) × vN(E) and tj S = tNj S and t(b) … tN(b)} f L.

An example of a dynamic constraint of this form is the requirement (DC4) from

Example 1, where b = MAT, E = EMPL, S = {NO}, and

M = {'jun','anal','sr-an','mgr','prog','sr-pr'} and

11

L = { ('jun';'anal'), ('anal' ;'sr-an'), ('sr-an';'mgr'),

 ('jun';'prog'), ('prog';'sr-pr'), ('sr-pr';'mgr')}

(F10) Changing life cycles

Life cycle constraints may be subject to change as well. E.g., our company in

Example 1 may decide to add the possibility of the career step "prog 6 anal". If life

cycles are occasionally subject to change then it is better to add a table containing the

currently allowed (proper) status transitions in our database universe (i.e., we mean:

better than to adapt our transition relation over and over again). In our example, that

table would look like:

FROM TO

jun anal

anal sr-an

sr-an mgr

jun prog

prog sr-pr

sr-pr mgr

Generally, we would extend our database skeleton g with an ordered pair, say (ST;

{FROM, TO}), while the value set for the attributes FROM and TO is M (or perhaps

something of the form Chs(n) if the status set M as such might be subject to change as

well). This results in the following dynamic constraint allowing changing life cycles:

{ (t(b); tN(b)) * (t;tN) 0 v(E) × vN(E) and tj S = tNj S and t(b) … tN(b)} f

{ (y(FROM); y(TO)) * y 0 v(ST)}.

Note that we used v(ST) in stead of vN(ST) here. This means that status transitions

have to obey the status transition conditions in the "old" state v (which is relevant in

the rare situation that status transitions and status transition conditions are updated in

one and the same "atomic" transaction).

Even if our life cycles are not subject to change, one might argue that this solution is

12

more elegant than the one used in Example 1 anyway.

Note that for v = vN, the constraint forms (F1), (F2), (F3), (F6), (F7), and (F8) are always satis-

fied. Hence, these constraint forms can not hinder the reflexivity of any transition relation in

which they appear. Also if B in (F4) and S in (F5), in (F9), and in (F10) are keys of E in U

then those constraint forms are satisfied for v = vN as well.

We notice that sometimes one of the minimal keys of E in U plays a special role, such as S in

the dynamic constraints in (F3), (F5), (F7), (F8), (F9), and (F10). The intuition behind this is

that in the course of time the values for that special key continue to correspond one-to-one to

the "real world" objects they intend to represent. Such a special minimal key is sometimes

called a primary key. The other minimal keys are called alternate keys in this regard. This

topic is discussed in Chapter 3 of [Da 86], for example. Although in the literature the distincti-

on between primary keys and alternate keys is usually made on the basis of other (often vague)

criteria, the explicit role in dynamic constraints as mentioned above is in our view the most

significant and concrete argument for such a distinction.

We also noticed in this section that the concept of a connection requirement is useful not only

for the formulation of static constraints, but for the formulation of dynamic constraints as well.

In those cases, the connecting attribute transformation is obviously an identity function.

3. Transition dependency and

 constant dependency

For the special class of dynamic constraints encountered in (F4) of Section 2, we shall

introduce special names and notations. In the case below we will call C transition dependent

on B at (T;TN), by analogy to momentary dependency.

Definition 4:

If A, B, and C are sets and T and TN are tables over A, then:

B ² C at (T;TN)] œt 0T: œtN 0TN: if t j B = tN j B then t j C = tN j C.

The requirement (F4) in Section 2 can now be written as: B ² C at (v(E);vN(E)).

13

The next five lemmas describe some basic properties of transition dependency. We note that

the properties in Lemma 1 constitute the analogon to the Armstrong axioms for momentary

dependencies; see [Ar 74].

Lemma 1:

If A is a set and T and TN are tables over A, and B f A and C f A and D f A, then:

(a) if C f B then B ² C at (T;TN);

(b) if B ² C at (T;TN) and C ² D at (T;TN) then B ² D at (T;TN);

(c) B ² C at (T;TN)] œc 0C: B ² { c } at (T;TN).

