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Abstract

High breakdown-point regression estimators protect against large errors and data con-

tamination. We generalize the concept of trimming used by many of these robust estima-

tors, such as the least trimmed squares and maximum trimmed likelihood, and propose

a general trimmed estimator, which renders robust estimators applicable far beyond the

standard (non)linear regression models. We derive here the consistency and asymptotic

distribution of the proposed general trimmed estimator under mild β-mixing conditions

and demonstrate its applicability in nonlinear regression and limited dependent variable

models.
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1 Introduction

In econometrics, more and more attention is paid to techniques that can deal with data

contamination, which can arise from miscoding or heterogeneity not captured or presumed

in a model. Evidence about contamination of a part of data and its adverse effects on

estimators such as (quasi-) maximum likelihood is provided, for example, by Gerfin (1996)

in labor market data, by Sakata and White (1998) in financial time series, and by Č́ıžek

(2004a) in the prices of financial derivates. An effect of data contamination and large errors
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GENERAL TRIMMED ESTIMATION 2

on an estimator, that is, its robustness, is often characterized by the breakdown point:1 it

measures the smallest fraction of a sample that can arbitrarily change the estimator under

contamination (see Rousseeuw and Leroy, 2003, for the standard definition and Genton and

Lucas, 2003, for a discussion of the breakdown point under dependency). The breakdown

point of standard regression methods, such as ordinary least squares, typically approaches

zero with an increasing sample size. One way to construct a positive breakdown-point method

is to employ a standard (non-robust) estimator and to trim some“unlikely” observations from

its objective function. For example in linear regression, this is the case of the least trimmed

squares (LTS) by Rousseeuw (1985), the least trimmed absolute deviations (LTA) by Bassett

(1991), and the maximum trimmed likelihood (MTLE) by Neykov and Neytchev (1990) and

Hadi and Luceno (1997). Here we generalize the concept of trimming, prove its consistency

and asymptotic normality, and demonstrate its applicability in many econometric models

including nonlinear regression, time series, and limited dependent variable models.

First, let us briefly review existing results concerning the LTS, LTA, and MTLE estima-

tors. The LTS estimator belongs to the class of affine-equivariant estimators that can achieve

asymptotically the highest breakdown point 1/2 and it is generally preferred to the similar,

but slowly converging least median of squares (LMS; Rousseeuw, 1984).2 Thus, LTS has

been receiving a lot of attention from the theoretical, computational, and application points

of view. There are extensions involving nonlinear regression (Stromberg, 1993), weighted LTS

(Vı́̌sek, 2002), and an adaptive choice of trimming (Č́ıžek, 2002; Gervini and Yohai, 2002),

and in most of these cases, the asymptotic and breakdown behavior is known in the standard

regression model with i.i.d. regressors and errors. Simultaneously, there has been a significant

development in computational methods (Agulló, 2001; Gilloni and Padberg, 2002). Last, but

not least, there are also first applications of LTS in economics (Temple, 1998; Zaman et al.,

2001) and finance (Knez and Ready, 1997; Kelly, 1997).

Next, the LTA estimator has not attracted much attention yet despite its favorable com-

putational and robustness properties (Hawkins and Olive, 1999). The asymptotic properties

are known in the univariate location model (Tableman, 1994) and linear regression (Hössjer,

1994). Finally, the MTLE estimator, which can produce the LMS, LTS, maximum likelihood,
1There are also other concepts and measures of robustness, see Hampel et al. (1986) for an overview.
2A significant improvement of LMS by smoothing its objective function was recently proposed by Zinde-

Walsh (2002).
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and some other estimators in special cases (Hadi and Luceno, 1997), has been studied from

the robustness point of view and applied in the context of (generalized) linear models (Van-

dev and Neykov, 1998; Müller and Neykov, 2003). Despite of the appealing concept of the

trimmed likelihood, the asymptotic results are known only in the case of linear regression

with Gaussian errors (Vandev and Neykov, 1993).

The aim of this work is to generalize the principle of LTS, LTA, and MTLE, that is, trim-

ming of “unlikely” observations from the model point of view. The proposed general trimmed

estimator (GTE) does not only include LTS, LTA, and MTLE as special cases, but also allows

us to combine the trimming principle with many other existing parametric and semiparamet-

ric estimators in a variety of econometric models in order to make these estimators robust.

For GTE based on extremum estimators defined by a smooth objective function, we prove

its consistency and derive its asymptotic distribution under rather general conditions, which

permit applying trimmed estimators in a wide range of econometric applications including

time series, panel data, and limited dependent variable models. Thus, the application area

of robust trimmed estimators is extended substantially. Another important consequence of

the derived results is the consistency of LTA and the consistency and asymptotic normality

of MTLE in general multivariate location and regression models, which was not available up

to now. The main tools in achieving this are the (uniform) law of large numbers (Andrews,

1988 and 1992) and the uniform central limit theorem (Arcones and Yu, 1994) for mixing

processes. On the other hand, the computational issues and robustness properties of GTE,

which are presumably analogous to those of LTS, LTA, and MTLE, are not discussed here to

a larger extent because of many existing studies that address the computation and breakdown

behavior of trimmed estimators.

In the rest of the paper, we first propose the general trimmed estimator in Section 2, where

we also extensively discuss assumptions needed for studying asymptotic properties of GTE.

Asymptotic results are summarized in Section 3. A number of specific trimmed estimators in

various econometric models is presented in Section 4. The proofs are provided in Appendix.

2 General trimmed estimator

Let us now introduce the general trimmed estimator (Sections 2.1). Later, the assumptions

used in the paper and an alternative definition of GTE are discussed (Sections 2.2 and 2.3).
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2.1 General trimmed estimator

Let us consider a sample (xi, yi)n
i=1, where xi ∈ Rk represents a vector of explanatory variables

and yi ∈ R denotes the dependent variable. Such data can be described, for example, by a

(non)linear regression model

yi = m(xi, β
0) + εi, (1)

where m(xi, β) is a regression function of explanatory variables xi and unknown parameters

β and εi is a continuously distributed error term. To estimate, we assume that s(xi, yi;β)

represents a loss function identifying the true value β0 of parameter vector β ∈ B in a

compact parameter space B ⊂ Rp.3 For example, s(xi, yi;β) = {yi−m(xi, β)}2 in the case of

the least squares estimation of model (1) and s(xi, yi; β) = − ln l(xi, yi; β) in the case of the

log-likelihood criterion. Further, let small values of s(xi, yi; β) represent likely observations

under a given model (“good fit”, small squared residuals, high likelihood) and large values of

s(xi, yi; β) correspond to unlikely values (“bad fit”, large squared residuals, low likelihood).

To achieve a high breakdown point, many robust methods such as LTS and MTLE trim

unlikely observations, that is, observations (xi, yi) with large values of the loss function

s(xi, yi; β). Abstracting this concept, the general trimmed estimator β̂
(GTE,h)
n can therefore

be defined as

β̂(GTE,h)
n = arg min

β∈B

h∑

j=1

s[j](β), (2)

where s[j](β) represents the jth smallest order statistics of s(xi, yi;β), i = 1, . . ., n. Thus,

the GTE estimate minimizes the loss of h most likely observations under a given parametric

model. Apparently, this definition includes the LTS and MTLE estimators as special cases

for s(xi, yi;β) being equal to {yi −m(xi, β)}2 and − ln l(xi, yi;β), respectively.

The robust properties of trimmed estimators, especially their breakdown point, are closely

related to the trimming constant h, which must satisfy n/2 < h ≤ n for an affine-equivariant

estimator. This follows from definition (2), which implies that n − h observations with the

largest losses do not directly affect the estimator. In other words, the n − h observations

that are most unlikely in a given parametric model are dropped from the objective func-

tion. For example, in the case of the least-squares loss and m(x, β) = g(x>β), where g(t) is

3The assumption xi ∈ Rk and yi ∈ R introduced here corresponds to the most traditional use in regression
models, but the presented results are valid also for yi ∈ Rl and general multivariate models.
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unbounded for t → ±∞, Stromberg and Ruppert (1992) showed that the breakdown point

equals asymptotically 1/2 for h = [n/2] + 1 (most robust choice) and 0 for h = n (nonlinear

least squares). For more details on the properties of LTS in linear and nonlinear regression,

see Č́ıžek and Vı́̌sek (2000), Vı́̌sek (2000), and Č́ıžek (2006a), Stromberg (1993), respectively.

The robustness properties of MTLE are similar to those of LTS and they were studied in the

(generalized) linear regression models (Vandev and Neykov, 1998; Müller and Neykov, 2003).

