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Abstract

The Data-Correcting(DC) Algorithm is a recursive branch and bound type
algorithm, in which the data of a given problem instance are ‘corrected’ at
each branching in such a way that the new instance is polynomially solvable
and the result satisfies a prescribed accuracy (the difference between optimal
and current solution). In this paper the DC algorithm is used for determining
exact or approximate global minima of supermodular functions. The working
of the algorithm is illustrated by means of a Simple Plant Location Problem.
Computational results, obtained for the Quadratic Cost Partition Problem,
show that the DC algorithm outperforms the branch-and-cut algorithm, not
only for sparse graphs but also for non-sparse (with density at least 40%)
graphs (at least 100 times faster). Moreover, for increasing values of the
accuracy parameterε the computational time decreases exponentially withε.
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1. Introduction

Many combinatorial optimization problems have as an underlying model the mini-
mization of a supermodular (or, equivalently, maximization of a submodular) func-
tion, among them being the simple plant location (SPL) problem , generalized trans-
portation problems, the max-cut problem, set covering and other well known prob-
lems involving the minimization of Boolean functions; see Nemhauser et al.[13],
Lovasz[11] and Barahona et al.[2].

Although the general problem of the minimization of a supermodular function is
known to be NP-hard, there has a sustained research effort aimed at developing
practical procedures for solving medium and large-scale problems in this class. Often
the approach taken has been problem specific, and supermodularity of the underlying
objective function has been only implicit to the analysis. For example, Barahona
et al.[2] have addressed the max-cut problem from the point of view of polyhedral
combinatorics and developed a branch and cut algorithm, suitable for applications in
statistical physics and circuit layout design. Beasley[3] applies Lagrangean heuristics
to several classes of location problems including SPL problems and reports results of
extensive experiments on a Cray supercomputer. Recently, Lee et al.[10] have made
a study of the quadratic cost partition (QCP) problem of which max-cut is a special
case, again from the standpoint of polyhedral combinatorics.

There have been fewer published attempts to develop algorithms for minimization
of a general supermodular function. We believe that the earliest attempt to exploit
supermodularity is the work of Petrov and Cherenin[14], who identified a supermod-
ular structure in their study of railway timetabling. Their procedure was subsequently
published by Cherenin[5] as the “method of successive calculations”. Their algorithm
however is not widely known in the West (Babayev[1]) where, as far we are aware of,
the only general procedure that has been studied in depth is the greedy approxima-
tion algorithm from Nemhauser et al.[13]. In another greedy approach, Minoux[12]
proposed an efficient implementation known as the “accelerated greedy algorithm”
that uses a bound already formulated in Khachaturov[9].

In this paper we propose a branch and bound procedure for minimizing a general
supermodular function that is based on a generalization of an exclusion principle first
established in Cherenin[5]. The proposed procedure improves on the greedy algorithm
in finding either an exact or an approximate solution to within a prescribed accuracy
bound. The approach we take is to develop, what we term aData-Correcting(DC)
Algorithm, which is a class of algorithms proposed by Goldengorin[7] for the solution
of NP-hard problems by “correcting” the data of a given problem instance to obtain
a new problem instance belonging to a polynomially solvable class.
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Computer experiments on random instances of the QCP problem show an improve-
ment upon published results from Lee et al.[10], particularly when the data correspond
to a non-sparse graph.

This paper is organized as follows. In Section 2 we establish two symmetric upper
bounds for subproblems of the original problem (Theorem 2.1) which are the base for
constructing two preservation rules(Corollary 2.1) similar to the ones in Cherenin[5].

We extend the preservation rules in the case where the conditions of Corollary 2.1
are violated. Corollary 2.2 is an attempt to explain what we can do in the case when
the preservation rules are not applicable. Together with Lemmas 4.1 and 4.2, and
Theorems 5.1 and Theorem 5.2 we obtain upper bounds for the current accuracy
between anε�optimal and an optimal value.

We present the Preliminary Preservation(PP) algorithm, which originally was con-
structed by Cherenin[5], and we use it for determining the relevant polynomial
solvable case of a supermodular function.

In Section 3 we describe the main idea of the DC algorithm. In Section 4 we introduce
a specific correction and show how an upper bound for the difference betweenε-
optimal and optimal values can be calculated. In Section 5 we describe the DC
algorithm for determining either an exact global minimum or an approximation of a
global minimum with prescribed accuracy. In Section 6 weillustrate the working of
the DC algorithm by means of the SPL problem. In the final Section we compare our
computational results to results from Lee et al.[10].

2. Supermodular Functions and the Preliminary Preservation (PP)
Algorithm

Let 8 be a real-valued function defined on the power set 2I0
of I 0 D f1, 2, ..., mg;

m � 1. For eachω1, ω2 2 2I0
with ω1 � ω2, define

[ω1, ω2] D fω 2 2I0

j ω1 � ω � ω2g.

Note that [;, I 0] D 2I0
. The interval [ϕ, I ] is called a subinterval of [;, I 0] if

; � ϕ � I � I 0; notation [ϕ, I ] � [;, I 0]. In this paper we mean by an interval
always a subinterval of [;, I 0]. Throughout this paper, it is assumed that8 attains
a minimum value on [;, I 0]. The minimum value of the function8 on the interval
[ϕ, I ] is denoted by8�[ϕ, I ]. For ε � 0, the problem ofε-minimizingthe function8
on [ϕ, I ] is to find an elementβ 2 [ϕ, I ] such that8(β) � 8�[ϕ, I ] C ε; β is called
anε-minimumof 8 on [ϕ, I ]. The function8 is calledsupermodularon [ϕ, I ] if for
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eachβ, γ 2 [ϕ, I ] it holds that

8(β) C8(γ ) � 8(β [ γ )C8(β \ γ ).

