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Abstract 
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1. Introduction

In the last five to ten years, the mixture model approach has seen an impressive

upsurge in interest in the classification, psychometrics and marketing literature.

Mixture model applications have typically assumed that the subjects in the

sample are drawn from the population using a simple random sampling

procedure. However, in practice such random samples are not necessarily

desirable and seem to be the exception rather than the rule. Data often serve

more than one purpose, and not all the purposes of the data need to be fully

specified at the time of collection. Since large scale data collection can be very

expensive, various purposes are sought and the data are to be used for some

time. Thus, it is unlikely  that the  sampling design chosen is optimal for all

future purposes of the data.

The framework for sampling theory has been developed by Neyman

(1934). He established the role of randomisation as the basis for sampling

strategies, and introduced the ideas of stratification and the use of unequal

selection probabilities. From this followed developments on multi-stage

sampling, and a general theory of sampling. In probability samples, the selection

probabilities of all elements in the population are known. Contrary to non-

probability samples, probability samples allow for the projection of the sample

estimates to the population, and enable the calculation of the precision of these

estimates. Apart from simple random sampling, the most important probability

sampling strategies are stratified sampling, cluster sampling, and two-stage

sampling. We refer to such sampling procedures as complex sampling

procedures. Good surveys use the structure of the population and employ

sampling designs that incorporate stratification and clustering of the

observations to yield more precise estimates. The theory of probability-weighted

estimation for descriptive purposes (for example estimating population totals

and means) is well established (e.g. Cochran 1977). On the other hand,

probability-weighted estimation for analytic, model based purposes has received
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attention only fairly recently. The book by Skinner, Holt and Smith (1993)

provides an overview of developments in this area. The emphasis in sample

surveys has traditionally been on description. However, surveys are increasingly

used for analytic purposes, including classification. Whereas in traditional

inference for descriptive purposes the complexities in the sample design are

often intimately connected to the specifics of the estimation procedures

employed, the application of statistical methods for data-analysis often do not

take the complexity of the sampling strategy into account. 

 In this paper we deal with the problem of how to identify unobserved

classes from  samples that arise from complex probability sampling strategies.

We are concerned with statistical inferences about the underlying class-structure

of the population, on the basis of data that are obtained using a complex sample

design. This problem has to our knowledge not previously been dealt with in the

literature. It arises from the fact that the conventional procedures for estimating

class-level parameters using mixture models are based upon the assumption of

simple random sampling and independent and identically distributed

observations. We show that, if the data come from a complex probability

sample, inferences on classes in the population can be made by applying pseudo

maximum likelihood estimators. We empirically demonstrate the effects ignoring

the sampling design in traditional ML based approaches. 

2. Sample Design and the Mixture Approach

2.1 Pseudo-Maximum Likelihood Approach

Mixture models are traditionally estimated under the assumption of

simple random sampling. Not explicitly accounting for a sampling strategy other

than simple random sampling results in inconsistent and biased estimates. The

approach to deal with complex designs is based on the so-called pseudo-
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maximum likelihood (PML) estimation approach and requires the knowledge

of the selection probabilities for each of the final units selected in the sample.

The development below for the mixture approach is based on Skinner (1989).

The PML approach has been applied to several statistical models, but as far as

we know not to mixture models.

We introduce the following notation:

n = 1,...,N indicate primary sampling units ;

m = 1,...,M indicate secondary sampling units ;

N = number of units in the population;(p)

M = cluster size of cluster n;n

N = sample size;

y = (Kx1) vector of sample observations on unit n;n

Y = (Kx1) vector of population values for unit n.n

g = 1,...,G indicate strata;

N = number of units in stratum g of the population;g
(p)

N = number of elements in stratum g in the sample;g

Assume a general sampling strategy that may involve combinations of

more specific sampling schemes, for example, stratified and two-stage sampling.

