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Abstract

We investigate the effects of a complex sampling design on the identification of
underlying classes from the sample using mixture models. A pseudo-likelihood approach
is proposed and applied to obtain consistent estimates of class-specific parametersin the
population. The effects of ignoring complex sampling designs are demonstrated
empirically in the context of an international value segmentation study.
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1. Introduction

Inthe last five to ten years, the mixture model approach has seen an impressive
upsurge in interest in the classification, psychometrics and marketing literature.
Mixture model applications have typically assumed that the subjects in the
sample are drawn from the population using a simple random sampling
procedure. However, in practice such random samples are not necessarily
desirable and seem to be the exception rather than the rule. Data often serve
more than one purpose, and not all the purposes of the data need to be fully
specified at the time of collection. Since large scale data collection can be very
expensive, various purposes are sought and the data are to be used for some
time. Thus, it is unlikely that the sampling design chosen is optimal for all
future purposes of the data.

The framework for sampling theory has been developed by Neyman
(1934). He established the role of randomisation as the basis for sampling
strategies, and introduced the ideas of stratification and the use of unequal
selection probabilities. From this followed developments on multi-stage
sampling, and agenerd theory of sampling. In probability samples, the selection
probabilities of all elements in the population are known. Contrary to non-
probability samples, probability samples alow for the projection of the sample
estimates to the population, and enable the calculation of the precision of these
estimates. Apart from simple random sampling, the most important probability
sampling strategies are stratified sampling, cluster sampling, and two-stage
sampling. We refer to such sampling procedures as complex sampling
procedures. Good surveys use the structure of the population and employ
sampling designs that incorporate stratification and clustering of the
observations to yield more precise estimates. The theory of probability-weighted
estimation for descriptive purposes (for example estimating population totals
and means) is well established (e.g. Cochran 1977). On the other hand,
probability-weighted estimation for anaytic, model based purposes has received



attention only fairly recently. The book by Skinner, Holt and Smith (1993)
provides an overview of developments in this area. The emphasis in sample
surveys has traditionally been on description. However, surveys are increasingly
used for analytic purposes, including classification. Whereas in traditional
inference for descriptive purposes the complexities in the sample design are
often intimately connected to the specifics of the estimation procedures
employed, the application of statistical methods for data-analysis often do not
take the complexity of the sampling strategy into account.

In this paper we deal with the problem of how to identify unobserved
classes from samples that arise from complex probability sampling strategies.
We are concerned with statistical inferences about the underlying class-structure
of the population, on the basis of data that are obtained using a complex sample
design. This problem has to our knowledge not previoudy been dealt with in the
literature. It arises from the fact that the conventional procedures for estimating
classlevel parameters using mixture models are based upon the assumption of
gmple random sampling and independent and identically distributed
observations. We show that, if the data come from a complex probability
sample, inferences on classes in the popul ation can be made by applying pseudo
maximum likelihood estimators. We empirically demondrate the effects ignoring
the sampling design in traditional ML based approaches.

2. Sample Design and the Mixture Approach

2.1 Pseudo-Maximum Likelihood Approach

Mixture models are traditionally estimated under the assumption of
smple random sampling. Not explicitly accounting for a sampling strategy other
than ssimple random sampling results in inconsistent and biased estimates. The
approach to deal with complex designs is based on the so-called pseudo-



maximum likelihood (PML) estimation approach and requires the knowledge
of the selection probabilities for each of the final units selected in the sample.
The development below for the mixture approach is based on Skinner (1989).
The PML approach has been applied to several statistical models, but as far as
we know not to mixture models.