Expressions of the formInfkg and ϕ [ fkg will shortly be written asI � k and
ϕ C k. Let k 2 Inϕ and [ϕ, I ] be an interval. The following theorem establishes
a relationship between the optimal values of8 on the two parts of the partitioning
[ϕ, I � k], [ϕ C k, I ] of [ϕ, I ]. Note that [ϕ, I � k] \ [ϕ C k, I ] D ;. The theorem
can be used to decide in which part of the partition [ϕ, I � k], [ϕ C k, I ] of [ϕ, I ] a
minimum of8 is located.

Theorem 2.1 Let 8 be a supermodular function on the interval[ϕ, I ] � [;, I 0]
and letk 2 Inϕ. Then the following assertions hold.
a. If 8(ϕ)�8(ϕ C k) D θ , then8�[ϕ, I � k] �8�[ϕ C k, I ] � θ .
b. If 8(I) �8(I � k) D η, then8�[ϕ C k, I ] �8�[ϕ, I � k] � η.

Proof. (a) Letγ 2 [ϕ, I � k], with 8(γ C k) D 8�[ϕC k, I ]. It then follows from
the definition of supermodularity that8(ϕC k)C8(γ ) � 8(γ C k)C8(ϕ), which
implies that8(γ ) � 8(γ Ck)C8(ϕ)�8(ϕCk).Hence,8�[ϕ, I�k] � 8(γCk)C

8(ϕ)�8(ϕCk), implying that8�[ϕ, I�k]�8�[ϕCk, I ] � 8(ϕ)�8(ϕCk) D θ .
The proof of (b) is left to the reader. 2

Theorem 2.1 establishes the conditions for constructing two rules for detecting subin-
tervals containing at least one global minimum of8 on [ϕ, I ].

Corollary 2.1 Let 8 be a supermodular function on the interval[ϕ, I ] � [;, I 0],
and letk 2 Inϕ. Then the following assertions hold.
a. First Preservation (FP) Rule .

If 8(ϕ C k) � 8(ϕ), then8�[ϕ, I ] D 8�[ϕ, I � k] � 8�[ϕ C k, I ].
b. Second Preservation (SP) Rule.

If 8(I � k) � 8(I), then8�[ϕ, I ] D 8�[ϕ C k, I ] � 8�[ϕ, I � k].

Proof. 1a. From Theorem 2.1 we have that8�[ϕ, I � k] � 8�[ϕ C k, I ] � θ D

8(ϕ) � 8(ϕ C k). By assumption8(ϕ) � 8(ϕ C k) D θ � 0. Hence,8�[ϕ, I ] D
8�[ϕ, I � k] � 8�[ϕ C k, I ]. The proof of 1b is similar. 2

In Corollary 2.2 we present an extension of the rules from Corollary 2.1, appropriate
to ε-minimization. In other words, the assumptions of the rules from Corollary 2.2
are true when the assumptions of Corollary 2.1 are false.
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Corollary 2.2 Let 8 be a supermodular function on the interval[ϕ, I ] � [;, I 0],
andk 2 Inϕ. Then the following assertions hold.
a. First θ -Preservation (θ -FP) Rule.

If 8(ϕ)�8(ϕ C k) D θ � 0, then8�[ϕ, I � k] �8�[ϕ, I ] � θ ,
which means that[ϕ, I � k] contains aθ -minimum of[ϕ, I ].

b. Secondη-Preservation (η-SP) Rule.
If 8(I) �8(I � k) D η � 0, then8�[ϕ C k, I ] �8�[ϕ, I ] � η,
which means that[ϕ C k, I ] contains aη-minimum of[ϕ, I ].

Proof. The proof of part (a) is as follows. Case 1. If8�[ϕ, I ] D 8�[ϕ, I � k] then
8�[ϕ, I�k] �8�[ϕ, I�k]Cθ or8�[ϕ, I�k] � 8�[ϕ, I ] Cθ. Case 2. If8�[ϕ, I ] D
8�[ϕC k, I ], then from Theorem 2.1a follows that8�[ϕ, I � k] �8�[ϕC k, I ] � θ

or 8�[ϕ, I � k] �8�[ϕ, I ] � θ . The proof of (b) is similar. 2

By means of Corollary 2.1 it is often possible to exclude a large part of [;, I 0] from
consideration when determining a global minimum of8 on [;, I 0]. The so called
Preliminary Preservation (PP) algorithmdetermines a subinterval [ϕ, I ] of [;, I 0]
that certainly contains a global minimum8, whereas [ϕ, I ] cannot be made smaller
by using the preservation rules of Corollary 2.1.

Let [ϕ, I ] be an interval. For eachi 2 Inϕ, defineδC(ϕ, I, i) D 8(I) � 8(I � i)

andδ�(ϕ, I, i) D 8(ϕ)�8(ϕC i)I moreover, defineδCmin(ϕ, I) D minfδC(ϕ, I, i) j

i 2 Inϕg, rC(I, ϕ) D minfr j δC(ϕ, I, r) D δCmin(ϕ, I)g.

