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1 Introduction

Congestion games are ubiquitous in economics. In a congestion game (Rosenthal, 1973),

players use several facilities from a common pool. The costs or benefits that a player

derives from a facility depends on the number of users of that facility. A congestion game

is therefore a natural game to model scarcity of common resources. Examples of such

systems include vehicular traffic (Nagel et al., 1997), packet traffic in networks (Huberman

and Lukose, 1997), and ecologies of foraging animals (DeAngelis and Gross, 1992). Similar

coordination problems are encountered in market entry games (Selten and Güth, 1982).

Congestion games are also interesting from a theoretical point of view. In congestion

games, players need to coordinate to differentiate. This seems to be more difficult than

coordinating on the same action, as any commonality of expectations is broken up. For

instance, when commuters have to choose between two roads A and B and all believe that

the others will choose road A, nobody will choose that road, invalidating beliefs. The

sorting of players predicted in the pure-strategy Nash equilibria of such games violates

the common belief that in symmetric games, all rational players will evaluate the situation

identically, and hence, make the same choices in similar situations (see Harsanyi and Selten,

1988, p. 73). Moreover, in congestion games, players may obtain asymmetric payoffs in

equilibrium which may complicate attainment of equilibrium, as coordination cannot be

achieved through tacit coordination based on historical precedent (cf. Meyer et al., 1992).

Finally, congestion games often have many equilibria, so that players also face the difficulty

of coordinating on the same equilibrium.

Therefore, it is an interesting question what type of behavior game theory predicts in

such games. In this paper, we characterize the equilibria of the minority game, a simple

congestion game based on the El Farol bar problem of Arthur (1994), and we study the

limiting behavior of a number of well-known learning processes for this game. In the

minority game, an odd number of players — to make minorities well-defined — choose

between two ceteris paribus identical alternatives. Congestion is costly, so players prefer

the alternative chosen by the smallest number of players. The minority game is thus closely

related to the market entry game, a game extensively studied in experimental economics

(see the survey of Ochs (1999) and references therein; for a recent contribution see Duffy

and Hopkins (2005)). While the market entry game models situations in which players can

choose between a safe option (staying out of the market) and an alternative whose payoffs

are declining in the number of other players choosing that option (entering), the minority

game is a suitable model for more symmetric situations in which the payoffs of both actions
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depend on the number of other players choosing that action. In such situations, players

will need to outsmart other players, so as to be one step ahead of their opponents. For

instance, the minority game may be a good model for financial markets, where investors

try to identify the underpriced shares, and try to sell the shares they expect to fall in the

future. The minority game has been studied by a number of authors in economics. Renault

et al. (2005) studies repeated play in the game. Bottazzi and Devetag (2007), Chmura and

Pitz (2006), and Helbing et al. (2005) study the game experimentally. The game has also

been studied extensively in the physics literature; see Challet et al. (2004) or Coolen (2005)

for an overview.

Interestingly, we find that the predictions from different learning processes are not

equivocal. While the replicator dynamic predicts that play converges to a Nash equilibrium

with at most one player who chooses a strictly mixed strategy, the set of stationary points

under the perturbed best-response dynamics consists of the logit quantal response equilibria

of the game (McKelvey and Palfrey, 1995).1 For the case of three players, we show that the

set of Nash equilibria that are the limit of a sequence of logit quantal response equilibria

with vanishing noise consists of Nash equilibria with at most one mixer and the Nash

equilibrium in which all players randomize equally over their two actions. Finally, we

study the best-reply learning process with limited memory of Hurkens (1995) and the

related model of Kets and Voorneveld (2005). Hurkens studies a learning model in which

players choose an arbitrary action that is a best reply to some belief over other players’

actions that is consistent with their recent past play. In the learning model of Kets and

Voorneveld, players also best-reply to beliefs over others’ play supported by recent past

play, but in addition, players additionally display a so-called recency bias: when there are

multiple best replies to a given belief, a player chooses the action that he most recently

played. We show that while the process of Hurkens offers no sharp predictions for the

minority game, the model of Kets and Voorneveld predicts that play converges to one of

the pure Nash equilibria of the game when players have a memory length of at least two

periods.

The current paper is related to the literature on learning in congestion games and more

generally learning in potential games (e.g. Hofbauer and Hopkins, 2005; Hofbauer and

Sandholm, 2002; Sandholm, 2001, 2007). Papers that study learning in games similar to

the game considered here include Blonski (1999), Franke (2003) and Kojima and Takahashi

(2004). Most of these papers focus on the predictions of a single learning model,2 while

1For a definition of these learning processes, see Section 3 and 4, respectively.
2Duffy and Hopkins (2005) and Kojima and Takahashi (2004) are notable exceptions.
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we compare predictions from different learning models. Moreover, while most results are

obtained for games with either a small number or a continuum of players, we characterize

the equilibria of the game and the limiting behavior of different learning processes for any

(odd) number of players.

The outline of this paper is as follows. In Section 2, we define the game and characterize

its Nash equilibria. In Section 3, we characterize the set of stationary states and the set

of asymptotically stable states under the replicator dynamic. In Section 4, we characterize

the set of stationary states under the perturbed best-response dynamics. In Section 5,

we characterize the limiting behavior in the minority game under the best-reply learning

processes with limited memory. Section 6 concludes.

2 The minority game

2.1 Basic definitions

Following the notation of Tercieux and Voorneveld (2005), we denote the set of players

by N = {1, . . . , 2k + 1}, with k ∈ N. Each player i ∈ N has a set of pure strategies

Ai = {−1, +1}: agents have to choose between two options. The set of mixed strategies of

player i is denoted by ∆(Ai). We denote a mixed strategy profile by α ∈ ×i∈N∆(Ai), and

we use the standard notation α−i ∈ ×j∈N\{i}∆(Aj) to denote a strategy profile of players

other than i ∈ N . With each action a ∈ {−1, +1}, a function

fa : {1, . . . , 2k + 1} → R

can be associated which indicates for each n ∈ {1, . . . , 2k + 1} the payoff fa(n) to a player

choosing a when the total number of players choosing a equals n. The von Neumann-

Morgenstern utility function of a player is then given by

ui(a) = fai
(|{j ∈ N : aj = ai}|) , (2.1)

where a ∈ ×j∈NAj. Payoffs are extended to mixed strategies in the usual way.

The function fa(·), a ∈ {−1, +1} can have several forms. We make the common as-

sumptions (e.g. Challet et al., 2004) that congestion is costly:

[Mon] f−1 and f+1 are strictly decreasing functions,

and that the congestion effect is the same across alternatives:

4



[Sym] f−1 = f+1.

We refer to a player who uses a mixed strategy that puts positive probability on both pure

strategies a mixer. A player that puts full probability mass on the alternative −1 is called

a (−1)-player ; similarly, a player that puts full probability mass on the alternative +1 is

called a (+1)-player.

2.2 Nash equilibria

Throughout this section, let k ∈ N and consider a minority game with 2k + 1 players.

We characterize its set of Nash equilibria. The pure Nash equilibria are easy to characterize:

Proposition 2.1. [Tercieux and Voorneveld (2005)] A pure strategy profile is a Nash

equilibrium if and only if one of the alternatives −1 or +1 is chosen by exactly k of the

2k + 1 players.

