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Abstract
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1. I ntroduction

In this paper the following primal-dual pair of linear programming modelsis used:

Primal LP-model: max{cTx|Ax < b; x > 0}

Dual LP-model: min{bTy|ATy > ¢; y > 0},

with A, b, ¢, x and y being matrices and vectors of appropriate sizes. Note that we restrict
ourselves to LP-models in which al variables are nonnegative; the so-called canonical LP-
models. The theory of linear programming can be found in many textbooks, for instance
Nering & Tucker[9]. The definitions of the concepts of polyhedron, face, et cetera, used in
thispaper, canbefoundin, for instance, Schrijver[11]. In Section 2 wewill generalizethe usual
definition for degenerate vertices to faces and arbitrary nonempty subsets of polyhedra. In
Section 3 wetakeacloser |00k at the so-called Balinski-Tucker Simplex Tableaus, introduced
inBalinski & Tucker[1] as part of aproof of the Complementary Slackness Theorem. From a
Balinski-Tucker Simplex Tableau we will determine the dimensions and degeneracy degrees
of the optimal faces of both the primal and the dual L P-models. Thetheorems, concerningthe
relationships between dimensions and degeneracy degrees of the optimal faces are given in
Section 4. In Section 5 astrong polynomial algorithmisgiven, that generatesaBalinski-Tucker
Simplex Tableau when an optimal interior point solution is known.

2. Degeneracy

Inthissection the definition of degeneracy, whichisusually defined for basic feasiblesolutions,
is generalized to faces and subsets of faces of the polyhedron defined by the feasible region
of the LP-model.

Let P beacollection of constraints representing a nonempty polyhedronin R", consisting of
m; inequalitiesand m — m; equalitiesin the variables xy, . .., X,; say:

n
{Zaijxj =b, i=1...,my

n
D ajx <b, i=m+1....mp ()
=1

A congtraint of a constraint collection P is called a redundant constraint of P if its deletion
resultsin a collection of constraints representing the same polyhedron as P. An inequality of
apolyhedron-representation P is called an implied equality of P if that inequality is satisfied
with equality for every point of the polyhedron represented by P. A minimal representation
is a polyhedron-representation that does neither contain redundant constraints nor implied
equalities. For simplicity reasons we will often refer to the ‘polyhedron P’, instead of ‘the
polyhedron represented by constraint collection P’.

Let F beaface of the polyhedron P. A polyhedron-representation of F can be obtained from
P by replacing appropriate inequalities of P by equalities. A constraint of a polyhedron-
representation P is called binding on F, if it is satisfied with equality for every point of F.



Denote the number of constraints of P that are binding on F by b(F, P), and the dimension
of F (i.e. the dimension of the affine hull of F) by dim(F).

For example, let P = {x; — X2 > 0; X1 > 0; X2 > 0}. Theface F = {(0, 0)} (with dimension
0) can then be defined in different ways using the constraints of P. For instance, both
{Xg — X2 =0;x3 = 0; x2 > 0} and {xg — X2 > 0; x; = 0; Xo = 0} represent F. All three
congtraints of P are binding on F. Hence, dim(F) = Oand b(F, P) = 3.

Let F be any face of the polyhedron in R" represented by the collection of constraints
P. The degeneracy degree of F with respect to P, denoted by o (F, P), is defined by
o(F, P) = b(F, P) +dim(F) — n. F iscalled degeneratew.r.t. P iff o (F, P) > 0, and F
is called non-degeneratew.r.t. P iff o (F, P) = 0. These definitions are motivated as follows.
The number of hyperplanesthat determinesthe affine hull of face F with dimension di m(F)
isat least equal to n — dim(F), and this lowerbound is sharp. If the number of constraints
from P, that are binding on F, islarger than n — dim(F), then there is a redundancy in the
collection of hyperplanesthat defines F. Notethat the definition of degeneratefacegeneralizes
the usual definition of degenerate vertex, becauseb(v, P) 4+ dim(v) > n reducesfor avertex
to b(v, P) > n, which is the usual definition for degenerate vertex. With the definition of
degenerate face, also “degenerate polyhedron” is defined, since P is aface of P itself. In
case of linear programming, this means that al so the concept of “degenerate feasible region”
is defined by this definition. In the literature of linear programming, degeneracy is usually
defined for basic solutions and vertices. However, in Nering & Tucker [9], an LP-model is
called degenerateif it has at least one degenerate basic solution (not necessarily feasible). In
Guler et a. [6], an LP-model iscalled degenerateif there exists at |east onefeasible point that
is degenerate.

The set of faces of apolyhedron P, together with the empty set, form alattice under inclusion.
Therefore, for any nonempty subset S of P, there is a unique smallest face F of P with
S C F. This allows us to define degeneracy for any nonempty subset of a polyhedron. Let
S be a nonempty subset of a polyhedronin R" represented by P, and let F be the smallest
face of P with S C F. The degeneracy-degree of Sw.r.t. P, denoted by o (S, P), is defined
by o (S, P) = o (F, P). Siscalled degeneratew.r.t. P iff o (S, P) > 0, and Sis called non-
degenerate w.r.t. P iff (S, P) = 0. A consequence of the definition of degeneracy degree
for facesis the following theorem.

Theorem 2.1 Let P be a polyhedron-representation in IR". Then the following assertions
hold.

1. If FLand F; arefacesof P with F, C Fy, theno (F,, P) > o (Fq, P).

2. Aface of P with dimension at least 1 is degenerate w.r.t. P, if and only if all proper
nonempty subsets of F are degeneratew.r.t. P.

3. If P degeneratew.r.t. P, then P containseither a redundant constraint or an implied

equality.

Proof.
(1) Let F; beafaceof P witho (F1, P) > 0.Clearly,b(F1, P) = n—dim(Fy) 4o (Fy, P).Let



F, be asubface of F;. Then dim(F,) < dim(F;). Hence, the number of binding constraints
of Pon Ry isatleast b(F1, P)+ (dim(Fy) —dim(F,)), andwehavethat o (F,, P) = b(F,) +
di m(Fz, P) —Nn > b(F]_) + (dl m(Fl) —di m(Fg)) +di m(Fz) —N= b(Fl) +di m(Fz) —NnN=
O'(Fl, P).