We introduce the following notation:

n =1,...,N indicate primary sampling units;

m = 1,...,M indicate secondary sampling units;

N® = number of unitsin the population;

M,  =cluster size of cluster n;

N = sample size,

Ya = (Kx1) vector of sample observations on unit n;
Y, = (Kx1) vector of population values for unit n.

g =1,...,Gindicate strata;

N,” = number of unitsin stratum g of the population;
N, = number of elementsin stratum g in the sample;

Assume a general sampling strategy that may involve combinations of
more specific sampling schemes, for example, stratified and two-stage sampling.
Suppose that the sampling strategy is such that a unit n in the sample has a
probability of being selected of P, (here we do not distinguish between primary
and secondary unitsyet). A smple random sample will set P, =P, for al n, for
example. Complex samples require different values of P, reflecting different
probabilities of sampling units of different types. The conventional estimation
approach under smple random sampling is to fit parametric mixture models via
maximum likelihood estimation.

Wewill formulate the problem in afairly generd mixture model context.
The data on subject n consist of K measurements of some variable Y: ..



Assume the existence of S unobserved classes, with unknown proportions ..
Given a particular class, the observations are assumed to be distributed with
probability-density function f,(y,|.), where f,(- ) is known to be one of the
exponential family, and the parameter vector ¢, characterising class s is
unknown. The exponential family includes many distributions that have useful
applications, such as the normal, binomial, multinomial, negative binomial,
exponentia, poisson and gamma distributions (cf. McCullagh and Nelder 1989).
The common properties of these distributions enable them to be studied
smultaneoudy, rather than as a collection of seemingly unrelated cases. Within
the unobserved classes a variety of possible data-generating mechanisms may
be assumed. Firgt, the ¢, may involve a single constant (or K constants), giving
rise to standard mixtures of exponentia family distributions (Titterington, Smith
and Makov 1985). Second, if covariates X, are measured for each n, amixture
of generalized linear models may be assumed to underlie the data, and the ¢,
pertain to class-specific regression parameters (Wedel and DeSarbo 1995).
Third, ¢, may involve stimulus locations and subject preference parametersin
the case of mixtures of exponential family unfolding models (Wedel and
DeSarbo 1996). In addition ¢, may include (known or unknown) nuisance
parametersin the case of certain digtributions in the exponential family (normal,
negative binomial, etc.). Note that any of the parameters ¢, may be restricted
to have the same value across classes. The unconditional distribution of the
observationsis formulated as:

S
fly, ) = RAVRIN 1
s=1
The ML estimator of ¢ =( ., ¢ maximizes the log-likelihood. The standard
formulation of the log-likelihood applies under smple random sampling, in
which each unit receives the same weight. The ML estimator solves the

likelihood equations:
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Assume that taking the specific complex sample design into account, the y,
follow amode in which they are independent with the same p.d.f. asgivenin
(1). Now given the sample design, the estimator for ¢ is obtained from the
expectation of the score vector T(¢), in the population:

T(9) = E[J(d)] =0 (3)

Equation (3) isapopulation verson of the likelihood equations (2). Often afull
ML procedure is intractable, since the expression for the likelihood under the
complex sampling strategy depends on assumptions about the (unknown)
relationships between the y, and the sample design variables. However, asimple
approach isto construct a consistent estimator for T(¢), defined as:

T($) = HNX; 2 JIn (). (4)

The weights |, are inverse proportional to the selection probabilities P and

definedas | = + , S0 that they sum to N across the sample. Solving
P HX; Pi

equation (4) yields the so-called pseudo maximum estimator (PML) for ¢.
Complex sampling designs for which all selection probabilities are equal are
“self weighting”, and the ML and PML estimators coincide. Thisis aso the case
if the distribution of y,, in (1) is completely independent of the sample design.
This is, however, unlikely to occur in practice. Therefore, neglecting the
sampling design for samples that are not selfweighting will lead to biased
estimates.

It is assumed above that the mixture model is true in the population,
which is assumed to be of infinite Size. For many classification studies however,



the mixture mode is only a convenient approximation to the heterogeneity that
exists in the “real world” and the parameters of the model are used to
understand the approximate heterogeneity in a finite population. For such a
finite population, we can define the population parameter ¢ as the solution of
the likelihood equations over all units in the population. Thus, the mixture
model is used as a working model to define the target parameters ¢ in the
population. In this case we are only concerned with the distribution of ¢ due
to the sampling design used. Under these much weaker conditions in which the
mixture model is not assumed to be correct, the above PML estimation
procedure remains valid (cf. Skinner 1989).