It remains to characterize the game’s Nash equilibria with at least one mixer.

Lemma 2.2. Let α ∈ ×i∈N∆(Ai) be a Nash equilibrium with a nonempty set of mixers.

All mixers use the same strategy: for all i, j ∈ N , if αi, αj /∈ {(1, 0), (0, 1)}, then αi = αj.

Proof. By [Sym], the 2 × 2 subgame played by two mixers i (row player) and j (column

player) given the strategy profile of the remaining players is of the form

−1 +1

−1 x, x y, z

+1 z, y w,w

where, for instance, y is the payoff to the player choosing −1 if the other player chooses

+1 and the remaining players stick to the mixed strategy profile (αk)k∈N\{i,j}. By [Mon],

a player is better off if the other chooses differently, i.e., x < y and z > w. Let p, q ∈ (0, 1)

denote the equilibrium probability with which player i and j, respectively, choose −1. In

equilibrium, each player must be indifferent between playing +1 and playing −1:

px + (1− p)y = pz + (1− p)w,

qx + (1− q)y = qz + (1− q)w.

Subtracting the latter expression from the former yields

(p− q)(x− y) = (p− q)(z − w).
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As x < y and z > w, this can only hold if p = q. Since mixers i and j were chosen

arbitrarily from the set of mixers, this implies that all mixers use the same strategy. �

Since all mixers use the same strategy and player labels are irrelevant by [Sym] (if α

is a Nash equilibrium, so is every permutation of α), a non-pure Nash equilibrium can

be summarized by its type (`, r, λ), where `, r ∈ {0, 1, . . . , 2k + 1} denote the number of

players choosing pure strategy −1 or +1, respectively, and λ ∈ (0, 1) the probability with

which the remaining m(`, r, λ) := (2k + 1) − (` + r) > 0 mixers choose −1. Moreover,

let v−1(`, r, λ) denote the expected payoff to a player choosing −1; v+1(`, r, λ) is defined

similarly. For convenience, write m := m(`, r, λ). Letting one of the mixers in (`, r, λ)

deviate to a pure strategy, this implies in particular that

v−1(` + 1, r, λ) =
m−1∑
s=0

(
m− 1

s

)
λs(1− λ)m−1−sf−1(` + 1 + s), (2.2)

v+1(`, r + 1, λ) =
m−1∑
s=0

(
m− 1

s

)
λs(1− λ)m−1−sf+1((r + 1) + (m− 1− s))

=
m−1∑
s=0

(
m− 1

s

)
λs(1− λ)m−1−sf+1(r + m− s). (2.3)

For instance, a profile of type (` + 1, r, λ) is obtained from type (`, r, λ) if a mixer switches

to pure strategy −1. In that case, there are m − 1 mixers left. To obtain expected

payoffs, notice that the probability that s ∈ {0, . . . ,m − 1} of these mixers choose −1 is(
m−1

s

)
λs(1− λ)m−1−s. Using this notation, the Nash equilibria with at least one mixer are

characterized as follows.

Proposition 2.3.

(a) (Characterization of equilibrium) Let `, r ∈ {0, 1, . . . , 2k+1} be such that `+r <

2k + 1. Let λ ∈ (0, 1). A strategy profile of type (`, r, λ) is a Nash equilibrium if and

only if

v−1(` + 1, r, λ) = v+1(`, r + 1, λ). (2.4)

(b) (Equilibria with one mixer) There exist equilibria with exactly one mixer. These

equilibria are of type (k, k, λ) with arbitrary λ ∈ (0, 1), i.e., the mixer uses an ar-

bitrary mixed strategy, whereas the remaining 2k players are spread evenly over the

two pure strategies.
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(c) (Equilibria with more than one mixer) Let `, r ∈ {0, 1, . . . , 2k + 1} be such that

`+r ≤ 2k−1. There is a Nash equilibrium of type (`, r, λ) if and only if max{`, r} < k.

The corresponding probability λ ∈ (0, 1) solving (2.4) is unique.

Proof. (a): Condition (2.4) says that a mixer is indifferent between choosing −1, thereby

raising ` to ` + 1 and obtaining payoff v−1(` + 1, r, λ), or choosing +1, thereby raising r to

r + 1 and obtaining payoff v+1(`, r + 1, λ). Hence, (2.4) is a necessary condition for Nash

equilibrium.

To establish sufficiency, it remains to show that also players using a pure strategy — if

there are such players, i.e., if ` + r ≥ 1 — choose a best reply. Suppose ` ≥ 1. The payoff

to a (−1)-player is v−1(`, r, λ), while a unilateral deviation to +1 yields v+1(`− 1, r +1, λ).

However:

v−1(`, r, λ) ≥ v−1(` + 1, r, λ) (2.5)

= v+1(`, r + 1, λ) (2.6)

≥ v+1(`− 1, r + 1, λ). (2.7)

Inequality (2.5) uses [Mon]: conditioning on the behavior of one of the m := m(`, r, λ) > 0

mixers, write

v−1(`, r, λ) = λv−1(` + 1, r, λ) + (1− λ)v−1(`, r + 1, λ).

Then

v−1(`, r, λ)− v−1(` + 1, r, λ) = (1− λ) [v−1(`, r + 1, λ)− v−1(` + 1, r, λ)]

= (1− λ)
m−1∑
s=0

(
m− 1

s

)
λs(1− λ)m−1−s [f−1(` + s)− f−1(` + 1 + s)]

≥ 0

by [Mon]. Inequality (2.7) follows similarly and (2.6) is simply condition (2.4). So if ` ≥ 1,

(−1)-players choose a best reply. Similarly, if r ≥ 1, (+1)-players choose a best reply.

(b): Let λ ∈ (0, 1). Substitution in (2.4) and [Sym] yield that strategy profiles of type

(k, k, λ) are Nash equilibria:

v−1(k + 1, k, λ) = f−1(k + 1) = f+1(k + 1) = v+1(k, k + 1, λ).

Conversely, consider a Nash equilibrium of type (`, r, λ) with exactly one mixer: `+r = 2k.

We establish that ` = r. Suppose not. W.l.o.g., ` > r. Since ` + r = 2k, this implies

` ≥ k + 1 and r ≤ k − 1. The expected payoff to a (−1)-player is

λf−1(` + 1) + (1− λ)f−1(`),
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while deviating to +1 would yield

λf+1(r + 1) + (1− λ)f+1(r + 2).

Since ` + 1 > r + 1, ` ≥ r + 2, and λ ∈ (0, 1), it follows from [Sym] and [Mon] that a

(−1)-player would benefit from unilateral deviation, contradicting the assumption that the

profile of type (`, r, λ) is a Nash equilibrium. Conclude that ` = r.

(c): Without loss of generality, ` ≥ r, so max{`, r} = `. Let m = (2k + 1) − (` + r) ≥ 2

be the number of mixers. By substitution, ` < k if and only if ` + 1 < r + m. To prove

(c), it therefore remains to establish three things.

Firstly, if ` + 1 < r + m, there is a λ ∈ (0, 1) solving (2.4). To see this, use ` ≥ r to

find that ` + m > r + 1. By [Sym] and [Mon], it follows that

v−1(` + 1, r, 0) = f−1(` + 1) > f+1(r + m) = v+1(`, r + 1, 0),

v−1(` + 1, r, 1) = f−1(` + m) < f+1(r + 1) = v+1(`, r + 1, 1).