(2) Let F beany facewith dimensionat least 1 of the polyhedron P. Wefirst provethe‘only if’
part. Let o (F, P) > 0. Then, according to Theorem 2.1(1), all subfaces of F have a positive
degeneracy-degree. Hence, all nonempty subsetsof F have apositive degeneracy-degreew.r.t.
P.

The proof of the ‘if’ part can be given as follows. If all proper nonempty subsets of F are
degenerate w.r.t. P, then also the relative interior of F is degenerate w.r.t. P. Since F has
dimension at least 1, the relative interior of F is a proper subset of F. Because F is the
smallest face containing the relative interior of F, F is degeneratew.r.t. P.

(3) Let P bedegeneratew.r.t P. Then, o (P, P) > 0. Let e denote the number of equalitiesin
P.If e > n—dim(P), then P containsat |east oneredundant equality. If e < n—dim(P), then
b(P, P)—einequalitiesarebindingon P. Sinceb(P, P)—e=n—dim(P)+o (P, P)—e >
n—dim(P)+o(P, P)—n+dim(P) = o(P) > 0, P containsat least oneimplied equality.
|

The following example may illustrate these concepts. Let P = {X1 + X < 2, X3 < 1; X <
LXx,X>0L F={X+X <2 X <1 X =1 X,X% >0},andS={(0.2,1), (0.4, 1)}. F
isthelinesegment[(0, 1), (1, 1)]. Notethatdim(F) = 1, andthat x, < listheonly inequality
of P that is binding on F. F is non-degenerate w.r.t P, because o (F, P) = b(F, P) +
dim(F) —n = 1+ 1—2 = 0. Notethat the degeneracy-degreew.r.t. P of theface consisting
of thesingle vertex v = (1, 1) satisfieso (v, P) = b(v, P) +dim(v) - n=34+0-2=1.
Since the smallest face of P containing Sis F, we havethat 6 (S, P) = o (F, P) = 0.

In general, it is not true that all subfaces of a non-degenerate face are non-degenerate. In
the above example, the vertex (1,1) is degenerate and a subface of the non-degenerate face
F. Another example is the regular octahedron in R3: Every vertex is degenerate, but if this
polyhedronis represented by a minimal representation with 8 inequality constraints, then the
edges and facets are non-degenerate.

The following example shows how the representation of a polyhedron may influence its
degeneracy. Let P = {3+ X2 = 1; X, X2 > O} and P/ = {xg + X2 < L; Xg+ X2 > 1; Xg, Xo >
0}. P and P’ are two different representations of the same polyhedron in R2. P is non-
degenerate w.r.t. P and P’ is degenerate w.r.t P’. P’ contains 2 implied equalities. If these
inequalities are replaced by equalities, then one of these two equalitiesis redundant.

Thedefinitionsfor degeneracy, given above, are dependent on the polyhedron-representation.
However, it is possibleto define degeneracy of nonempty subsets of a polyhedronindependent
of the polyhedron-representation. For instance, the degeneracy-degreeof anonempty subset S
of apolyhedron Q, denoted by o (S, Q) couldbedefinedaso (S, Q) = minp{o (S, P) | Pisa
representation of Q}.



3. Balinski-Tucker Simplex Tableaus

LP-models can be represented by means of tableaus in many different ways. The tableau
representation that we will useisavariation of thetableau introducedin Balinski & Tucker[1]:
we place the ‘right-hand-side’ ag, ayo, . . ., amo 0On the left side of the tableau, and cal it a
Tucker Tableau. Anexampleof aTucker TableauisshowninFigure3.1. Let (py, ..., Pnim) bE

1 Xpy Xp, o Xp,

1 o | @1 ae - am |=-—f
Yona | 10 a1 a - A | = —Xpy,
Yoniz axo a1 ax» s A = —Xpni2
Ypnim | @m0 am1 8m2 - 8m | = —Xpym

== =Y¥% =Y " = VYm

Figure 3.1: A Tucker Tableau

apermutation of theintegers1, . .., n+m, withmandn strictly positiveintegers. Thevariables
Xp,, - - - » Xp, denotethe primal non-basicvariables, xp, ., . . ., Xp,.,, theprimal basic variables,
Yoo - - > Ypoum the dua non-basic variables, and yy,, . . . , Yp, the dud basic variables.

Therows of the tableau of Figure 3.1 are then represented by:

n
Ao+ ) aojXy =-—f
=1
n
o+ ) ajXp =-—Xp,, I=L....m

j=1

The corresponding primal LP-model is defined as:

n

max f = Z—aojxpi—aoo
=1

Jn

s.t. X:aijxpi <-—-ajpg, I=1...,m

=1

Xp

>0, j=1,...,n
Similarly, the columns of this tableau represent the equations:
m
ago + aioYp.m = _g
i=1

m
j +Zaijypn+i = Yp> i=1,...,n,
i=1



and the corresponding dual L P-model reads:

m

min g= ) —a&oYp, — a0
i=1

s.t. &jYpy = -—aj, j=1,....n
1

3_

Yousi >0, i=1...,m
Eachrow i, with1 <i < m, correspondsto a pair of dual complementary variables; namely,
the basic primal variable x, ., and the non-basic dual variable y,, .. Similarly, each column j,
with1l < j < n, correspondsto apair of dual complementary variables; namely, the non-basic
primal variable xp, and the dual basic variable yp, . If the row equations are used as column
equations and vice versa, the tableau of Figure 3.2 is obtained. Note, that it is equivalent to
the tableau in Figure 3.1. The Tucker Tableau in Figure 3.2 is called the negative transpose
of the tableau in Figure 3.1.