Below, we provide a few examples of the form of the selection
probabilities in complex samples.

2.2 Stratified Samples

Stratified sampling is probably the most widely used complex sample
design. It is assumed that the population is grouped into G strata. Each stratum,
g, may arise from a combination of several stratification variables. Within
stratum g, N, subjects are sampled from the population. A mixture model is
gpplied to the N (Kx1) observation vectorsy,,. If the distribution of y,, depends
on the gtratification variables, the ML estimates of the class-specific parameter
estimates are not unbiased estimates of the population parameters. Likewise, the
class szes estimated from the sample with ML are not unbiased estimates of the
szes of the classes in the population. Thisis caused by the subjects composing
the classes having unequal probabilities of being selected into the sample. The
appropriate PML estimates of the parameters are weighted estimates obtained
from equation (4), where the selection

N
probabilities equal: P, = % , Where g is the stratum from which
N
9



respondent n comes. If the ratio of sample size and population size in each
stratum is constant, P, = P, so that the sample is selfweighting and the ML and
PML estimators coincide.

2.3 Cluster Samples

If the unitsin the population occur naturally in clusters or primary units,
cluster samples are often employed for reasons of cost reduction. Each primary
sampling unit n comprises secondary units, indicated by m=1,...,M,.. A sample
of primary units (n=1,...,N) is drawn, and observations on all secondary units
ineach primary unit are obtained (M,® =M ) . Assume that classes need to be
identified at the level of the secondary units, denoted by m (if classes are to be
identified at the level of the primary units, the mixture model is applied to the
(KM, x1) vectors of observations on the primary units taking the selection
probabilities for the primary units into account). For example, when the primary
units al have the same size M and when the sample drawn from them isasimple
random sample, then the weights of the secondary units are equal to

= _Nllvl and the PML and ML estimators coincide. Note that in this

nm

Stuation in equation (4) the summation over nis replaced by a summation over
n and m. If the primary units have unequal sizes, M, and they are drawn with
random sampling the selection probabilities for the secondary units equal

M

Pom = — —— , wherenis the primary unit from which m comes. If the
N

M,
n=1

primary units are of unequal size and drawn with probabilities proportional to
their size, the sample is self-weighting. Cochran (1977) describes alternative
procedures for obtaining cluster samples from which the selection probabilities
can be easily derived.




2.4 Two-Stage Samples

In two-stage sampling methods, a sample of size N is drawn from all
primary units in the population, and from each primary unit a sample of
secondary units of szeM < M P, isdrawn. Two-stage sampling procedures are
often cheaper than and have higher statistical efficiency than cluster samples,
while the latter may be infeasible when the primary units are large. The results
for the salection probabilities for various salection strategies for the primary and
secondary units are derived from the standard results provided in Cochran
(1977). For example, if the primary units in the population have the same size
(M, P =M®) the N primary units and the M secondary unitsin the sample are
sdected by smple random sampling, and a constant fraction M/M® is sampled
from each primary unit, the sample is self-weighting and all selection

probabilitiesequal P = ﬁ . More typical are situations in which the

primary units vary in sze. Then the secondary units may be selected either with
equa probabilities, or with probabilities proportiona to size. Various available
strategies involve different sampling and sub-sampling methods. If the
secondary unitsand primary units are selected by simple random sampling, the
szes of the primary units differ, and a constant number M is sampled from each

M ()
primary unit the selection probabilitiesare P, = k

m

In the Situation that the sampling fraction within each primary unit is constant:
M /M P=f, say, the sampling Strategy is self-weighting. Further results can be
derived from Cochran (1977).