Lemma 1 can be proven by simply applying Definition 4. The following lemma can be proven

directly from Lemma 1, i.e., without reverting to the actual definition of transition dependency.

Lemma 2:

If A is a set, T and TN are tables over A, B f A, C f A, D f A, and E f A, then:

(a) B ² B at (T;TN);

(b) if B ² C at (T;TN) and B f D then D ² C at (T;TN);

(c) if B ² C at (T;TN) and D f C then B ² D at (T;TN);

(d) if B ² C at (T;TN) and D ² E at (T;TN) then B c D ² C c E at (T;TN).

The following lemma treats some special cases (concerning the empty set), and follows

directly from Definition 4.

Lemma 3:

If A is a set and T and TN are tables over A and B f A and C f A, then:

(a) i ² C at (T;TN)] T = i or TN = i or *T Þ C c TN Þ C* # 1;

(b) B ² i at (T;TN);

(c) B ² C at (i;TN);

(d) B ² C at (T;i).

Lemma 4 relates transition dependency to momentary dependency (and to itself in (b)) and

follows directly from Definition 4 as well.

Lemma 4:

If A is a set and T and TN are tables over A, and B f A and C f A, then:

(a) B 6 C in T c TN] B ² C at (T;TN) and B 6 C in T and B 6 C in TN;

14

(b) B ² C at (T;TN)] B ² C at (TN;T);

(c) B 6 C in T] B ² C at (T;T).

The proofs of the foregoing lemmas are left to the reader. Although these lemmas all have

simple proofs, they are useful enough to be stated explicitly.

To illustrate part (a) of Lemma 4, we note that because of the uniqueness condition in the

definition of WE in Example 1, the dynamic constraint (DC2) is equivalent to the dynamic

constraint that {NO} 6 {DEPNO} in v(EMPL) c vN(EMPL).

The following lemma shows how transition dependency interferes with some well-known table

operations.

Lemma 5:

If A is a set and T and TN are tables over A, and B f A and C f A, then:

(a) if B ² C at (T;TN) and X f T and XN f TN, then B ² C at (X;XN);

(b) if B ² C at (T;TN), then B 6 C in (T ® (TNÞB)) c (TN ® (TÞB));

(c) if B is u.i. in TN, then:

 (B ² C at (T;TN) and T Þ B f TN Þ B)] T Þ(BcC) f TN Þ(BcC).

Proof:

(a) This follows directly from Definition 4.

(b) Let X = (T ® TNÞB) and XN = (TN ® TÞB); now X f T and XN f TN, so

B ² C at (T;TN) implies B ² C at (X;XN) according to part (a).

We want to prove that B 6 C in X and B 6 C in XN,

after which we can apply Lemma 4(a) to conclude that B 6 C in X c XN.

Now, let x 0 X and y 0 X and x j B = y j B;

then x 0 T and (›xN 0 TN: x j B = xN j B) and y 0 T;

hence, B ² C at (T;TN) implies that x j C = xN j C and y j C = xN j C

(since y j B = x j B = xN j B);

so, x j C = y j C. Thus, B 6 C in X.

Similarly, we can prove that B 6 C in XN.

(c) Y: T Þ B f TN Þ B, so œt 0 T: ›tN 0 TN: t j B = tN j B;

therefore, t j C = tN j C (since B ² C at (T;TN));

hence, t j (BcC) = tN j (BcC).

Thus, œt 0 T: ›tN 0 TN: t j (BcC) = tN j (BcC),

i.e., T Þ(BcC) f TN Þ(BcC).

15

 Z: T Þ B f TN Þ B follows directly from T Þ(BcC) f TN Þ(BcC).

Now, let t 0 T and tN 0 TN and t j B = tN j B;

we have to prove that t j C = tN j C.

T Þ(BcC) f TN Þ(BcC), thus ›tNN 0 TN: t j (BcC) = tNNj (BcC) since t 0 T.

Now, tN j B = t j B = tNN j B, and B is u.i. in TN, so tN = tNN;

hence, t j C = tNN j C = tN j C, which we had to prove.