1 Ypnsa Yo 0 Ypuim
1 |—-ap| —aw —a& - —amw |=
Xp, | —@o1 | —au =82 o+ —@m | =—Yp
Xp, | —Q02 | —@12 —ax» - —am | = —Yp
Xp, | —@on | —@n —@n -+ —8m | =—"Yp
=f =Xpu =Xp, 0 =Xpn

Figure 3.2: The negative transpose of a Tucker Tableau

From thetheory of linear programming the following facts are known; seefor instance Nering
& Tucker[9]. If a Tucker Tableau is given that represents a pair of dual LP-models, then a
pivot operationon anon-zeroentry a; (1 <i <m, 1 < j < n) transformsit to an equivalent
Tucker Tableau that representsthe same pair of dual LP-models. A Tucker Tableau is optimal
if o < Oforeachi withl <i <m, and ag; > Ofor each j with1 < j < n. If both the
primal and the dual LP-model have a finite optimal solution, then any Tucker Tableau that
represents this pair of dual LP-models can be transformed by means of a finite number of
pivot operations into an equivalent optimal Tucker Tableau. For an excellent description of
pivot operations, we refer to Nering & Tucker[9]. An optimal Tucker Tableau corresponds
to a primal-dual pair of optimal basic feasible solutions. The primal optimal basic feasible
solution satisfies xp, = Ofor j =1,...,n, X, = —aofori =1,....,m,and f = —apo.
The corresponding dual optimal basic feasible solution satisfies yp,,,, = Ofori =1,..., m,
Yp =aoj forj=1,...,n,and g = —aw.

If an LP-model has more than one optimal solution, then it has at least one optimal basic



solution. In general such an LP-model has several optimal Tucker Tableaus. The set of all
optimal solutions of an LP-model is a face of the feasible region of that L P-model.

A primal-dual pair of optimal solutions (x*, y*) iscalled strictly complementaryiff x* + y* >
0. If the primal and dual LP-models both have finite optimal solutions, then there is a pair
of strictly complementary optimal solutions; see e.g. Goldman & Tucker[3]. In Balinski &
Tucker[1], a constructive proof is given for the existence of a strictly complementary primal-
dual pair of optimal solutions. It is shown that in a finite number of pivot operations and
rearrangements of rows and columns an optimal Tucker Tableau can be constructed with
the structure shown in Figure 3.3. We will call such a tableau a Balinski-Tucker Tableau

1 x X Xrq1 Xn
oloTo0 0] 0---0]0--0 ]+ -F]=—f
1070 0l0...0] 0.--0 = —Xn11

0...0| 0...0
0---0 | +---+
0...0
4+
q 0 0 0 :—Xn+q
q+1[0[0-0]0.-0]= = —XniqiL
0(0---0]0---0] —

0l0---0]| —

m| — = —Xn4+m

Figure 3.3: A Balinski-Tucker Tableau

(B-T Tableau). In B-T Tableaus it is assumed that the optimal objective values are zero
(f = g =ag = 0). This can easily be accomplished by giving agy an appropriate value in
the primal and dual objective functions. B-T Tableaus have the following characteristics.

1. Thefirst column (withindex 0in Figure3.3) containsno positive entries. Thisaccounts
for the feasibility of the corresponding primal optimal solution and the optimality of
the corresponding dual optimal solution.

2. Thefirst row (with index 0 in Figure 3.3) contains no negative entries. This accounts
for the feasibility of the corresponding dual optimal solution and the optimality of the



corresponding primal optimal solution.

3. Theleft upper corner (the matrix consisting of the columnswith indicesO, ..., r and
therowswithindicesO, ..., q)isa(q + 1) * (r + 1) all-zero matrix.
4. Theleft lower corner (the matrix consisting of the columnswith indicesO, ..., r and

therowswithindicesq + 1, ..., m) consists of lexicographically negative rows. The
rows in this matrix are lexicographically nonincreasing ordered. (ifi < j, thenrow i
is not lexicographically smaller than row j).

5. Theright upper corner (the matrix consisting of the columnswithindicesr +1,...,n
and the rows with indices 0, . . ., q) consists of lexicographically positive columns.
The columnsin this matrix are lexicographically nondecreasing ordered.

From B-T Tableausof primal-dual pairs of L P-modelsseveral properties of the primal an dual
optimal faces can be derived.

Theorem 3.1 For aprimal-dual pair of LP-modelswith finite optimal solutions, represented
by a B-T Tableau as shown in Figure 3.3, the following assertions hold.

1. For each optimal primal solution (i.e. for each point of the primal optimal face) holds
that x; =0forr +1<j <n,andx,; =0for 1 <i <q.

2. For each optimal dual solution (i.e. for each point of the dual optimal face) holdsthat
Ynti =0forg+1<i<m,andy; =0for1<j <r.

3. A dtrictly complementary pair of optimal solutions (x*, y*) satisfies X' >0 for
l<j<randforn+g+1<j<n+mandy">0forn+1<i<n+qgand
forr+1<i<n.

Proof
(1) Let Figure 3.3 be a B-T Tableau of a primal-dual pair of LP-models. The columns
corresponding to the primal non-basic variables X;.1, ..., X, are nondecreasingly ordered

with respect to the lexicographic ordering. Let g, withr + 1 < j < n, be the row index
with the first positive entry in the column with index j. Let 8, = q + 1 and Bh.1 = 0. For
j=r+1....,n+1lete; =j withp; <i < pj_1. Itthenfollowsthat g =1 + 1.

The first row of this B-T Tableau is ag + Zjn:ao aojXp, = — f. Sincein an optimal solution
holdsthat f = —agg, wehavethat Z;‘:ao agjX; = Owithag,,, ..., am > 0.Sinceall variables

are nonnegative, we havethat x,, = ... = X, = 0 for each primal optimal solution. The row
equations for the rowsi with 1 < i < q can be written as Z}"‘:*;i_laijxj + ) A+
Xp+i = 0inwhich & is positivefor o < j < @j_1. Supposethat X, = ... = x, = 0 for

each primal optimal solution, and for some i with 0 < i < . Then the row equation for
the row with index i + 1 reduces to Z}"i:;ilH aijX; + Xp4+i = 0in which &; is positive for
aiy1 < ] < oj. Since all variables are nonnegative, we have that x,,,, = ... = X, = 0for
each primal optimal solution. Using mathematical induction, it follows that for each primal

optimal solution x; = O for each j withr +1<j <n.