Similarly, for δ�(ϕ, I, i) defineδ�min(ϕ, I) D minf δ�(ϕ, I, i) j i 2 Inϕg, r�(I, ϕ) D

minfr j δ�(ϕ, I, r) D δ�min(ϕ, I)g. If no confusion is likely, we shortly writer�, rC,

δ�, δC instead ofr�(I, ϕ), rC(I, ϕ), δ�min(ϕ, I), andδCmin(ϕ, I) respectively.

The Preliminary Preservation Algorithm

ProcedurePP(τ, σ I ϕ, I )
=========================================
Input: A supermodular function8 on the subinterval [τ, σ ] of [;, I 0].
Output: A subinterval [ϕ, I ] of [τ, σ ] such that8�[ϕ, I ] D 8�[τ, σ ],

8(ϕ) > 8(ϕ C i) and8(I) > 8(I � i) for eachi 2 Inϕ.
=========================================
beginϕ :D τ ; I :D σ ;

Step 1:if ϕ D I

then gotoStep 4;
Step 2: CalculateδC andrC;

if δC � 0 fCorollary 2.1bg
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then begin callPP(ϕ C rC, I I ϕ, I);
gotoStep 4;

end;
Step 3: Calculateδ� andr�I

if δ� � 0 fCorollary 2.1ag
then begin callPP(ϕ, I � r�I ϕ, I );

gotoStep 4;
end;

Step 4:
end;
=========================================

Each timeϕ or I are updated during the execution of the PP algorithm, the conditions
of Corollary 2.1 remain satisfied, and therefore the invariant8�[ϕ, I ] D 8�[τ, σ ]
remains valid at each step. At the end of the algorithm we have that minfδC, δ�g > 0,

which shows that8(ϕ) > 8(ϕ C i) and8(I) > 8(I � i) for eachi 2 Inϕ. Hence
Corollary 2.1 cannot be applied for further reduction of the interval [ϕ, I ] without
violation8�[ϕ, I ] D 8�[τ, σ ]. Note that this remark shows the correctness of the PP
algorithm.

In Section 4 we will use Corollary 2.1 to make the interval [ϕ, I ] � [τ, σ ] even
smaller by violating8�[ϕ, I ] D 8�[τ, σ ] not too much, namely, for a prescribed
accuracyε it will hold that 8�[ϕ, I ] �8�[τ, σ ] � ε.

The following theorem can also be found in Goldengorin[6]. It provides an upper
bound for the worst case complexity of the PP algorithm; the complexity function is
taken only dependent of the number of comparisons of values for8(ω).

Theorem 2.2 The time complexity of the PP algorithm is at mostO(m2).

Proof. In Steps 2 and 3 at most 2m comparisons are made. If the comparisons
do not result in an update of eitherϕ or I , then the algorithm stops. Each time the
algorithm is executed, the number of elements inInϕ is decreased by at least one.
The PP algorithm starts withI 0 D f1, 2, .., mg, so that the number of comparisons is
bounded from above by(2)[mC (m � 1)C ...C 1] D (m)(mC 1). Hence the time
complexity of the algorithm is at mostO(m2). 2

Note that if the PP algorithm terminates withϕ D I , thenϕ is a global minimum
of 8 on [τ, σ ]. Any supermodular function8 on [τ, σ ] for which the PP algorithm
returns a global minimum for8 is called aPP -function.

In the following example8 is aPP -function; we use it for illustrating the working
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of the PP algorithm. LetI 0 D f1, 2, 3g; the values of8 are given in Table 2.1.

ω f;g f1g f2g f3g f1,2g f1,3g f2,3g f1,2,3g
8(ω) 10 10 8 7 8 12 8 20

Table 2.1: An example of a PP-function

After the first execution of Step 3, we have that [ϕ, I ] D [f;g, f2, 3g], because
δ� D 8(;) � 8(f1g) D 0, andr� D 1. After the second execution of Step 2
we have that [ϕ, I ] D [f3g, f2, 3g], becauseδC D 8(f2, 3g) � 8(f2g) D 0 and
rC D 3. Finally, after the third execution we have that [ϕ, I ] D f3g, becauseδ� D

8(f3g)�8(f2, 3g) D �1, andr� D 2. So,ϕ D I , and hence8 is aPP�function.

3. The main idea of the DC algorithm

Recall that if a supermodular function8 is not aPP -function, then the PP algorithm
terminates with a subinterval [ϕ, I ] of [;, I 0] with ϕ 6D I that contains a minimum
of 8 without knowing its exact location in [ϕ, I ]. In this case, the conditions

δC(ϕ, I, i) > 0 for i 2 Inϕ, (1)
andδ�(ϕ, I, i) > 0 for i 2 Inϕ. (2)

are satisfied at termination of the PP algorithm. The basic idea of the DC algorithm is
that if a situation occurs on which both (1) and (2) hold, then the data of the current
problem will be ‘corrected’ in such a way that acorrectedfunction 9 satisfies at
most one of the conditions (1) or (2). After the correction the following situations
may occur:

- The corrected function is not supermodular, and additional conditions which guar-
antee its supermodularity are not known;

- The corrected function is not supermodular, and additional conditions which guar-
antee its supermodularity are known, but the complexity of the verification of the
supermodularity is equivalent to the complexity of solving the original problem;

- The corrected function is not supermodular, and additional conditions which guar-
antee the supermodularity are known; moreover, the complexity of the verification of
the supermodularity is polynomial (efficient);