~

We would like to define the concept of transition dependency also (and particularly) at the

level of transition relations. We will call C constantly dependent on B in E at R iff C is

transition dependent on B at (v(E);vN(E)) for each pair (v;vN) in R:

Definition 5:

If g is a set function, U is a database universe over g, E 0 dom(g), B and C are sets, and R f U

× U, then:

B ²² C in E at R] œ(v;vN) 0 R: B ² C at (v(E);vN(E)).

The following five lemmas describe some basic properties of constant dependency; they are

easily derived from the first five lemmas. We note that the properties in Lemma 6 again

constitute the analogon to the Armstrong axioms; see [Ar 74].

Lemma 6:

If g is a set function, U is a database universe over g, E 0 dom(g), B f g(E), C f g(E), D f

g(E), and R f U × U, then:

(a) if C f B then B ²² C in E at R;

(b) if B ²² C in E at R and C ²² D in E at R then B ²² D in E at R;

(c) B ²² C in E at R] œc 0C: B ²² { c } in E at R.

The following lemma can be proven directly from Lemma 6, i.e., without reverting to the

actual definition of constant dependency.

Lemma 7:

If g is a set function, U is a database universe over g, E 0 dom(g), A f g(E), B f g(E), C f

g(E), D f g(E), and R f U × U, then:

(a) B ²² B in E at R;

16

(b) if B ²² C in E at R and B f D then D ²² C in E at R;

(c) if B ²² C in E at R and D f C then B ²² D in E at R;

(d) if B ²² C in E at R and D ²² A in E at R then B c D ²² C c A in E at R.

The following lemma treats some special cases (concerning the empty set).

Lemma 8:

If g is a set function, U is a database universe over g, E 0 dom(g), B f g(E), C f g(E), and R f

U × U, then:

(a) i ²² C in E at R

] œ(v;vN) 0 R: (v(E) = i or vN(E) = i or *v(E) Þ C c vN(E) Þ C* # 1);

(b) B ²² i in E at R;

(c) B ² C in E at i.

Lemma 9 tries to relate constant dependency to permanent dependency (and to itself in (b)).

Lemma 9:

If g is a set function, U is a database universe over g, E 0 dom(g), B f g(E), C f g(E), and R f

U × U, then:

(a) if B 66 C in E of U then:

 B ²² C in E at R] œ(v;vN) 0 R: B 6 C in v(E) c vN(E);

(b) B ²² C in E at R] B ²² C in E at R , where R denotes the inverse of R.-1 -1

The following lemma shows how constant dependency is related to cumulativity.

Lemma 10:

If g is a set function, U is a database universe over g, E 0 dom(g), B f g(E), C f g(E), B is a

key of E in U, and R f U × U, then:

(B ²² C in E at R and œ(v;vN) 0 R: v(E) Þ B f vN(E) Þ B)

] œ(v;vN) 0 R: v(E) Þ(BcC) f vN(E) Þ(BcC).

A straightforward yet important observation is that for reflexive transition relations constant

dependency implies permanent dependency!

Theorem 1:

If g is a set function, U is a database universe over g, E 0 dom(g), B f g(E), C f g(E), and R f

17

U × U, then:

if B ²² C in E at R and R is reflexive on U then B 66 C in E of U.

Proof:

We have to prove that œv 0 U: B 6 C in v(E);

B ²² C in E at R

] œ(v;vN) 0 R: B ² C at (v(E);vN(E)) (by Definition 5)

Y œv 0 U: B ² C at (v(E);v(E)) (since R is reflexive on U)

] œv 0 U: B 6 C in v(E) (by Lemma 4(c))

~

The class of transition and constant dependencies constitutes a special subclass of the more

general class of dynamic constraints, and is closely related to (but different from) various other

classes of "dynamic dependencies" proposed in the literature, see for example [Vi 87] and [Wij

95]. For instance, the notion of a dynamic functional dependency of Wijsen in [Wij 95] can be

compared with the statement in the lefthand side of Lemma 4(a). Hence, as we can see from

the righthand side of Lemma 4(a), his dynamic functional dependency is not equivalent to our

transition dependency but is in fact a combination of static and dynamic dependencies.

In order to give an impression of the possible (subtle) forms of dynamic constraints appearing

in the context of a database universe that is already complex in its own right, Chapter 5 of [Br

95] contains a nontrivial example of a transition relation. This example, which appeared earlier

in [Br 89], also includes various "change prohibition rules".