By the Intermediate Value Theorem applied to v−1(` + 1, r, ·) − v+1(`, r + 1, ·), there is a

λ ∈ (0, 1) solving (2.4): there is a Nash equilibrium of type (`, r, λ).

Secondly, this λ ∈ (0, 1) solving (2.4) is unique. By (2.2), v−1(` + 1, r, ·) is the ex-

pectation of a strictly decreasing function of a binomial stochastic variable. By stochastic

dominance (see Appendix A), this makes v−1(`+1, r, ·), the left-hand side of (2.4), strictly

decreasing in λ. Similarly, by (2.3), the right-hand side of (2.4) is strictly increasing in

λ. Conclude that the functions v−1(` + 1, r, ·) and v+1(`, r + 1, ·) intersect at most once.

By the previous step, as long as ` + 1 < r + m, they intersect at least once, establishing

uniqueness.

Thirdly, if ` + 1 ≥ r + m, there is no λ ∈ (0, 1) solving (2.4). To see this, notice that

the inequality implies

` + m > · · · > ` + 2 > ` + 1 ≥ r + m > r + m− 1 > · · · > r + 1,

so by [Sym] and [Mon]:

f−1(`+m) < · · · < f−1(`+2) < f−1(`+1) ≤ f+1(r+m) < f+1(r+m−1) < · · · < f+1(r+1).

Substitution in (2.2) and (2.3) yields that

v+1(`, r + 1, λ) > v−1(` + 1, r, λ)

for all λ ∈ (0, 1): there is no solution to (2.4). �
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Some consequences of this characterization of the game’s non-pure Nash equilibria:

(i): There are no Nash equilibria where the number of mixers is two, since in that case,

max{`, r} ≥ k.

(ii): Substitution in (2.4) gives that a strategy profile in which the number of (−1)-players

is equal to the number of (+1)-players and the remaining players mix with probability 1/2,

i.e., a profile of type (t, t, 1/2) with t ∈ {0, . . . , k}, is a Nash equilibrium.

Having characterized the set of Nash equilibria, we now establish that the set of Nash

equilibria with at most one mixer is connected.

Proposition 2.4. The set of Nash equilibria with at most one mixer is connected.

Proof. In a Nash equilibrium with exactly one mixer, the completely mixed strategy is

arbitrary. Letting the probability go to zero or one, this line piece of Nash equilibria in the

strategy space has a pure Nash equilibrium as its end point. Hence, to show connectedness,

it suffices to show that for each pair of pure Nash equilibria, there is a chain of pure Nash

equilibria differing in exactly one coordinate connecting them.

So let x and y be distinct pure Nash equilibria. By Proposition 2.1, the majority action,

i.e., the action chosen by exactly k +1 players in a given Nash equilibrium, is well-defined.

We need to consider two cases. Firstly, if this action is the same in x and y, w.l.o.g. −1,

then x 6= y implies that the (k + 1)-player majorities in x and y must be distinct. Let i

be such a majority player, choosing −1 in x, but +1 in y. Secondly, if the majority action

is different in x and y, w.l.o.g. −1 in x and +1 in y, then by definition of a majority,

the (k + 1)-player majorities in x and y have a nonempty intersection. Again, let i be a

majority player choosing −1 in x, but +1 in y.

By construction, as i is a majority player, the path of Nash equilibria in which i

increases the probability of playing the action +1 from 0 to 1 connects x to another pure

Nash equilibrium x∗ with xi 6= x∗i = yi and x∗j = yj for all j 6= i, i.e., with a strictly smaller

Hamming distance to y (recall that the Hamming distance between two finite-dimensional

vectors is the number of coordinates in which they differ).

As the strategy vectors have only finitely many coordinates and we can reduce the

Hamming distance between pure Nash equilibria by the procedure above, the result now

follows by induction. �
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3 The replicator dynamic

In this section, we study the replicator dynamic (e.g. Weibull, 1995) for the minority

game. There is a set N = {1, . . . , 2k +1} of populations, where each population is the unit

interval [0, 1]. The populations represent the 2k + 1 player positions in the minority game.

All agents in a population are initially programmed to some pure strategy. Hence, each

population can be divided into two subpopulations (one of which may contain no agents),

one for each of the pure strategies in the minority game. A population state is a vector

α = (α1, . . . , α2k+1) in the polyhedron of mixed-strategy profiles, where for each i ∈ N ,

αi is a point in the simplex ∆(Ai), representing the distribution of agents in population

i across the different pure strategies. The vector αi ∈ ∆(Ai) thus represents the state of

population i, with αi(ai) denoting the proportion of agents programmed to play the pure

strategy ai ∈ Ai.

Time is continuous and indexed by t. Agents – one from each population – are con-

tinuously drawn uniformly at random from these populations to play the minority game.

Suppose payoffs represent the effect of playing the game on an agent’s fitness, measured as

the number of offspring per time unit, and that each offspring inherits its single parent’s

strategy. This gives rise to the following dynamics for the population shares:

∀i ∈ N, ∀ai ∈ Ai : α̇i(ai) = αi(ai)(ui(ai, α−i)− ui(αi, α−i)). (3.1)

This system of differential equations defines the (continuous time multipopulation) repli-

cator dynamic. In words, the growth rate α̇i(ai)/αi(ai) of a pure strategy ai ∈ Ai in

population i ∈ N is equal to the difference in payoffs of the pure strategy and the cur-

rent average payoffs for the population. Hence, the population shares of strategies that

do better than average will grow, while the shares of the other strategies will decline. It

is easily seen that the subpopulations associated with the pure best replies to the current

population state have the highest growth rates.

The system of differential equations (3.1) defines a continuous solution mapping ξ :

R ×
(
×i∈N∆(Ai)

)
→ ×i∈N∆(Ai) which assigns to each time t ∈ R and each initial state

α0 ∈ ×i∈N∆(Ai) the population state ξ(t, α0) ∈ ×i∈N∆(Ai). The (solution) trajectory

through a population state α0 ∈ ×i∈N∆(Ai) is the graph of the solution mapping ξ(·, α0).

A population state α ∈ ×i∈N∆(Ai) is a stationary state of the replicator dynamics (3.1)

if and only if for each population i ∈ N every pure strategy ai ∈ Ai that is used by some

agents in the population gives the same payoffs. In that case, α̇i(ai) = 0 for all i ∈ N and all

ai ∈ Ai. Let S = {α ∈ ×j∈N∆(Aj) | ∀i ∈ N,∀ai ∈ Ai : α̇i(ai) = 0} be the set of stationary
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states. By definition, if α ∈ S, then a player i ∈ N either uses a pure strategy or — if he is

a mixer — is indifferent between his two pure strategies: ui(ai, α−i) = ui(αi, α−i) for both

ai ∈ Ai. Using the proof of Lemma 2.2, all mixers must use the same strategy. If there

is more than one mixer, the proof of Proposition 2.3(c) indicates that this mixed strategy

solving (2.4) is uniquely determined by the number of players choosing pure strategy −1

and pure strategy +1. Conclude that the set of stationary states can be partitioned into

three subsets:

S1: The connected set of Nash equilibria with at most one mixer;

and a finite collection of isolated stationary states, namely

S2: Nash equilibria with more than one mixer;

S3: nonequilibrium profiles of some type (`, r, λ), where
`, r ∈ {0, . . . , 2k + 1},
` + r ≤ 2k + 1,

if ` + r < 2k + 1, then λ ∈ (0, 1) uniquely determined by (2.4).