Despite flexibility of definition (2), an even more general form of trimming is necessary

to make trimmed estimation operational in some models (e.g., binary-choice or panel data

models). Let us introduce an auxiliary trimming function r(xi, yi; β), which also indicates

likely and unlikely observations in a given model by small and large values, respectively,

and let r[j](β) denote the jth smallest order statistics of r(xi, yi;β), i = 1, . . ., n. Further,

let sr:[j](β) be the value of s(xl, yl; β) at observation (xl, yl) corresponding to the jth order

statistics, r[j](β) = r(xl, yl; β). Then the general trimmed estimator (GTE) is defined by

β̂(GTE,h)
n = arg min

β∈B

h∑

j=1

sr:[j](β). (3)

In other words, the ordering of observations and their inclusion in the objective function is

not determined by ordering values s(xi, yi; β) of the loss function s(x, y; β), but by order-

ing values r(xi, yi; β) of the auxiliary trimming function r(x, y; β). Although the existing

trimmed estimators are based on r(x, y;β) = s(x, y; β), using GTE in binary-choice models,

for instance, will require r(x, y; β) = maxy s(x, y; β) (see Section 4 for details).

To provide an overview how GTE nests and extends existing estimators, a summary of

known and proposed trimmed estimators is presented in Table 1. Clearly, there are two

important contributions of this paper: first, the asymptotic normality of MTLE, which was

studied only from the robust point of view up to now, and second, the generalization of the

trimmed estimators so that they can be employed in the context of limited dependent variable

models. On the other hand, the breakdown point and other robust properties of trimmed

estimators are only briefly mentioned in the rest of the paper and an interested reader is

referred to the articles mentioned in Table 1.

Before discussing assumptions concerning GTE, let us shortly return to the trimming

constant h. Naturally, the choice of the trimming constant h should vary with the sample
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Table 1: Overview of existing and proposed trimmed estimators that are nested by the GTE
concept. Their previously published robust and asymptotic properties are indicated by the
reference to the corresponding publication, whereas new results are marked by the reference
to section, where they can be found in this paper.

Model Method Robust properties Asymptotic
properties

Linear regression Least trimmed squares
(Rouseeuw, 1985)

Rousseeuw and Leroy
(2003)

Č́ıžek (2006a)

Least trimmed absolute
deviations (Bassett, 1991)

Hawkins and Olive
(1999)

Hössjer (1994)

Maximum trimmed
likelihood (Hadi and
Luceno, 1997)

Vandev and Neykov
(1998)

Section 3

Generalized
linear models

Maximum trimmed
likelihood (Hadi and
Luceno, 1997)

Neykov and Müller
(2003)

Section 3

Limited
dependent
variable models

GTE: examples for
truncated regression
(Č́ıžek, 2007)

— Section 3

Binary-choice
models

GTE: Maximum
symmetrically trimmed
likelihood (Section 4.2)

Č́ıžek (2006b) Section 3

size n, and therefore, we have to work with a sequence of trimming constants hn. As hn/n

determines the fraction of a sample included in the GTE objective function, and consequently,

the robust properties of GTE, we want to asymptotically fix this fraction at λ, 0 < λ ≤ 1.

The trimming constant for a given sample size n can be then defined by hn = [λn], where

[x] represents the integer part of x (in general, one can also consider any sequence {hn}n∈N

such that hn/n → λ). In what follows, we derive asymptotic properties of GTE for any

0 < λ ≤ 1.4 However, to ensure the robustness of affine-equivariant trimmed estimators,

λ ≥ 1/2 must hold so that the estimator can“distinguish”the majority of correct observations

from the minority of contaminated data points (Rousseeuw, 1997). Even though the value

λ = 1/2 corresponds to the most robust choice in models with continuously distributed
4Theoretically, it is possible to also consider the case hn/n → λ = 0. Although it can also lead to consistent

estimators, the convergence rate would be below the
√

n rate characterizing the cases with λ > 0 and the
presented proofs would not apply.
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response variable (see Müller and Neykov, 2003, for the case of generalized linear models),

the most robust choice of λ can differ for other models. For example, the most robust choice

of λ satisfies λ ≥ 2/3 in dichotomous binary-choice models (Č́ıžek, 2006b).

2.2 Assumptions

Let us now complement the GTE definition first by some notation and definitions and later

by assumptions on the random variables and loss and trimming functions needed for further

analysis.

First, we refer to the distribution functions of s(xi, yi; β) and r(xi, yi;β) as Fβ(z) and

Gβ(z) and to the corresponding probability density functions, if they exist, as fβ(z) and

gβ(z), respectively. At the true parameter value β0, we also use a simpler notation F ≡ Fβ0

and G ≡ Gβ0 , and similarly for density functions, f ≡ fβ0 and g ≡ gβ0 . Whenever we

need to refer to the quantile functions corresponding to Fβ and Gβ, notation F−1
β and G−1

β

is used. Next, because the derivatives of functions s(x, y;β) and r(x, y; β) are taken only

with respect to β here, we denote them simply by s′(x, y; β), r′(x, y;β), and so on. Two

purely mathematical symbols we need are the indicator function I(A), which equals 1 if A

is true and 0 otherwise, and an open δ-neighborhood of a point x in a Euclidean space Rl:

U(x, δ) =
{

z ∈ Rl
∣∣ ‖z − x‖ < δ

}
.

Second, let us introduce the concept of β-mixing, which is central to the distributional

assumptions made in this paper. A sequence of random variables {Xi}i∈N is said to be

absolutely regular (or β-mixing) if

βm = sup
t∈N

E sup
B∈σf

t+m

|P (B|σp
t )− P (B)| → 0

as m → ∞, where the σ-algebras σp
t = σ(Xt, Xt−1, . . .) and σf

t = σ(Xt, Xt+1, . . .); see

Davidson (1994) or Arcones and Yu (1994) for details. Numbers βm,m ∈ N, are called

mixing coefficients.

Now, I specify all the assumptions necessary to derive the consistency and asymptotic

normality of GTE (a smaller subset of assumptions sufficient for the consistency of GTE is

discussed at the end of the section). They form three groups: distributional Assumptions

D for random variables (xi, yi), Assumptions F concerning properties of the loss function
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s(x, y; β) and auxiliary trimming function r(x, y;β), and finally, identification Assumptions I.

Assumptions D

D1 Random variables {yi, xi}i∈N form a strongly stationary absolutely regular sequence of

random vectors with mixing coefficients satisfying mrβ/(rβ−2) (log m)2(rβ−1)/(rβ−2) βm →
0 as m → +∞ for some rβ > 2.

D2 The distribution function Gβ of r(xi, yi;β) is absolutely continuous for any β ∈ B.

D3 Assume that for mG = infβ∈B G−1
β (λ) and MG = supβ∈B G−1

β (λ), it holds that

Mgg = sup
β∈B

sup
z∈(mG−δg ,MG+δg)

gβ(z) < ∞

and

mgg = inf
β∈B

inf
z∈(−δg ,δg)

gβ

(
G−1

β (λ) + z
)

> 0

for some δg > 0.

Having a general objective function s(x, y; β), Assumption D1 is a one of rather weak con-

ditions for the uniform central limit theorem used by Andrews (1993) and Arcones and Yu

(1994), for instance. Assumption D2 indicates that at least one random variable have to

be continuously distributed. Note though that the absolute continuity of Gβ is necessary

only in a neighborhood of its λ-quantile G−1
β (λ), as used in Assumption D3. Assumption D3

formalizes two things: first, the density function gβ has to be bounded uniformly in β ∈ B,

which prevents distribution Gβ to become or be arbitrarily close to a discrete or singular one

for some β ∈ B. Second, the density function has to be positive in a neighborhood of the λ-

quantile of Gβ, that is, around the chosen “trimming” point of the r(xi, yi; β) distribution. In

a less general setting when structure of a model is known, Assumption D3 is usually implied

by G ≡ Gβ0 being absolutely continuous with a density function g ≡ gβ0 positive, bounded,

and differentiable around G−1(λ); see Č́ıžek (2006a) for the case of nonlinear regression. Dif-

ferentiability of the density function g around the point corresponding to the λ-quantile of

the r(xi, yi; β0) distribution is a standard condition needed for the analysis of rank statistics

(see Hössjer, 1994, and Zinde-Walsh, 2002, for instance).
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Next, several conditions on the loss function s(x, y; β) and auxiliary trimming function

r(x, y; β) have to be specified. The GTE concept aims to add robust qualities to extremum

estimators that lack robustness, but preferably possess other desirable properties such as

asymptotic normality and some kind of optimality. Since the loss function defining an ex-

tremum estimator typically has to be smooth to guarantee such properties and because the

trimming function is usually closely related to the loss function (see Section 2.1 and Č́ıžek,

2007), we will assume that both functions s(x, y;β) and r(x, y; β) are differentiable, at least

in a neighborhood U(β0, δ) of β0. Similarly to other extremum estimators, the asymptotic

variance of GTE will then depend on the expectations of these derivatives (cf. Manski, 1988).