Suppose that the sampling strategy is such that a unit n in the sample has a

probability of being selected of P (here we do not distinguish between primaryn 

and secondary units yet).  A simple random sample will set P  = P, for all n, forn

example. Complex samples require different values of P  reflecting differentn

probabilities of sampling units of different types. The conventional estimation

approach under simple random sampling is to fit parametric mixture models via

maximum likelihood estimation. 

We will formulate the problem in a fairly general mixture model context.

The data on subject n consist of K measurements of some variable Y: y .n
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Assume the existence of S unobserved classes, with unknown proportions B .s
Given a particular class, the observations are assumed to be distributed with

probability-density function f (y |NN ), where f (@ )  is known to be one of thes n ss

exponential family, and the parameter vector NN  characterising class s iss

unknown. The exponential family includes many distributions that have useful

applications, such as the normal, binomial, multinomial, negative binomial,

exponential, poisson and gamma distributions (cf. McCullagh and Nelder 1989).

The common properties of these distributions enable them to be studied

simultaneously, rather than as a collection of seemingly unrelated cases. Within

the unobserved classes a variety of possible data-generating mechanisms may

be assumed. First, the NN  may involve a single constant (or K constants), givings

rise to standard mixtures of exponential family distributions (Titterington, Smith

and Makov 1985). Second, if covariates X  are measured for each n, a mixturen

of generalized linear models may be assumed to underlie the data, and the NNs

pertain to class-specific regression parameters (Wedel and DeSarbo 1995).

Third, NN  may involve stimulus locations and subject preference parameters ins

the case of mixtures of exponential family unfolding models (Wedel and

DeSarbo 1996). In addition NN  may include (known or unknown) nuisances

parameters in the case of certain distributions in the exponential family (normal,

negative binomial, etc.). Note that any of the parameters NN  may be restricteds

to have the same value across classes. The unconditional distribution of the

observations is formulated as:

(1)

The ML estimator of  NN =(B  , NN ) maximizes the log-likelihood. The standards s

formulation of the log-likelihood applies under simple random sampling, in

which each unit receives the same  weight. The ML estimator solves the

likelihood equations:
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(2)

Assume that taking the specific complex sample design into account, the yn

follow a model in which they are independent with the same p.d.f. as given in

(1). Now given the sample design, the estimator for  NN  is obtained from the

expectation of the score vector T(NN), in the population:

(3)

Equation (3) is a population version of the likelihood equations (2). Often a full

ML procedure is intractable, since the expression for the likelihood under the

complex sampling strategy depends on assumptions about the (unknown)

relationships between the y  and the sample design variables. However, a simplen

approach is to construct a consistent estimator for T(NN), defined as:

(4)

The weights T  are inverse proportional to the selection probabilities P  andn n

defined as , so that they sum to N across the sample. Solving

equation (4) yields the so-called pseudo maximum estimator (PML) for NN.

Complex sampling designs for which all selection probabilities are equal are

“self weighting”, and the ML and PML estimators coincide. This is also the case

if the distribution of y  in (1) is completely independent of the sample design.n

This is, however, unlikely to occur in practice. Therefore, neglecting the

sampling design for samples that are not selfweighting will lead to biased

estimates. 

It is assumed above that the mixture model is true in the population,

which is assumed to be of infinite size. For many classification studies however,
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the mixture model is only a convenient approximation to the heterogeneity that

exists in the “real world” and the parameters of the model are used to

understand the approximate heterogeneity in a finite population. For such a

finite population, we can define the population parameter NN as the solution of

the likelihood equations over all units in the population. Thus,  the mixture

model is used as a working model to define the target parameters NN in the

population. In this case we are only concerned with the distribution of  NN  due

to the sampling design used. Under these much weaker conditions in which the

mixture model is not assumed to be correct, the above PML estimation

procedure remains valid (cf. Skinner 1989). 

Below, we provide a few examples of the form of the selection

probabilities in complex samples.

