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1. Introduction

In this paper the following primal-dual pair of linear programming models is used:
Primal LP-model: max{cT x|Ax ≤ b; x ≥ 0}
Dual LP-model: min{bT y|AT y ≥ c; y ≥ 0},
with A, b, c, x and y being matrices and vectors of appropriate sizes. Note that we restrict
ourselves to LP-models in which all variables are nonnegative; the so-called canonical LP-
models. The theory of linear programming can be found in many textbooks, for instance
Nering & Tucker[9]. The definitions of the concepts of polyhedron, face, et cetera, used in
this paper, can be found in, for instance, Schrijver[11]. In Section 2 we will generalize the usual
definition for degenerate vertices to faces and arbitrary nonempty subsets of polyhedra. In
Section 3 we take a closer look at the so-called Balinski-Tucker Simplex Tableaus, introduced
in Balinski & Tucker[1] as part of a proof of the Complementary Slackness Theorem. From a
Balinski-Tucker Simplex Tableau we will determine the dimensions and degeneracy degrees
of the optimal faces of both the primal and the dual LP-models. The theorems, concerning the
relationships between dimensions and degeneracy degrees of the optimal faces are given in
Section 4. In Section 5 a strong polynomial algorithm is given, that generates a Balinski-Tucker
Simplex Tableau when an optimal interior point solution is known.

2. Degeneracy

In this section the definition of degeneracy, which is usually defined for basic feasible solutions,
is generalized to faces and subsets of faces of the polyhedron defined by the feasible region
of the LP-model.
Let P be a collection of constraints representing a nonempty polyhedron in IRn , consisting of
m1 inequalities and m − m1 equalities in the variables x1, . . . , xn ; say:

P = {
n∑

j=1

ai j xj = bi , i = 1, . . . , m1;
n∑

j=1

ai j xj ≤ bi , i = m1 + 1, . . . , m}. (1)

A constraint of a constraint collection P is called a redundant constraint of P if its deletion
results in a collection of constraints representing the same polyhedron as P. An inequality of
a polyhedron-representation P is called an implied equality of P if that inequality is satisfied
with equality for every point of the polyhedron represented by P. A minimal representation
is a polyhedron-representation that does neither contain redundant constraints nor implied
equalities. For simplicity reasons we will often refer to the ‘polyhedron P’, instead of ‘the
polyhedron represented by constraint collection P’.

Let F be a face of the polyhedron P. A polyhedron-representation of F can be obtained from
P by replacing appropriate inequalities of P by equalities. A constraint of a polyhedron-
representation P is called binding on F, if it is satisfied with equality for every point of F.

2



Denote the number of constraints of P that are binding on F by b(F, P), and the dimension
of F (i.e. the dimension of the affine hull of F) by dim(F).

For example, let P = {x1 − x2 ≥ 0; x1 ≥ 0; x2 ≥ 0}. The face F = {(0, 0)} (with dimension
0) can then be defined in different ways using the constraints of P. For instance, both
{x1 − x2 = 0; x1 = 0; x2 ≥ 0} and {x1 − x2 ≥ 0; x1 = 0; x2 = 0} represent F. All three
constraints of P are binding on F. Hence, dim(F) = 0 and b(F, P) = 3.

Let F be any face of the polyhedron in IRn represented by the collection of constraints
P. The degeneracy degree of F with respect to P, denoted by σ(F, P), is defined by
σ(F, P) = b(F, P) + dim(F) − n. F is called degenerate w.r.t. P iff σ(F, P) > 0, and F
is called non-degenerate w.r.t. P iff σ(F, P) = 0. These definitions are motivated as follows.
The number of hyperplanes that determines the affine hull of face F with dimension dim(F)

is at least equal to n − dim(F), and this lowerbound is sharp. If the number of constraints
from P, that are binding on F, is larger than n − dim(F), then there is a redundancy in the
collection of hyperplanes that defines F. Note that the definition of degenerate face generalizes
the usual definition of degenerate vertex, because b(v, P) + dim(v) > n reduces for a vertex
to b(v, P) > n, which is the usual definition for degenerate vertex. With the definition of
degenerate face, also “degenerate polyhedron” is defined, since P is a face of P itself. In
case of linear programming, this means that also the concept of “degenerate feasible region”
is defined by this definition. In the literature of linear programming, degeneracy is usually
defined for basic solutions and vertices. However, in Nering & Tucker [9], an LP-model is
called degenerate if it has at least one degenerate basic solution (not necessarily feasible). In
Güler et al. [6], an LP-model is called degenerate if there exists at least one feasible point that
is degenerate.

The set of faces of a polyhedron P, together with the empty set, form a lattice under inclusion.
Therefore, for any nonempty subset S of P, there is a unique smallest face F of P with
S ⊆ F. This allows us to define degeneracy for any nonempty subset of a polyhedron. Let
S be a nonempty subset of a polyhedron in IRn represented by P, and let F be the smallest
face of P with S ⊆ F. The degeneracy-degree of S w.r.t. P, denoted by σ(S, P), is defined
by σ(S, P) = σ(F, P). S is called degenerate w.r.t. P iff σ(S, P) > 0, and S is called non-
degenerate w.r.t. P iff σ(S, P) = 0. A consequence of the definition of degeneracy degree
for faces is the following theorem.

Theorem 2.1 Let P be a polyhedron-representation in IRn. Then the following assertions
hold.

1. If F1 and F2 are faces of P with F2 ⊆ F1, then σ(F2, P) ≥ σ(F1, P).
2. A face of P with dimension at least 1 is degenerate w.r.t. P, if and only if all proper

nonempty subsets of F are degenerate w.r.t. P.
3. If P degenerate w.r.t. P, then P contains either a redundant constraint or an implied

equality.

Proof.

(1) Let F1 be a face of P with σ(F1, P) > 0. Clearly, b(F1, P) = n−dim(F1)+σ(F1, P). Let
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F2 be a subface of F1. Then dim(F2) ≤ dim(F1). Hence, the number of binding constraints
of P on F2 is at least b(F1, P)+(dim(F1)−dim(F2)), and we have that σ(F2, P) = b(F2)+
dim(F2, P)−n ≥ b(F1)+ (dim(F1)−dim(F2))+dim(F2)−n = b(F1)+dim(F2)−n =
σ(F1, P).