Conclusions

We introduced a general formal theory of dynamic constraints in order to be able to represent

all kinds of "real world" constraints as they can arise in a managerial context. Dynamic

constraints induce a transition relation on a state space. The state space in combination with

the transition relation can be considered as a Kripke model, representing a set of possible

worlds and an accessibility relation on that set of possible worlds, respectively. In practice,

such a transition relation will usually be a reflexive relation.

We also discussed the status of dynamic constraints since it is sometimes inconvenient to treat

dynamic constraints as "ironclad rules". After all, the situation might arise that a certain

18

transaction appeared to be erroneous or unintentional, while it cannot be undone because of the

dynamic constraints. In this case we call the transition irreversible; if it can be undone, the

transition is called reversible. In many cases of non-reversible transition relations, a dynamic

constraint is not used as a "law" but rather as a warning or as a condition where special

authorization is required to carry out the modification.

We also reconsidered the notions of primary and alternate keys in a dynamic context. We

distinguished (and exemplified) several useful classes of dynamic constraints, e.g., cumulativi-

ty, constraints on initial and on final values, life cycles, yes, even changing life cycles, and

transition and constant dependencies. We also established several useful properties of these

dependencies.

All in all, this paper contributed to both the theory and application of dynamic constraints,

among others by establishing a general theoretical foundation for solutions to practical

problems, even in subtle and complex situations.

19

References

[Ar 74] W.W. Armstrong: Dependency structures of data base relationships.

Proceedings IFIP congress, North Holland, Amsterdam, 1974, pp. 580-583

[Br 89] E.O. de Brock: Foundations of semantic databases. (In Dutch.)

Academic Service, Schoonhoven, 1989

[Br 95] E.O. de Brock: Foundations of semantic databases.

Prentice Hall International Series in Computer Science, London, 1995

[Da 86] C.J. Date: Relational database: Selected writings.

Addison-Wesley, Reading (Mass.), 1986

[Da 95] C.J. Date: An introduction to database systems.

Addison-Wesley, Reading (Mass.), 1995

[Je 94] C.S. Jensen et al.: A consensus glossary of temporal database concepts.

ACM SIGMOD Record, vol. 23(1), 1994, pp. 52-64

[Kl 93] N. Kline: An update of the temporal database bibliography.

ACM SIGMOD Record, vol. 22(4), 1993, pp. 66-80

[Kr 59] S.A. Kripke: A completeness theorem in modal logic.

The Journal of Symbolic Logic, vol. 24, 1959, pp. 1-14

[Le 77] E.J. Lemmon: An introduction to modal logic.

Basil Blackwell, Oxford, 1977

[Na 89] S. Navathe and R. Ahmed: A temporal relational model and a query language.

Information Sciences, vol. 49, 1989, pp. 147-175

[Vi 87] V. Vianu: Dynamic functional dependencies and database aging.

Journal of the ACM, vol. 34(1), 1987, pp. 28-59

[Wij 95]J. Wijsen: Extending dependency theory for temporal databases.

Dissertation, University of Leuven, 1995

20

Appendix: Basic notions

In this section we establish the definitions of the basic (database) notions as we use them in

this paper (cf. [Br 95]). By a table over a set A we mean a set of functions over A, i.e.,

functions with A as their domain:

If A is a set, then:

T is a table over A] T is a set and œt 0 T: t is a function over A.

An element of T is called a tuple and an element of A is called an attribute of T.

Since every table is a (special) set, every concept defined for sets also applies to tables. Thus,

for example, the notions of union and intersection of two tables make sense.

A database skeleton (or database schema) can be considered as a set-valued function,

assigning to each table name its set of attributes. As a frame of reference we present the simple

but also well-known and widely used example in the database literature concerning suppliers,

parts and shipments (cf. [Da 95]). The suppliers/parts/shipments-example has the following

database skeleton, which we will call g1:

g1 = { (S ; {S#, SNAME, STATUS, CITY}), . suppliers

 (P ; {P#, PNAME, COLOR, WEIGHT, CITY}), . parts

 (SP ; {S#, P#, QTY}) } . shipments

Here S# stands for supplier number, P# for part number, and QTY for quantity.