3. Statistical Inference

3.1. Asymptotic Standard Errors of the Estimates

Under typica regularity conditionsthe ML estimators are asymptotically
normal. A consistent estimator of the asymptotic covariance matrix of the
estimates is the inverse of the observed Fisher information matrix (e.g.
Titterington, Smith and Makov 1985). The pseudo-log likelihood estimator in
expression (4), however, is not efficient (it does not achieve the minimum
variance among all possible estimators). The reason for thisis that the optimal
weighting of the units is the weighting obtained from the standard maximum
likelihood function, and introducing the selection probabilities as weights
decreases the efficiency of the estimator. (This points to the advantages of using
self-weighting samples for the purpose of mixture model estimation, since the
estimates have minimum variance because the weights cancel.) A robust
estimator of the asymptotic variance is in this situation provided by White
(1982), and Royall (1986), which in the general case of a stratified multi-stage
sampleis:

o (®) = H(®) V() H() %, (5)
where
_ IT(¢)

H(d) 30 (6)

is the matrix of second order partial derivatives, and

o G, N N N — N —
V(@) =X o (T (@)-Ty@D(T () -Ty(d)) (7)
g=1 g_ n=1
- . Moo alInf(y )

with : T, (@) = mz:l i a¢g (8

where M, denotes the number of unitsin cluster n within stratum g.
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3.2 Criteria for Selecting the Number of Classes

When gpplying mixture models the true number of classes, S, is mostly
unknown and has to be inferred from the data. The problem of identifying the
number of classes in mixture models has as yet not seen an entirely satisfactory
statistical solution. Suppose one wishes to test the null-hypothesis (H,) of S
segments againgt the dternative hypothesis (H,) of S+1 segments. The standard
likelihood ratio test statistic is not applicable, because it is not asymptotically
disributed as 2. In testing for the number of components in a mixture model
this asymptotic distribution is not valid, since H, corresponds to a boundary of
the parameter space for H,, a Situation that violates the required regularity
conditions (cf. Aitkin and Rubin 1985). Recently, Bohning, Dietz, Schaub,
Schlattmann and Lindsay (1994) investigated the distribution of the LR test of
S=1 versus S=2 mixtures of exponential families. They found that its limiting
distribution is not well approximated by the conventional 2 distribution, and
that the deviation is to be distribution specific.

Information criteria are therefore frequently used for investigating the
number of classes. These criteria impose a penaty upon the log-likelihood
which isrelated to the number of parameters estimated:

C(S) = -2inL($|S) +Qd 9)
Here, Q isthe number of parameters estimated and d is some constant. That
number of segmentsis selected, where the statistics reach a minimum value. The
classica Akaike's Information Criterion, AIC, arises when d=2. For the
Bayesan Information Criterion, BIC, d=In(N) and for the Consistent Akaike's
Information Criterion, CAIC, d=In(N+1). These two criteria impose an
additiona sample size penalty upon the log-likelihood. The information
theoretic measure ICOMP, is based on the properties of the estimated

11



information matrix  1(¢): d = -In tr[I(¢p) ] —%m det[1(d) Y, (10)

ICOMP pendizes the likelihood more when more parameters are estimated, but
aso when the model becomes less well identified due to an increasing number
of parameters, in which case the term involving the determinant of the
information matrix increases.

A problem with these criteriais that they depend on the likelihood and
therefore rely on the same properties as the likelihood ratio test. Therefore they
can be used only as indicative for the number of segments. In addition a
complex sample design that is not taken into account in the formulation of the
likelihood will affect the determination of the number of classes. We therefore
propose that the information and entropy statistics should be based on the
pseudo-log-likelihood:

M

n

N S

IPL(®IS) = X2 i} of Voo [ (11)
n=1 m=1 s=1

Thus for complex samples InPL(¢|S) replaces InL(¢|S) in the equations (9) and

(12) above, and 1(¢) in (10) is defined asin (6).
4. lllustration

4.1. Data

We illustrate the PML procedure in a stratified European value
segmentation study. The effects of taking the sampling design into account are
demonstrated by comparing the PML estimates to the ML estimates. The
purpose of the study is to investigate the existence of pan-European value

12



segments, i.e. segments that transcend national borders. A “value’ isdefined in
consumer psychology as an enduring belief that a specific state of existence or
mode of conduct is preferred for living on€e' s life (cf. Rokeach 1973). The data
were collected in 1996 in six West-European countries. The European sample
was stratified by country. From each country a sample of approximately the
same size was drawn, although the countries differ substantially in population
Size. Thisisastandard procedure in international value research. Specificaly,
the countries were (sample sizes weights in parentheses): Belgium (648/
0.231), Germany (673/ 2.020), Great-Britain (623/ 1.356), France (694/ 1.259),
the Netherlands (646/ 0.380), and Spain (616/ 0.600).