Specifically, it depends on the variance of the normal equations (see Lemma 2.1 in Section 2.3),

Vs(λ) = E
{

s′(xi, yi; β0)s′(xi, yi; β0)>I
(
r(xi, yi; β0) ≤ G−1(λ)

)}
, (4)

and on the expected value of the derivative of the normal equations with respect to parameters

β, which, by the product rule, consists of the trimmed second derivative of the loss function,

Qs(λ) = E
{
s′′(xi, yi; β0)I

(
r(xi, yi;β0) ≤ G−1(λ)

)}
, (5)

and the derivative of the expectation of the trimming indicator in the normal equations,

Js(λ) =
∂

∂β>
E

{
s′(xi, yi;β0)I

(
r(xi, yi;β) ≤ G−1

β (λ)
)}∣∣∣∣

β=β0

. (6)

Assumptions F

Let us assume that there are a positive constant δ > 0, a neighborhood U(β0, δ), and an

integer n0 ∈ N such that the following assumptions hold.

F1 Let s(xi, yi; β) and r(xi, yi; β) be continuous (uniformly over any compact subset of the

support of (x, y)) in β ∈ B, r(xi, yi; β) be differentiable in β on U(β0, δ) almost surely,

and s(xi, yi;β) be twice differentiable in β on U(β0, δ) almost surely with the locally

Lipschitz second derivative s′′(xi, yi; β).

F2 Let {r(xi, yi; β)|β ∈ U(β0, δ)} and {s′(xi, yi; β)|β ∈ U(β0, δ)} form VC classes of func-

tions. Moreover, let us assume that the trimmed envelope Es(x) = supβ∈U(β0,δ) supn≥n0
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|s′(xi, yi; β)I(r(xi, yi; β) ≤ r[hn](β))| has finite rβ-th moments.

F3 Expectations E supβ∈B |r[hn](β)|, E supβ∈B supn≥n0
|s(xi, yi;β)I(r(xi, yi; β) ≤ r[hn](β))|,

E supβ∈U(β0,δ) supn≥n0
|∂s(xi, yi;β)/∂βk · ∂s(xi, yi;β)/∂βl · I(r(xi, yi; β) ≤ r[hn](β))|,

and E supβ∈U(β0,δ) supn≥n0
|∂2s(xi, yi;β)/∂βk∂βl · I(r(xi, yi; β) ≤ r[hn](β))| exist and

are finite for k, l = 1, . . . , p. Moreover, assume that Qs(λ) + Js(λ) and Vs(λ) are

nonsingular positive definite matrices.

F4 Conditional expectation

E

{
sup

β∈U(β0,δ)

∣∣s′(xi, yi; β)I(r(xi, yi; β) ∈ I(β))
∣∣
∣∣∣∣∣∃β ∈ U(β0, δ) :r(xi, yi; β) ∈ I(β)

}
,

(7)

where I(β) = {z : |z −G−1(λ)| ≤ |z − r[hn](β)|}, is uniformly bounded for n ≥ n0.

As already discussed, the differentiability of the loss and trimming functions are standard

assumptions. On the other hand, Assumption F2, which allows us to derive the convergence

rate of the order statistics in this general framework, deserves further comments, because it

limits the class of functions s′(x, y; β) and r(x, y; β) to VC classes (see Pollard, 1984, and van

der Vaart and Wellner, 1996, for a definition). Although limited, they cover many common

functions including polynomial, logarithmic, and exponential functions, their sums, products,

maxima and minima, monotonic transformations, and so on. For example, trimming func-

tions having a single-index form τ(x>i β) with a monotonic link function τ are covered by

Assumption F2. Even though this assumption is not necessarily restrictive in many contexts

and it is not needed for the proof of consistency, it can be omitted as long as we impose

stronger distributional assumptions. An alternative set of assumptions can be used to prove

the Lrβ -continuity of I(r(xi, yi; β) ≤ G−1
β (λ)) in U(β0, δ) and to limit the bracketing cover

numbers following Andrews (1993). Consequently, the results of Doukhan et al. (1995) could

be employed instead of Arcones and Yu (1994) that are used in the current paper.

Further, let us comment Assumption F3 concerning the existence of various expectations.

First, the expectations Vs(λ), Qs(λ), and Js(λ) are trimmed forms of the standard expecta-

tions (variances) that appear in the asymptotic variances of extremum estimators (see, e.g.,

Pakes and Pollard, 1989). Next, we assume that the trimmed derivatives of the loss function

s(x, y; β) have an integrable majorant in some small neighborhood U(β0, δ). This is not very
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restrictive given that those expectation have to exist at β0, that is for δ = 0, and the deriva-

tives are continuous. Additionally, we have to assume the existence of integrable majorants

of the trimming function and trimmed loss function on the whole parametric space B. The

identification assumptions presented below however require that the parametric space B is

compact and thus bounded, which makes Assumption F3 much less strict (alternatively, one

can assume e.g. supβ∈B E |r(xi, yi;β)|1+ε for some ε > 0). The assumptions of the bounded

parametric space and the existence of the integrable majorants of r(x, y;β) and trimmed

s(x, y; β) can be relaxed only in the case of linear regression (see Manski, 1988) or models

and estimators that generate normal equations with a structure very similar to the linear-

regression case (note that Assumption F2 can be relaxed in such cases as well). This holds, for

example, in the censored regression estimated by semiparametrically censored least squares

(Powell, 1986) and in the logistic regression (see Gourieroux and Monfort, 1981).

Additionally, the proof of
√

n consistency requires an unusual regularity assumption As-

sumption F4, which is one of the (weak) links between the loss function s(x, y; β) and auxil-

iary trimming function r(x, y; β). Considering small intervals around G−1(λ), Assumption F4

just expresses the idea that the loss function should not behave “wildly” around the trimming

point; that is, the trimmed derivative s′(xi, yi;β) should be bounded on average for xi, yi, and

β such that r(xi, yi;β) is close to G−1(λ). To exemplify, let us use a linear regression model

with s(x, y;β) = r(x, y; β) = (y−x>β)2. Then s′(xi, yi; β) = −2(yi−x>i β)xi and the condition

r(xi, yi; β) ∈ I(β) has the form |(yi−x>i β)2−G−1(λ)| ≤ |r[hn](β)−G−1(λ)|. Under this condi-

tion, the derivative s′(xi, yi; β) is bounded in absolute value by ‖xi‖
√

max{G−1(λ), r[hn](β)},
which converges to ‖xi‖

√
max{G−1(λ), G−1

β (λ)} as n → +∞ uniformly in β ∈ U(β0, δ) (see

Lemma A.2). Thus for a sufficiently large n, Assumption F4 practically means that expecta-

tion E ‖xi‖ is finite.

Finally, we introduce standard identification conditions.

Assumptions I

I1 B is a compact parametric space.

I2 For any ε > 0 and U(β0, ε) such that B\U(β0, ε) is compact, there is α(ε) > 0 such that

min
β∈B\U(β0,ε)

E
[
s(xi, yi;β) · I

(
r(xi, yi; β) ≤ G−1

β (λ)
)]
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−E
[
s(xi, yi; β0) · I

(
r(xi, yi;β0) ≤ G−1

β0 (λ)
)]

> α(ε).

I3 For any n ∈ N, it holds that E
[
s′(xi, yi; β0)I(r(xi, yi; β0) ≤ r[hn](β0))

]
= 0.

The identification assumptions form the second link between the general objective function

s(x, y; β) and the trimming function r(x, y; β). Whereas Assumption I2 formalizes the notion

of the trimmed objective function having a global minimum at β0, Assumption I3 primar-

ily states that the employed trimming does not invalidate the normal equations (see also

Lemma 2.1 below). This can usually be achieved by trimming symmetrically with respect to

s′(xi, yi;β0); see examples in Section 4.

To close this section, let us note that Assumptions D, F, and I are sufficient to prove the

asymptotic normality of GTE. If only consistency is required, one can omit all assumptions

concerning the derivatives of the functions s(xi, yi;β) and r(xi, yi;β) (Assumptions F), As-

sumption F2 on VC classes, and also weaken Assumption D1, since centered s(xi, yi; β) can

form an L1+δ-mixingale in the most general case (Andrews, 1988).

2.3 Alternative definition

Before proving the main results of the paper, some basic properties of the GTE objective

function Sn(β) =
∑hn

j=1 sr:[j](β) and its alternative formulation, which is more suitable for

deriving asymptotic results, are introduced.

Lemma 2.1 Under Assumptions D2 and F1, Sn(β) is continuous on B, twice differentiable

at β̂
(GTE,hn)
n as long as β̂

(GTE,hn)
n ∈ U(β0, δ), and almost surely twice differentiable at any

fixed point β ∈ U(β0, δ). Furthermore,

S(l)
n (β) =

n∑

i=1

s(l)(xi, yi; β) · I(
r(xi, yi; β) ≤ r[hn](β)

)
, (8)

almost surely for l = 0 at any β ∈ B and for l = 1, 2 at any β ∈ U(β0, δ), where s(l)(xi, yi;β)

represents the lth derivative of s(xi, yi; β) with respect to β.

Proof: See Appendix A. ¤

In general, this definition is not equivalent to the one used in (3) unless all the residuals

are different from each other. However, Assumption D2 guarantees this with probability one.
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Hence, we will use this notation and definition of Sn(β) in the rest of the paper.