(2) Let F be any face with dimension at least 1 of the polyhedron P. We first prove the ‘only if’
part. Let σ(F, P) > 0. Then, according to Theorem 2.1(1), all subfaces of F have a positive
degeneracy-degree.Hence, all nonempty subsets of F have a positive degeneracy-degreew.r.t.
P.
The proof of the ‘if’ part can be given as follows. If all proper nonempty subsets of F are
degenerate w.r.t. P, then also the relative interior of F is degenerate w.r.t. P. Since F has
dimension at least 1, the relative interior of F is a proper subset of F. Because F is the
smallest face containing the relative interior of F, F is degenerate w.r.t. P.

(3) Let P be degenerate w.r.t P. Then, σ(P, P) > 0. Let e denote the number of equalities in
P. If e > n−dim(P), then P contains at least one redundant equality. If e ≤ n−dim(P), then
b(P, P)−e inequalities are binding on P. Since b(P, P)−e = n −dim(P)+σ(P, P)−e ≥
n −dim(P)+σ(P, P)−n +dim(P) = σ(P) > 0, P contains at least one implied equality.
2

The following example may illustrate these concepts. Let P = {x1 + x2 ≤ 2; x1 ≤ 1; x2 ≤
1; x1, x2 ≥ 0}, F = {x1 +x2 ≤ 2; x1 ≤ 1; x2 = 1; x1, x2 ≥ 0}, and S = {(0.2, 1), (0.4, 1)}. F
is the line segment [(0, 1), (1, 1)]. Note that dim(F) = 1, and that x2 ≤ 1 is the only inequality
of P that is binding on F. F is non-degenerate w.r.t P, because σ(F, P) = b(F, P) +
dim(F)− n = 1 + 1 − 2 = 0. Note that the degeneracy-degree w.r.t. P of the face consisting
of the single vertex v = (1, 1) satisfies σ(v, P) = b(v, P) + dim(v) − n = 3 + 0 − 2 = 1.
Since the smallest face of P containing S is F, we have that σ(S, P) = σ(F, P) = 0.

In general, it is not true that all subfaces of a non-degenerate face are non-degenerate. In
the above example, the vertex (1,1) is degenerate and a subface of the non-degenerate face
F. Another example is the regular octahedron in IR3: Every vertex is degenerate, but if this
polyhedron is represented by a minimal representation with 8 inequality constraints, then the
edges and facets are non-degenerate.

The following example shows how the representation of a polyhedron may influence its
degeneracy. Let P = {x1 + x2 = 1; x1, x2 ≥ 0} and P′ = {x1 + x2 ≤ 1; x1 + x2 ≥ 1; x1, x2 ≥
0}. P and P′ are two different representations of the same polyhedron in IR2. P is non-
degenerate w.r.t. P and P′ is degenerate w.r.t P′. P′ contains 2 implied equalities. If these
inequalities are replaced by equalities, then one of these two equalities is redundant.

The definitions for degeneracy, given above, are dependent on the polyhedron-representation.
However, it is possible to define degeneracy of nonempty subsets of a polyhedron independent
of the polyhedron-representation.For instance, the degeneracy-degreeof a nonempty subset S
of a polyhedron Q, denoted by σ(S, Q) could be defined as σ(S, Q) = minP{σ(S, P) | P is a
representation of Q}.
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3. Balinski-Tucker Simplex Tableaus

LP-models can be represented by means of tableaus in many different ways. The tableau
representation that we will use is a variation of the tableau introduced in Balinski & Tucker[1]:
we place the ‘right-hand-side’ a00, a10, . . . , am0 on the left side of the tableau, and call it a
Tucker Tableau. An example of a Tucker Tableau is shown in Figure 3.1. Let (p1, . . . , pn+m) be

1 xp1 xp2 · · · xpn

1 a00 a01 a02 · · · a0n = − f

ypn+1 a10 a11 a12 · · · a1n = −xpn+1

ypn+2 a20 a21 a22 · · · a2n = −xpn+2

...
...

...
...

...
...

ypn+m am0 am1 am2 · · · amn = −xpn+m

= −g = yp1 = yp2 · · · = ypn

Figure 3.1: A Tucker Tableau

a permutation of the integers 1, . . . , n+m, with m and n strictly positive integers. The variables
xp1, . . . , xpn denote the primal non-basic variables, xpn+1, . . . , xpn+m the primal basic variables,
ypn+1, . . . , ypn+m the dual non-basic variables, and yp1, . . . , ypn the dual basic variables.
The rows of the tableau of Figure 3.1 are then represented by:

a00 +
n∑

j=1

a0 j xpj = − f

ai0 +
n∑

j=1

ai j xpj = −xpn+i , i = 1, . . . , m.

The corresponding primal LP-model is defined as:

max f =
n∑

j=1

−a0 j xpj − a00

s.t.
n∑

j=1

ai j xpj ≤ −ai0, i = 1, . . . , m

xpj ≥ 0, j = 1, . . . , n

Similarly, the columns of this tableau represent the equations:

a00 +
m∑

i=1

ai0 ypn+i = −g

a0 j +
m∑

i=1

ai j ypn+i = ypj , j = 1, . . . , n,
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and the corresponding dual LP-model reads:

min g =
m∑

i=1

−ai0 ypn+i − a00

s.t.
m∑

i=1

ai j ypn+i ≥ −a0 j , j = 1, . . . , n

ypn+i ≥ 0, i = 1, . . . , m

Each row i , with 1 ≤ i ≤ m, corresponds to a pair of dual complementary variables; namely,
the basic primal variable xpn+i and the non-basic dual variable ypn+i . Similarly, each column j ,
with 1 ≤ j ≤ n, corresponds to a pair of dual complementary variables; namely, the non-basic
primal variable xpj and the dual basic variable ypj . If the row equations are used as column
equations and vice versa, the tableau of Figure 3.2 is obtained. Note, that it is equivalent to
the tableau in Figure 3.1. The Tucker Tableau in Figure 3.2 is called the negative transpose
of the tableau in Figure 3.1.

1 ypn+1 ypn+2 · · · ypn+m

1 −a00 −a10 −a20 · · · −am0 = g

xp1 −a01 −a11 −a21 · · · −am1 = −yp1

xp2 −a02 −a12 −a22 · · · −am2 = −yp2

...
...

...
...