It remains to study the stability properties of these stationary states. We consider Lya-

punov stability and asymptotic stability. Roughly speaking, a population state is Lyapunov

stable if no small change in the population shares can lead the replicator dynamics away

from the population state, while a population state is asymptotically stable if it is Lyapunov

stable and any sufficiently small change in the population shares results in a movement

back to the original population state. Formally, a population state α ∈ ×i∈N∆(Ai) is

Lyapunov stable if every neighborhood B of α contains a neighborhood B0 of α such that

ξ(t, α0) ∈ B for every x0 ∈ B ∩ ×i∈N∆(Ai) and t ≥ 0. It is asymptotically stable if it is

Lyapunov stable, and, in addition, there exists a neighborhood B∗ such that

lim
t→∞

ξ(t, α0) = α

for each initial state α0 ∈ B∗ ∩ ×i∈N∆(Ai).

The analysis relies heavily on the existence of a Lyapunov function for the replicator

dynamic in the minority game. Tercieux and Voorneveld (2005), using Thm. 3.1 in Mon-

derer and Shapley (1996), show that a minority game is a (finite exact) potential game:

there exists a real-valued (so-called potential) function U on the pure strategy space such

that for each i ∈ N , each a−i ∈ ×j∈N\{i}Aj, and all ai, bi ∈ Ai:

ui(ai, a−i)− ui(bi, a−i) = U(ai, a−i)− U(bi, a−i). (3.2)
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Taking expectations, (3.2) can be extended to mixed strategies, so the payoff difference in

(3.1) equals the corresponding change in the potential. Hence, the replicator dynamic can

be rewritten as:

∀i ∈ N,∀ai ∈ Ai : α̇i(ai) = αi(ai)(U(ai, α−i)− U(αi, α−i)). (3.3)

This makes the potential U a Lyapunov function of the replicator dynamic. More precisely:

Proposition 3.1. The potential function U of the minority game is a strict Lyapunov func-

tion for the replicator dynamic: for each solution trajectory (α(t))t∈[0,∞), dU(α(t))/dt ≥ 0

with equality exactly in the stationary states.

Proof. Suppressing time indices for ease of notation, direct calculation gives

U̇(α) =
∑
i∈N

∑
ai∈Ai

U(ai, α−i)α̇i(ai)

=
∑
i∈N

∑
ai∈Ai

αi(ai)(U(ai, α−i)− U(αi, α−i))U(ai, α−i)

=
∑
i∈N

∑
ai∈Ai

(
αi(ai)U(ai, α−i)

2 − U(αi, α−i)
2
)

=
∑
i∈N

(
Eαi

[
U(ai, α−i)

2
]
− (Eαi

[U(ai, α−i)])
2)

=
∑
i∈N

Varαi
U(ai, α−i)

≥ 0,

with equality if and only if all variances are zero, i.e., if and only if α is a stationary point

of the replicator dynamics. �

Proposition 3.2. The collection of Nash equilibria with at most one mixer in S1 is asymp-

totically stable under the replicator dynamic. Stationary states in S2 and S3 are not Lya-

punov stable.

Proof. To see that the collection of Nash equilibria in S1 is asymptotically stable, notice

that S1 is the set of global maxima of U : The potential U in (3.2) was extended to mixed

strategies by taking expectations, so U achieves a global maximum in a pure strategy

profile which, again by (3.2), is a pure Nash equilibrium. By symmetry, all pure Nash

equilibria are global maxima of U and so are equilibria with exactly one mixer. Other

strategy profiles are not global maxima of U : they are not Nash equilibria or, if they are,
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they involve more than one mixer, in which case they put positive probability also on pure

strategy profiles that are not Nash equilibria and consequently not global maxima of U .

This connected set of global maxima of the Lyapunov function U is asymptotically stable

(Weibull, 1995, Thm. 6.4).

We show that elements of S2 are not Lyapunov stable; the case for points in S3 is

similar. Let α∗ ∈ S2, i.e, α∗ is a Nash equilibrium with more than one mixer. Suppose

it is Lyapunov stable. Since it is an isolated point of the collection of stationary states,

there is a neighborhood B of α∗ whose closure contains only the stationary state α∗:

cl(B) ∩ S2 = {α∗}. By Lyapunov stability, as long as the initial state α(0) lies in a

sufficiently small neighborhood B′ of α∗, the entire solution trajectory (α(t))t∈[0,∞) remains

in B.

Let i ∈ N be one of the mixers in the Nash equilibrium α∗. Since i is indifferent between

his two pure strategies and the potential U measures payoff differences, it follows that

U(α∗) = U(−1, α∗−i) = U(+1, α∗−i).

Consequently, U(γi, α
∗
−i) = U(α∗) for all mixed strategies γi of player i. For γi 6= α∗i suf-

ficiently close to α∗i , it follows that (γi, α
∗
−i) ∈ B′. Hence, the entire solution trajectory

(γ(t))t∈[0,∞) with γ(0) := (γi, α
∗
−i) remains in B. Since its starting point is not stationary,

Proposition 3.1 implies that the Lyapunov function U strictly increases along the trajec-

tory, until it may reach a stationary state. Let γ∗ ∈ ×j∈N∆(Aj) be a limit point of the

trajectory (γ(t))t∈[0,∞): there is a strictly increasing sequence of time points tm → ∞
such that limm→∞ γ(tm) → γ∗. Such a limit point exists and has to be a stationary point

(Lemma A.1 of Sandholm, 2001, p. 104). Since cl(B) ∩ S2 = {α∗} and the trajectory lies

in B, it follows that γ∗ = α∗. But then limm→∞ U(γ(tm)) = U(α∗) = U(γ(0)), contra-

dicting that the Lyapunov function is increasing along the trajectory. Conclude that α∗

cannot be Lyapunov stable. For α∗ ∈ S3, proceed similarly. As it is not a NE, some i can

profitably deviate slightly (to remain inside B′), so the remaining trajectory must increase

the potential, but still have α∗ as its limit point. �
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4 Perturbed best-response dynamics and quantal re-

sponse equilibria

4.1 Perturbed best-response dynamics

Under stochastic fictitious play (e.g. Hofbauer and Hopkins, 2005; Hofbauer and Sand-

holm, 2002; Hopkins, 2002), players repeatedly play a normal form game (in discrete time).

They choose best replies to their beliefs on other players’ actions on the basis of a perturbed

payoff function, with beliefs determined by the time average of past play. More specifically,

the state variable at time t ∈ N is a vector Zt ∈ ×i∈N∆(Ai), where the ith component

Zt
i denotes the time average of player i’s past play up to time t. Players’ initial choices

are arbitrary pure strategies; in later periods players best-respond to their beliefs Zt, after

their payoffs have been subjected to random shocks. That is, for each i ∈ N , let (εa
i )a∈Ai

be a vector of payoff disturbances. The vector of payoff disturbances is independent and

identically distributed across players and over time. Let α−i ∈ ×j∈N\{i} ∆(Aj) be a belief.