3 Asymptotic properties

Let us now present the main asymptotic results concerning GTE: its consistency and asymp-

totic distribution. In all cases, we split the GTE objective function to two parts:

Sn(β) =
n∑

i=1

s(xi, yi;β) · I(
r(xi, yi; β) ≤ r[hn](β)

)

=
n∑

i=1

s(xi, yi;β) ·
[
I
(
r(xi, yi; β) ≤ r[hn](β)

)− I
(
r(xi, yi; β) ≤ G−1

β (λ)
)]

(9)

+
n∑

i=1

s(xi, yi;β) · I
(
r(xi, yi; β) ≤ G−1

β (λ)
)
. (10)

Whereas the first term (9) on the right-hand side will be shown to be small because of the

convergence of order statistics to quantiles, r[hn](β) → G−1
β (λ), the second term (10) on the

right-hand side will be dealt with by standard asymptotic tools and shown to converge to

S(β) = E
{

s(xi, yi;β) · I
(
r(xi, yi; β) ≤ G−1

β (λ)
)}

.

First, using the uniform law of large numbers, we prove the consistency of the GTE

estimator β̂
(GTE,hn)
n minimizing Sn(β) on the parametric space B.

Theorem 3.1 Let s(xi, yi;β) and r(xi, yi;β) be continuous functions on B as specified in

Assumption F1 and let Assumptions D, F3, and I hold. Then the general trimmed estimator

β̂
(GTE,hn)
n is weakly consistent, that is, β̂

(GTE,hn)
n → β0 in probability as n → +∞.

Proof: See Appendix B. ¤

Next, the asymptotic distribution of GTE is of interest. To derive it, one has to study

the behavior of the normal equations in a neighborhood of β0 and to prove their asymptotic

linearity. More specifically, we analyze the asymptotic behavior of S
′
n(β0−n−

1
2 t)−S

′
n(β0) as

a function of t, ‖t‖ ≤ M = const. (Lemma A.7 in Appendix A). Once the
√

n consistency of

GTE is proved (Lemma B.1 in Appendix B), the asymptotic-linearity result can be applied

to the GTE estimates because β̂
(GTE,hn)
n = β0 − n−

1
2 t, ‖t‖ ≤ M, with probability arbitrarily

close to one. The application of the central limit theorem results then in the asymptotic
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normality of GTE.

Theorem 3.2 Let Assumptions D, F, and I hold. Then the general trimmed estimator

β̂
(GTE,hn)
n is asymptotically normal, that is,

√
n

(
β̂

(GTE,hn)
n − β0

)
F→ N(0, V (λ)) as n → +∞,

where

V (λ) = {Qs(λ) + Js(λ)}−1 · Vs(λ) · {Qs(λ) + Js(λ)}−1 .

Proof: See Appendix B. ¤

Although we proved the asymptotic normality of GTE, let us note that the use of the

derived formula for the asymptotic variance of β̂
(GTE,hn)
n is relatively limited because of matrix

Js(λ), which is difficult to estimate. If the dependent variable conditionally on the explanatory

variables is continuously distributed, for instance, which is the case of (non)linear or truncated

regression, it is possible to derive a more specific of form of Js(λ) (Č́ıžek, 2006a). Specifically,

the expected value of the indicator function in Js(λ), see equation (6), is asymptotically linear

in β and proportional to g{G−1(λ)} (
β − β0

)
(Č́ıžek, 2004b, Lemma A.8). In such cases, one

can then estimate the asymptotic variance V (λ) even though it relies on a nonparametric

estimate of the probability density function of regression residuals. In other cases, such as

binary-choice regression (Section 4.2), Js(λ) can be expressed as a non-trivial function of the

joint probability distribution of (yi, xi), which does not facilitate a practical computation.

In general, the estimation of the GTE asymptotic variance V (λ) has to be therefore done

by bootstrap. Theoretically, bootstrap can be used for GTE in the same situations as for

the original non-trimmed estimator. There are however two issues that have to be accounted

for. First, to preserve the robust properties of GTE also in the case of variance estimation, a

weighted bootstrap has to be used to prevent bootstrap samples containing a large share of

contaminated observations (Salibian-Barrera and Zamar, 2002) unless a parametric bootstrap

can be employed. Second, the brute force application of the bootstrap principle to a trimmed

estimator would be highly computationally demanding and algorithms for GTE and bootstrap

have to be integrated to achieve fast computation (Willems and van Aelst, 2005).

4 Examples of trimmed estimators

In this section, we discuss some trimmed estimators and models where they can be applied.

To verify their feasibility, we check the identification Assumptions I2 and I3, as discussed
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in Section 4.1. Later, we present examples of trimmed estimators based on the likelihood

function in nonlinear and binary-response regression (Section 4.2).

4.1 Identification condition

A crucial ingredient of the consistency and asymptotic normality of GTE are the identification

Assumptions I2 and I3, which differ from the usual least squares or maximum likelihood

identification conditions by inclusion of trimming. The identification Assumption I2 can be

formulated so that

IC(β) = E
[
s(xi, yi;β) · I

(
r(xi, yi; β) ≤ G−1

β (λ)
)]

(11)

as a function of β has a unique minimum at β0. The Assumption I3 just means that

FOC(β0) = E
[
s′(xi, yi; β0) · I(

r(xi, yi; β0) ≤ r[hn](β
0)

)]
= 0. (12)

Whereas Assumption I3 can be checked by a straightforward evaluation of (12), Assump-

tion I2 is more difficult to verify due to its global character. Let us therefore note that, if

s(x, y; β) ≡ r(x, y; β), proving Assumption I2 amounts to proving that r(xi, yi; β) stochasti-

cally dominates r(xi, yi; β0) for any β 6= β0. In the case of the first-order stochastic domi-

nance, this means that Gβ(z) ≤ Gβ0(z) for all z ∈ R, where Gβ(z) represents the distribution

function of r(xi, yi; β), β ∈ B. This follows from

IC(β) =
∫ G−1

β (λ)

−∞
rdGβ(r) =

∫ λ

0
G−1

β (t)dt

and the fact that the stochastic dominance implies G−1
β (t) ≥ G−1

β0 (t) for any t ∈ 〈0, 1〉. To

guarantee that the minimum of IC(β) at β0 is unique, the stochastic dominance has to be

strict for any β 6= β0 at one or more points z < G−1
β0 (λ) (or t < λ).

For example, consider the nonlinear regression model (1) with εi being symmetrically

distributed around zero and independent of xi and the LTS estimator defined by s(x, y;β) =

r(x, y; β) = {y−m(x, β)}2. One can then easily see that condition (12), E[εixiI(ε2
i ≤ ε2

[hn])] =

0, is satisfied because of the symmetry of εi distribution and that (11) is minimized at β0 be-

cause s(xi, yi;β) = {yi−m(xi, β)}2 = {εi + [m(xi, β
0)−m(xi, β)]}2 first-order stochastically
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dominates s(xi, yi;β0) = ε2
i . For details, see Č́ıžek (2007), who not only verifies these iden-

tification conditions, but also proposes least-squares-based GTE for truncated and censored

regression models.

4.2 Maximum trimmed likelihood

Our main example concerns GTE based on the likelihood function, which in (non)linear

regression coincides with MTLE. After mentioning briefly its identification in nonlinear re-

gression, we focus on an example, where standard MTLE does not apply, but it is possible to

construct a likelihood-based GTE: binary-choice regression. Other applications such as GTE

in truncated and censored regression are discussed in Č́ıžek (2007). Note that we assume

here for simplicity that data are independent and identically distributed.

The MTLE estimator in nonlinear regression model (1) is a special case of GTE for

r(x, y; β) = s(x, y; β) = − ln φ{y −m(x, β)}, where φ denotes the density function of εi. As-

sumptions I2 and I3 can be verified in a similar way as for LTS in Section 4.1 since functions

r(x, y; β) and s(x, y;β) are identical (this time using the fact that the likelihood function has

a minimum at β0). The most important additional assumption is again the (conditional) sym-

metry of the εi distribution, which implies that introducing “trimming” into the identification

conditions does not invalidate them. For example, under conditional symmetry of φ(εi) given

xi, E[φ′(εi)/φ(εi)|xi] = 0 implies E
[
φ′(εi)/φ(εi) · I

(− lnφ(εi) ≤ {− ln φ(εi)}[hn]

)∣∣xi

]
= 0.

Applying the GTE concept to the maximum likelihood estimation becomes less trivial

once we consider discrete models, such as binary-choice models. In this case, the dependent

variable takes on only two values, yi ∈ {0, 1}, and its conditional expectation is described by

E(yi|xi) = P (yi = 1|xi) = Φ(x>i β), where Φ is a symmetric absolutely continuous distribution

function with a differentiable density φ (e.g., Φ is the standard normal distribution function

in the case of probit). The log-likelihood contribution is then described by

s(xi, yi; β) = − ln l(xi, yi; β) = −yi lnΦ(x>i β)− (1− yi) ln{1− Φ(x>i β)}.