- The corrected function is supermodular (and it is possible to prove this fact).
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In this paper we will restrict ourselves to the latter situation for which the supermod-
ularity of the corrected function easy to prove. The other situations are also of interest
but the investigationof them is subject of further research. Hence a situation is studied
for which there is ani 2 Inϕ, such that either9(I � i) � 9(I) or 9(ϕC i) � 9(ϕ)

holds. Now Corollary 2.1 can be applied again, and we are in the situation that the
PP algorithm can be applied. For all possible elementsi we try to choose one for
which the correction procedure satisfies the prescribedε0. If such an elementi does
not exist, we choose an arbitraryi 2 Inϕ and branch the current problem into two
subproblems, one on [ϕ C i, I ] and one on [ϕ, I � i].

Anyway, we should find answers for the following questions:

- How should the difference between the value of a global minima of the corrected
and the uncorrected functions be estimated, and, how does this difference depend on
the specific corrections?

- How should the above mentioned difference be decreased in case it does not satisfy
the prescribed accuracyε0?

The answers to these questions can be found in the Section 4.

4. The Correcting Rules; an extension of the PP algorithm.

In order to preserve the supermodularity we will use the following correcting rules.

Let ; � ϕ � I � I 0, andrC, r� 2 Inϕ. Moreover, let8 be a supermodular function
on [;, I 0]. Then for eachω 2 [ϕ, I ] define:
Correcting Rule 1(CR1):

9(ω) D

{
8(ω) C δC(ϕ, I, rC), if rC /2 ωI

8(ω), otherwise

The Correcting Rule 2(CR2).

9(ω) D

{
8(ω) C δ�(ϕ, I, r�), if r� 2 ωI

8(ω), otherwise

It can be easily seen that if8 is supermodular on a certain interval, then so is9.

An extension of the PP algorithm is based on the following lemma’s.

Lemma 4.1 Let8 be a supermodular function on the interval[ϕ, I ] � [;, I 0] and
let i 2 Inϕ. Then the following assertions hold.
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a. If δ D 8(ϕ) �8(ϕ C i) � 0 and8(λ)�8�[ϕ, I � i] � γ � ε,
then8(λ)�8�[ϕ, I ] � γ � ε.
b. If δ D 8(I) �8(I � i) � 0 and8(λ)�8�[ϕ C i, I ] � γ � ε,
then8(λ)�8�[ϕ, I ] � γ � ε.
c. If 0� δ D 8(ϕ) �8(ϕ C i) � ε, and8(λ)�8�[ϕ, I � i] � γ � ε � δ,
then8(λ)�8�[ϕ, I ] � γ C δ � ε.
d. If 0 � δ D 8(I) �8(I � i) � ε, and8(λ) �8�[ϕ C i, I ] � γ � ε � δ,
then8(λ)�8�[ϕ, I ] � γ C δ � ε.

Proof. The proof of (a) is as follows. Fromδ � 0 and Corollary 2.1a we obtain that
8�[ϕ, I ] D 8�[ϕ, I � i]. Hence8(λ)�8�[ϕ, I ] D 8(λ) �8�[ϕ, I � i] � γ � ε.
Since the proof of (b) is similar to that of (a) we conclude with a proof of (c).
From δ � 0 and Corollary 2.2a we obtain that8�[ϕ, I � i] � 8�[ϕ, I ] � δ or
�8�[ϕ, I ] � �8�[ϕ, I � i] C δ or 8(λ)�8�[ϕ, I ] � 8(λ) �8�[ϕ, I � i] C δ �

γ C δ � ε � δ C δ D ε. 2

The following lemma implies the branching step in the DC algorithm.

Lemma 4.2 Let 8 be an arbitrary function on the interval[ϕ, I ] � [;, I 0] and let
k 2 Inϕ. Then for anyε � 0 the following assertion holds.
If 8(λ�) � 8�[ϕ, I � k] � γ � � ε, and 8(λC) � 8�[ϕ C k, I ] � γ C � ε, for
someλ�, λC 2 [;, I 0] and someγ � andγ C, thenminf8(λ�), 8(λC)g �8�[ϕ, I ] �
maxfγ �, γ Cg � ε.

Proof. Suppose that8�[ϕ, I ] D 8�[ϕ, I�k]. Hence minf8(λ�), 8(λC)g�8�[ϕ, I ]
D minf8(λ�), 8(λC)g �8�[ϕ, I � k] � 8(λ�)�8�[ϕ, I � k] � γ � � ε.
If 8�[ϕ, I ] D 8�[ϕ C k, I ], then minf8(λ�), 8(λC)g �8�[ϕ, I ] D
minf8(λ�), 8(λC)g � 8�[ϕ C k, I ] � 8(λC) � 8�[ϕ C k, I ] � γ C � ε. Hence,
minf8(λ�), 8(λC)g �8�[ϕ, I ] � maxfγ �, γ Cg � ε. 2

The main step of the DC algorithm, to be formulated in Section 5, is, what we call, the
Procedure DC(). The input parameters of the Procedure DC() are an interval [ϕ, I ],
and a prescribed value ofε; the output parameters areλ andγ , with λ 2 [;, I 0],
and8(λ) � 8�[ϕ, I ] � γ � ε. The value ofγ is an upper bound for the accuracy
of 8(λ) � 8�[ϕ, I ], and may sometimes be smaller than the prescribed accuracyε.
The procedure starts with trying to make the interval [ϕ, I ] as small as possible by
using Lemmas 4.1a and 4.1b. If this is not possible, it splits the interval into two
subintervals, and adjusts8 to 9. Then, with the help of Lemmas 4.1c and 4.1d it
may be possible to fathom one of the two subintervals. If this is not possible, the
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Procedure DC() will use the following branching rule.