From Z?zlaijxj = —Xn4i for 1 < i < q, together with x; = Oforr +1 < j <n, and
a; =0forl<i <gandl<j <r,followsthat x,4; = Ofor 1 <i < g holdsfor every
optimal primal solution.



(2) The proof of this part of the theorem is similar to the proof of thefirst part if the negative
transpose of the B-T Tableau of the first part is used.

(3) See Balinski & Tucker [1] a

Theindices1, ..., n+m can bepartitionedintotwo sets B and N suchthati € B impliesthat
yi = 0and x; > Ofor every strictly complementary optimal solution, andi € N impliesthat
X = 0and y; > Ofor every strictly complementary optimal solution. This partition is called
the optimal partition. Using Theorem 3.1, it followsthat B = {1,...,r,n+q+1,...,n+m}
andN={r+1,...,n+q}.

Moreover, a representation of both the primal and the dual optimal face can easily be derived
from B-T Tableaus. Let Figure 3.3 beaB-T Tableau of apair of primal and dual L P- models.
The equationsthat define the primal optimal face are:

n
Zaijx,- =—ag i=1....m 2
j=1
X =0 j=r+1,...,n 3
Xnti =0 i=1...,9 4
Xj >0 j=1,...,n 5)
Xnti >0 i=1...,m (6)
which can be reduced to:
r
Y ajx=-ao i=q+1....m (7)
j=1
X =0 j=r+1,...,n (8
Xt =0 i=1...,9 9
Xj >0 ji=1,...,r (20)
X+ >0 i=qgq+1....m (11)

From the same tableau (or from its negative transpose) a similar representation of the dual
optimal face can be derived.

4.  Degeneracy degrees and multiple solutions

If the solution of an LP-model is not unique, then the model has multiple solutions and
the dimension of its optimal face is larger than zero. In Theorem 4.1 a remarkable dual
relationship between the degeneracy degree and the dimension of the optimal faces of a dual
pair of LP-modelsis established.

Theorem 4.1 Let P be the collection of inequality constraints that represents the feasible
region of a primal LP-model, and let D be the collection of inequality constraints that



represents the feasible region of the corresponding dual LP-model. Let Fp and Fp denotethe
primal and dual optimal faces and let a B-T Tableau of this primal-dual pair of LP-models
(see Figure 3.3) be given. Then the following assertions hold.

° dlm(Fp) =o(Fp,D) =r.
° dlm(FD) =o(Fp,P)=q

Proof.

We first prove that dim(Fp) = r. In Balinski and Tucker[1] it is shown that there exists
a dtrictly complementary optimal solution with x* > Ofor 1 < j <, and x7,; > O for
g+ 1 <i < m. Therefore, the inequalities (10) and (11) are not binding in every point of
the primal optimal face, and hence are not implied equalities. The equalities (4) are implied
by (2) and (3) (see the proof of Theorem 3.1) and therefore redundant. The dimension of the
primal model ism + n (the total number of variables). The dimension of the primal optimal
face Fp is determined by the affine independent collection of equalities (2) and (3) and is

equato(mM+n) —(M+ (N —r)) =r.

We now prove that o (Fp, P) = . The binding constraints for the primal optimal face Fp
are (2), (3) and (4). Hence, b(Fp, P) = m+ (n—r) +g = m+n —r + . Therefore,
o(Fp, P) =b(Fp, P) +dim(Fp) —(M+n) =M+n—r+q)+r—(mM-+n)=q.

The proofs of dim(Fp) = q and o (Fp, D) = r are similar to the above ones, namely, use
the negative transpose of the B-T Tableau. |

The symmetry in Theorem 4.1 leads to the following theorem.

Theorem 4.2 Ina primal-dual pair of LP-models with finite optimal solutions, the degen-
eracy degree of the primal (dual) optimal face is equal to the dimension of the dual (primal)
optimal face.

Proof. Construct aB-T Tableau for the pair of primal and dual L P-models. From Theorem 4.1
theresult is obvious. |

Note that the above theorems are restricted to LP-models with nonnegative variables and
inequality congtraints. Actually, Theorem 4 isvalid for general LP-models with nonnegative,
nonpositive and free variables, and inequality and equality constraints. In Sierksma & Reay
[10] a proof for these general LP-modelsis given.

10



Thefollowing examples may illustrate above theorems. Consider the following pair of primal
and dual LP-models:

max —2Xs min Yo
st. 3x3+4dxa—x%x5 <0 st. —2yg+ 3yo >0
—Xo+2X3+3x5s <0 Y7+ Yo >0
—2X1+X4+5x5 <0 3y + 2y7 >0
3X1 + Xo <1 4ys + Vs >0
X1, X2, X3, X4, X5 >0, —Ye+3y7+5ys > -2

Y6, ¥7, Y8, Yo > 0.
A Tucker Tableau for these models reads:

1 X1 X2 X3 X4 X5
1 0 0 0 0 0 2 =—f
Y6 0 0 0 3 4 -1 | =—Xg
Y7 0 0 -1 2 0 3 = —X7
Vs 0 -2 0 0 1 5 = —Xg
Yo | —1 3 1 0 0 0 = —Xg

=—0 =Y1 =Y2 =Y3 =Ys2 =Y¥5

Notethat it isaB-T Tableau. The zero matrix in the left upper corner has two rows and three
columns. Hence, according to Theorem 4.1, dim(Fp) = 2,0 (Fp, P) = 1,dim(Fp, P) =1
ando (Fp, P) = 2. Fromthefirst threecolumnsof thistableaufollowsthat Fp = {—Xo+X7 =
0, —2x1+xg = 0,31+ X2+ X9 = L, Xi, X2 > 0; X3 = X4 = X5 = X = 0}, and
Fo={(3Ys—Y¥3=0,4Ys —Y2a=0,—Y6 — Y5 = =2, Y1 = Y2 = Y7 = Ys = Yo = 0}. The
corresponding primal and dual optimal basic solutions satisfy X; = Xo = X3 = X4 = X5 =
X6 =X =X=0,X%=1f=0adyi;=y=Y3=Ya=Ys=Y7=Y¥Ys= Yo =0,
ys =2,g=0.