...
...

xpn −a0n −a1n −a2n · · · −amn = −ypn

= f = xpn+1 = xpn+2 · · · = xpn+m

Figure 3.2: The negative transpose of a Tucker Tableau

From the theory of linear programming the following facts are known; see for instance Nering
& Tucker[9]. If a Tucker Tableau is given that represents a pair of dual LP-models, then a
pivot operation on a non-zero entry ai j (1 ≤ i ≤ m, 1 ≤ j ≤ n) transforms it to an equivalent
Tucker Tableau that represents the same pair of dual LP-models. A Tucker Tableau is optimal
if ai0 ≤ 0 for each i with 1 ≤ i ≤ m, and a0 j ≥ 0 for each j with 1 ≤ j ≤ n. If both the
primal and the dual LP-model have a finite optimal solution, then any Tucker Tableau that
represents this pair of dual LP-models can be transformed by means of a finite number of
pivot operations into an equivalent optimal Tucker Tableau. For an excellent description of
pivot operations, we refer to Nering & Tucker[9]. An optimal Tucker Tableau corresponds
to a primal-dual pair of optimal basic feasible solutions. The primal optimal basic feasible
solution satisfies xpj = 0 for j = 1, . . . , n, xpn+i = −ai0 for i = 1, . . . , m, and f = −a00.
The corresponding dual optimal basic feasible solution satisfies ypn+i = 0 for i = 1, . . . , m,
ypj = a0 j for j = 1, . . . , n, and g = −a00.

If an LP-model has more than one optimal solution, then it has at least one optimal basic
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solution. In general such an LP-model has several optimal Tucker Tableaus. The set of all
optimal solutions of an LP-model is a face of the feasible region of that LP-model.

A primal-dual pair of optimal solutions (x∗, y∗) is called strictly complementary iff x∗ + y∗ >

0. If the primal and dual LP-models both have finite optimal solutions, then there is a pair
of strictly complementary optimal solutions; see e.g. Goldman & Tucker[3]. In Balinski &
Tucker[1], a constructive proof is given for the existence of a strictly complementary primal-
dual pair of optimal solutions. It is shown that in a finite number of pivot operations and
rearrangements of rows and columns an optimal Tucker Tableau can be constructed with
the structure shown in Figure 3.3. We will call such a tableau a Balinski-Tucker Tableau

1 x1 · · · xr xr+1 · · · xn

0 0 0 · · · 0 0 · · · 0 0 · · · 0 + · · · + = − f
1 0 0 · · · 0 0 · · · 0 0 · · · 0 = −xn+1

..

.
..
.

..

.
..
.

0 · · · 0 0 · · · 0
0 · · · 0 + · · ·+

...
...

...
...

...
...

0 · · · 0
+· · ·+

q 0 0 · · · 0 = −xn+q

q + 1 0 0 · · · 0 0 · · · 0 − = −xn+q+1

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 −
0 0 · · · 0 −

.

..
.
..

.

..
.
..

.

..
.
..

0 0 · · · 0 −
−
..
.

m − = −xn+m

0 1 · · · q q + 1 · · · n

Figure 3.3: A Balinski-Tucker Tableau

(B-T Tableau). In B-T Tableaus it is assumed that the optimal objective values are zero
( f = g = a00 = 0). This can easily be accomplished by giving a00 an appropriate value in
the primal and dual objective functions. B-T Tableaus have the following characteristics.

1. The first column (with index 0 in Figure 3.3) contains no positive entries. This accounts
for the feasibility of the corresponding primal optimal solution and the optimality of
the corresponding dual optimal solution.

2. The first row (with index 0 in Figure 3.3) contains no negative entries. This accounts
for the feasibility of the corresponding dual optimal solution and the optimality of the
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corresponding primal optimal solution.
3. The left upper corner (the matrix consisting of the columns with indices 0, . . . , r and

the rows with indices 0, . . . , q) is a (q + 1) ∗ (r + 1) all-zero matrix.
4. The left lower corner (the matrix consisting of the columns with indices 0, . . . , r and

the rows with indices q + 1, . . . , m) consists of lexicographically negative rows. The
rows in this matrix are lexicographically nonincreasing ordered. (if i < j , then row i
is not lexicographically smaller than row j ).

5. The right upper corner (the matrix consisting of the columns with indices r +1, . . . , n
and the rows with indices 0, . . . , q) consists of lexicographically positive columns.
The columns in this matrix are lexicographically nondecreasing ordered.

From B-T Tableaus of primal-dual pairs of LP-models several properties of the primal an dual
optimal faces can be derived.

Theorem 3.1 For a primal-dual pair of LP-models with finite optimal solutions, represented
by a B-T Tableau as shown in Figure 3.3, the following assertions hold.

1. For each optimal primal solution (i.e. for each point of the primal optimal face) holds
that xj = 0 for r + 1 ≤ j ≤ n, and xn+i = 0 for 1 ≤ i ≤ q.

2. For each optimal dual solution (i.e. for each point of the dual optimal face) holds that
yn+i = 0 for q + 1 ≤ i ≤ m, and yj = 0 for 1 ≤ j ≤ r.

3. A strictly complementary pair of optimal solutions (x∗, y∗) satisfies x∗
j > 0 for

1 ≤ j ≤ r and for n + q + 1 ≤ j ≤ n + m, and y∗
i > 0 for n + 1 ≤ i ≤ n + q and

for r + 1 ≤ i ≤ n.

Proof
(1) Let Figure 3.3 be a B-T Tableau of a primal-dual pair of LP-models. The columns
corresponding to the primal non-basic variables xr+1, . . . , xn are nondecreasingly ordered
with respect to the lexicographic ordering. Let βj , with r + 1 ≤ j ≤ n, be the row index
with the first positive entry in the column with index j . Let βr = q + 1 and βn+1 = 0. For
j = r + 1, . . . , n + 1, let αi = j with βj ≤ i < βj−1. It then follows that αq = r + 1.

The first row of this B-T Tableau is a00 + ∑n
j=α0

a0 j xpj = − f . Since in an optimal solution
holds that f = −a00, we have that

∑n
j=α0

a0 j xj = 0 with a0α0, . . . , a0n > 0. Since all variables
are nonnegative, we have that xα0 = . . . = xn = 0 for each primal optimal solution. The row
equations for the rows i with 1 ≤ i ≤ q can be written as

∑αi−1−1
j=αi

ai j xj + ∑n
j=αi−1

ai j xj +
xp+i = 0 in which ai j is positive for αi ≤ j < αi−1. Suppose that xαi = . . . = xn = 0 for
each primal optimal solution, and for some i with 0 ≤ i < q . Then the row equation for
the row with index i + 1 reduces to

∑αi −1
j=αi+1

ai j xj + xp+i = 0 in which ai j is positive for
αi+1 ≤ j < αi . Since all variables are nonnegative, we have that xαi+1 = . . . = xαi = 0 for
each primal optimal solution. Using mathematical induction, it follows that for each primal
optimal solution xj = 0 for each j with r + 1 ≤ j ≤ n.