Branching Rule.
For k 2 arg maxfmax[δ�(ϕ, I, i), δC(ϕ, I, i)] j i 2 Inϕg, split the
interval [ϕ, I ] into two subintervals [ϕ C k, I ], [ϕ, I � k], and use
the prescribed accuracyε of [ϕ, I ] for both subintervals.

Our choice for the branching variablei 2 Inϕ is motivated by the observation that
δC(ϕ, I, rC) � δC(ϕ, I � k, rC) and δC(ϕ, I, r�) � δ�(ϕ C k, I, r�), following
straightforwardly from the supermodularity of8. Hence, the values ofδC, δ�, for
given rC, r�, are seen to decrease monotonically with successive branchings. Our
choice is aimed at making the right hand sidesδC, δ� as small as possible after
branching (and if possible nonpositive), with the purpose of increasing the ‘probabil-
ity’ of satisfying the preservation rules (see Corollary 2.1). Moreover, this branching
rule makes the upper bound for the difference between aγ -minimum and a global
minimum as large as possible.

Note that in Procedure DC()λ need not be in the interval [ϕ, I ]. In most branch and
bound algorithms a solution for a subproblem is searched inside the solution space
of that subproblem. From the proofs of Lemmas 4.1 and 4.2 it can been seen that this
is not necessary here. For any prescribed accuracyε the Procedure DC() reads now
as follows.

ProcedureDC(ϕ, I, εI λ, γ )

=========================================
Input: A supermodular function8 on the interval [ϕ, I ], ε � 0.
Output: λ 2[;, I 0] andγ � 0 such that8(λ) �8�[ϕ, I ] � γ � ε.
=========================================
begin

Step 1:if ϕ D I

then beginλ :D ϕI γ :D 0I
gotoStep 7;

end
Step 2: CalculateδC andrCI

if δC � 0
then begin callDC(ϕ C rC, I, εI λ, γ )I

fLemma 4.1bg gotoStep 7;
end

Step 3: Calculateδ� andr�I

if δ� � 0
then begin callDC(ϕ, I � r�, εI λ, γ )I
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fLemma 4.1ag gotoStep 7;
end

Step 4:if δC � ε

then begin callDC(ϕ C rC, I, ε � δCI λ, γ )I

γ :D γ C δC fLemma 4.1dg;
gotoStep 7;

end
Step 5:if δ� � ε

then begin callDC(ϕ, I � r�, ε� δ�I λ, γ )I

γ :D γ C δ� fLemma 4.1cg;
gotoStep 7;

end
Step 6: Selectk 2 Inϕ (Branching Rule)

call DC(ϕ C k, I, εI λC, γ C)

call DC(ϕ, I � k, εI λ�, γ �)

λ :D arg minf8(λ�), 8(λC)g fLemma 4.2g
γ :D maxfγ �, γ Cg

Step 7:f8(λ) �8�[ϕ, I ] � γ � εg

end;
=========================================

In Section 6 we will illustrate this algorithm by solving a SPL problem.

5. The Data-Correcting(DC) Algorithm

The DC algorithm is a branch-and-bound type algorithm, and is presented as a
recursive procedure.

The Data-Correcting Algorithm

=========================================
Input: A supermodular function8 on [;, I 0] and a prescribed

accuracyε0 � 0.
Output: λ 2 [;, I 0] andγ � 0 such that8(λ) �8�[;, I 0] � γ � ε0.

=========================================
begin

call DC(;, I 0, ε0I λ, γ )

end;
=========================================
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Theorem 5.1 (Correctness of the DC algorithm). For any supermodular function
8 defined on the interval[;, I 0] and for any accuracyε0 � 0, the DC algorithm
constructs aλ 2 [;, I 0] and aγ � 0 such that8(λ) �8�[;, I 0] � γ � ε0.

Proof. We only need to show that each step of the DC algorithm is correct. The
correctness of Step 1 follows from the fact that ifϕ D I then the interval [ϕ, I ]
contains a unique solution andλ satisfies the prescribed accuracyε0 (i.e., 8(λ) �

8�[ϕ, I ] D 8(λ) �8(λ) D 0� γ � ε0).

The correctness of Steps 2 and 3 follows from Lemma 4.1b and Lemma 4.1a, respec-
tively. The correctness of Steps 4 and 5 follows from Lemma 4.1d and Lemma 4.1c,
respectively; and the correctness of Step 6 follows from Lemma 4.2. So, if the Pro-
cedure DC() is called with the arguments;, I 0 and ε0, then, when it is finished,
8(λ)�8�[;, I 0] � γ � ε0 holds. 2

In the following theorem we show how a current value ofγ (in the DC algorithm)
can be decreased.

Theorem 5.2 Let 8 be an arbitrary function on the interval[ϕ, I ] � [;, I 0] and
let k 2 Inϕ. Then for anyε � 0 the following assertion holds.
If 8(λ�) � 8�[ϕ, I � k] � γ � � ε and 8(λC) � 8�[ϕ C k, I ] � γ C � ε for
someλ�, λC 2 [;, I 0] and someγ � andγ C, thenminf8(λ�), 8(λC)g �8�[ϕ, I ] �
minf8(λ�), 8(λC)g �minf8(λC)� γ C, 8(λ�)� γ �g D γ � maxfγ �, γ Cg � ε.