Thesolutionsx; = 1/9, X2 = 1/3, X3 = X4 = Xs = X6 = 0, X = 1/3, Xxg = 2/9, Xg = 1/3
andy; =¥ =0,y3=3, Va=4,Y¥s=1 V¥ =1 V7 = yg = Yo = O form a dtrictly
complementary pair of optimal solutions, and are in the relative interior of the corresponding
optimal faces (see Balinski & Tucker [1]).

The following example shows that a small change in an entry of the coefficients matrix may
change the optimal faces rigorously. Consider a pair of primal and dual L P-models of which
the B-T Tableau can be written as follows:

1 X1 X2 X3 X4 X5
1 0 0 0 0 0 1 =—f
Y6 0 ail 1 1 1 -1 | =—Xg
yz| O -1 = —X7
ys| O -1 = —Xg
Yo| O -1 = —Xg
Vo | -1 1 = —X10

11



If a;3 > O, thistableau is a B-T Tableau of which the zero matrix in the left upper corner
consists of one column and five rows. Hence, according to Theorem 4.1, the primal optimal
face has dimension equal to zero (the primal optimal face consists of a single vertex) and the
dual optimal face has dimension equal to four. If a;; < 0, thistableau is a B-T Tableau of
which the zero matrix in the left upper corner consists of one row and five columns. So, the
dimension of the primal optimal face is equal to four and the dimension of the dual optimal
faceisequal to zero. If a;; = O, then the zero matrix in theleft upper corner hastwo rows and
two columns. Hence, both primal and dual optimal faces have a dimension equal to one. If
the value of a;; iscloseto zero and it isthe result of acomputer program that uses inaccurate
arithmetic, it may be difficult to determine the dimension of the optimal faces.

5.  Unigueness and degeneracy

If an optimal solution of an LP-model is unique, then the optimal face consists of a single
vertex which hasdimension equal to zero. If an LP-model has multiple optimal solutions, then
the optimal face has a positive dimension. Note that, if an LP-model has multiple solutions,
this does not necessarily mean that it has more than one basic optimal solution. Theorem 4.2
gives rise to severa interesting corollaries about the uniqueness and degeneracy of optimal
solutions. See dso Sierksma & Reay [10].

Corollary 1.

(@) A primal LP-model has a unique and degenerate optimal solution, if and only if the
corresponding dual LP-model has multiple optimal solutions of which at least oneis
non-degenerate.

(b) Aprimal LP-model has a unique and non-degenerate optimal solution, if and only if the
corresponding dual LP-model has a unique and nondegenerate optimal solution.

(c) Aprimal LP-model has multiple optimal solutions that are all degenerate, if and only if
the corresponding dual LP-model has multiple solutionsthat are all degenerate.

(d) A pair of primal and dual LP-models has unique optimal solutions, if and only if their
optimal solutions are non-degenerate.

Proof. See Sierksma & Reay [10].

Corollary 2. If a primal LP-model has a non-degenerate optimal basic solution and the
corresponding dual LP-model has a degenerate basic solution, then the primal LP-model has
multiple optimal solutions.

Proof. The primal optimal faceiseither anon-degenerate vertex or it containsanon-degenerate
vertex as proper subset. Therefore, the degeneracy degree of the primal optimal face is equal
to zero (Theorem 2.1(2)). According to Theorem 4.1 the dual optimal solution is unique. If
thisdual solution is degenerate, then the dual optimal faceis degenerate and hence, the primal
optimal face has positive dimension. |
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Corollary 2 may sometimes help to decide whether or not L P-models have multiple solutions,
because computer programs that use simplex methods for solving LP-models give only one
optimal primal and dual basic solution.

In the literature several theorems about uniqueness and multiplicity can be found. Here we
mention some of them.

In Greenberg[4] the following theorem is proved: A primal-dual pair of optimal solutionsis
uniqueif and only if it isastrictly complementary pair of basic solutions.

Note that since a strictly complementary pair of basic solutionsis a pair of primal and dual
optimal basic feasible solutions that have strictly positive basic variables, this theorem is
equivalent to Corollary 1b.

In Mangasarian [7] the following theorem is proved. An optimal solution of a LP-model is
uniqueif and only if it remainsan optimal solution when the objective function is changed by
an arbitrary but sufficient small perturbation.

This result can be related to our theorems as follows. If an arbitrary, but sufficient small
perturbation, has to keep the optimal dual solution non-negative, then the optimal values of
the dual basic variables should be strictly positive, which is another way of saying that the
optimal dual solution (face) is non-degenerate.

In Nering & Tucker[9] the following is proved. If a pair of primal and dual LP-models has
a complementary pair of optimal basic solutions that are both degenerate, then at least one
of these two models has multiple optimal solutions. This is proved in Nering & Tucker by
showing that there exists a strictly complementary pair of optimal solutions, which differs
from the pair of optimal basic solutions. Therefore, at least one of the two models must have
multiple solutions.

6. Constructing a B-T Tableau from an interior point solution

In the previous sections it was shown that among all optimal Tucker Tableaus, the B-T
Tableaus give additional information. Besides the optimal primal and dual basic solutions, a
B-T Tableau provides the optimal faces, the dimensions and the degeneracy degrees of the
primal and dual optimal faces. Asfar asweknow, all computer programsthat solve L P-models
by means of Simplex methods give as solution amoreor less arbitrary optimal basic solution.
It might be an idea to extend simplex LP-programs in such a way that the optimization
algorithm does not stop when an optimal solution is found, but continues until an optimal
basisisfound that correspondsto aB-T Tableau. Using such abasisit is possible, without too
much extrawork, to determine the optimal faces, the dimensions and the degeneracy degrees
of the optimal faces, the uniqueness of the optimal values of the variables, and the optimal
partition of all strictly complementary solutions.