From
∑n

j=1 ai j xj = −xn+i for 1 ≤ i ≤ q , together with xj = 0 for r + 1 ≤ j ≤ n, and
ai j = 0 for 1 ≤ i ≤ q and 1 ≤ j ≤ r , follows that xn+i = 0 for 1 ≤ i ≤ q holds for every
optimal primal solution.
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(2) The proof of this part of the theorem is similar to the proof of the first part if the negative
transpose of the B-T Tableau of the first part is used.

(3) See Balinski & Tucker [1] 2

The indices 1, . . . , n +m can be partitioned into two sets B and N such that i ∈ B implies that
yi = 0 and xi > 0 for every strictly complementary optimal solution, and i ∈ N implies that
xi = 0 and yi > 0 for every strictly complementary optimal solution. This partition is called
the optimal partition. Using Theorem 3.1, it follows that B = {1, . . . , r, n +q +1, . . . , n +m}
and N = {r + 1, . . . , n + q}.
Moreover, a representation of both the primal and the dual optimal face can easily be derived
from B-T Tableaus. Let Figure 3.3 be a B-T Tableau of a pair of primal and dual LP- models.
The equations that define the primal optimal face are:

n∑
j=1

ai j xj = −ai0 i = 1, . . . , m (2)

xj = 0 j = r + 1, . . . , n (3)

xn+i = 0 i = 1, . . . , q (4)

xj ≥ 0 j = 1, . . . , n (5)

xn+i ≥ 0 i = 1, . . . , m (6)

which can be reduced to:
r∑

j=1

ai j xj = −ai0 i = q + 1, . . . , m (7)

xj = 0 j = r + 1, . . . , n (8)

xn+i = 0 i = 1, . . . , q (9)

xj ≥ 0 j = 1, . . . , r (10)

xn+i ≥ 0 i = q + 1, . . . , m (11)

From the same tableau (or from its negative transpose) a similar representation of the dual
optimal face can be derived.

4. Degeneracy degrees and multiple solutions

If the solution of an LP-model is not unique, then the model has multiple solutions and
the dimension of its optimal face is larger than zero. In Theorem 4.1 a remarkable dual
relationship between the degeneracy degree and the dimension of the optimal faces of a dual
pair of LP-models is established.

Theorem 4.1 Let P be the collection of inequality constraints that represents the feasible
region of a primal LP-model, and let D be the collection of inequality constraints that
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represents the feasible region of the corresponding dual LP-model. Let FP and FD denote the
primal and dual optimal faces and let a B-T Tableau of this primal-dual pair of LP-models
(see Figure 3.3) be given. Then the following assertions hold.

• dim(FP) = σ(FD, D) = r.

• dim(FD) = σ(FP , P) = q

Proof.

We first prove that dim(FP) = r . In Balinski and Tucker[1] it is shown that there exists
a strictly complementary optimal solution with x∗

j > 0 for 1 ≤ j ≤ r , and x∗
n+i > 0 for

q + 1 ≤ i ≤ m. Therefore, the inequalities (10) and (11) are not binding in every point of
the primal optimal face, and hence are not implied equalities. The equalities (4) are implied
by (2) and (3) (see the proof of Theorem 3.1) and therefore redundant. The dimension of the
primal model is m + n (the total number of variables). The dimension of the primal optimal
face FP is determined by the affine independent collection of equalities (2) and (3) and is
equal to (m + n) − (m + (n − r)) = r .

We now prove that σ(FP , P) = q . The binding constraints for the primal optimal face FP

are (2), (3) and (4). Hence, b(FP, P) = m + (n − r) + q = m + n − r + q . Therefore,
σ(FP , P) = b(FP, P) + dim(FP) − (m + n) = (m + n − r + q) + r − (m + n) = q .

The proofs of dim(FD) = q and σ(FD, D) = r are similar to the above ones; namely, use
the negative transpose of the B-T Tableau. 2

The symmetry in Theorem 4.1 leads to the following theorem.

Theorem 4.2 In a primal-dual pair of LP-models with finite optimal solutions, the degen-
eracy degree of the primal (dual) optimal face is equal to the dimension of the dual (primal)
optimal face.

Proof. Construct a B-T Tableau for the pair of primal and dual LP-models. From Theorem 4.1
the result is obvious. 2

Note that the above theorems are restricted to LP-models with nonnegative variables and
inequality constraints. Actually, Theorem 4 is valid for general LP-models with nonnegative,
nonpositive and free variables, and inequality and equality constraints. In Sierksma & Reay
[10] a proof for these general LP-models is given.

10



The following examples may illustrate above theorems. Consider the following pair of primal
and dual LP-models:

max −2x5 min y9

s.t. 3x3 + 4x4 − x5 ≤ 0 s.t. −2y8 + 3y9 ≥ 0
−x2 + 2x3 + 3x5 ≤ 0 −y7 + y9 ≥ 0
−2x1 + x4 + 5x5 ≤ 0 3y6 + 2y7 ≥ 0
3x1 + x2 ≤ 1 4y6 + y8 ≥ 0
x1, x2, x3, x4, x5 ≥ 0, −y6 + 3y7 + 5y8 ≥ −2

y6, y7, y8, y9 ≥ 0.

A Tucker Tableau for these models reads:

1 x1 x2 x3 x4 x5

1 0 0 0 0 0 2 = − f
y6 0 0 0 3 4 −1 = −x6

y7 0 0 −1 2 0 3 = −x7

y8 0 −2 0 0 1 5 = −x8

y9 −1 3 1 0 0 0 = −x9

= −g = y1 = y2 = y3 = y4 = y5

Note that it is a B-T Tableau. The zero matrix in the left upper corner has two rows and three
columns. Hence, according to Theorem 4.1, dim(FP) = 2, σ(FP , P) = 1, dim(FD, P) = 1
and σ(FD, P) = 2. From the first three columns of this tableau follows that FP = {−x2+x7 =
0; −2x1 + x8 = 0; 3x1 + x2 + x9 = 1; x1, x2 ≥ 0; x3 = x4 = x5 = x6 = 0}, and
FD = {3y6 − y3 = 0; 4y6 − y4 = 0; −y6 − y5 = −2; y1 = y2 = y7 = y8 = y9 = 0}. The
corresponding primal and dual optimal basic solutions satisfy x1 = x2 = x3 = x4 = x5 =
x6 = x7 = x8 = 0, x9 = 1, f = 0 and y1 = y2 = y3 = y4 = y6 = y7 = y8 = y9 = 0,
y5 = 2, g = 0.