Proof. minf8(λ�), 8(λC)g �8�[ϕ, I ] D
minf8(λ�), 8(λC)g �minf8�[ϕ C k, I ], 8�[ϕ, I � k] D
minf8(λ�), 8(λC)g Cmaxf�8�[ϕ C k, I ],�8�[ϕ, I � k] �
minf8(λ�), 8(λC)g Cmaxfγ C �8(λC), γ � �8(λ�)g D

minf8(λ�), 8(λC)g �minf8(λ�)� γ �, 8(λC)� γ Cg � maxfγ �, γ Cg � ε. 2

Note that in Lemma 4.2 and Theorem 5.28 need not be a supermodular function.
In order to use this theorem in the Procedure DC(), it is enough to replaceγ :D
maxfγ �, γ Cg in step 6 byγ :D minf8(λ�), 8(λC)g�minf8(λC)�γ C, 8(λ�)�γ �g.
We can always construct examples for which8�[ϕ, I ] D minf8(λC)�γ C, 8(λ�)�

γ �g, and therefore we can assert that the bound in Theorem 5.2 is the best possible.
Namely, suppose thatε D 12;8(λ�) D 16,γ � D 9,8�[ϕ, I � k] D 7,8(λC) D 15,
γ C D 8, and8�[ϕ C k, I ] D 10. Then,8(λ�) � 8�[ϕ, I � k] D 16� 7 D 9 �

γ � D 9 � ε, and8(λC) � 8�[ϕ C k, I ] D 15� 10 D 5 � γ C � ε. Moreover,
8�[ϕ, I ] D 7 D minf16�9, 15�8g andγ D minf16, 15g�minf16�9, 15� 8g D
8 < maxfγ �, γ Cg.
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It is possible to make the DC algorithm more efficient if we fathom subproblems
by using lower bounds. For subproblems of the form minf8(ω) j ω 2 [ϕ, I ]g D
8�[ϕ, I ], the following lemma includes two lower bounds. The lemma is due to
Khachaturov[9].

Lemma 5.1 If 8(ϕ)�8(ϕ C i) � 0 and8(I) �8(I � i) � 0 for all i 2 Inϕ,
then lb1 D 8(ϕ) �

∑
i2Inϕ[8(ϕ) � 8(ϕ C i)] � 8�[ϕ, I ], and lb2 D 8(I) �∑

i2Inϕ
[8(I) �8(I � i)] � 8�[ϕ, I ].

Proof. We give the proof forlb1. The proof forlb2 is left to the reader. Letα 2 [ϕ, I ]
be such that8�[ϕ, I ] D 8(α). Let αnϕ D fi1, ..., irg. From the supermodularity of
8, we have that8(α) � 8(α � i1)� [8(ϕ)�8(ϕ C i1)] and also that8(α � i1) �

8[(α � i1) � i2] � [8(ϕ) � 8(ϕ C i2)]. By substituting the last inequality into the
previous inequality, we obtain8(α) � 8((α � i1) � i2) � [8(ϕ) � 8(ϕ C i1)] �
[8(ϕ)�8(ϕ C i2)]. Applying this procedurer � 1 times, we obtain

8(α) � 8(ϕ)�
∑
i2αnϕ

[8(ϕ)�8(ϕ C i)].

Since8(ϕ) �8(ϕ C i) � 0 for all i 2 Inϕ we have that

lb1 D 8(ϕ) �
∑
i2Inϕ

[8(ϕ) �8(ϕ C i)] � 8(ϕ)�
∑
i2αnϕ

[8(ϕ) �8(ϕ C i)] � 8(α).

2

How can we incorporate such a lower bound into the DC algorithm? During the
running of the DC program we keep in a global variableβ the subset ofI 0 that has
the lowest function value found sofar. Then we can include a Step 3a after Step 3 in
the Procedure DC().

Step 3a: Calculatelb :D maxflb1, lb2gI

if 8(β)� lb � ε

then beginλ :D βI γ :D 8(β) � lbI

gotoStep 7;
end

It is obvious thatλ andγ satisfy8(λ) �8�[ϕ, I ] � 8(β) � lb D γ � ε. Note that
in this case,β is, in general, not an element of the interval [ϕ, I ].

The DC algorithm can also be used as a fast greedy heuristic. If the prescribed
accuracyε0 is taken very large, it will never happen that a branch is made in Step
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6; the interval [ϕ, I ] is halved in every recursive call of the algorithm untilϕ D I ,
and a ‘greedy’ solution is found. Moreover, the calculated accuracyγ gives insight
into the quality of the found solution; it is an upper bound for the difference of the
found solution and an optimal solution, which is in general better than the one given
in Minoux[12].

6. The Simple Plant Location Problem; an illustration

The DC algorithm is used for determining a global minimum (0-minimum) and a
2-minimum for the SPL problem of which the data are presented by Table 6.1. This
example is borrowed from Boffey[4].