The probability that player i chooses action ai ∈ Ai is equal to the probability that

ui(ai, α−i) + εai
i ≥ ui(bi, α−i) + εbi

i

for all bi ∈ Ai. Then, the perturbed best-response dynamics associated with Gumbel-

distributed perturbations with parameter β > 0 is:

∀i ∈ N,∀ai ∈ Ai : α̇i(ai) =
exp [βui(ai, α−i)]∑

bi∈Ai
exp [βui(bi, α−i)]

− αi(ai). (4.1)

Gumbel-distributed payoff perturbations correspond to control costs of the relative entropy

form. By Proposition 4.1 of Hofbauer and Sandholm (2002), the process in (4.1) has a strict

Lyapunov function that can be expressed in terms of the potential function and the control

cost functions. For each i ∈ N , let αi denote the probability with which player i chooses

the action ai = −1. Then, the Lyapunov function for the process in (4.1) is defined by:

α ∈ ×i∈N∆(Ai) : V (α) = U(α)− 1

β

∑
i∈N

[αi log(αi) + (1− αi) log(1− αi)] , (4.2)

where U is the potential function. Since control cost functions of the relative entropy form

satisfy the smoothness conditions of Proposition 4.2 of Hofbauer and Sandholm (2002), it

follows that:

Proposition 4.1. The collection of stationary states and recurrent points of the process

in (4.1) coincide.
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Theorem 6.1(iii) of Hofbauer and Sandholm (2002) now implies that the perturbed

best-response dynamic converges to these stationary states. Notice that the set of sta-

tionary states coincides with the set of logit quantal response equilibria of the minority

game (McKelvey and Palfrey, 1995). When the perturbation terms go to zero, we obtain

Nash equilibria. As the set of Nash equilibria is not finite, we cannot apply Corollary

6.6 of Benäım (1999) to characterize the subset of Nash equilibria to which the stochastic

process (4.1) converges. The set of Nash equilibria that are the limit points of a sequence

of logit quantal response equilibria is generally hard to characterize. In the next section,

we characterize this set for the three-player minority game.

4.2 Stationary points for the three-player minority game

Consider the three-player minority game with f−1 = f+1 = f strictly decreasing in

the number of users. As it involves a simple rescaling of functions satisfying [Mon] and

[Sym], we may without loss of generality set f(2) = 0 and f(1) − f(3) = 1. A potential

of the game is then given in Figure 4.1. The Nash equilibria of the three-player game

−1 +1

−1 −1 0

+1 0 0

−1 +1

−1 0 0

+1 0 −1

Figure 4.1: A potential function of the 3-player minority game

follow easily from the results in Section 2.2. Throughout this section, Nash equilibria are

denoted by (p, q, r) ∈ [0, 1]3, where p, q, r are the probabilities with which player 1, 2, and

3, respectively, choose −1. Then, the Nash equilibria of the game are (1/2, 1/2, 1/2) and

(1, 0, λ) for some λ ∈ [0, 1], and permutations of these.

Given parameter β ≥ 0, the conditions for a logit quantal response equilibrium (QRE)

become:

p =
1

1 + exp−β(1− q − r)
, (4.3)

q =
1

1 + exp−β(1− p− r)
, (4.4)

r =
1

1 + exp−β(1− p− q)
. (4.5)

Given β ≥ 0, we denote a logit QRE in which player 1,2 and 3 play −1 with probability
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p, q, r by (p, q, r, β). We now characterize the set of Nash equilibria that are the limit of a

sequence of quantal response equilibria when β →∞.

Proposition 4.2. Let (p(βn), q(βn), r(βn), βn)n∈N be a sequence of logit quantal response

equilibria: βn → ∞ and for each n ∈ N, the quadruple (p(βn), q(βn), r(βn), βn) solves

equations (4.3)-(4.5). A Nash equilibrium (p, q, r) is the limit of such a sequence if and

only if one of the following conditions hold:

(a) (p, q, r) is a pure Nash equilibrium,

(b) (p, q, r) is a Nash equilibrium with exactly one mixer who mixes uniformly,

(c) (p, q, r) = (1/2, 1/2, 1/2).

The proof is in Appendix B. Proposition 4.2 thus characterizes the set of stationary points

of the perturbed best response dynamics (4.1) for the three-player minority game.

5 Best-reply learning with limited memory

In this section, we consider discrete time learning models in which players choose best

replies to beliefs that are supported by observed play in the recent past. We study two

such models, the learning model proposed by Hurkens (1995) and the model of Kets and

Voorneveld (2005). First, in the learning model of Hurkens, players may choose any action

that is a best reply to some belief over other players’ actions that is consistent with their

recent past play. The limiting behavior of this learning process is easy to characterize.

Hurkens shows that the Markov processes defined by his learning process eventually settle

down in so-called minimal curb sets (Basu and Weibull, 1991). Minimal curb sets are

product sets of pure strategies containing all best responses against beliefs restricted to

the recommendations to the remaining players. Unfortunately, this does not provide a

sharp prediction in the minority game. As shown by Tercieux and Voorneveld (2005), the

unique minimal curb set in the minority game consists of the entire strategy space. That

is, over time, all players will keep on choosing both actions.

Secondly, we study the model of Kets and Voorneveld (2005). As in the model of

Hurkens (1995), it is assumed that players best-respond to beliefs over others’ play sup-

ported by recent past play. In addition, players display a so-called recency bias: when there

are multiple best replies to a given belief, a player chooses the best reply that he most re-
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cently played.3 Kets and Voorneveld show that play converges to one of the minimal prep

sets of the game under this learning process. Minimal prep sets (Voorneveld, 2004) are a

set-valued solution concept for strategic games that combines a standard rationality con-

dition, stating that the set of recommended strategies to each player must contain at least

one best reply to whatever belief he may have that is consistent with the recommendations

to the other players, with players’ aim at simplicity, which encourages them to maintain

a set of strategies that is as small as possible. Think of the set of recommendations to a

player in a minimal prep set as a well-packed suitcase for a holiday: you want to be pre-

pared for different kinds of weather, but bringing all five of your umbrellas and all seven

bathing suits may be overdoing it. Tercieux and Voorneveld (2005) show that the minimal

prep sets of the minority game and the pure Nash equilibria of the game coincide. Hence,

under the learning model of Kets and Voorneveld, play in the minority game converges to

one of the pure Nash equilibria of the game.

In both the model of Hurkens (1995) and Kets and Voorneveld (2005), players need to

recall a sufficiently long period of play in order for play to converge. We now turn to the

question what this lower bound on players’ memory is. More specifically, suppose players

remember actions that were chosen during the past T ∈ N periods. A memory length

of T = 1 is clearly insufficient for a best-reply learning process with limited memory to

converge. If players chose an action profile yesterday that is not a pure Nash equilibrium,

then some action, say −1, was chosen by more than k + 1 players. Hence, everyone

chooses the unique best reply +1 today, and consequently the unique best reply −1 to this

tomorrow, and the unique best reply +1 to this the day after tomorrow, with action profiles

forever cycling between these two extremes. However, we show that a memory length T = 2

is sufficient for the learning process of Kets and Voorneveld (2005) to convergence to pure

Nash equilibria.