The solutions x1 = 1/9, x2 = 1/3, x3 = x4 = x5 = x6 = 0, x7 = 1/3, x8 = 2/9, x9 = 1/3
and y1 = y2 = 0, y3 = 3, y4 = 4, y5 = 1, y6 = 1, y7 = y8 = y9 = 0 form a strictly
complementary pair of optimal solutions, and are in the relative interior of the corresponding
optimal faces (see Balinski & Tucker [1]).

The following example shows that a small change in an entry of the coefficients matrix may
change the optimal faces rigorously. Consider a pair of primal and dual LP-models of which
the B-T Tableau can be written as follows:

1 x1 x2 x3 x4 x5

1 0 0 0 0 0 1 = − f
y6 0 a11 1 1 1 −1 = −x6

y7 0 −1 = −x7

y8 0 −1 · · · = −x8

y9 0 −1 = −x9

y10 −1 1 = −x10

= −g = y1 = y2 = y3 = y4 = y5
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If a11 > 0, this tableau is a B-T Tableau of which the zero matrix in the left upper corner
consists of one column and five rows. Hence, according to Theorem 4.1, the primal optimal
face has dimension equal to zero (the primal optimal face consists of a single vertex) and the
dual optimal face has dimension equal to four. If a11 < 0, this tableau is a B-T Tableau of
which the zero matrix in the left upper corner consists of one row and five columns. So, the
dimension of the primal optimal face is equal to four and the dimension of the dual optimal
face is equal to zero. If a11 = 0, then the zero matrix in the left upper corner has two rows and
two columns. Hence, both primal and dual optimal faces have a dimension equal to one. If
the value of a11 is close to zero and it is the result of a computer program that uses inaccurate
arithmetic, it may be difficult to determine the dimension of the optimal faces.

5. Uniqueness and degeneracy

If an optimal solution of an LP-model is unique, then the optimal face consists of a single
vertex which has dimension equal to zero. If an LP-model has multiple optimal solutions, then
the optimal face has a positive dimension. Note that, if an LP-model has multiple solutions,
this does not necessarily mean that it has more than one basic optimal solution. Theorem 4.2
gives rise to several interesting corollaries about the uniqueness and degeneracy of optimal
solutions. See also Sierksma & Reay [10].

Corollary 1.

(a) A primal LP-model has a unique and degenerate optimal solution, if and only if the
corresponding dual LP-model has multiple optimal solutions of which at least one is
non-degenerate.

(b) A primal LP-model has a unique and non-degenerate optimal solution, if and only if the
corresponding dual LP-model has a unique and nondegenerate optimal solution.

(c) A primal LP-model has multiple optimal solutions that are all degenerate, if and only if
the corresponding dual LP-model has multiple solutions that are all degenerate.

(d) A pair of primal and dual LP-models has unique optimal solutions, if and only if their
optimal solutions are non-degenerate.

Proof. See Sierksma & Reay [10].

Corollary 2. If a primal LP-model has a non-degenerate optimal basic solution and the
corresponding dual LP-model has a degenerate basic solution, then the primal LP-model has
multiple optimal solutions.

Proof. The primal optimal face is either a non-degenerate vertex or it contains a non-degenerate
vertex as proper subset. Therefore, the degeneracy degree of the primal optimal face is equal
to zero (Theorem 2.1(2)). According to Theorem 4.1 the dual optimal solution is unique. If
this dual solution is degenerate, then the dual optimal face is degenerate and hence, the primal
optimal face has positive dimension. 2
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Corollary 2 may sometimes help to decide whether or not LP-models have multiple solutions,
because computer programs that use simplex methods for solving LP-models give only one
optimal primal and dual basic solution.

In the literature several theorems about uniqueness and multiplicity can be found. Here we
mention some of them.

In Greenberg[4] the following theorem is proved: A primal-dual pair of optimal solutions is
unique if and only if it is a strictly complementary pair of basic solutions.
Note that since a strictly complementary pair of basic solutions is a pair of primal and dual
optimal basic feasible solutions that have strictly positive basic variables, this theorem is
equivalent to Corollary 1b.

In Mangasarian [7] the following theorem is proved. An optimal solution of a LP-model is
unique if and only if it remains an optimal solution when the objective function is changed by
an arbitrary but sufficient small perturbation.
This result can be related to our theorems as follows. If an arbitrary, but sufficient small
perturbation, has to keep the optimal dual solution non-negative, then the optimal values of
the dual basic variables should be strictly positive, which is another way of saying that the
optimal dual solution (face) is non-degenerate.

In Nering & Tucker[9] the following is proved. If a pair of primal and dual LP-models has
a complementary pair of optimal basic solutions that are both degenerate, then at least one
of these two models has multiple optimal solutions. This is proved in Nering & Tucker by
showing that there exists a strictly complementary pair of optimal solutions, which differs
from the pair of optimal basic solutions. Therefore, at least one of the two models must have
multiple solutions.

6. Constructing a B-T Tableau from an interior point solution

In the previous sections it was shown that among all optimal Tucker Tableaus, the B-T
Tableaus give additional information. Besides the optimal primal and dual basic solutions, a
B-T Tableau provides the optimal faces, the dimensions and the degeneracy degrees of the
primal and dual optimal faces. As far as we know, all computer programs that solve LP-models
by means of Simplex methods give as solution a more or less arbitrary optimal basic solution.
It might be an idea to extend simplex LP-programs in such a way that the optimization
algorithm does not stop when an optimal solution is found, but continues until an optimal
basis is found that corresponds to a B-T Tableau. Using such a basis it is possible, without too
much extra work, to determine the optimal faces, the dimensions and the degeneracy degrees
of the optimal faces, the uniqueness of the optimal values of the variables, and the optimal
partition of all strictly complementary solutions.