On the other hand, computer programs that use interior point methods, provide primal and
dual solutions that form strictly complementary pairs. From these pairs of solutionsit is not
difficult to find a description of the primal and dual optimal faces, but it is not immediately
clear what the dimensions and the degeneracy degrees of these optimal faces are. In general,
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the optimal solutions found by means of interior point methods are not basic solutions. In
Megiddo[8], it is shown how an optimal basic solution can be constructed when an optimal
pair of primal and dual solutions is known. But, in general, this optimal basic solution does
not correspond to a B-T Tableau. However, it is possible to construct a B-T Tableau in strong
polynomial time given astrictly complementary pair of optimal solutions. In Zhang [13] such
an algorithm is given, which first uses the algorithm of Megiddo [8] to find an optimal basic
solution, and then constructs a B-T Tableau by means of extremal rays of the optimal vertex.
Inthissectionwewill givean algorithm, called Algorithm Construct-BT, that constructsaB-T
Tableau from an interior point solution and an arbitrary Tucker Tableau in strong polynomial
time, without using Megiddo’s algorithm.

Algorithm Construct-BT

Input: A primal-dua pair of feasible LP-models represented by means of a Tucker
Tableau; see Figure 3.1. A dtrictly complementary pair of optimal solutions
(X*, y%).

Output: A B-T Tableau.

Step 1. Separate the primal and dual optimal faces and determine the all-zero matrix in
the upper-left corner of the B-T Tableau.

Step 2. Maketherowshbel ow thezero matrix lexicographically negative, and the columns
to the right of the zero matrix lexicographically positive.

Step 3. Transform x* to aprimal optimal basic solution, preserving the zero matrix and
the lexicographic properties of the rows and the columns.
Step 3.1. Select a positive non-basic variable x;, . If no such variable exists, go

to Step 3.4.

Step 3.2. Decrease the value of xy, .
Step 3.3. Pivot if necessary and return to Step 3.1.
Step 3.4. Sort the lexicographically negative rows.

Step 4. Transform y* to a dual optimal basic solution, preserving the zero matrix and
the lexicographic properties of the rows and the columns.

Next, we discuss these steps in more detail.

Ad Step 1. Determining the zero matrix.
Make the optimal value of the objective function equal to zero.

Replace ag in the current tableau by — Z?:l ap; x;j .

The row equation for the objective row is now — Z?:l aoj Xp, + Z?:l aojXp = — f Substi-
tuting x = x* gives f* = 0. (x*, y*) isadtrictly complementary pair of optimal solutions.
Thismeansthat x* + y;* > Oand X"y = 0for1 <i < m+n. Theindices1, ..., m+ncan

be partitioned into two sets B and N suchthati € B impliesthat x* > 0, andi € N implies
thet y;* > 0. Let R denote the indices of the primal non-basic variables that belong to B, and
let Q denotethe indices of the primal basic variablesthat belongto N.

R:=BN{py..., pn}
Q:=NnN{pnt1,.--, Prtm}-
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Xpl e Xpr Xpr+1 e Xpn

11 o o ... 0 aors1 - aon | =—f
Ypnia 0 = —Xpnps
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Ypniq 0 = —Xpniq
Yoniasr | Qg+1,0 = —Xpnigu
: : Ar Az
Ypim | @m0 = —Xpotm
=—0 =Yp - =Yp =Ypu ‘- =Yp

Figure 6.1: Tucker Tableau after Step 1

Aslong as the current tableau contains anonzero entry a; with pnyi € Q and
p; € R, perform apivot operation on & and adjust the sets R and Q.

Each time such a pivot operation is performed, the number of elementsin both R and Q is
decreased by one. If no such pivot operations are possible, then &; = 0 for each phyi € Q
and p; € R. Thesets Q and R are then minimal.

Rearrangethe rowsand the columnsof the current tableau, such that the entries
aj with p; € Rand p; € Q form azero matrix in the left upper corner of the
tableau withr = |[Rjandq = | Q.
R={pw ..., pr}
Q= {pns1, .-, Pniq}
Thetableau is now in the form of the tableau in Figure 6.1. Representations of the primal and
dual optimal faces can be read from this tableau in the same way as from a B-T Tableau.

Ad Step 2. Lexicographically ordering of the rows and the columns.

The row equations of the current tableau are ajo + Z?:l ajXp = —Xp,, fori =1,....m.
Since x* isasolution of the primal LP-model, ajg = —x;;n+i — Zj”:la”-x;;j fori=1,...,m.

Combining these equations, the row equations can be written as
n
X5 Y @ (X = Xp) = —Xp,, i=1...m (12)
j=1
Similarly, the column equations can be written as

m
y;;j + Zau(ypnﬂ - y;n+i) = yp,-s J = 11 ey n. (13)
i=1
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In order to adjust the tableau to these equations, the following operation hasto be carried out.

Replace, in the first column of the current tableau the entries g withi =
1,....,mby—xg . Similarly, replaceao; by y;;i forj=1,...,n

Since x* is a point in the relative interior of the primal optimal face, we have that ajp < 0
fori =q+1,..., m. So,therowswithindicesq + 1, ..., marelexicographically negative.
Similarly, the columnswithindicesr + 1, ..., n arelexicographically positive.

Ad Step 3. Determination of a primal optimal vertex.

In the current tableau &l non-basic variables x,,, . . ., Xp, have a positive value. In order to
find an optimal basic solution, the values of the non-basic variables have to be lowered to
zero; if that is not possible without destroying the feasibility, some non-basic variables have
to be replaced by basic variables with a zero value by means of pivot operations.

Ad Step 3.1: Selection of a positive non-basic variable.

Select acolumn j withl < j <r and Xp > 0. If no such column exists, go
to Step 3.4.

If morethan one non-basic variable hasapositivevalue, it is not relevant which oneis chosen.

Ad Step 3.2: Decreasing of the value of the selected variable.
Decrease the value x* of the variable x, as much as possible without loosing feasibility. In
order to find the maX|ma| decrease, perform the following ratio test

M3=. Sup {—Iau <0}
A= mm{u, xpj}

If column j does not contain any negative entry, the value of x,, can be decreased to zero and
A will be equal to x* The vaue of the variable xp, is decreased by A and the first column of
the tableau is adj usted in order to keep the row equations (12) valid.

x;;J = x;;J A. _

ao:=ao—Axa;j, X; =—a&o fori=q+1....m

Pn+i

Ad Step 3.3: Pivoting.