2.2 Stratified Samples

Stratified sampling is probably the most widely used complex sample

design. It is assumed that the population is grouped into G strata. Each stratum,

g, may arise from a combination of several stratification variables. Within

stratum g, N  subjects are sampled from the population. A mixture model isg

applied to the N (Kx1) observation vectors y . If the distribution of y  dependsn n

on the stratification variables, the ML estimates of the class-specific parameter

estimates are not unbiased estimates of the population parameters. Likewise, the

class sizes estimated from the sample with ML are not unbiased estimates of the

sizes of the classes in the population. This is caused by the subjects composing

the classes having unequal probabilities of being selected into the sample. The

appropriate PML estimates of the parameters are weighted estimates obtained

from equation (4), where the selection

probabilities equal: , where g is the stratum from which
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respondent n comes. If the ratio of sample size and population size in each

stratum is constant, P  = P, so that the sample is selfweighting and the ML andn

PML estimators coincide.

2.3 Cluster Samples

If the units in the population occur naturally in clusters or primary units,

cluster samples are often employed for reasons of cost reduction. Each primary

sampling unit n comprises secondary units, indicated by m=1,...,M . A samplen

of primary units (n=1,...,N) is drawn, and observations on all secondary units

in each primary unit are obtained (M =M ) . Assume that classes need to ben n
(p) 

identified at the level of the secondary units, denoted by m (if classes are to be

identified at the level of the primary units, the mixture model is applied to the

(KM x1) vectors of observations on the primary units taking the selectionn 

probabilities for the primary units into account).  For example, when the primary

units all have the same size M and when the sample drawn from them is a simple

random sample, then the weights of the secondary units are equal to

and the PML and ML estimators coincide. Note that in this

situation in equation (4) the summation over n is replaced by a summation over

n and m. If the primary units have unequal sizes, M , and they are drawn withn

random sampling the selection probabilities for the secondary units equal

, where n is the primary unit from which m comes. If the

primary units are of unequal size and drawn with probabilities proportional to

their size, the sample is self-weighting. Cochran (1977) describes alternative

procedures for obtaining cluster samples from which the selection probabilities

can be easily derived. 
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2.4 Two-Stage Samples

In two-stage sampling methods, a sample of size N is drawn from all

primary units in the population, and from each primary unit a sample of

secondary units of size M # M , is drawn. Two-stage sampling procedures aren n
(p)

often cheaper than and have higher statistical efficiency than cluster samples,

while the latter may be infeasible when the primary units are large. The results

for the selection probabilities for various selection strategies for the primary and

secondary units are derived from the standard results provided in Cochran

(1977).  For example, if the primary units in the population have the same size

(M =M ), the N primary units and the M secondary units in the sample aren
(p) (p)

selected by simple random sampling, and a constant fraction M/M  is sampled(p)

from each primary unit, the sample is self-weighting and all selection

probabilities equal . More typical are situations in which the

primary units vary in size. Then the secondary units may be selected either with

equal probabilities, or with probabilities proportional to size. Various available

strategies involve different sampling and sub-sampling methods.  If the

secondary units and primary units are selected by simple random sampling, the

sizes of the primary units differ, and a constant number M is sampled from each

primary unit the selection probabilities are .

In the situation that the sampling fraction within each primary unit is constant:

M /M =f , say,  the sampling strategy is self-weighting.  Further results can ben n 2
(p)

derived from Cochran (1977). 
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3. Statistical Inference

3.1. Asymptotic Standard Errors of the Estimates

Under typical regularity conditions the ML estimators are asymptotically

normal. A consistent estimator of the asymptotic covariance matrix of the

estimates is the inverse of the observed Fisher information matrix (e.g.