When the memory length T is equal to 2, the process is a Markov chain with state

space H = {(a1, a2) | a1, a2 ∈ A2k+1}, where a history h = (a1, a2) ∈ H indicates that

the 2k + 1 players remember that they chose action profile a1 one period ago and a2 two

periods ago. Having defined the set H of states, we proceed to the transition probability

functions P : H × H → [0, 1], where P (h, h′) ∈ [0, 1] is the probability of moving from

state h ∈ H to state h′ ∈ H in one period and
∑

h′∈H P (h, h′) = 1 for all h ∈ H. We do

not need to specify exact probabilities: for the convergence result, only sign restrictions

3The behavioral economics literature provides several motivations for the common observation that
agents appear somewhat unwilling to deviate from their recent choices. This can be attributed to e.g. the
formation of habits (cf. Young, 1998) or the use of rules of thumb (cf. Ellison and Fudenberg, 1993).
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are needed.

Moving from h = (a1, a2) to h′ = (b1, b2) in one period means that h′ is obtained from

h after one more round of play, i.e., by appending a new profile of most recent actions.

Formally:

[P1] h′ = (b1, b2) is a successor of h = (a1, a2), i.e., b2 = a1.

Moreover, by moving from h = (a1, a2) to h′ = (b1, b2), the processes in Kets and Voorn-

eveld (2005) require that each player i ∈ N chooses a best reply to a belief α−i ∈
×j∈N\{i}∆({a1

j , a
2
j}) with support in the product set of actions chosen in the previous T = 2

periods, whenever possible sticking to the most recent best reply. In games with just two

actions, the latter simply means that you continue playing as you did in the previous round,

unless that action is no longer a best reply to your current belief. Formally:

[P2] For each i ∈ N , b1
i is a best reply to some belief α−i ∈ ×j∈N\{i}∆({a1

j , a
2
j}). Moreover,

b1
i = a1

i if and only if a1
i is a best reply to α−i.

Proposition 5.1. Consider a Markov chain on H with transition probability function P ,

where, for all states h, h′ ∈ H, it holds that P (h, h′) > 0 if and only if [P1] and [P2] are

true. This Markov process eventually settles down in a pure Nash equilibrium.

Proof. Let h0 = (a1, a2) ∈ H and distinguish two cases:

Case 1: a1 is a pure Nash equilibrium. By [P2], the players will react with positive

probability to the belief that everybody plays as in a1. Each player’s most recent best

reply is to continue playing as in a1, so the process moves with positive probability to the

history h1 = (a1, a1). From here on, the only feasible belief based on the past two periods

is that the players play a1 and the most recent best reply implies that they will continue to

play a1: the process stays in state h1 and play has converged to a pure Nash equilibrium.

Case 2: a1 is not a pure Nash equilibrium. By Proposition 2.1, some alternative,

w.l.o.g. −1, was chosen by a set S ⊆ N of players with |S| > k + 1. Each player’s unique

best response to a1 is therefore to choose +1. By [P2], the process moves with positive

probability to state h1 = ((+1, . . . , +1), a1). Let a∗ ∈ A2k+1 be a pure Nash equilibrium

where k + 1 members of S choose +1 and the others choose −1. Again using [P2], the

process moves with positive probability from h1 to h2 = (a∗, (+1, . . . , +1)):

• For each of the selected k +1 members of S, +1 is the unique best reply to the belief

drawn from the past two periods that at least k + 1 other players from S will choose

−1.
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• For each of the remaining k players, −1 is the unique best response to the belief that

all other players will continue to play last period’s profile (+1, . . . , +1).

Notice that history h2 belongs to case 1.

Conclude that, regardless of the initial state h0, the Markov process moves with positive

probability to an absorbing state where the players continue to play one of the game’s pure

Nash equilibria. As the Markov process is finite and the initial state was chosen arbitrarily,

this will eventually happen with probability one (Kemeny and Snell, 1976): play eventually

settles down in a pure Nash equilibrium. �

Some remarks are in order. First, notice that, due to the symmetry of the minority game,

a minor revision of the proof indicates that convergence to pure Nash equilibria can be

established also if the only thing players remember from the past two periods is what

they chose themselves and how many others did so. This comes at the expense of a more

complex notation and a larger deviation from that of Kets and Voorneveld (2005).

Secondly, the result that the lower bound on players’ memory length is two indicates

that the requirement on memory length in Kets and Voorneveld (2005) for general games

can be decreased significantly in specific cases. Although the convergence result in Kets

and Voorneveld (2005) for the entire class of finite strategic games also applies here, we

include an explicit proof: the structure of a minority game allows us to give a considerably

shorter proof of the convergence result for this specific game, and allows us to derive a

much sharper bound on the memory length.

6 Concluding remarks

Though congestion games are apparently simple, game-theorists’ understanding of play

in such games is far from complete, for two reasons. Firstly, well-known learning mod-

els do not always provide equivocal predictions for such games. In this paper, we have

characterized the Nash equilibria and the limiting behavior of several well-known learning

models in a simple congestion game. We show that these learning models provide different

predictions. Secondly, experimental results are not always in line with theoretical predic-

tions. In experiments on market entry games, aggregate play is largely consistent with

equilibrium play, with the number of entrants close to capacity, but individual play gener-

ally does not resemble Nash play (see e.g. Ochs, 1999). Hence, an interesting direction for

future research would be to test behavior in minority games experimentally. This provides
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the opportunity to compare the performance of different learning models in the minority

game.4 Moreover, it may help to better understand behavior in other congestion games

such as the market entry games, as the symmetry of the game makes it harder for players

to play repeated-game strategies. In experiments on the (asymmetric) market entry games,

players sometimes seem to follow such strategies, with some players choosing to enter the

market in every round in the initial periods, regardless of payoffs, to obtain a reputation

for always entering (see Duffy and Hopkins, 2005, for a discussion). Such strategies are

useless in the minority game, so that it may be hoped that the minority game offers a

cleaner test of the theory.

Appendix A Stochastic dominance for binomial dis-

tributions

Let X have a binomial distribution with n ∈ N draws and success probability p ∈ [0, 1];

briefly, a B(n, p) distribution: X = X1 + · · · + Xn, where X1, . . . , Xn are i.i.d B(1, p).

Distributions with a higher success rate p stochastically dominate those with a lower one

(cf. Ross, 1996, Exc. 9.9). Formally, in terms of cumulative distributions, if p, q ∈ [0, 1]

and p < q, then

For all m ∈ {0, . . . , n} :
m∑

k=0

(
n

k

)
pk(1− p)n−k ≥

m∑
k=0

(
n

k

)
qk(1− q)n−k,

with strict inequality if m < n. This follows by substitution if m = 0 or m = n. So let

m ∈ {1, . . . , n− 1}. It suffices to show that the function

[0, 1] 3 p 7→
m∑

k=0

(
n

k

)
pk(1− p)n−k

4Bottazzi and Devetag (2007) and Chmura and Pitz (2006) present experiments on the minority game.
However, their results cannot be directly used to compare the performance of different learning models, as
they do not test explicitly whether play converges to particular strategy profiles or to particular product
sets of actions. Both papers merely study the effect of information on players’ aggregate payoffs.
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has a negative derivative on (0, 1). The derivative, after rewriting, becomes

m∑
k=0

(
n

k

)[
kpk−1(1− p)n−k − (n− k)pk(1− p)n−k−1

]
=

m∑
k=0

(
n

k

)
pk−1(1− p)n−k−1 [k − np]

=
m∑

k=0

(
n

k

)
kpk−1(1− p)n−k−1 − n

m∑
k=0

(
n

k

)
pk(1− p)n−k−1

=
n

1− p

m−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k − n

1− p

m∑
k=0

(
n

k

)
pk(1− p)n−k

=
n

1− p

[
P

(
n−1∑
k=1

Xk ≤ m− 1

)
− P

(
n∑

k=1

Xk ≤ m

)]
.