On the other hand, computer programs that use interior point methods, provide primal and
dual solutions that form strictly complementary pairs. From these pairs of solutions it is not
difficult to find a description of the primal and dual optimal faces, but it is not immediately
clear what the dimensions and the degeneracy degrees of these optimal faces are. In general,
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the optimal solutions found by means of interior point methods are not basic solutions. In
Megiddo[8], it is shown how an optimal basic solution can be constructed when an optimal
pair of primal and dual solutions is known. But, in general, this optimal basic solution does
not correspond to a B-T Tableau. However, it is possible to construct a B-T Tableau in strong
polynomial time given a strictly complementary pair of optimal solutions. In Zhang [13] such
an algorithm is given, which first uses the algorithm of Megiddo [8] to find an optimal basic
solution, and then constructs a B-T Tableau by means of extremal rays of the optimal vertex.
In this section we will give an algorithm, called Algorithm Construct-BT, that constructs a B-T
Tableau from an interior point solution and an arbitrary Tucker Tableau in strong polynomial
time, without using Megiddo’s algorithm.

Algorithm Construct-BT

Input: A primal-dual pair of feasible LP-models represented by means of a Tucker
Tableau; see Figure 3.1. A strictly complementary pair of optimal solutions
(x∗, y∗).

Output: A B-T Tableau.
Step 1. Separate the primal and dual optimal faces and determine the all-zero matrix in

the upper-left corner of the B-T Tableau.
Step 2. Make the rows below the zero matrix lexicographically negative, and the columns

to the right of the zero matrix lexicographically positive.
Step 3. Transform x∗ to a primal optimal basic solution, preserving the zero matrix and

the lexicographic properties of the rows and the columns.
Step 3.1. Select a positive non-basic variable xpj . If no such variable exists, go

to Step 3.4.
Step 3.2. Decrease the value of xpj .
Step 3.3. Pivot if necessary and return to Step 3.1.
Step 3.4. Sort the lexicographically negative rows.

Step 4. Transform y∗ to a dual optimal basic solution, preserving the zero matrix and
the lexicographic properties of the rows and the columns.

Next, we discuss these steps in more detail.

Ad Step 1. Determining the zero matrix.
Make the optimal value of the objective function equal to zero.

Replace a00 in the current tableau by − ∑n
j=1 a0 j x∗

pj
.

The row equation for the objective row is now − ∑n
j=1 a0 j x∗

pj
+ ∑n

j=1 a0 j xpj = − f Substi-
tuting x = x∗ gives f ∗ = 0. (x∗, y∗) is a strictly complementary pair of optimal solutions.
This means that x∗

i + y∗
i > 0 and x∗

i y∗
i = 0 for 1 ≤ i ≤ m + n. The indices 1, . . . , m + n can

be partitioned into two sets B and N such that i ∈ B implies that x∗
i > 0, and i ∈ N implies

that y∗
i > 0. Let R denote the indices of the primal non-basic variables that belong to B, and

let Q denote the indices of the primal basic variables that belong to N .

R := B ∩ {p1, . . . , pn}.
Q := N ∩ {pn+1, . . . , pn+m}.
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1 xp1 · · · xpr xpr+1 · · · xpn

1 0 0 · · · 0 a0,r+1 · · · a0,n = − f

ypn+1 0 = −xpn+1

...
... 0 A1

...

ypn+q 0 = −xpn+q

ypn+q+1 aq+1,0 = −xpn+q+1

...
... A2 A3

...

ypn+m am,0 = −xpn+m

= −g = yp1 · · · = ypr = ypr+1 · · · = ypn

Figure 6.1: Tucker Tableau after Step 1

As long as the current tableau contains a nonzero entry ai j with pn+i ∈ Q and
pj ∈ R, perform a pivot operation on ai j and adjust the sets R and Q.

Each time such a pivot operation is performed, the number of elements in both R and Q is
decreased by one. If no such pivot operations are possible, then ai j = 0 for each pn+i ∈ Q
and pj ∈ R. The sets Q and R are then minimal.

Rearrange the rows and the columns of the current tableau, such that the entries
ai j with pi ∈ R and pj ∈ Q form a zero matrix in the left upper corner of the
tableau with r = |R| and q = |Q|.
R = {p1, . . . , pr}.
Q = {pn+1, . . . , pn+q}.

The tableau is now in the form of the tableau in Figure 6.1. Representations of the primal and
dual optimal faces can be read from this tableau in the same way as from a B-T Tableau.

Ad Step 2. Lexicographically ordering of the rows and the columns.
The row equations of the current tableau are ai0 + ∑n

j=1 ai j xpj = −xpn+i for i = 1, . . . , m.
Since x∗ is a solution of the primal LP-model, ai0 = −x∗

pn+i
− ∑n

j=1 ai j x∗
pj

for i = 1, . . . , m.
Combining these equations, the row equations can be written as

−x∗
pn+i

+
n∑

j=1

ai j (xpj − x∗
pj
) = −xpn+i , i = 1, . . . , m. (12)

Similarly, the column equations can be written as

y∗
pj

+
m∑

i=1

ai j (ypn+i − y∗
pn+i

) = ypj , j = 1, . . . , n. (13)
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In order to adjust the tableau to these equations, the following operation has to be carried out.

Replace, in the first column of the current tableau the entries ai0 with i =
1, . . . , m by −x∗

pn+i
. Similarly, replace a0 j by y∗

pj
for j = 1, . . . , n.

Since x∗ is a point in the relative interior of the primal optimal face, we have that ai0 < 0
for i = q + 1, . . . , m. So, the rows with indices q + 1, . . . , m are lexicographically negative.
Similarly, the columns with indices r + 1, . . . , n are lexicographically positive.

Ad Step 3. Determination of a primal optimal vertex.
In the current tableau all non-basic variables xp1, . . . , xpr have a positive value. In order to
find an optimal basic solution, the values of the non-basic variables have to be lowered to
zero; if that is not possible without destroying the feasibility, some non-basic variables have
to be replaced by basic variables with a zero value by means of pivot operations.

Ad Step 3.1: Selection of a positive non-basic variable.

Select a column j with 1 ≤ j ≤ r and x∗
pj

> 0. If no such column exists, go
to Step 3.4.

If more than one non-basic variable has a positive value, it is not relevant which one is chosen.

Ad Step 3.2: Decreasing of the value of the selected variable.
Decrease the value x∗

pj
of the variable xpj as much as possible without loosing feasibility. In

order to find the maximal decrease, perform the following ratio test

µ := sup
i=1,...,m

{ai0

ai j
| ai j < 0}.

λ := min{µ, x∗
pj
}.