Titterington, Smith and Makov 1985). The pseudo-log likelihood estimator in

expression (4), however, is not efficient (it does not achieve the minimum

variance among all possible estimators). The reason for this is that the optimal

weighting of the  units is the weighting obtained from the standard maximum

likelihood function, and introducing the selection probabilities as weights

decreases the efficiency of the estimator. (This points to the advantages of using

self-weighting samples for the purpose of mixture model estimation, since the

estimates have minimum variance because the weights cancel.)  A robust

estimator of the asymptotic variance is in this situation provided by White

(1982), and Royall (1986), which in the general case of a stratified multi-stage

sample is:

(5)

where

  (6) 

is the matrix of second order partial derivatives, and 

(7)

with : (8)

where M denotes the number of units in cluster n within stratum g.gn 
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3.2 Criteria for Selecting the Number of Classes

When applying mixture models the true number of classes, S, is mostly

unknown and has to be inferred from the data. The problem of identifying the

number of classes in mixture models has as yet not seen an entirely satisfactory

statistical solution. Suppose one wishes to test the null-hypothesis (H ) of S0

segments against the alternative hypothesis (H ) of S+1 segments. The standard1

likelihood ratio test statistic is not applicable, because it is not asymptotically

distributed as P  . In testing for the number of components in a mixture model2

this asymptotic distribution is not valid, since H  corresponds to a boundary of0

the parameter space for H , a situation that violates the required regularity1

conditions (cf. Aitkin and Rubin 1985). Recently, Böhning, Dietz, Schaub,

Schlattmann and Lindsay (1994) investigated the distribution of the LR test of

S=1 versus S=2 mixtures of exponential families. They found that its limiting

distribution is not well approximated by the conventional P  distribution, and2

that the deviation is to be distribution specific.

 Information criteria are therefore frequently used for investigating the

number of classes. These criteria impose a penalty upon the log-likelihood

which is related to the number of parameters estimated:

  (9)

Here, Q is the number of parameters estimated and d is some constant. That

number of segments is selected, where the statistics reach a minimum value. The

classical Akaike's Information Criterion, AIC, arises when d=2. For the

Bayesian Information Criterion, BIC, d=ln(N) and for the Consistent Akaike's

Information Criterion, CAIC, d=ln(N+1). These two criteria impose an

additional sample size penalty upon the log-likelihood. The information

theoretic measure ICOMP, is based on the properties of the estimated
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information matrix  (10)

          
ICOMP penalizes the likelihood more when more parameters are estimated, but

also when the model becomes less well identified due to an increasing number

of parameters, in which case the term involving the determinant of the

information matrix increases. 

A problem with these criteria is that they depend on the likelihood and

therefore rely on the same properties as the likelihood ratio test. Therefore they

can be used only as indicative for the number of segments. In addition a

complex sample design that is not taken into account in the formulation of the

likelihood will affect the determination of the number of classes. We therefore

propose that the information and entropy statistics should be based on the

pseudo-log-likelihood:

(11)

Thus for complex samples lnPL(NN|S) replaces lnL(NN|S) in the equations (9) and

(12) above, and I(NN) in (10) is defined as in (6).

4. Illustration

4.1. Data

We illustrate the PML procedure in a stratified European value

segmentation study. The effects of taking the sampling design into account are

demonstrated by comparing the PML estimates to the ML estimates. The

purpose of the study is to investigate the existence of pan-European value



13

segments, i.e. segments that transcend national borders. A “value” is defined in

consumer psychology as an enduring belief that a specific state of existence or

mode of conduct is preferred for living one’s life (cf. Rokeach 1973). The data

were collected in 1996 in six West-European countries. The European sample

was stratified by country. From each country a sample of approximately the

same size was drawn, although the countries differ substantially in population

size. This is a standard procedure in international value research. Specifically,

the countries were (sample sizes/ weights in parentheses): Belgium (648/

0.231), Germany (673/ 2.020), Great-Britain (623/ 1.356), France (694/ 1.259),

the Netherlands (646/ 0.380), and Spain (616/ 0.600).