The MTLE estimator, which sets r(x, y; β) = s(x, y;β), cannot be applied here because

by trimming unlikely observations, such as (yi, xi) with yi = 1 and Φ(x>i β) close to zero,

MTLE induces separation of non-trimmed data with yi = 1 and with yi = 0 in the space
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of explanatory variables. Consequently, the MTLE estimate is not identified (Albert and

Anderson, 1984). Moreover, the identification condition (12) is not satisfied for λ < 1:

FOC(β0) = E
[
−{

ln l(xi, yi; β0)
}′

I
(
r(xi, yi;β0) ≤ r[hn](β

0)
)]

= E

[{
−yiφ(x>i β0)

Φ(x>i β0)
xi +

(1− yi)φ(x>i β0)
1− Φ(x>i β0)

xi

}
I
(
r(xi, yi; β0) ≤ r[hn](β

0)
)]

(13)

= E

[
−P (yi = 1|xi)

φ(x>i β0)
Φ(x>i β0)

xiI
(
r(xi, 1;β0) ≤ r[hn](β

0)
)]

(14)

+ E

[
+P (yi = 0|xi)

φ(x>i β0)
1− Φ(x>i β0)

xiI
(
r(xi, 0;β0) ≤ r[hn](β

0)
)]

(15)

= E
{

φ(x>i β0)xi

[
I
(
r(xi, 0;β0) ≤ r[hn](β

0)
)−I

(
r(xi, 1;β0) ≤ r[hn](β

0)
)]}

(16)

equals in general zero only if for all possible values of the random vector xi

I
(
− lnΦ(x>i β0) ≤ r[hn](β

0)
)

= I
(
− ln{1− Φ(x>i β0)} ≤ r[hn](β

0)
)

(17)

(after we substituted for r(xi, yi;β0)); that is, if no trimming occurs, hn = n and λ = 1.5

On the other hand, this derivation hints that the identification condition would hold if

the trimming function r(x, y;β) satisfies r(x, 0;β) = r(x, 1;β); see (14)–(16). Therefore, we

propose to set r(xi, yi; β) = r(xi; β) = max
{− ln Φ(x>β),− ln[1− Φ(x>β)]

}
, for instance,

and use GTE minimizing

h∑

j=1

− ln l(xi, yi; β) · I
(
− max

y∈{0,1}
ln l(xi, y; β) ≤ r[hn](β)

)
. (18)

This GTE estimator, which can be also called maximum symmetrically trimmed likelihood

estimator, provides an example of a model and robust method, where the breakdown point is

not maximized for λ = 1/2. Č́ıžek (2006b) showed that the trimming constant λ maximizing

the breakdown point of GTE has to satisfy λ ≥ 2/3 in this case.

For r(xi; β) used in (18), the first-order condition (12) is obviously satisfied, see (14)–

(16), and it remains to verify the global identification Assumption I2. Since at least one

explanatory variable, let us say x1, has to be continuously distributed by Assumption D2, we
5We neglect the other “solution,” λ = 0, which results in objective function constantly equal to zero.
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first verify that

IC(β) = E
{[
−yi lnΦ(x>i β)− (1− yi) ln

{
1− Φ(x>i β)

}]
I
(
r(xi, β) ≤ G−1

β (λ)
)}

(19)

= E
{[
−P (yi = 1|xi) ln Φ(x>i β)− P (yi = 0|xi) ln

{
1− Φ(x>i β)

}]
I
(
r(xi, β) ≤ G−1

β (λ)
)}

= E
{[
−Φ(x>i β0) ln Φ(x>i β)−

{
1− Φ(x>i β0)

}
ln

{
1− Φ(x>i β)

}]
I
(
r(xi, β) ≤ G−1

β (λ)
)}

has a minimum at β0 conditionally on all other explanatory variables xi2, . . . , xip−1 (x0 being

the intercept). This will then imply the unconditional inequality in Assumption I2.

To prove it, note that function −Φ(t0) ln Φ(t)− {1−Φ(t0)} ln{1−Φ(t)}, where t0 ∈ R is

a constant and t ∈ R, has a unique minimum at t = t0 (property P1). This follows from the

corresponding first-order condition

−Φ(t0)φ(t)/Φ(t) + {1− Φ(t0)}φ(t)/{1− Φ(t)} = 0,

providing that Φ(t) is strictly increasing and − lnΦ(t) and − ln{1− Φ(t)} are convex (these

are sufficient conditions for the existence and uniqueness of MLE; see Silvapulle, 1981).

Now, keeping conditioning on xi2, . . . , xip−1 implicit, the index ti(β) = x>i β consists

only of the linear term xi1β1 and the constant term x>i β − xi1β1. Denoting t0i (β1) =

x>i (β0
0 , β1, β

0
2 , . . . , β0

p−1)
> = ti{(β0

0 , β1, β
0
2 , . . . , β0

p−1)
>} and the difference of the two indices

by δi(β) = ti(β)− t0i (β1), property P1 implies that

−Φ{t0i (β1)} ln Φ{t0i (β1) + δi(β)} − [1− Φ{t0i (β1)}] ln[1− Φ{t0i (β1) + δi(β)}]

is uniquely minimized at δi(β) = 0 irrespective of the value of index t0i (β1). Hence, the expec-

tation IC(β) can be at its minimum if and only if δi(β) = 0. Moreover for any β ∈ B min-

imizing IC(β), the trimming set defined by T1(β1) =
{

x1 : r(x1, β1) = r{t0i (β1)} ≤ G−1
β (λ)

}

does not depend on β1 (property P2) because P{T1(β1)} = λ by definition and t0i (β1) consists

only of a constant independent of β1 and the linear term xi1β1.

Moreover, property P1 further indicates that

−Φ{t0i (β0
1)} lnΦ{t0i (β1)} − [1− Φ{t0i (β0

1)}] ln[1− Φ{t0i (β1)}]
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achieves its unique minimum at β1 = β0
1 for any value of x1 (identity t0i (β1) = t0i (β

0
1) implies

β1 = β0
1 because t0i (β1) is a linear function of β1 and x1). Together with property P2, it

follows from (19) that (still implicitly conditioning on xi2, . . . , xip−1)

IC(β) ≥ E
{[
−Φ(x>i β0) ln Φ(x>i β0)−

{
1− Φ(x>i β0)

}
ln

{
1− Φ(x>i β0)

}]
I
(
r(xi, β) ≤ G−1

β (λ)
)}

= E
{[
−Φ(x>i β0) ln Φ(x>i β0)−

{
1− Φ(x>i β0)

}
ln

{
1− Φ(x>i β0)

}]
I
(
r(xi, β

0) ≤ G−1(λ)
)}

= IC(β0).

Hence, to verify the global identification Assumption I2 unconditionally, one only has to show

that δi(β) = δi(β0) = 0 almost surely if and only if β0 = β0
0 , β2 = β0

2 , . . . , βp−1 = β0
p−1. This

can be however guaranteed by the usual full-rank condition E
[
xix

>
i

]
> 0, for instance.

5 Conclusion

Motivated by LTS, LTA, and MTLE, we proposed the general trimmed estimator, which

extends the applicability of high breakdown-point methods to a wide range of econometric

models, including nonlinear regression, time series, and limited dependent variable models.

GTE can be combined with many parametric estimation methods and it adds to them a

protection against data contamination. The following conclusions concern robust properties

of GTE, its extensions and use in applications.

Although we proved the consistency and derived the asymptotic distribution under rather

general conditions, the choice of trimming and robust properties of GTE are rather specific to

particular models. Such questions are currently addressed only in (generalized) linear models

and binary-choice regression and there are many areas for future research. In particular,

they include GTE based on estimation methods modifying the error distribution, such as

symmetrically trimmed least squares (Powell, 1986), and GTE in models including some

form of time dependence, such as panel data and time series (see Genton and Lucas, 2003).

Furthermore, we discussed only the most basic form of trimmed estimation, where obser-

vations are either included in or excluded from the GTE objective function. Nevertheless,

various weighted trimmed estimators and data-adaptive choice of trimming, only recently

introduced for LTS and MTLE, are straightforward to apply. In both cases, further research

on the choice of the trimming constant or weight function is necessary for practically any
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model outside of the generalized linear model class.

Finally, we argued that computational and finite sample properties of GTE could be in

many cases analogous to existing results concerning LTS, LTA, and MTLE. On the other

hand, most existing robust estimators are studied and applied in the context of location or

linear regression models, whereas possible applications of GTE also involve rather complex

nonlinear models. Hence, simulation studies have to be employed to learn more about finite

sample behavior of GTE under different circumstances. Last, but not least, existing algo-

rithms for evaluating trimmed estimators have to be adapted to many different models and

integrated with a bootstrap procedure for variance estimation.