We define the concept of a database state (or briefly DB state) over g for any set-valued functi-

on g:

If g is a set-valued function, then:

v is a DB state over g] v is a function over dom(g) and

 œE 0 dom(g): v(E) is a table over g(E).

Since every database state is a function, every concept defined for functions also applies to

database states. Thus we can speak about the domain and the range of a database state, for

instance. In our example above, dom(v) = {S, P, SP} for every DB state v over g1.

The set of admissible states (to be determined by the organization in question) is some set of

21

database states over g1. We call such a set a database universe (or briefly DB universe) over

g1. In general:

If g is a set-valued function, then:

U is a DB universe over g] U is a set of DB states over g.

Example 1 in Section 1 contains the specification of a database universe called EXU.

If U is a DB universe over g, then we call g the DB skeleton (or "database schema") of U, an

element E of dom(g) a table index (or "table name") of U, g(E) the heading of E in U, and an

element of g(E) an attribute (or "attribute name") of E in U. We call an element of U a DB

state consistent with U.

Since every DB universe is a (special) set, each concept defined for sets applies to DB

universes as well.

The restriction of a tuple t to an attribute set B is denoted by t j B and

the projection of a table T on B is denoted by T Þ B:

t j B = { (a;w) * (a;w) 0 t and a 0 B }

T Þ B = { t j B * t 0 T }

We denote function composition by f B g (f after g). The identity function on a set A is denoted

by id(A): id(A) = { (x;x) * x 0 A}.

We call the functions f and g joinable iff f and g match on dom(f) 1 dom(g), i.e., iff

œa 0 dom(f) 1 dom(g): f(a) = g(a). So, f and g are joinable iff f c g is a function.

The natural join of the tables T and TN is denoted by T ® TN:

T ® TN = {t c tN* t 0 T and t 0 TN and t and tN are joinable }.

We define the familiar notion of functional dependency on the "incidental" level of tables

(where we will call it momentary dependency) as well as on the "structural" level of database

universes (where we will call it permanent dependency):

If A, B, and C are sets and T is a table over A, then:

B 6 C in T] œt 0 T: œtN 0 T: if t j B = tN j B then t j C = tN j C.

If g is a set function, U is a DB universe over g, E 0 dom(g), B f g(E), and C f g(E), then: B

22

66 C in E of U] œv 0 U: B 6 C in v(E).

Unique identification is a special case of momentary dependency (namely if C = A) and,

similarly, any "key" property is a special case of permanent dependency:

If A and B are sets and T is a table over A, then:

B is uniquely identifying (or u.i.) in T] œt 0 T: œtN 0 T: if tj B = tNj B then t = tN.

If g is a set function, U is a DB universe over g, and E 0 dom(g), then:

(a) B is a key of E in U] œv 0 U: B is u.i. in v(E).

(b) B is a minimal key of E in U] B is a key of E in U and

 œBN B: BN is not a key of E in U.

The following notion constitutes a generalization of the notion of referential integrity. Let h be

a function which maps a set B of "referencing" attributes of a table T onto a set BN of

corresponding "referenced" attributes of a table TN. (Thus, the "attribute transformation" h

indicates which attributes in B correspond to which attributes in BN.) We say that h connects T

with TN iff all B-values in T also occur as BN-values in TN. Formally:

If T is a table over A, TN is a table over AN, and h is a function with dom(h) f A and rng(h) f

AN, then:

h connects T with TN] { t j dom(h) * t 0 T } f { tN B h * tN 0 TN}.

Often, h = id(B) for some attribute set B. The connection requirement then reduces to:

T Þ B f TN Þ B.

In our examples, we will often use the following set notations. The set of natural numbers

(including 0) is denoted by ù. For each n 0 ù, Chs(n) denotes the set of all strings of at most n

characters. If m and n are integers, then [m .. n] denotes the set of all integers between m and n

(m and n included).

For each set-valued function F, J(F) denotes the generalized product of F. Formally:

J(F) = { f * f is a function over dom(F) and œx 0 dom(f): f(x) 0 F(x) }.