If column j does not contain any negative entry, the value of xpj can be decreased to zero and
λ will be equal to x∗

pj
. The value of the variable xpj is decreased by λ and the first column of

the tableau is adjusted in order to keep the row equations (12) valid.

x∗
pj

:= x∗
pj

− λ.
ai0 := ai0 − λ ∗ ai, j , x∗

pn+i
:= −ai0, for i = q + 1, . . . , m.

Ad Step 3.3: Pivoting.
If, in Step 3.2, some of the rows with indices q + 1, . . . , m have become lexicographically
positive, a pivot operation on an entry in column j has to be performed in order to make the
rows lexicographically negative again. If x∗

pj
is still positive after Step 3.2, a pivot operation

can replace the non-basic variable xpj by a basic variable with zero value. In order to determine
the pivot row, find a row index k such that, if all rows with ai j < 0 are divided by ai j , the
row with index k is the lexicographically smallest row among these rows. If k can not be
determined uniquely, an arbitrary choice is made.

If x∗
pj

> 0, or for some i with q + 1 ≤ i ≤ m, row i is lexicographically
positive then:
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k := arg lexico-min
i = 1, . . . , m

{ 1

ai j
(row i) | ai j < 0}

Pivot on akj .
Set ak0 := −x∗

pn+k
.

If a pivot operation is performed in this step, then before the pivot operation,ak0 is equal to zero.
After the pivot operation the lexicographic negativity of the rows with indices q + 1, . . . , m
is restored. Furthermore, the number of primal non-basic variables with a strict positive value
is decreased by one.

Return to Step 3.1

Ad Step 3.4. All primal non-basic variables are zero and x∗ is a primal basic feasible solution.

Sort the lexicographically negative rows with indices q + 1, . . . , m in lexico-
graphically non-increasing order.

Ad Step 4: Determination of a dual optimal vertex.
This step is similar to Step 3.

Take the negative transpose of the current tableau.
Perform Step 3 to find a primal optimal basic solution.
Take the negative transpose of the current tableau.

y∗ is now an optimal dual basic solution.

The ratio test in Step 3.2 is similar to the ratio-test in the simplex algorithm, but here the aim
is to decrease the current value of a non-basic variable as much as possible. Note that in Step
3.3 a pivot on an entry in matrix A2 in Figure 6.1 does not affect the first row and the matrix
A1; the lexicographically positive columns will remain lexicographically positive. At the end
of this algorithm the current tableau is a B-T Tableau.

Theorem 6.1 Given an interior point solution of an LP-model, a corresponding B-T Tableau
can be constructed in strong-polynomial time.

Proof. Perform Algorithm Construct-BT. In Step 1 at most min(n − r, m −q) pivot operations
are performed. In Step 3 at most r and in step 4 at most q . The total number of pivot operations
is min(n+q, m+r) and has m+n as upperbound.Clearly, this algorithm is strong-polynomial,
since, apart from the pivot operations, the number of all other operations can be bounded from
above by a polynomial in m and n. 2

We will illustrate algorithm Construct-BT with the following pair of LP-models. The primal
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LP-model
max −4x1 +4x2 −8x3 +4x4

s.t. −x1 +x2 −2x3 +x4 ≤ 1 (slack : x5)

+4x1 −4x2 +x3 −2x4 ≤ 0 (slack : x6)

−3x3 +x4 ≤ 2 (slack : x7)

−x1 +x2 −2x3 +x4 ≤ 1 (slack : x8)

−2x1 +5x2 −9x3 +3x4 ≤ 7 (slack : x9)

x1, x2, x3, x4 ≥ 0

and the corresponding dual LP-model

min +y5 +2y7 +y8 +7y9

s.t. −y5 +4y6 + −y8 −2y9 ≥ −4 (slack : y1)

+y5 −4y6 + +y8 +5y9 ≥ 4 (slack : y2)

−2y5 +y6 −3y7 −2y8 −9y9 ≥ −8 (slack : y3)

+y5 −2y6 +y7 +y8 +3y9 ≥ 4 (slack : y4)

y1, y2, y3, y4, y5 ≥ 0.

We first construct a Tucker Tableau for these LP-models.

1 x1 x2 x3 x4

1 0 4 −4 8 −4 = − f
y5 −1 −1 1 −2 1 = −x5

y6 0 4 −4 1 −2 = −x6

y7 −2 0 0 −3 1 = −x7

y8 −1 −1 1 −2 1 = −x8

y9 −7 −2 5 −9 3 = −x9

= −g = y1 = y2 = y3 = y4

A strictly complementary solution for these models is:
( f ∗, x∗

1 , . . . , x∗
9 ) = (4, 1, 1, 1, 3, 0, 5, 2, 0, 4) and

(g∗, y∗
1 , . . . , y∗

9 ) = (4, 0, 0, 0, 0, 3, 0, 0, 1, 0).
The optimal partition is B = {1, 2, 3, 4, 6, 7, 9} and N = {5, 8}.

Step 1. Replace a00 by − ∑4
j=1 a0 j x∗

pj
= 4. This makes f ∗ = g∗ = 0.

1 x1 x2 x3 x4

1 4 4 −4 8 −4 = − f
y5 −1 −1 1 −2 1 = −x5

y6 0 4 −4 1 −2 = −x6

y7 −2 0 0 −3 1 = −x7

y8 −1 −1 1 −2 1 = −x8

y9 −7 −2 5 −9 3 = −x9

= −g = y1 = y2 = y3 = y4

Determine the sets R and Q. R = {1, 2, 3, 4} and Q = {5, 8}.
The non-zero entry a4,4 with value 1 corresponds to (x4, x8) with 4 ∈ R and 8 ∈ Q. Pivoting
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on a4,4 gives:

1 x1 x2 x3 x8

1 0 0 0 0 4 = − f
y5 0 0 0 0 −1 = −x5

y6 −2 2 −2 −3 2 = −x6

y7 −1 1 −1 −1 −1 = −x7

y4 −1 −1 1 −2 1 = −x4

y9 −4 1 2 −3 −3 = −x9

= −g = y1 = y2 = y3 = y8

Adjust R and Q. R = {1, 2, 3} and Q = {5}. All entries ai j that could be possible pivot
candidates are zero now. Rearranging of the rows and columns is not necessary, since the zero
matrix is already in the left-upper part of the tableau. (q = 1 and r = 3). This ends Step 1.