Location Delivery cost to cite
i ri j D 1 j D 2 j D 3 j D 4 j D 5
1 7 7 15 10 7 10
2 3 10 17 4 11 22
3 3 16 7 6 18 14
4 6 11 7 6 12 8

Table 6.1: The data of the SPL problem

For solving the SPL problem it suffices to solve the problem minfP (ω) j ω 2

[;, I 0]g D P �[;, I 0] D P (α) with

P (ω) D
∑
i2ω

ri C

n∑
jD1

min
i2ω

cij , I 0 D f1, 2, 3, 4g, n D 5.

As usual, in the SPL problemri is the fixed cost of opening a plant on locationi, and
cij is the cost of satisfying the demand of customerj by planti. The recursive trees of
the solutions for the casesε0 D 0 andε0 D 2 are depicted in Figure 6.1 and Figure 6.2,
respectively. Each subproblem is represented by a box in which the input parameters
and the output values are shown. At each arc of the trees the corresponding steps of
the Procedure DC() are indicated. The prescribed accuracyε0 D 0 cannot be satisfied
at the second level of the tree. Hence, the tree is branched. In the case ofε0 D 2 the
DC algorithm applies the branching rule at the third level because after the second
one the value of the current accuracy is equal to 1 (ε D 1).
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ϕ D ;, I D f1, 2,3,4g, ε D 0
γ :D 0,8(λ) :D 47

?
Step 2,δC D 0, rC D 1

ϕ D f1g, I D f1, 2,3,4g, ε D 0
γ :D 0,8(λ) :D 47

�
�

�	

@
@
@R

Step 6,k D 3

ϕ D f1, 3g, I D f1, 2,3,4g, ε D 0
γ :D 0,8(λ) :D 47

ϕ D f1g, I D f1,2,4g, ε D 0
γ :D 0,8(λ) :D 48

Step 3,δ� D 4, r� D 4
?

Step 2,δC D 4, rC D 4
?

ϕ D f1,3g, I D f1,2,3g, ε D 0
γ :D 0,8(λ) :D 47

ϕ D f1,4g, I D f1, 2,4g, ε D 0
γ :D 0,8(λ) :D 48

Step 3,δ� D 0, r� D 2
?

Step 3,δ� D 1, r� D 2
?

ϕ D f1, 3g, I D f1, 3g, ε D 0
γ :D 0,8(λ) :D 47

ϕ D f1, 4g, I D f1,4g, ε D 0
γ :D 0,8(λ) :D 48

Figure 6.1: The recursive tree of the SPL problem withε0 D 0

ϕ D ;, I D f1, 2,3,4g, ε D 2
γ :D 1, 8(λ) :D 48

?
Step 2,δC D 0, rC D 1

ϕ D f1g, I D f1,2,3,4g, ε D 2
γ :D 1, 8(λ) :D 48

?
Step 4,δC D 1, rC D 2

ϕ D f1, 2g, I D f1, 2,3,4g, ε D 1
γ :D 0, 8(λ) :D 48

�
�

�	

@
@
@R

Step 6,k D 3

ϕ D f1,2, 3g, I D f1, 2,3,4g, ε D 1
γ :D 0,8(λ) :D 48

ϕ D f1,2g, I D f1,2,4g, ε D 1
γ :D 0,8(λ) :D 49

Step 3,δ� D �4, r� D 4
?

Step 2,δC D �4, rC D 4
?

ϕ D f1,2,3g, I D f1,2,3g, ε D 1
γ :D 0,8(λ) :D 48

ϕ D f1, 2,4g, I D f1, 2,4g, ε D 1
γ :D 0,8(λ) :D 49

Figure 6.2: The recursive tree of the SPL problem withε0 D 2
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7. The Quadratic Cost Partition Problem; computational
experiments

For given real numberspi, i 2 I 0 and nonnegative real numbersqij with i, j 2 I 0,
the Quadratic Cost Partition(QCP) problem is the problem of finding a subsetT � I 0

such that the weight

∑
i2T

pi �
1

2

∑
i, j2T

qij

is as large as possible. IfI 0 is the vertex set,E is the edge set of an edge-weighted
graphG D (I 0 , E), E � I 0 � I 0 andwij � 0 are the edge weights, then define a cut
δ(T ) as the edge set of which for each edge one end is inT and the other inI 0nT .
The Max-Cut problem is a QCP problem with

pi D
∑
j2I0

wij andqij D 2wij .

We have used randomly generated connected graphs; the number of vertices varies
from 40 to 80 with the densityd varying from 10% to 100% (i.e.d 2 [0.1� 1.0]).
The values ofp andq are uniformly distributed in the intervals [0,100] and [1,100],
respectively. The computational results are summarized in Table 7.1. We have tested
the DC algorithm on the QCP test problems from Lee et al.[10], and have made a
comparison between our results and those from Lee et al.

Each problem set is labeled by the number of vertices of the graph together with their
densities d. For example, problem 50/7 refers to graphs with 50 vertices and density
d D 0.7(or 70%), problem 40 refers to complete graphs with 40 vertices. For each
combination of density and number of vertices, five random problems were solved.
The column ‘Lee et al.’ of Table 7.1 contains the average computational times for the
problems on a RISC 6000 workstation as given in Lee et al.,[10]. The DC algorithm
was coded by means of Turbo Pascal 6.0 and was executed on a PC with a processor
with 133 Mhz. Cells with “min”, “avg”, and “max” in Table 7.1 shows minimum,
maximum and average performances of two statistics for the DC algorith: ‘the number
of subproblems’ solved and ‘the number of discarded subproblems’ indicating the
number of subproblems discarded by means of the lower boundslb1 and lb2 from
Lemma 5.1.