Appendix

Here we present the proofs of lemmas and theorems on the order statistics of the trim-

ming function and on the GTE objective function (Appendix A) and on the consistency

and asymptotic normality of GTE (Appendix B). Note that the alternative definition (8)

of GTE is employed in all proofs. Additionally, the following notation is used: the prob-

ability space, on which {xi, yi} is defined, is denoted Ω; the loss and trimming functions

are written as si(β) = s(xi, yi;β) and ri(β) = r(xi, yi;β), respectively; and the asymp-

totic counterpart of the objective function Snn(β) = Sn(β)/n is referred to as S(β) =

E
{

s(xi, yi; β) · I(r(xi, yi;β) ≤ G−1
β (λ))

}
and the same applies to the respective derivatives.

Finally, since the behavior of the indicators I
(
r(xi, yi;β) ≤ r[hn](β)

)
, I

(
r(xi, yi; β) ≤ G−1

β (λ)
)
,

and their differences will be extensively studied, we define

ιin(β, K) = I
(
r(xi, yi; β) ≤ r[hn](β) + K

)
,

ν1i(β,K) = I
(
r(xi, yi;β) ≤ G−1

β (λ) + K
)
, ν2i(β, K) = I

(
r(xi, yi; β) ≥ G−1

β (λ)−K
)
,

ν1i(β) ≡ ν1i(β, 0), ν2i(β) ≡ ν2i(β, 0), and ιin(β) ≡ ιin(β, 0), and

νin(β) = I
(
r(xi, yi; β) ≤ r[hn](β)

)− I
(
r(xi, yi;β) ≤ G−1

β (λ)
)
.
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A Lemmas on order statistics and GTE objective function

Proof of Lemma 2.1: For a given sample size n, let us consider a fixed realization ω ∈
Ωn. The objective function Sn(β) at a particular point β ∈ B equals to one of functions

T1(β), . . . , Tl(β), where Tj(β) =
∑hn

i=1 skji(β), j = 1, . . . , l =
(

n
hn

)
, and {kj1, . . . , kjhn} ∈

{1, . . . , n}hn are sets of hn indices selecting observations from the sample. Each function

Tj(β) is uniformly continuous on B and twice differentiable in a neighborhood U(β0, δ).

There are two cases to discuss:

1. If one can find an index j and a neighborhood U(β, ε) such that Sn(β) = Tj(β) for

all β ∈ U(β, ε), Sn(β) is continuous at β. Additionally, if β ∈ U(β0, δ) there is a

neighborhood U(β, ε′) ⊂ U(β0, δ) for some ε′ < ε and Sn(β) = Tj(β) is even twice

differentiable at β (almost surely).

2. In all other cases, β lies on a boundary in the sense that there are some j1, . . . , jm such

that Sn(β) = Tj1(β) = . . . = Tjm(β). Since Sn(β) = Tj1(β) = . . . = Tjm(β) and all

functions Tji , i = 1, . . . , m, are continuous at β, Sn(β) is continuous at β as well.

Furthermore, Sn(β) is also differentiable provided that T
′
j1

(β) = . . . = T
′
jm

(β) and β ∈
U(β0, δ). This condition is always satisfied at β̂

(GTE,hn)
n ∈ U(β0, δ) as T

′
j1

(β̂(GTE,hn)
n ) =

. . . = T
′
jm

(β̂(GTE,hn)
n ) = 0; otherwise, β̂

(GTE,hn)
n would not minimize Sn(β).

Now, consider a fixed β ∈ U(β0, δ) (n is still fixed). Assumption D2 implies that

P (Ω0 = {ω ∈ Ωn |∃i, j ∈ {1, . . ., n}, i 6= j, such that ri(β, ω) = rj(β, ω)}) = 0.

Moreover, there is a δ′ > 0 such that ri(β) is continuous on Ū(β, δ′), and therefore, it is

also uniformly continuous on Ū(β, δ′), i = 1, . . . , n. Therefore, for any given ω /∈ Ω0 and

κ(ω) = 1
2 mini,j=1,...,n;i6=j |ri(β, ω)− rj(β, ω)| > 0 we can find an ε(ω) > 0 such that it holds

that supβ′∈U(β,ε(ω)) |ri(β′)− ri(β)| < κ(ω) for all i = 1, . . ., n. Consequently, the ordering of

r1(β), . . . , rn(β) is constant for all β′ ∈ U(β, ε(ω)) and there exist j such that Sn(β) = Tj(β)

almost surely as stated in point 1 (P (Ω\Ω0) = 1). Thus, Sn(β) is twice differentiable at β

almost surely.

Finally, the lemma directly follows from the two derived results: there are almost surely

no i and j such that ri(β) = rj(β) at any β ∈ B and any fixed n ∈ N and Sn(β) is almost
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surely twice differentiable at any β ∈ U(β0, δ). ¤

The next lemma just verifies that the uniform law of large numbers is applicable for

trimmed sums.

Lemma A.1 Let Assumptions D, F1, and I1 hold and assume that t(x, y;β) is a real-

valued function continuous in β uniformly in x and y over any compact subset of the sup-

port of (x, y). Moreover, for some R ⊆ R, assume that ti(β) ≡ t(xi, yi; β) has an inte-

grable majorant after trimming: (I) E supβ∈B,K∈R |ti(β)ν1i(β, K)| < ∞, or alternatively, (II)

E supβ∈B,K∈R supn≥n0
|ti(β)ιin(β, K)| < ∞ for some n0 ∈ N. Then

sup
β∈B,K∈R

∣∣∣∣∣
1
n

n∑

i=1

[ti(β)ν1i(β,K)]− E [ti(β)ν1i(β, K)]

∣∣∣∣∣ → 0

as n → +∞ in probability.

Proof: This result is an application of the generic uniform law of large numbers due to An-

drews (1992, Theorem 4).6 Most of the conditions of the uniform law of large numbers are

satisfied trivially or by assumption: (i) the parameter space B is compact by Assumption I1;

(ii) differences di(β, K) = ti(β)ν1i(β,K) − E [ti(β)ν1i(β, K)] are identically distributed (As-

sumption D1) and uniformly integrable (Davidson, 1994, Theorem 12.10) since E supβ∈B,K∈R

|ti(β)ν1i(β, K)| is finite by assumption (I) or by the Lebesgue theorem applied to the alter-

native assumption (II) (Davidson, 1994, Corollary 20.16 and Theorem 4.12); and (iii) finally,

the pointwise weak convergence of
∑n

i=1 di(β, K) → 0 at any β ∈ B and K ∈ R follows

from the weak law of large numbers for mixingales due to Andrews (1988) (any centered

mixing sequence forms a mixingale, and moreover, the differences di(β,K) are L1-bounded;

see Andrews, 1988, for more details).

Therefore, the only assumption of Andrews (1992, Theorem 4) which remains to be verified

is assumption TSE:

lim
ρ→0

P

(
sup

β∈B,K∈R
sup

β′∈U(β,ρ),K′∈U(K,ρ)

∣∣ti(β′)ν1i(β′, K ′)− ti(β)ν1i(β, K)
∣∣ > κ

)
= 0 (20)

for any κ > 0 ((20) implies TSE because of identically distributed observations, see Assump-

tion D1). To simplify the notation, the suprema are written only with the respective vari-
6For some functions we apply this lemma to, namely to those forming a VC class, the result directly follows

from Yu (1994).
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ables β, K, β′,K ′ without the corresponding sets B, R, U(β, ρ), U(K, ρ), respectively, which

are fixed throughout the proof. First, note that it holds for all β ∈ B and K ∈ R

sup
β,K

sup
β′,K′

∣∣ti(β′)ν1i(β′,K ′)− ti(β)ν1i(β, K)
∣∣

≤ sup
β,K

sup
β′,K′

∣∣ti(β′)
[
ν1i(β′,K ′)− ν1i(β, K)

]∣∣ (21)

+ sup
β,K

sup
β′,K′

∣∣[ti(β′)− ti(β)
]
ν1i(β, K)

∣∣ (22)

Hence, to verify assertion (20), we find for a given ε > 0 some ρ0 > 0 such that the probabil-

ities of (21) and (22) exceeding some κ > 0 are smaller than ε for all ρ < ρ0.

1. Let us start with (21). First, observe that

sup
β,K

sup
β′,K′

∣∣ti(β′)
[
ν1i(β′,K ′)− ν1i(β, K)

]∣∣ (23)

≤ 2 sup
β
|ti(β)ν1i(β,K)| sup

β,K
sup
β′,K′

∣∣ν1i(β′,K ′)− ν1i(β, K)
∣∣ ,

where supβ |ti(β)ν1i(β, K)| is a function independent of β possessing a finite expectation.

Because the difference |ν1i(β′,K ′)− ν1i(β, K)| is always lower or equal to one, (21) has an

integrable majorant independent of β. Therefore, if we show that

P

(
sup
β,K

sup
β′,K′

∣∣ν1i(β′,K ′)− ν1i(β, K)
∣∣ = 1

)
→ 0 (24)

as ρ → 0, it implies that (23) converges in probability to zero for ρ → 0 and n →∞ as well.