Kahle’s “List of Values” (LOV) method was employed to assess value-

systems of respondents (Kahle 1986). The LOV typology is related to social

distinction theory. It distinguishes between external and internal values, and

deals with the importance of interpersonal relations, and personal and a-personal

factors in value fulfilment. The LOV instrument is composed of nine values.

These were ranked in a paper and pencil task by the respondents (back-

translation methods were used in order to ensure a similar content of the

statements in the languages involved, Brislin 1970). The nine values are:

LOV-1. Fun and enjoyment in life;

LOV-2. Warm relationships with others;

LOV-3. Self-fulfilment;

LOV-4. Being well respected;

LOV-5. Sense of belonging;

LOV-6. Excitement;

LOV-7. A sense of accomplishment;

LOV-8. Security;

LOV-9. Self-respect;
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Thus, the data y  consist of the order of the above values, for each of the 3900n

respondents, where the lower the rank number, the more important a value is

for a person.

4.2. The Model

To identify latent value segments a mixture of rank order multinomial

logit models is used, proposed by Kamakura and Mazzon (1991). The model

is a mixture model extension of Thurstone’s (1927) law of comparative

judgement and assumes that the observed value rankings are error-perturbed

observations of the unobservable value utilities of each individual. The model

is based on utility maximization theory and identifies segments on the basis of

the entire value ranking provided by the subjects.

Assume the existence of S unobserved value segments. Individuals

belonging to segment s share the same value system, represented by a set of

unobserved utilities, U , with k=1,...,K denoting the values. Let Y  denote theks nt

value label on rank order position t, t=1,...,T (T=K=9 for LOV). Given segment

s, the probability of observing a value ranking {Y , Y ,...,Y } may ben1 n2 nT

expressed in terms of the utilities as: 

(12)

If the utilities are considered random with a standard Weibull distribution of the

error component, this leads to the multinomial logit:

, (13)

with R   the set of values ranked higher or equal to k. For reasons ofk

identification, the utility of the last value (K=9) is set to zero. The pseudo-log-

likelihood is:
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, (14)

with . The log-likelihood is obtained from equation (14) by

setting P =1 for all n. The models are estimated using a weighed Quasi-Newtonn

gradient search to minimize (16), using the Broyden, Fletcher, Goldfarb and

Shanno procedure implemented in the GAUSS package (Aptech 1995).

4.3. Results

In order to illustrate the PML approach for mixture models, we estimate

the model on these LOV data, using both the ML and the PML approach.

Starting with S=1, S is increased until the AIC, CAIC, BIC and/or ICOMP

show a minimum. In order to overcome problems of local optima, each model

is estimated from 10 sets of random starting values. Table 1 shows the values

of the log-likelihood, and the model selection criteria for ML estimation. Table

2 shows the statistics for PML estimation. With ML, BIC, CAIC and ICOMP

all reach a minimum at S=7. Since AIC tends to overstate the number of classes,

the seven class ML solution appears to be a reasonable representation of the

data. For PML, BIC, CAIC and ICOMP and indicate that the S=5 solution is

most appropriate.

The first important finding is that accounting for stratification using

PML estimation may yield a different number of classes than when the stratified

sample is ignored. Accounting for the stratified sampling procedure resulted in

more parsimonious models (the S=5 solution has 18 parameters less than the

S=7 solution). BIC, CAIC and ICOMP are consistent in their identification of

the number of classes for ML and PML estimation, while AIC tends to indicate

a too large number of classes.
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[INSERT TABLES 1 AND 2 HERE]

Next, we inspect the ML and PML estimates. We focus on the S=5

solution, since that is the best approximation to the data, when the appropriate

weighting is applied. The S=7 results are provided for completeness. 