Consider the term in square brackets. The first probability is strictly smaller than the

second, as the first event (at most m − 1 successes in the first n − 1 draws) implies the

second one (at most m successes during all n draws), whereas the latter also includes the

positive-probability event that
∑n−1

k=1 Xk = m. Hence, the derivative is negative, as we had

to show.

Write a function g : {0, 1, . . . , n} → R as the sum of indicator functions:

g = g(n)I{0,...,n} + (g(n− 1)− g(n))I{0,...,n−1} + · · ·+ (g(0)− g(1))I{0}

= g(n)I{0,...,n} +
n−1∑
k=0

(g(k)− g(k + 1))I{0,...,k}.

Then

E[g(X)] = g(n) +
n−1∑
k=0

(g(k)− g(k + 1))P(X ≤ k).

If g is nonconstant, nonincreasing, then g(k)− g(k + 1) ≥ 0 for all k = 0, . . . , n− 1, with

at least one strict inequality. As shown above, the cumulative probabilities are strictly

decreasing in the success probability p. So E[g(X)] becomes a strictly decreasing function

of p: the higher the probability of success, the larger the probability that g(X) achieves a

low value. Of course, for nondecreasing functions the converse holds.

Appendix B Proof of Proposition 4.2

The only Nash equilibria not covered by (a), (b), and (c) are those with one player

(w.l.o.g. player 1) choosing −1, one player (w.l.o.g. player 2) choosing +1, and the third
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player (w.l.o.g. player 3) mixing with probability λ ∈ (0, 1) \ {1
2
}.

Suppose, to the contrary, that such an equilibrium is the limit of a sequence of logit

QRE (p(βn), q(βn), r(βn), βn)n∈N where βn → ∞ and (p(βn), q(βn), r(βn), βn) solves equa-

tions (4.3) to (4.5) for a logit QRE. In the selected equilibrium, both the (−1)-player and

the (+1)-player choose their unique best response. By Lemma 3 in Turocy (2005, p. 251),

βn(1 − p(βn)) → 0 and βnq(βn) → 0. Substituting this in the logit QRE condition (4.5)

for the third player gives that

r(βn) =
1

1 + exp−βn(1− p(βn)− q(βn))
→ 1

2
,

contradicting the assumption that limn→∞ r(βn) = λ 6= 1/2.

It remains to show that the classes of equilibria in the proposition are indeed limits of a

sequence of logit QREs.

(a): By symmetry, it suffices to show that the pure Nash equilibrium (p, q, r) = (1, 1, 0) is

the limit of a sequence of logit QREs.

Step 1: For each β > 4 there is a logit QRE (p, q, r, β) with p = q ∈ (1/2, 1), and r < 1/2.

Proof of Step 1: Based on conditions (4.3) - (4.5) for a logit QRE and the substitution

p = q, define for all β > 0 and p ∈ [1/2, 1]:

r(p, β) :=
1

1 + exp[−β(1− 2p)]
,

f(p, β) :=
1

1 + exp[−β(1− p− r(p, β))]
.

Let β > 4. We show that there is a solution p∗ ∈ (1/2, 1] to the equation p = f(p, β).

Substitution in (4.3) - (4.5) yields that (p, q, r, β) = (p∗, p∗, r(p∗, β), β) is a logit QRE with

the desired properties. Notice that

∂f(p, β)

∂p
=

−β exp (−β(1− p− r(p, β)))

(1 + exp (−β(1− p− r(p, β))))2

(
1 +

∂r(p, β)

∂p

)
,

=
−β exp (−β(1− p− r(p, β)))

(1 + exp (−β(1− p− r(p, β0))))
2

(
1 +

−2β exp (−β(1− 2p))

(1 + exp (−β(1− 2p)))2

)
.

Since f(1/2, β) = 1/2 and

∂f(1/2, β)

∂p
= −β

4

(
2− β

2

)
> 1

for β > 4, it follows that f(p, β) > p for p slightly larger than 1/2. Moreover, f(1, β) < 1.

Hence, by the Intermediate Value Theorem applied to f(·, β), f(p∗, β) = p∗ for some

p∗ ∈ (1/2, 1).
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Step 2: Let β0 > 4 and let p0 ∈ (1/2, 1) solve f(p0, β0) = p0. This is possible by Step 1.

The function f(p0, ·) is strictly increasing on [β0,∞).

Proof of Step 2: By definition of f , it suffices to show that the derivative of

β 7→ β(1− p0 − r(p0, β)), β ∈ [β0,∞)

is positive. This derivative equals

−β
∂r(p0, β)

∂β
+ 1− p0 − r(p0, β). (B.1)

Using p0 > 1/2 and the definition of r, it follows that ∂r(p0, β)/∂β < 0, i.e., the function

r(p0, ·) is strictly decreasing on [β0,∞). Moreover, as p0 = f(p0, β0) > 1/2, it follows from

the definition of f that 1 − p0 − r(p0, β0) > 0. As r(p0, ·) is decreasing, this implies that

1− p0 − r(p0, β) > 0 for each β ∈ [β0,∞). Therefore, the expression in (B.1) is positive.

Step 3: The pure Nash equilibrium (p, q, r) = (1, 1, 0) is the limit of a sequence of QREs.

Proof of Step 3: Let β0 > 4 and consider a QRE (p0, q0, r0, β0) as in Step 1. Set

β1 = β0 + 1. By Step 2, p0 = f(p0, β0) < f(p0, β1). Moreover, f(1, β1) < 1. By the

Intermediate Value Theorem applied to the function f(·, β1), there is a p1 ∈ (p0, 1) with

p1 = f(p1, β1). Conclude that there is a QRE (p1, q1, r1, β1) with

p1 = q1 = f(p1, β1) > p0,

r1 = r(p1, β1)

β1 = β0 + 1

Repeating this construction allows us to define a sequence (pn, qn, rn, βn)n∈N of solutions

to (4.3) - (4.5) satisfying the conditions of Step 1 and with βn → ∞ and (pn)n∈N strictly

increasing.

As (pn, qn, rn)n∈N is a sequence in the compact strategy space, we may assume w.l.o.g.

that the sequence converges. Its limit (p, q, r) must be a Nash equilibrium (McKelvey and

Palfrey, 1995). As (pn)n∈N is a strictly increasing sequence in (1/2, 1) and (rn)n∈N is a

sequence in (0, 1/2), it must be p = q > 1/2 and r ≤ 1/2. The only Nash equilibrium of

the game with these properties is (p, q, r) = (1, 1, 0).