Step 2. Substitute the values of the primal basic variables in the first column, and the values
of the dual basic variables in the first row. From now on we will omit the names of the dual
variables from the tableau, but instead we will put there the values of the primal optimal
solution.

1 x1 x2 x3 x8

0 0 0 0 1 = − f
0 0 0 0 0 −1 = −x5

5 −5 2 −2 −3 2 = −x6

2 −2 1 −1 −1 −1 = −x7

3 −3 −1 1 −2 1 = −x4

4 −4 1 2 −3 −3 = −x9

0 1 1 1 0

Step 3.
The primal non-basic variables with positive value are: x∗

1 = 1, x∗
2 = 1 and x∗

3 = 1.
Step 3.1. Select column 3 corresponding to the primal non-basic variable x3 with x∗

3 = 1.
Step 3.2. Calculate λ. λ = 1. Decrease the value of x∗

3 with 1 to 0.

1 x1 x2 x3 x8

0 0 0 0 1 = − f
0 0 0 0 0 −1 = −x5

2 −2 2 −2 −3 2 = −x6

1 −1 1 −1 −1 −1 = −x7

1 −1 −1 1 −2 1 = −x4

1 −1 1 2 −3 −3 = −x9

0 1 1 0 0

Step 3.3. x∗
3 = 0 and the rows 2, . . . , 5 are lexicographically negative; no pivot is necessary.

Step 3.1. Select column 2 corresponding to the primal non-basic variable x2 with x∗
2 = 1.
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Step 3.2. Calculate λ. λ = 1. Decrease the value of x∗
2 with 1 to 0.

1 x1 x2 x3 x8

0 0 0 0 1 = − f
0 0 0 0 0 −1 = −x5

0 0 2 −2 −3 2 = −x6

0 0 1 −1 −1 −1 = −x7

2 −2 −1 1 −2 1 = −x4

3 −3 1 2 −3 −3 = −x9

0 1 0 0 0

Step 3.3. Row 2 and row 3 are lexicographically positive; a pivot is necessary.
Determine the row index k.
Row 2 divided by -2 gives : (0.0 -1.0 1.0 1.5 -1.0)
Row 3 divided by -1 gives : (0.0 -1.0 1.0 1.0 1.0).
Row 3 is the lexicographically smallest, so a pivot operation has to be performed on a3,2.

1 x1 x7 x3 x8

0 0 0 0 1 = − f
0 0 0 0 0 −1 = −x5

0 0 0 −2 −1 4 = −x6

0 0 −1 −1 1 1 = −x2

2 −2 0 1 −3 0 = −x4

3 −3 3 2 −5 −5 = −x9

0 1 0 0 0

Step 3.1. Select column 1 corresponding to the primal non-basic variable x1 with x∗
1 = 1.

Step 3.2. Calculate λ. λ = 0. Decreasing the value of x∗
1 with 0 does not change the tableau.

Step 3.3. Since x∗
1 > 0, a pivot is necessary. Pivot on a3,1 and let a3,0 := −x∗

1 = −1.0.

1 x2 x7 x3 x8

0 0 0 0 1 = − f
0 0 0 0 0 −1 = −x5

0 0 0 −2 −1 4 = −x6

1 −1 −1 1 −1 −1 = −x1

2 −2 0 1 −3 0 = −x4

3 −3 3 −1 −2 −2 = −x9

0 0 0 0 0

Step 3.4. All primal non-basic variables are zero. The lexicographicallynegative rows 2, . . . , 5
are already sorted. This finished Step 3.

Step 4. Take the negative transpose of the current tableau and place the values of the optimal
dual basic variables on the left of the tableau, and the values of the non-basic dual variables
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under the tableau.
1 y5 y6 y1 y4 y9

0 0 0 1 2 3 = g
0 0 0 0 1 0 −3 = −y2

0 0 0 2 −1 −1 1 = −y7

0 0 0 1 1 3 2 = −y3

1 −1 1 −4 1 0 2 = −y8

0 3 0 0 0 0

Step 3.
The only non-basic variable with positive value is y5 with y∗

5 = 3.
Step 3.1. Select column 1 corresponding to the dual non-basic variable y5 with y∗

5 = 3.
Step 3.2. Calculate λ. λ = 3. Decrease the value of y∗

5 with 3 to 0.

1 y5 y6 y1 y4 y9

0 0 0 1 2 3 = g
0 0 0 0 1 0 −3 = −y2

0 0 0 2 −1 −1 1 = −y7

0 0 0 1 1 3 2 = −y3

4 −4 1 −4 1 0 2 = −y8

0 0 0 0 0 0

Step 3.3. No pivot is necessary.
Step 3.4. No sorting is necessary.
This finishes Step 3.
Take the negative transpose of the current tableau.

1 x2 x7 x3 x8

1 0 0 0 0 4 = − f
y5 0 0 0 0 −1 = −x5

y6 0 0 −2 −1 4 = −x6

y1 −1 −1 1 −1 −1 = −x1

y4 −2 0 1 −3 0 = −x4

y9 −3 3 −1 −2 −2 = −x9

= −g = y2 = y7 = y3 = y8

Step 4 is finished.
The current tableau is a B-T Tableau.
End of algorithm Construct-BT.

7. Conclusions

By introducing a more general definition of degeneracy, we established a remarkable relation-
ship between the degrees of degeneracy and the dimensions of the optimal faces of LP-models.
The optimal simplex tableaus as introduced by Balinski & Tucker [1] provide the degrees
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of degeneracy and the dimensions of the optimal faces. For analyzing the optimal solutions
of an LP-model it is worthwhile to know whether the optimal solution is unique or whether
there are multiple solutions. Computer programs that solve LP-models by means of Simplex
Methods only give one basic optimal solution. We recommend that computer programs are
extended in such a way that they calculate B-T Tableaus. Then it is possible to give, besides
an optimal solution, also the optimal faces and their dimensions and degeneracy degrees.

In recent years a lot of attention is given to non-simplex methods, such as the interior points
methods. These methods provide strictly complementary optimal solutions, which are located
in the relative interior of the optimal faces. For LP-models that are relaxations of combinatorial
and integer models, usually optimal basic solutions are needed. In Bixby & Saltzman [2] and
Megiddo [8], algorithms are given that transform an optimal interior point solution into a
basic feasible solution. An optimal interior point solution can be found in polynomial time.
In this paper we have presented an algorithm that constructs a B-T Tableau given an optimal
interior point solution. Therefore, it is now possible to construct B-T Tableaus of LP-models
in polynomial time.
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