The prior probabilities (or class proportions) are presented in Tables 3

and 4. Table 3 shows that the S=5 ML and PML estimates are markedly

different. First, the aggregate segment proportions (B ) are quite differents

between ML and PML. For PML, Segment 4 is much smaller (3%) and segment

5 much larger (38%) than the corresponding classes in the ML solution (12%

and 28%). It appears that ML has a tendency to identify classes with more equal

sizes. Given that PML does take the sample design into account, the

comparison shows that the ML estimates are severely biased due to their

negligence to take the sample design into account. Further, the PML and ML

solutions show some substantial differences of the estimated class proportions

per country. For example in the PML solution Germany has a particularly high

proportion of Segment 2 (33%), while for ML this proportion is much lower

(5%). On the contrary, for ML Segment 4 is substantial (43%) in Germany,

while it is much smaller for PML (14%).As another example, PML-Segment 2

has a proportion of 2% in France, while ML-Segment 2 is 20% in that country.

For the S=7 solutions there are also some notable differences in the ML

and PML estimates.  Segments 1, 2, 3, 4 and 6 are larger for PML, the other

segments are larger for ML. For the sizes of the segments per country, there are

differences in particular for Segments 4 and 5 in Germany, for Segments 5 and

7 in Great Britain, for Segments 4 and 5 for France, and for Segments 5 and 7

for Spain, between ML and PML.  

[INSERT TABLES 3 AND 4 HERE]
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Tables 5 and 6 depict the value-utility estimates obtained with ML and

PML for the S=5 and S=7 solutions, respectively. The S=5 estimates show

some marked differences between PML and ML. For example for Segment 2,

the ML procedure predicts a high value ranking for Self-fulfilment (LOV-3),

while the PML procedure predicts a low ranking. On the other hand, PML

predicts a high importance for Sense of Belonging (LOV-5) and  Self-respect

(LOV-8) in Segment 2, while low importances are predicted by the ML

estimates. Other large differences between ML and PML occur in Segment 4

for Warm relationships with others (LOV-2), Self-fulfilment (LOV-3), Being

well respected (LOV-4), Sense of belonging (LOV-5), and Excitement (LOV-

6). In addition differences in the estimates are observed for Self-fulfilment

(LOV-3) and for A sense of accomplishment (LOV-7) in Segment 3, and for

Security (LOV-8), in Segment 1. In general, inspection of Table 5 reveals quite

some differences. Table 6 shows that the PML and ML estimates for the S=7

solution show differences in particular for Segments 5 and 6. Overall, the

differences are less striking than for the S=5 solution. 

[INSERT TABLES 5 AND 6 HERE]

Finally, we show the extent to which the actual classification of the

subjects in the sample corresponds between ML and PML. For that purpose, we

“de-fuzzified” the classification obtained from the mixture models by assigning

all subjects to that Segment for which the posterior probability of classification

was largest (if NN were known this would be the optimal Bayes rule of

classification, see McLachlan and Basford 1988, p. 11). Then, the memberships

in the ML and PML segments were cross-tabulated. Tables 7 and 8 show these

cross-tabulations for the S=5 and S=7 solutions respectively.

[INSERT TABLES 7 AND 8 HERE]
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Table 7 shows that the classification of subjects into the five value-

segments on the basis of the posteriors is quite different for ML and PML. The

assignment of subjects to Segments 1 and 5 is quite similar, ML predicting close

to 100% of the memberships correct, relative to PML. However, for segment

4 ML suffers from substantial misclassification relative to PML (23%).

Moreover, none of the subjects in PML Segment 2 is assigned to the same

segment with ML. This explains the very large differences in value utility

estimates for Segment 2 reported above. A similar picture emerges for the S=7

solution in Table 8. 