If, in Step 3.2, some of the rows with indicesq + 1, ..., m have become lexicographically
positive, a pivot operation on an entry in column j hasto be performed in order to make the
rows lexicographically negative again. If x;;j is still positive after Step 3.2, a pivot operation
canreplacethenon-basicvariable x, by abasic variablewith zerovalue. Inorder to determine
the pivot row, find a row index k such that, if all rows with &; < O are divided by &, the
row with index k is the lexicographically smallest row among these rows. If k can not be
determined uniquely, an arbitrary choiceis made.

If x5, > 0, or for somei withg+1 < i < m, row i islexicographically

positive then:
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k:= arglexico-min {i(rovvi) | &j < O}
i=1....m i

Pivot on ay; .

Set ayg 1= —x*

Pn+k

If apivot operationisperformedinthisstep, then beforethe pivot operation, ayisequal to zero.
After the pivot operation the lexicographic negativity of the rowswith indicesq +1,..., m
isrestored. Furthermore, the number of primal non-basic variableswith a strict positive value
is decreased by one.

Return to Step 3.1

Ad Step 3.4. All primal non-basic variables are zero and x* isaprimal basic feasible solution.

Sort the lexicographically negative rowswith indicesq + 1, ..., minlexico-
graphically non-increasing order.

Ad Step 4: Determination of a dual optimal vertex.
Thisstep issimilar to Step 3.

Take the negative transpose of the current tableau.
Perform Step 3 to find aprimal optimal basic solution.
Take the negative transpose of the current tableau.

y* isnow an optimal dual basic solution.

Theratio test in Step 3.2 issimilar to the ratio-test in the simplex algorithm, but here the aim
isto decrease the current value of a non-basic variable as much as possible. Note that in Step
3.3 apivot on an entry in matrix A, in Figure 6.1 does not affect the first row and the matrix
A;; thelexicographically positive columnswill remain lexicographically positive. At the end
of thisalgorithm the current tableau isa B-T Tableau.

Theorem 6.1 Givenaninterior point solution of an LP-model, a corresponding B-T Tableau
can be constructed in strong-polynomial time.

Proof. Perform Algorithm Construct-BT. In Step 1 at most min(n —r, m— q) pivot operations
areperformed. In Step 3at most r andin step 4 at most . Thetotal number of pivot operations
ismin(n+q, m+r) and hasm+n asupperbound. Clearly, thisalgorithmis strong-polynomial,
since, apart from the pivot operations, the number of all other operationscan be bounded from
above by a polynomial in m and n. ]

We will illustrate algorithm Construct-BT with the following pair of LP-models. The primal
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LP-model

—4

-8

max —4X; +4%y —8xz +4Xa
s.t. —X1  +X2 —2X3 +X4 < 1
+4x; —4Xp +X3 —2x4 < O
—3x3 +xX4 < 2
—X1  +X2 —=2X3 +X < 1
—2X1 +5% —-9%3 +3x4 < 7
X1, X2, X3, X4 > 0
and the corresponding dual L P-model
min +VYs +2y; +VYs +7Yo
st.  —ys +4ys + =Yg —2Y9 >
+Ys —4Ye + +Yys +5y9 >
—2ys +Ys —3y7 —2¥s -9y >
+Ys —2Ye +Yy7 +Ys +3Yo >
Y1, Y2, Y3, Y4, ¥5 > 0.
We first construct a Tucker Tableau for these L P-models.
1 X1 X2 X3 X4
1 0 4 -4 8 -4
ys | —1 -1 1 -2 1
V6 0 4 -4 1 -2
y7 | -2 0 0 -3 1
vs | —1 -1 1 -2 1
Yo | —7 -2 5 -9 3
=—0 =Y1 =Y2 =Y¥Y3 =VYs4

A strictly complementary solution for these modelsis:
(f*x{,....,%x)=(4,1,113,0,5,20,4) and
(9% y1,---.¥3) =1(4,0,0,0,0,3,0,0, 1, 0.

(dack :
(dack :
(dack :
(dack :
(dack :

Xs)
Xe)
X7)
Xg)
Xg)

(dack

(dack
(dack

—f

The optimal partitionis B ={1,2,3,4,6,7,9} and N = {5, 8}.

Step 1. Replace ago by — ", aojx;; = 4. Thismakes f* = g* = 0.

1 X1 X2 X3 X4
1 4 4 —4 8 —4
s =1 | =T 1 —2 1
vl 0 | 4 -4 1 -2
vl =2 0 o -3 1
el -1 | -1 1 -2 1
vo| =7 | =2 5 —9 3
=—0 =Y1 =Y2 =Y¥Y3 =4

Determinethesets Rand Q. R={1, 2, 3,4} and Q = {5, 8}.

The non-zero entry ay 4 with value 1 correspondsto (X4, Xg) with4 € Rand 8 € Q. Pivoting
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0N ay 4 gives:

1
Ys
Y6
y7
Ya
Yo

1 X1 X2 X3 Xg

0 0 0 0 4 | =—f
0 0 0 0 -1 | =—Xs
-2 2 -2 -3 2 | =—Xs
-1 1 -1 -1 -1 |=-X
-1 -1 1 -2 1 |=—X
-4 1 2 -3 -3 |=—X

=—-0 =Y1 =Y2 =Y3 =1Ys

Adjust Rand Q. R = {1,2,3} and Q = {5}. All entries &; that could be possible pivot
candidates are zero now. Rearranging of the rowsand columnsis not necessary, sincethe zero

matrix is already in the left-upper part of thetableau. (q = 1andr = 3). Thisends Step 1.

Step 2. Substitute the values of the primal basic variablesin the first column, and the values
of the dual basic variablesin the first row. From now on we will omit the names of the dual
variables from the tableau, but instead we will put there the values of the primal optimal

solution.

Step 3.

The primal non-basic variables with positivevalue are: x; = 1, x3 = 1and x3 = 1.
Step 3.1. Select column 3 corresponding to the primal non-basic variable xz with x§ = 1.