(b): By symmetry, it suffices to show that the Nash equilibrium (p, q, r) = (1, 0, 1/2) is

the limit of a sequence of logit QREs. The steps are similar to those in (a). Therefore, the

proof is kept short.

Step 1: For each β > 4 there is a logit QRE (p, q, r, β) with p ∈ (1/2, 1), q = 1−p, r = 1/2.
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Proof of Step 1: Let β > 4. Based on the substitution q = 1−p and r = 1/2 in condition

(4.3) for a logit QRE, define

g(p, β) :=
1

1 + exp [β(1/2− p)]
.

We show that there is a solution p∗ ∈ (1/2, 1) to the equation p = g(p, β). Substitution in

(4.3) - (4.5) yields that (p, q, r, β) = (p∗, 1− p∗, 1/2, β), β) is a logit QRE with the desired

properties. Notice that
∂g(p, β)

∂p
=

β exp [β(1/2− p)]

(1 + exp β(1/2− p))2
.

Since g(1/2, β) = 1/2 and ∂g(1/2, β)/∂p = β/4 > 1, it follows that g(p, β) > p for p

slightly larger than 1/2. Moreover, g(1, β) < 1, so the Intermediate Value Theorem implies

that g(p∗, β) = p∗ for some p∗ ∈ (1/2, 1).

Step 2: For each p0 ∈ (1/2, 1), the function g(p0, ·) is strictly increasing on (0,∞).

Proof of Step 2: Immediate from the definition of g.

Step 3: The Nash equilibrium (p, q, r) = (1, 0, 1/2) is the limit of a sequence of logit

QREs.

Proof of Step 3: Reasoning as in the proof of step 3 in part (a) allows us to construct

a sequence (pn, qn, rn, βn)n∈N of solutions to (4.3) - (4.5) satisfying the conditions of Step

1 and with βn → ∞ and (pn)n∈N strictly increasing. As (pn, qn, rn)n∈N is a sequence in

the compact strategy space, we may assume w.l.o.g. that the sequence converges. Its

limit (p, q, r) must be a Nash equilibrium (McKelvey and Palfrey, 1995). As (pn)n∈N is a

strictly increasing sequence in (1/2, 1), qn = 1− pn and rn = 1/2 for all n ∈ N, it must be

p > 1/2, q = 1− p, r = 1/2. The only Nash equilibrium of the game with these properties

is (p, q, r) = (1, 0, 1/2).

(c): It follows by substitution that (p, q, r, β) = (1/2, 1/2, 1/2, β) is a logit QRE for all

β ≥ 0. Consequently, the Nash equilibrium (p, q, r) = (1/2, 1/2, 1/2) is the limit of a

sequence of logit QREs with β →∞.
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and M. Yor (Eds.), Séminaire de Probabilités XXXIII, Volume 1709 of Lecture Notes in

Mathematics, pp. 1 – 68. Berlin: Springer-Verlag.

Blonski, M. (1999). Anonymous games with binary actions. Games and Economic Behav-

ior 28, 171–180.

Bottazzi, G. and G. Devetag (2007). Competition and coordination in experimental mi-

nority games. Journal of Evolutionary Economics 17, 241 – 275.

Challet, D., M. Marsili, and Y.-C. Zhang (2004). Minority Games: Interacting Agents in

Financial Markets. Oxford: Oxford University Press.

Chmura, T. and T. Pitz (2006). Successful strategies in repeated minority games. Physica

A 363, 477 – 480.

Coolen, A. (2005). The Mathematical Theory of Minority Games: Statistical Mechanics of

Interacting Agents. Oxford: Oxford University Press.

DeAngelis, D. and L. Gross (1992). Individual-Based Models and Approaches in Ecology:

Populations, Communities, and Ecosystems. New York: Chapman and Hall.

Duffy, J. and E. Hopkins (2005). Learning, information, and sorting in market-entry games:

theory and evidence. Games and Economic Behavior 51, 31–62.

Ellison, G. and D. Fudenberg (1993). Rules of thumb for social learning. Journal of Political

Economy 101, 612 – 643.

Franke, R. (2003). Reinforcement learning in the El Farol model. Journal of Economic

Behavior and Organization 51, 367–388.

Harsanyi, J. C. and R. Selten (1988). A General Theory of Equilibrium Selection in Games.

Cambridge, MA: MIT Press.

Helbing, D., M. Schönhof, H.-U. Stark, and J. A. Holust (2005). How individuals learn to

take turns: Emergence of alternating cooperation in a congestion game and the Prisoners

Dilemma. Advances in Complex Systems 8, 87 – 116.

Hofbauer, J. and E. Hopkins (2005). Learning in perturbed asymmetric games. Games

and Economic Behavior 52, 133–152.

25



Hofbauer, J. and W. H. Sandholm (2002). On the global convergence of stochastic fictitious

play. Econometrica 70, 2265–2294.

Hopkins, E. (2002). Two competing models of how people learn in games. Econometrica 70,

2141–2166.

Huberman, B. and R. Lukose (1997). Social dilemmas and internet congestion. Science 277,

535–537.

Hurkens, S. (1995). Learning by forgetful players. Games and Economic Behavior 11,

304–329.

Kemeny, J. G. and J. L. Snell (1976). Finite Markov Chains, Volume 40 of Undergraduate

Texts in Mathematics. Berlin: Springer-Verlag.

Kets, W. and M. Voorneveld (2005). Learning to be prepared. SSE/EFI Working Pa-

per 590.

Kojima, F. and S. Takahashi (2004). Anti-coordination games and dynamic stability. Work-

ing Paper, Harvard University . Forthcoming in International Game Theory Review.

McKelvey, R. D. and T. R. Palfrey (1995). Quantal response equilibria for normal form

games. Games and Economic Behavior 10, 6–38.

Meyer, D. J., J. B. Van Huyck, R. C. Battalio, and T. R. Saving (1992). History’s role

in coordinating decentralized allocation decisions. Journal of Political Economy 100,

292–316.

Monderer, D. and L. Shapley (1996). Potential games. Games and Economic Behavior 14,

124–143.

Nagel, K., S. Rasmussen, and C. Barrett (1997). Network traffic as a self-organized critical

phenomenon. In F. Schweitzer (Ed.), Self-organization of Complex Structures: From

Individual to Collective Dynamics, pp. 579. London: Gordon and Breach.

Ochs, J. (1999). Coordination in market entry games. In D. Budescu, I. Erev, and R. Zwick

(Eds.), Games and Human Behavior: Essays in Honor of Amnon Rapoport, pp. 143–172.

Mahwah, NJ: Erlbaum.

Renault, J., S. Scarlatti, and M. Scarsini (2005). A folk theorem for minority games. Games

and Economic Behavior 53, 208 – 230.

26



Rosenthal, R. (1973). A class of games possessing pure-strategy Nash equilibria. Interna-

tional Journal of Game Theory 2, 65–67.

Ross, S. (1996). Stochastic processes (Second ed.). New York, NY: Wiley & Sons.

Sandholm, W. H. (2001). Potential games with continuous player sets. Journal of Economic

Theory 97, 81–108.

Sandholm, W. H. (2007). Population Games and Evolutionary Dynamics. Cambridge, MA:

MIT Press. Forthcoming.
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