6. Conclusions

The purpose of this study is to investigate the effects of sample design

on the standard maximum likelihood estimation of mixtures. To our knowledge,

problems due to complex sample design have not previously been raised in the

classification literature. The contribution of this study is to show how a

relatively simple pseudo-maximum likelihood estimation procedure can be

applied to finite mixtures of distributions in the exponential family, where

several models may describe the expectations of the observations in each class,

such as the standard mixture, the generalized linear and generalized nonlinear

models. In addition we proposed to take the sample design into account in the

likelihood- and entropy-based model selection criteria. In an empirical

application, we demonstrated the effects of the PML approach for mixture

models, and show that the estimates of the number of classes, the class

proportions and the class level parameters may be severely biased when using

ML instead of PML. 
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Table 1 

Model selection criteria for  ML estimation  .1

S  -ln-L AIC BIC CAIC ICOMP

1 45458.56 90933.13 90983.28 90991.54 90937.34

2 44892.24 89818.50 89925.06 89933.33 89842.63

3 44734.87 89521.75 89684.74 89693.01 89574.28

4 44530.97 89131.94 89351.35 89359.62 89213.08

5 44454.78 88997.56 89273.39 89281.66 89109.48

6 44397.70 88901.41 89233.65 89241.92 89056.67

7 44349.42 88822.95 89211.51 89219.78 89034.50

8 89260.00 89268.27 89322.1144336.46 88814.92

 Boldface type indicates the minimum value across S=1 to S=8.1
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Table 2

Model selection criteria for PML estimation .1

S - ln-PL AIC BIC CAIC ICOMP

1 45458.56 90933.13 90983.28 90991.54 90937.34

2 44892.25 89818.49 89925.06 89933.33 89842.63

3 44734.88 89521.75 89684.74 89693.01 89576.66

4 44530.97 89131.94 89351.34 89359.61 89211.57

5 44471.89 89031.78 89307.61 89315.88 89163.49

6 44452.25 89010.50 89342.74 89351.01 89601.36

 Boldface type indicates the minimum value across S=1 to S=6.1
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Table 3

 Prior probabilities for S=5 PML and ML solutions, aggregate and for each country.

Class BE DL GB FR NL SP Total

PML 1 0.387 0.246 0.278 0.542 0.385 0.167 0.338
PML 2 0.038 0.325 0.115 0.020 0.047 0.022 0.095
PML 3 0.202 0.068 0.192 0.074 0.213 0.212 0.158
PML 4 0.004 0.138 0.015 0.002 0.004 0.009 0.029
PML 5 0.370 0.223 0.401 0.363 0.351 0.591 0.380

ML 1 0.326 0.257 0.231 0.435 0.350 0.123 0.290
ML 2 0.139 0.053 0.116 0.198 0.091 0.125 0.121
ML 3 0.236 0.102 0.240 0.090 0.246 0.251 0.191
ML 4 0.034 0.431 0.122 0.020 0.044 0.035 0.116
 ML 5 0.266 0.157 0.291 0.258 0.269 0.467 0.282
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Table 4

      Prior probabilities for S=7 PML and ML solutions, aggregate and for each country.

Class BE DL GB FR NL SP Total

PML 1 0.206 0.070 0.176 0.083 0.224 0.201 0.158
PML 2 0.128 0.055 0.120 0.173 0.083 0.144 0.117
PML 3 0.035 0.321 0.118 0.018 0.041 0.022 0.094
PML 4 0.322 0.235 0.223 0.442 0.338 0.119 0.283
PML 5 0.067 0.022 0.106 0.015 0.052 0.137 0.065
PML 6 0.005 0.149 0.018 0.004 0.006 0.011 0.033
PML 7 0.237 0.148 0.238 0.266 0.255 0.366 0.250

ML 1 0.194 0.059 0.179 0.065 0.200 0.207 0.148
ML 2 0.108 0.042 0.104 0.149 0.071 0.129 0.101
ML 3 0.040 0.349 0.128 0.021 0.049 0.026 0.103
ML 4 0.290 0.181 0.203 0.363 0.305 0.119 0.246
ML 5 0.087 0.092 0.051 0.138 0.083 0.030 0.081
ML 6 0.002 0.110 0.012 0.001 0.002 0.006 0.023
ML 7 0.279 0.167 0.322 0.263 0.289 0.482 0.298
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Table 5 