Kahles“Lig of Vaues' (LOV) method was employed to assess value-
systems of respondents (Kahle 1986). The LOV typology is related to social
distinction theory. It distinguishes between externa and internal values, and
dealswith the importance of interpersond relations, and personal and a-personal
factors in vaue fulfilment. The LOV instrument is composed of nine values.
These were ranked in a paper and pencil task by the respondents (back-
trandation methods were used in order to ensure a similar content of the
statements in the languages involved, Bridin 1970). The nine values are:

LOV-1. Fun and enjoyment in life;
LOV-2. Warm relationships with others;
LOV-3. Sdf-fulfilment;

LOV-4. Being well respected,;

LOV-5. Sense of belonging;

LOV-6. Excitement;

LOV-7. A sense of accomplishment;
LOV-8. Security;

LOV-9. Self-respect;

13



Thus, the datay,, consist of the order of the above values, for each of the 3900
respondents, where the lower the rank number, the more important avalueis
for a person.

4.2. The Model

To identify latent value segments a mixture of rank order multinomial
logit models is used, proposed by Kamakura and Mazzon (1991). The model
is a mixture model extension of Thurstone's (1927) law of comparative
judgement and assumes that the observed value rankings are error-perturbed
observations of the unobservable value utilities of each individual. The model
is based on utility maximization theory and identifies segments on the basis of
the entire value ranking provided by the subjects.

Assume the existence of S unobserved value segments. Individuals
belonging to segment s share the same value system, represented by a set of
unobserved utilities, U,, with k=1,...,K denoting the values. Let Y, denote the
vauelabe on rank order positiont, t=1,..., T (T=K=9 for LOV). Given segment
s, the probability of observing a value ranking {Y,;, Y, .....Y,;} may be
expressed in terms of the utilities as:

Prob(UleUYzz...zU (12)

YnT).

If the utilities are consdered random with a standard Weibull distribution of the
error component, this leads to the multinomial logit:

explU, ]
Z eXp[Ut\s] |

teR,

ps(Uy) = (13)

with R, the set of values ranked higher or equal to k. For reasons of
identification, the utility of the last value (K=9) is set to zero. The pseudo-log-
likelihood is:

14



N S K
Ly,IU) =) I} SE p(U)™ (14)

n=1 s=1 =

(P

with = = g 5 . The log-likelihood is obtained from equation (14) by
N N®
g

setting P=1 for dl n. The modedls are estimated using a weighed Quasi-Newton
gradient search to minimize (16), using the Broyden, Fletcher, Goldfarb and
Shanno procedure implemented in the GAUSS package (Aptech 1995).

4.3. Results

In order to illustrate the PML approach for mixture models, we estimate
the model on these LOV data, using both the ML and the PML approach.
Starting with S=1, Sis increased until the AIC, CAIC, BIC and/or ICOMP
show aminimum. In order to overcome problems of local optima, each model
is estimated from 10 sets of random starting values. Table 1 shows the values
of the log-likelihood, and the model selection criteriafor ML estimation. Table
2 shows the statistics for PML estimation. With ML, BIC, CAIC and ICOMP
al resch aminimum at S=7. Since AIC tends to overstate the number of classes,
the seven class ML solution appears to be a reasonable representation of the
data. For PML, BIC, CAIC and ICOMP and indicate that the S=5 solution is
most appropriate.