When the graph has at most 40 vertices, the problem is very easy, and the calculation
times are smaller than 0.05 sec. For problems with at least 40 vertices the average
calculation times grow exponentially with decreasing values of the densityd (see
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Prob. Time average, sec # of generated subpr. # of fathomed subpr.
Lee et al. DC min avg max min avg max

40/2 0.97 0.10 618 797 972 306 396 481
40/3 2.09 0.08 470 640 793 235 313 385
40/4 6.79 0.05 430 539 735 204 258 354
40/5 6.63 0.028 428 497 584 201 231 278
40/6 8.62 0.038 340 387 434 153 173 192
40/7 11.40 0.030 204 216 267 85 100 116
40/8 14.57 0.028 217 261 292 80 95 103
40/9 8.46 0.012 107 154 223 34 42 56
40 13.89 0.004 119 160 213 33 38 48

50/1 0.56 0.29 1354 1885 2525 686 945 1258
50/2 5.36 0.45 2100 2778 3919 1042 1393 1971
50/3 16.19 0.27 1671 2074 2565 814 1019 1268
50/4 95.32 0.18 1183 1576 1976 576 755 950
50/5 38.65 0.08 870 943 1051 414 447 502
50/6 43.01 0.07 646 725 798 291 321 345
50/7 48.07 0.05 610 648 714 245 270 294

60/2 12.11 1.56 5470 8635 11527 2718 4303 5744
60/3 183.02 0.71 3481 5069 7005 1736 2519 3478
60/4 150.50 0.39 2450 3037 3895 1221 1503 1917
60/5 137.22 0.22 1701 2080 2532 825 1012 1236

70/2 437.74 4.89 15823 23953 34998 7909 11971 17486
70/3 367.50 1.91 9559 11105 13968 4769 5540 6967

80/1 20.87 28.12 55517 92836 132447 27771 46418 66228
80/2 864.27 17.10 64261 66460 68372 32102 33202 34160

Table 7.1: The comparison of computational results

Figure 7.1) for all values ofε0. This behavior differs from the results of the algorithm
of Lee et al; their calculation times grow with increasing densities. This behavior is
common for allm > 40. For problems with density more than 10% our algorithm is
faster than the algorithm of Lee et al. For one problem(80.1) with density equal to
10% our algorithm uses more time.

Some typical properties of the behavior of the DC algorithm are shown in Figures 7.1,
7.2 and 7.3.
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In Figure 7.2 can be seen that the calculation time of the DC algorithm grows
exponentially when the number of vertices increases. This is to be expected since
the QCP problem is NP-hard. In Figure 7.3 it is shown how the calculation times
of the DC algorithm depend on the value ofε0. We have used different prescribed
accuracies varying from 0% to 5% of the value of the global minimum.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

d

r

r

r

r

r r r r r r

Figure 7.1: Average calculation time against the densityd (case:m D 80,ε0 D 0)
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Figure 7.2: Average calculation time against the number of verticesm (case:d D 0.3,

ε0 D 0)

In all experiments withε0 > 0 the maximum of the value of the calculatedγ (denoted
byγmax) is at most0.01949�8�[;, I 0]. Moreover, for all tested problems with density
at least 30%,γmax is zero. Hence, for all tested problems withd � 0.3 we found an
exact global minimum with a calculation time of at most 5 sec. In Figure 7.4,γmax is
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Figure 7.3: Average time against the prescribed accuracyε0 (case:m D 80, d D 0.2)

depicted for the various values ofε0.
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Figure 7.4:γmax as percentage of the value of a global minimum

8. Conclusions

Theorem 2.1 can be considered as the base of our Data Correcting algorithm. It states
that if an interval [ϕ, I ] is split into [ϕ, I � k] and [ϕ C k, I ], then if we know
the difference between the supermodular function values8(ϕ) and8(ϕ C k), or
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between8(I) and8(I � k), then this difference is an upper bound for the difference
of the (unknown!) optimal values on the two subintervals. This difference is used for
‘correcting’ the current data (values of8) in the algorithm.

Another keystone in the paper is Theorem 5.2. For any two subsetsSC andS� that
cover the feasible region, say,S D SC[S�, it enables us to derive a new (and sharper
than the usual one), upper bound between an upper bound of the optimal value of
the objective function on eitherSC or S� and the optimal value of the function onS.
This new and sharper upper bound, when implemented in the DC algorithm, yields
a decrease of the calculated accuracy. Moreover, this bound can also be build into
other branch and bound type algorithms for reducing the calculated accuracy.

The DC algorithm presented in this paper is a recursive branch and bound type
algorithm. This recursion makes it possible to present a short proof of its correctness;
see Theorem 5.1.

We have tested the DC algorithm for the case of QCP problems, and used the data
from Lee et al[10]. The main striking computational result is the ability of the DC
algorithm to find exact solutions for QCP problems with densities larger than 30% and
with prescribed accuracies of five percent within fractions of second. For example,
an exact global optimum of the QCP problem with 80 vertices and 100% density, was
found within 0.22 sec on a PC with a 133 Mhz processor. We point out that whenε0

is taken very large, the DC algorithm behaves as a greedy algorithm.

Finally, we would like to remark that the DC algorithm can be used for general
classes of combinatorial optimizationproblems that are reducible to the supermodular
minimization problem.
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