Value utilities in each of five segments for S=5 PML and ML solutions 

Class LOV-1 LOV-2 LOV-3 LOV-4 LOV-5 LOV-6 LOV-7 LOV-8

PML 1 2.324 1.140 -0.350 -0.119 -0.980 -1.228 -0.301 -0.163

PML 2 1.140 1.016 -1.569 -1.193 1.249 -2.276 -1.158 1.093

PML 3 -0.621 1.903 -0.849 0.464 0.071 -2.350 0.114 0.133

PML 4 0.874 -2.597 -2.158 -2.425 0.492 -3.270 -1.525 0.912

PML 5 -1.197 -0.664 -1.077 -0.769 -1.988 -2.928 -0.808 -0.356

ML 1 2.746 1.365 -0.532 -0.098 -0.868 -1.264 -0.377 0.009

ML 2 0.388 0.093 0.383 -0.567 -1.690 -1.723 -0.084 -0.876

ML 3 -0.579 1.808 -0.851 0.292 0.009 -2.350 -0.005 0.137

ML 4 0.786 -0.354 -1.394 -1.301 0.895 -2.231 -1.080 0.994

ML 5 -1.573 -0.929 -1.432 -0.866 -2.310 -3.345 -1.051 -0.265
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Table 6 

Value utilities in each of seven segments for S=7 PML and ML solutions

Class LOV-1 LOV-2 LOV-3 LOV-4 LOV-5 LOV-6 LOV-7 LOV-8

PML -0.307 2.077 -0.893 0.515 0.022 -2.184 0.083 0.166

PML 0.161 0.113 0.552 -0.552 -1.517 -1.812 0.050 -0.808

PML 0.903 0.860 -1.556 -1.306 1.227 -2.378 -1.220 1.009

PML 2.817 1.289 -0.451 -0.088 -0.900 -1.220 -0.348 -0.045

PML -3.799 -0.368 -1.122 -0.540 -1.167 -5.321 -0.500 -0.388

PML 0.916 -2.336 -1.938 -2.139 0.446 -2.993 -1.317 0.862

PML -1.208 -0.910 -1.523 -0.898 -2.470 -3.222 -1.175 -0.178

ML 1 -0.740 1.928 -0.876 0.481 0.062 -2.440 0.169 0.179

ML 2 0.114 0.181 0.691 -0.541 -1.529 -1.822 0.120 -0.849

ML 3 1.017 0.880 -1.471 -1.180 1.219 -2.234 -1.123 1.048

ML 4 2.489 1.701 -0.442 0.054 -0.774 -1.239 -0.327 -0.157

ML 5 4.129 -0.142 -0.694 -0.614 -1.551 -1.508 -0.450 0.347

ML 6 0.512 -3.104 -2.329 -2.782 0.471 -3.664 -1.602 0.961

ML 7 -1.542 -0.851 -1.455 -0.864 -2.235 -3.308 -1.107 -0.272
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Table 7

       Cross-classification of membership between S=5 PML and ML solutions

  ML 1     ML 2     ML 3     ML 4        ML 5         total

PML 1 1197 157 28 34 4 1420
PML 2 77 33 276         386
PML 3         9 529         1 539
PML 4                         109         109
PML 5 11 188 122 48 1077 1446
total 1285 354 712 467 1082 3900
% 93.2 0.0 74.3 23.3 99.5 74.7



28

Table 8 

Cross-classification of membership between S=5 PML and ML solutions

ML 1 ML 2 ML 3 ML 4 ML 5 ML 6 ML 7 total

PML 1 445 2 13 62 55 577
PML 2 277 20 22 24 343
PML 3 1 365 2 1 5 374
PML 4         13 37 1042 153         4 1249
PML 5 85 220 305
PML 6         1 10         30 79 5 125
PML 7         2 1 12 61 1 850 927
total 531 295 426 1138 266 81 1163 3900
% 83.8 93.9 85.7 91.6 0.0 97.5 73.1 78.4