Second, let us derive an intermediate result regarding the convergence of distribution function

Gβ′ to Gβ. Assumption F1 implies that ri(β′) → ri(β) for β′ → β uniformly over any compact

subset of the support of x. Thus, ri(β′) → ri(β) for β′ → β in probability uniformly on

B due to Assumption I1. Recalling that Gβ(x) is the cumulative distribution function of

ri(β), it follows that Gβ′(x) → Gβ(x) for all x ∈ R (convergence in distribution) uniformly

on B because Gβ(x) is an absolutely continuous distribution function (Assumption D2).

Assumption D3 further implies that G−1
β′ (λ) converges to G−1

β (λ) uniformly on B.

Third, given the uniform convergence result of the previous paragraph, we can find some

ρ1 > 0 such that
∣∣∣G−1

β′ (λ) + K ′ −G−1
β (λ)−K

∣∣∣ < ε
8Mgg

for any β ∈ B, β′ ∈ U(β, ρ1), and K ′ ∈
U(K, ρ1), where Mgg is defined in Assumption D3. Further, we can find a compact subset

Ω1 ⊂ Ω, P (Ω1) > 1 − ε
2 , and corresponding ρ2 > 0 such that supβ,β′ |ri(β′, ω)− ri(β, ω)| <
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ε
8Mgg

for all ω ∈ Ω1 and ρ < ρ2 (Assumption F1). Hence, setting ρ0 = min {ρ1, ρ2}, it follows

that

P

(
sup
β,K

sup
β′,K′

∣∣ν1i(β′,K ′)− ν1i(β, K)
∣∣ = 1

)

≤ ε

2
+ P

(
∃β ∈ B : ri(β) ∈

(
G−1

β (λ)− ε

4Mgg
, G−1

β (λ) +
ε

4Mgg

))

≤ ε

2
+

2ε

4Mgg
·Mgg = ε

for any ρ < ρ0, which proves (24). Consequently, the expectation of (21) converges to zero

for ρ → 0 in probability.

2. We should deal now with (22) and prove that for any given κ > 0

lim
ρ→0

P

(
sup
β,K

sup
β′,K′

∣∣[ti(β′)− ti(β)
]
ν1i(β, K)

∣∣ > κ

)
= 0. (25)

First, note that the difference |[ti(β′)− ti(β)]ν1i(β,K)| ≤ |ti(β′)ν1i(β, K)|+|ti(β)ν1i(β,K)| ≤
2 supβ,K |ti(β)ν1i(β, K)| can be bounded from above by a function that is independent of β

and has a finite expectation. Let 2E supβ,K |ti(β)ν1i(β, K)| = UE .

Second, for an arbitrary fixed ε > 0, we can find a compact subset Aε of the support of (xi, yi)

(and its complement Aε) such that P ((xi, yi) ∈ Aε) > 1−κε/2UE and 2
∫
Aε

supβ,K |ti(β)ν1i(β, K)| <
κε/2. Given this set Aε and β ∈ B, we can employ continuity of ti(β) in β (uniform over all

(xi, yi) ∈ Aε) and find a ρ0 > 0 such that sup(xi,yi)∈Aε
supβ,β′ |ti(β′)− t(β)| < κε/2. Hence,

E

{
sup
β,β′

sup
K

∣∣[ti(β′)− ti(β)
]
ν1i(β, K)

∣∣
}

≤
∫

Aε

2 sup
β,K

|ti(β)ν1i(β, K)| dFx(xi)dFy(yi)

+
∫

Aε

κε

2
dFx(xi)dFy(yi) ≤ κε

2
+

κε

2
= κε,

and consequently,

P

(
sup
β,K

sup
β′,K′

∣∣[ti(β′)− ti(β)
]
ν1i(β, K)

∣∣ > κ

)
≤ 1

κ
E

[
sup
β,K

sup
β′,K′

∣∣[ti(β′)− ti(β)
]
ν1i(β, K)

∣∣
]

≤ κε/κ = ε

for any ρ < ρ0. Hence, we have verified that (25).
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Thus, the assumption TSE of Andrews (1992) is valid as well and the claim of this lemma

follows from the uniform weak law of large numbers. ¤

The following assertions present some fundamental properties of order statistics of regres-

sion residuals.

Lemma A.2 Let λ ∈ (0, 1〉 and put hn = [λn] for n ∈ N. Under Assumptions D, F1, F3,

and I1, it holds as n → +∞ that supβ∈B

∣∣∣r[hn](β)−G−1
β (λ)

∣∣∣ → 0 in probability and that

EGn = E sup
β∈B

∣∣∣r[hn](β)−G−1
β (λ)

∣∣∣ → 0. (26)

Proof: Let us recall that ri(β) ∼ Gβ. Further, let us take an arbitrary K1 > 0, set Kε =

K1mgg (see Assumption D3 for the definition of mgg), and consider some ε ∈ (0, 1). For

any ε > 0, we will now find n0 ∈ N such that P
(
supβ∈B

∣∣∣r[hn](β)−G−1
β (λ)

∣∣∣ > K1

)
< ε for

all n > n0. Without loss of generality, we can assume that K1 < δg, where δg comes from

Assumption D3.

First, note that for any β ∈ B and and K1 > 0

E ν1i(β,K1) = P (ν1i(β, K1) = 1) = P
(
ri(β) ≤ G−1

β (λ) + K1

)
> λ.

Further, Lemma A.1 for t(x, y;β) = 1 guarantees that we can use the weak law of large

numbers for ν1i(β, K1) uniformly on B × R+. Hence,

sup
β∈B,K1∈R+

∣∣∣∣∣
1
n

n∑

i=1

{ν1i(β, K1)− E ν1i(β,K1)}
∣∣∣∣∣ → 0

in probability. Consequently, we can find some n0 such that it holds for all n > n0

P

(
sup

β∈B,K1∈R+

∣∣∣∣∣
1
n

n∑

i=1

{ν1i(β, K1)− E ν1i(β, K1)}
∣∣∣∣∣ ≤

1
2
Kε

)
> 1− ε

2
.

Thus, it holds uniformly in β and K1 with probability greater or equal to 1− ε/2

− 1
2
Kε +

n∑

i=1

E ν1i(β, K1) ≤
n∑

i=1

ν1i(β, K1). (27)
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Second, because K1 < δg, Assumption D3 implies E ν1i(β,K1) > λ +K1mgg = λ+Kε for

all β ∈ B and K1 < δg. This result together with equation (27) implies that for all β ∈ B

nλ + (n− 1
2
)Kε = −1

2
Kε + n(λ + Kε) < −1

2
Kε +

n∑

i=1

E ν1i(β, K1) ≤
n∑

i=1

ν1i(β, K1),

which means that at least nλ ≥ hn of values ri(β) are smaller than G−1
β (λ) + K1. In other

words, r[hn](β) ≤ G−1
β (λ) + K1 with probability at least 1− ε/2.

The corresponding lower inequality, holding also with probability at least 1− ε/2, can be

found by repeating these steps for ν2i(β,K1). Combining these two inequalities results in the

first claim of the lemma. Further, since r[hn](β) is uniformly integrable due to Assumption F3

and Davidson (1994, Theorem 12.10), the second claim follows directly from the first one by

Davidson (1994, Theorem 18.14): convergence in probability of uniformly integrable random

variables implies the convergence in Lp-norm. ¤

Lemma A.3 Let λ ∈ (0, 1〉 and put hn = [λn] for n ∈ N. Under Assumptions D, F, and I1,

there is ε > 0 such that, for n → +∞,
√

n supβ∈U(β0,ε)

∣∣∣r[hn](β)−G−1
β (λ)

∣∣∣ = Op(1) and

ELn = E

{
√

n sup
β∈U(β0,ε)

∣∣∣r[hn](β)−G−1
β (λ)

∣∣∣
}

= O(1). (28)

Proof: The proof has a structure rather similar to the proof of Lemma A.2. First, let us take

a fixed ε ∈ (0, 1), an arbitrary K1 > 0, and set Kε = K1mg. Then E ν1i(β,K1) > λ.

Now, Assumption F2 and van der Vaart and Wellner (1996, Lemmas 2.6.15 and 2.6.18)

imply that {ν1i(β, K1);β ∈ U(β0, δ), K1 ∈ R} form a VC class, which is uniformly bounded

by 1. Because of Assumption D1 on the mixing coefficients, we can apply the uniform central

limit theorem of Arcones and Yu (1994) to see that

{
1√
n

n∑

i=1

{ν1i(β, K1)− E ν1i(β, K1)} : β ∈ U(β0, δ),K1 > 0

}
(29)

converges in distribution to a Gaussian process with bounded and uniformly continuous paths.