1 X1 X2 X3 Xg

0 0O O 0 1 |=-
0| O 0O O 0 -1|=-xs
5(-5] 2 -2 -3 2 |=—X%s
2(-211 -1 -1 -1|=-x
3/-3|-1 1 -2 1 |=-x4
41 -4 1 2 -3 -3|=—X9

0 1 1 1 0

Step 3.2. Calculate 1. A = 1. Decrease the value of x3 with 1to 0.

1 X1 X2 X3 Xg
0|0 O 0O 1| |=-f
0,00 O O —-1|=-xs
2|-2| 2 -2 -8 2 |=-Xs
1]-1|1 -1 -1 -1|=-%x
1]-1(-1 1 -2 1 |=-x4
1]-1|1 2 -3 -3|=-X9
O 1 1 0 O
Step 3.3. x; = Oandtherows 2, ..., 5 arelexicographically negative; no pivot is necessary.

Step 3.1. Select column 2 corresponding to the primal non-basic variable x, with x5 = 1.
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Step 3.2. Calculate .. A = 1. Decrease the value of x5 with 1to 0.

1 X1 X2 X3 X8

o(0 O O 1 |=-
0| O 0 0 0 —-1|=-xs
0| O 2 -2 -3 2 |=—Xs
0| O 1 -1 -1 -1|=-%
2|-2-1 1 -2 1 |=-X
3/|-3] 1 2 -3 -3|=-—Xg

0 1 0 0 0

Step 3.3. Row 2 and row 3 are lexicographically positive; apivot is necessary.
Determine the row index k.

Row 2 divided by -2 gives: (0.0-1.01.0 1.5-1.0)

Row 3 divided by -1 gives: (0.0-1.0 1.0 1.0 1.0).

Row 3 is the lexicographically smallest, so a pivot operation has to be performed on az ».

1 X1 X7 X3 X8

0|0 0O O 1 |=-—f
000 O O -1|=-xs
0| O 0 -2 -1 4 |=—Xs
o0 |-1 -1 1 1 |=—x%
2|-21 0 1 -3 0 |=—x4
3/|-3] 3 2 -5 -5|=-x9

0O 1 0 0 O

Step 3.1. Select column 1 corresponding to the primal non-basic variable x; with xj = 1.
Step 3.2. Calculate . A = 0. Decreasing the value of x} with 0 does not change the tableau.
Step 3.3. Since xj > 0, apivot is necessary. Pivot onag ; and let agp := —x; = —1.0.

1 X2 X7 X3 X8

0|0 0O O 1 |=-—f
0| O 0 0 0 —-1|=-xs
0| O 0 -2 -1 4 |=—Xs
1{-1]-1 1 -1 -1|=-x1
2|-21 0 1 -3 0 |=—x4
3/-3] 3 -1 -2 -2|=-Xg

O 0 O 0 o©O

Step 3.4. All primal non-basic variablesare zero. Thelexicographically negativerows?2, ..., 5
are aready sorted. Thisfinished Step 3.

Step 4. Take the negative transpose of the current tableau and place the values of the optimal
dual basic variables on the left of the tableau, and the values of the non-basic dual variables
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under the tableau.

1 ¥5 Y6 Y1 Y4 Yo

070 0 1 2 3|=g
0of0l0 0 1 0 —3|=-—y,
0,00 2 -1 -1 1 |=-y
0| 0|0 1 1 3 2 |=-vy;3
1(-1(1 -4 1 0 2 |=-Vys

0O 3 O 0 0 0

Step 3.

The only non-basic variable with positive valueis ys with y? = 3.

Step 3.1. Select column 1 corresponding to the dual non-basic variable ys with yi = 3.
Step 3.2. Calculate . A = 3. Decrease the value of yZ with 3to 0.

1 Y5 ¥6 Y1 Ya Yo

0|0 0O 1 2 3 |=g
000 O 1 0 -3|=-v
000 2 -1 -1 1 | =-vy
0|00 1 1 3 2 |=-vy3
41-411 -4 1 0 2 |=-vs

0 0 0 0O O O

Step 3.3. No pivot is necessary.

Step 3.4. No sorting is necessary.

Thisfinishes Step 3.

Take the negative transpose of the current tabl eau.

1 X2 X7 X3 Xg
1 0 0 0 0 4 | =-f
Ys 0 0 0 0 -1 = —X5
Y6 0 0 -2 -1 4 = —Xg
Y1 -1 -1 1 -1 -1 | =-Xx1
Va| —2 0 1 -3 0 = —X4
Yo -3 3 -1 -2 -2 = —Xog

Step 4 isfinished.
The current tableau is a B-T Tableau.
End of algorithm Construct-BT.

7. Conclusions
By introducing amore general definition of degeneracy, we established aremarkablerel ation-

ship between the degrees of degeneracy and the dimensionsof the optimal faces of L P-models.
The optimal simplex tableaus as introduced by Balinski & Tucker [1] provide the degrees

21



of degeneracy and the dimensions of the optimal faces. For analyzing the optimal solutions
of an LP-moddl it is worthwhile to know whether the optimal solution is unique or whether
there are multiple solutions. Computer programs that solve L P-models by means of Simplex
Methods only give one basic optimal solution. We recommend that computer programs are
extended in such away that they calculate B-T Tableaus. Then it is possible to give, besides
an optimal solution, also the optimal faces and their dimensions and degeneracy degrees.

In recent yearsalot of attention is given to non-simplex methods, such as the interior points
methods. These methods provide strictly complementary optimal solutions, which arelocated
intherelativeinterior of the optimal faces. For L P-model sthat are relaxationsof combinatorial
and integer models, usually optimal basic solutions are needed. In Bixby & Saltzman [2] and
Megiddo [8], algorithms are given that transform an optimal interior point solution into a
basic feasible solution. An optimal interior point solution can be found in polynomial time.
In this paper we have presented an algorithm that constructs a B-T Tableau given an optimal
interior point solution. Therefore, it is now possible to construct B-T Tableaus of LP-models
in polynomial time.
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