The first important finding is that accounting for stratification using
PML estimation may yield adifferent number of classes than when the stratified
sampleisignored. Accounting for the stratified sampling procedure resulted in
more parsimonious models (the S=5 solution has 18 parameters less than the
S=7 solution). BIC, CAIC and ICOMP are consistent in their identification of
the number of classesfor ML and PML estimation, while AIC tends to indicate
atoo large number of classes.

15



[INSERT TABLES 1 AND 2 HERE]

Next, we inspect the ML and PML estimates. We focus on the S=5
solution, since that is the best approximation to the data, when the appropriate
weighting is applied. The S=7 results are provided for completeness.

The prior probabilities (or class proportions) are presented in Tables 3
and 4. Table 3 shows that the S=5 ML and PML estimates are markedly
different. First, the aggregate segment proportions ( ) are quite different
between ML and PML. For PML, Segment 4 is much smaller (3%) and segment
5 much larger (38%) than the corresponding classesin the ML solution (12%
and 28%). It appearsthat ML has atendency to identify classes with more equal
sizes. Given that PML does take the sample design into account, the
comparison shows that the ML estimates are severely biased due to their
negligence to take the sample design into account. Further, the PML and ML
solutions show some substantial differences of the estimated class proportions
per country. For example in the PML solution Germany has a particularly high
proportion of Segment 2 (33%), while for ML this proportion is much lower
(5%). On the contrary, for ML Segment 4 is substantial (43%) in Germany,
whileit ismuch smaller for PML (14%).As another example, PML-Segment 2
has a proportion of 2% in France, while ML-Segment 2 is 20% in that country.

For the S=7 solutions there are al'so some notable differences in the ML
and PML estimates. Segments 1, 2, 3, 4 and 6 are larger for PML, the other
segments are larger for ML. For the sizes of the segments per country, there are
differencesin particular for Segments 4 and 5 in Germany, for Segments 5 and
7in Grest Britain, for Segments 4 and 5 for France, and for Segments 5 and 7
for Spain, between ML and PML.

[INSERT TABLES 3 AND 4 HERE]
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Tables5 and 6 depict the value-utility estimates obtained with ML and
PML for the S=5 and S=7 solutions, respectively. The S=5 estimates show
some marked differences between PML and ML. For example for Segment 2,
the ML procedure predicts a high value ranking for Self-fulfilment (LOV-3),
while the PML procedure predicts a low ranking. On the other hand, PML
predicts a high importance for Sense of Belonging (LOV-5) and Self-respect
(LOV-8) in Segment 2, while low importances are predicted by the ML
estimates. Other large differences between ML and PML occur in Segment 4
for Warm relationships with others (LOV-2), Self-fulfilment (LOV-3), Being
well respected (LOV-4), Sense of belonging (LOV-5), and Excitement (LOV-
6). In addition differences in the estimates are observed for Sdlf-fulfilment
(LOV-3) and for A sense of accomplishment (LOV-7) in Segment 3, and for
Security (LOV-8), in Segment 1. In general, inspection of Table 5 reveals quite
some differences. Table 6 shows that the PML and ML estimates for the S=7
solution show differences in particular for Segments 5 and 6. Overall, the
differences are less striking than for the S=5 solution.

[INSERT TABLES 5 AND 6 HERE]

Findly, we show the extent to which the actual classification of the
subjectsin the sample corresponds between ML and PML. For that purpose, we
“de-fuzzified” the classification obtained from the mixture models by assigning
all subjectsto that Segment for which the posterior probability of classification
was largest (if ¢ were known this would be the optimal Bayes rule of
classfication, see McLachlan and Basford 1988, p. 11). Then, the memberships
inthe ML and PML segments were cross-tabulated. Tables 7 and 8 show these
cross-tabulations for the S=5 and S=7 solutions respectively.

[INSERT TABLES 7 AND 8 HERE]

17



Table 7 shows that the classification of subjects into the five value-
segments on the basis of the posteriorsis quite different for ML and PML. The
assgnment of subjectsto Segments 1 and 5isquite smilar, ML predicting close
to 100% of the memberships correct, relative to PML. However, for segment
4 ML suffers from substantial misclassification relative to PML (23%).
Moreover, none of the subjects in PML Segment 2 is assigned to the same
segment with ML. This explains the very large differences in vaue utility
estimates for Segment 2 reported above. A similar picture emerges for the S=7
solution in Table 8.

6. Conclusions

The purpose of this study isto investigate the effects of sample design
on the standard maximum likelihood estimation of mixtures. To our knowledge,
problems due to complex sample design have not previously been raised in the
classfication literature. The contribution of this study is to show how a
relatively simple pseudo-maximum likelihood estimation procedure can be
applied to finite mixtures of distributions in the exponential family, where
severd models may describe the expectations of the observations in each class,
such as the standard mixture, the generalized linear and generalized nonlinear
models. In addition we proposed to take the sample design into account in the
likelihood- and entropy-based model selection criteria. In an empirical
application, we demonstrated the effects of the PML approach for mixture
models, and show that the estimates of the number of classes, the class
proportions and the class level parameters may be severely biased when using
ML instead of PML.

18
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Table 1
Model selection criteriafor ML estimation® .

-In-L

AlC

BIC

CAIC

ICOMP

o N oo g b~ W N P WDW

45458.56
44892.24
44734.87
44530.97
4445478
44397.70
44349.42
44336.46

90933.13
89818.50
89521.75
89131.94
88997.56
88901.41
88822.95
88814.92

90983.28
89925.06
89684.74
89351.35
89273.39
89233.65
89211.51
89260.00

90991.54
89933.33
89693.01
89359.62
89281.66
89241.92
89219.78
89268.27

90937.34
89842.63
89574.28
89213.08
89109.48
89056.67
89034.50
89322.11

! Boldface type indicates the minimum value across S=1 to S=8.
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Table 2
Model selection criteriafor PML estimation®.

- In-PL

AlC

BIC

CAIC

ICOMP

O O A W N PO

45458.56
44892.25

44734.88
44530.97
44471.89

44452.25

90933.13
89818.49

89521.75
89131.94
89031.78
89010.50

90983.28
89925.06

89684.74
89351.34
89307.61
89342.74

90991.54
89933.33

89693.01
89359.61
89315.88
89351.01

90937.34
89842.63

89576.66
89211.57
89163.49
89601.36
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Prior probabilitiesfor S=5 PML and ML solutions, aggregate and for each country.

Table 3

Class BE DL GB FR NL SP Totd
PML1 0387 0246 0278 0542 038 0167 0.338
PML2 0038 0325 0115 0020 0047 0022 0095
PML3 0202 0068 0192 0074 0213 0212 0.158
PML4 0004 0138 0015 0002 0004 0009 0.029
PML5 0370 0223 0401 0363 0351 0591 0.380

ML1 0326 0257 0231 0435 0350 0123 0.290

ML2 0139 0053 0116 0198 0091 0125 0.121

ML3 023 0102 0240 0090 0246 0251 0.191

ML4 0034 0431 0122 0020 0044 0035 0.116

ML5 0266 0157 0291 0258  0.269 _ 0.467 _ 0.282
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Prior probabilitiesfor S=7 PML and ML solutions, aggregate and for each country.

Table 4

Class BE DL GB FR NL SP  Tota
PML1 0206 0.070 0.176 0.083 0.224 0.201 0.158
PML2 0128 0.055 0120 0.173 0.083 0.144 0.117
PML3 0035 0321 0118 0.018 0.041 0.022 0.094
PML4 0322 0235 0223 0442 0338 0.119 0.283
PML5 0067 0.022 0106 0.015 0.052 0.137  0.065
PML6 0005 0149 0.018 0.004 0.006 0.011 0.033
PML7 0237 0148 0238 0.266 0.255 0.366  0.250

ML1 0194 0.059 0179 0.065 0.200 0.207  0.148

ML2 0108 0.042 0104 0149 0.071 0.129 0.101

ML3 0040 0349 0128 0.021  0.049 0.026  0.103

ML4 0290 0181 0203 0363 0.305 0.119 0.246

MLS5 0087 0.092 0051 0.138 0.083 0.030 0.081

ML6 0002 0110 0.012 0.001 0.002 0.006  0.023

ML7 0279 0167 0322 0.263 0.289 0482 0.298

24




Table 5

Value utilitiesin each of five segmentsfor S=5 PML and ML solutions

Class LOvV-1 LOV-2 LOV-3 LOV-4 LOV-5 LOV-6 LOV-7 LOV-8
PML 1 2.324 1140 -0350 -0.119 -0.980 -1.228 -0.301 -0.163
PML 2 1.140 1016 -1569 -1.193 1249 -2276 -1.158 1.093
PML3 -0.621 1903 -0.849 0464 0071 -2.350 0.114 0.133
PML 4 0.874 -2597 -2158 -2425 0492 -3270 -1.525 0.912
PMLS5 -1.197 -0.664 -1.077 -0.769 -1.988 -2928 -0.808 -0.356

ML 1 2.746 1365 -0532 -0.098 -0.868 -1.264 -0.377 0.009

ML 2 0.388 0.093 0383 -0.567 -1.690 -1.723 -0.084 -0.876

ML3  -0.579 1.808 -0.851 0292 0.009 -2.350 -0.005 0.137

ML 4 0.786 -0.354 -1.394 -1.301 0895 -2231 -1.080 0.994

MLS5 -1573 -0.929 -1432 -0866 -2310 -3.345 -1.051 -0.265

25



Table 6

Vaue utilities in each of seven segmentsfor S=7 PML and ML solutions

Class LOV-1 LOV-2 LOV-3 LOV4 LOV-5 LOV-6 LOV-7 LOV-8
PML -0.307 2.077 -0.893 0515 0.022 -2.184 0.083 0.166
PML 0161 0.113 0.552 -0.552 -1.517 -1.812 0.050 -0.808
PML 0.903 0.860 -1.556 -1.306  1.227 -2378  -1.220 1.009
PML 2817 1289 -0451 -0.088 -0.900 -1.220 -0.348 -0.045
PML -3.799 -0.368 -1.122 -0.540 -1.167 -5.321 -0.500 -0.388
PML 0916 -2.336 -1.938 -2.139  0.446 -2993 -1.317 0.862
PML -1.208 -0.910 -1.523 -0.898 -2.470 -3.222  -1175 -0.178
ML1 -0.740 1928 -0.876 0481  0.062 -2.440 0.169 0.179
ML2 0114 0.181 0.691 -0.541 -1529 -1.822 0.120 -0.849
ML3 1017 0880 -1471 -1.180 1.219 -2.234 -1123 1.048
ML4 2489 1701 -0.442 0.054 -0.774 -1.239 -0.327 -0.157
ML5 4129 -0.142 -0.694 -0.614 -1551 -1.508 -0.450 0.347
ML6 0512 -3.104 -2.329 -2.782 0471 -3.664 -1.602 0.961
ML7 -1542 -0.851 -1.455 -0.864 -2.235 -3.308 -1.107 -0.272
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Table 7

Cross-classification of membership between S=5 PML and ML solutions

ML1 ML2 ML3 MLA4 ML 5 total
PML 1 | 1197 157 28 34 4 1420
PML 2 77 33 276 386
PML 3 9 529 1 539
PML 4 109 109
PML 5 11 188 122 48 1077 1446
total 1285 354 712 467 1082 3900
% 93.2 0.0 74.3 23.3 99.5 4.7
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Table 8

Cross-classification of membership between S=5 PML and ML solutions

ML1 ML2 ML3 ML4 ML5 ML6 ML7 tota

PML 1| 445 2 13 62 95| 577
PML 2 277 20 22 241 343
PML 3 1 365 2 1 5| 374
PML 4 13 37 1042 153 4] 1249
PML 5 85 220 305
PML 6 1 10 30 79 5| 125
PML 7 2 1 12 61 1 850] 927
total 531 295 426 1138 266 81 1163| 3900
% 838 939 857 916 00 975 731 784
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