To bound the expectation of the supremum of process (29), we now employ the maximal

inequality of Doukhan et al. (1995). This is possible because (i) functions ν1i(β, K1) are

uniformly bounded by 1, (ii) the metric entropy with bracketing H2(u) = O(| log u|) by

Assumption F2 and van der Vaart and Wellner (1996, Theorem 2.6.7), and (iii) the mixing
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coefficients satisfy βm = o(m−rβ/(rβ−2)) with rβ/(rβ−2)·(1−1/rβ) = (rβ−1)/(rβ−2) > 1. The

properties (ii) and (iii) guarantee that condition (2.17) of Doukhan et al. (1995) is satisfied,

which in turn implies the integrability condition (2.10) in the same paper. Therefore, we

can use the maximum inequality by Doukhan et al. (1995, Theorem 2) and state for any

1 ≤ π < 2 that

sup
n∈N

E

[
sup

β∈U(β0,ε),K1>0

∣∣∣∣∣
1√
n

n∑

i=1

{ν1i(β, K1)− E ν1i(β, K1)}
∣∣∣∣∣

]π

< ∞.

This results is given in Doukhan et al. (1995) for π = 1, but all the proofs hold also for

any 1 ≤ π < 2. Consequently, the Markov-type inequality for non-negative random variables,

P (X ≥ Kε) ≤ EXπ/Kπ
ε , implies that there is some constant Uπ > 0 such that for any Kε > 0

P

(
sup

β∈U(β0,ε),K1>0

∣∣∣∣∣
1√
n

n∑

i=1

{ν1i(β, K1)− E ν1i(β, K1)}
∣∣∣∣∣ >

1
2
Kε

)
<

Uπ

Kπ
ε

(note that this results is in iid case directly implied by van der Vaart and Wellner, Theorem

2.14.9). Thus, it holds uniformly in β ∈ U(β0, ε) with probability greater than 1− Uπ/Kπ
ε

− 1
2
√

n ·Kε +
n∑

i=1

E ν1i(β, K1) ≤
n∑

i=1

ν1i(β, K1). (30)

Further, we can find n0 such that n−
1
2 K1 < δg for all n > n0 (δg comes from Assumption

D3), and thus, E ν1i(β, K1) > λ + n−
1
2 K1mg = λ + n−

1
2 Kε for all β ∈ U(β0, ε) and n > n0.

This result together with equation (30) imply that for all β ∈ U(β0, ε)

nλ +
1
2
√

nKε = −1
2
√

nKε + nλ +
√

nKε < −1
2
√

nKε +
n∑

i=1

E ν1i(β,K1) ≤
n∑

i=1

ν1i(β,K1),

which means that at least nλ ≥ hn of values ri(β) are smaller than G−1
β (λ) + n−

1
2 Kε. In

other words, r[hn](β) ≤ G−1
β (λ) + n−

1
2 Kε on U(β0, ε) with probability at least 1 − Uπ/Kπ

ε .

The corresponding lower inequality can be found by repeating these steps for ν2i(β, K1).

These inequalities can be rewritten as Zn = supβ∈U(β0,ε)

√
n

∣∣∣r[hn](β)−G−1
β (λ)

∣∣∣ ≤ Kε,

which holds with probability 1 − Uπ/Kπ
ε . Thus, for any ε > 0 and Uπ > 0, we find Kε =

1 + (2Uπ/ε)1/π such that P (Zn(β) ≤ Kε) > 1− ε, so Zn = Op(1). Furthermore, denoting the
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cumulative distribution function of Zn by Fz,n and choosing π = 3/2, the expectation

EZn =
∫ ∞

0
{1− Fz,n(x)}dx ≤ 1 +

∫ ∞

1

2U3/2

x3/2
dx = 1 + 4U3/2

is finite, which concludes the proof. ¤

The following lemma and corollaries translate the results on the convergence of the order

statistics of residuals to the convergence of indicators I
(
ri(β) ≤ r[hn](β)

)
to I

(
ri(β) ≤ G−1

β (λ)
)

in probability and in mean.

Lemma A.4 Under Assumptions D, F1, F3, and I1, it holds PG = E supβ∈B |νin(β)| = o(1)

for any i ≤ n ∈ N. Additionally, under Assumptions D, F, and I1, there exists ε > 0 such

that PL = E supβ∈U(β0,ε) |νin(β)| = O
(
n−

1
2

)
as n → +∞.

Proof: First notice that E supβ∈B |νin(β)| = P (∃β ∈ B : |νin(β)| 6= 0) because |νin(β)| ∈
{0, 1}. Without loss of generality, we discuss only the case νin(β) = −1, which corresponds

to r[hn](β) < ri(β) ≤ G−1
β (λ). The other case νin(β) = 1 can be derived analogously. Addi-

tionally, we assume without loss of generality that i = n.

Let Ω denote the probability space and let us consider an outcome ω = (ω1, . . ., ωn) ∈ Ωn,

which generates observations yi(ωi), xi(ωi), the corresponding residuals ri(β, ωi) and their

order statistics r[i](β, ω), i = 1, . . . , n. Given the first n− 1 observations determined by ω′ =

(ω1, . . ., ωn−1) ∈ Ωn−1 and ordered statistics r[hn](β, ω′) of residuals {r1(β, ω1), . . ., rn−1(β, ωn−1)},
we can express the ordered statistics r[hn](β, ω) for the whole sample as

r[hn](β, ω) =





r[hn−1](β, ω′) if rn(β, ωn) < r[hn−1](β, ω′)

rn(β, ωn) if r[hn−1](β, ω′) ≤ rn(β, ωn) < r[hn](β, ω′)

r[hn](β, ω′) if r[hn](β, ω′) ≤ rn(β, ωn).

(31)

Denoting Ω1, Ω2, and Ω3 subsets of Ωn corresponding to the three (disjoint) cases in (31),

we can write

P ({ω ∈ Ωn|∃β ∈ B : νnn(β) = −1}) = P ({ω ∈ Ω1|∃β ∈ B : νnn(β) = −1})

+ P ({ω ∈ Ω2|∃β ∈ B : νnn(β) = −1})

+ P ({ω ∈ Ω3|∃β ∈ B : νnn(β) = −1})
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and analyze this sum one by one.

1. P1 = P ({ω ∈ Ω1|∃β ∈ B : νnn(β) = −1}) ≤ P (∃β ∈ B : r[hn](β, ω) < rn(β, ωn) <

r[hn](β, ω)) = 0.

2. P2 = P ({ω ∈ Ω2|∃β ∈ B : νnn(β) = −1}) = P (∃β ∈ B : r[hn−1](β, ω′) ≤ rn(β, ωn) =

r[hn](β, ω) < G−1
β (λ)) can be analyzed in exactly the same way as P ({ω ∈ Ω3|∃β ∈ B :

νnn(β) = −1}), see point 3.

3. P3 = P ({ω ∈ Ω3|∃β ∈ B : νnn(β) = −1}) = P (∃β ∈ B : r[hn](β, ω′) = r[hn](β, ω) ≤
rn(β, ωn) ≤ G−1

β (λ)). We can structure this term in the following way (Assumption D3):

P
(
∃β ∈ B : r[hn](β, ω′) < rn(β, ωn) ≤ G−1

β (λ)
)

(32)

=
∫

ω′∈Ωn−1

∫

ωn∈Ω
sup
β∈B

I
(
r[hn](β, ω′) < rn(β, ωn) ≤ G−1

β (λ)
)
dP (ωn|ω′)dP (ω′)

=
∫

ω′∈Ωn−1

Mgg · sup
β∈B

∣∣∣r[hn](β, ω′)−G−1
β (λ)

∣∣∣ dP (ω′)

= Mgg · E
{

sup
β∈B

∣∣∣r[hn](β)−G−1
β (λ)

∣∣∣
}

. (33)

The first claim of the lemma, PG = o(1), is then a direct consequence of Lemma A.2.

The second result, PL = O
(
n−

1
2

)
, can be derived analogously, if we consider only a

neighborhood U(β0, ε) instead of B, write last expectation as

n−
1
2 Mgg · E

{
√

n sup
β∈U(β0,ε)

∣∣∣r[hn](β, ω′)−G−1
β (λ)

∣∣∣
}

,

and employ Lemma A.3. ¤

Corollary A.5 Let Assumptions D, F1, F3, and I1 hold and assume that t(x, y; β) is a real-

valued function continuous in β uniformly in x and y over any compact subset of the support

of (x, y). Moreover, assume E supβ∈B supn≥n0
|ti(β)ι1i(β)| < ∞, where ti(β) = t(xi, yi;β) and

n0 ∈ N. Then it holds that E supβ∈B |ti(β)νin(β)| = o(1). Additionally, if Assumptions D, F,

and I1 hold and there is ε > 0 such that E
{

supβ∈U(β0,ε) |ti(β)νin(β)|
∣∣∣ supβ∈U(β0,ε) νin(β) 6= 0

}

< Mt is bounded, E supβ∈U(β0,ε) |ti(β)νin(β)| = O
(
n−

1
2

)
as n → +∞.

Proof: This can verified along the same lines as Lemma A.4. Defining functions νin(β) and

sets Ω1,Ω2, and Ω3 exactly the same way as in Lemma A.4, we can express the expectation of
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any random variable EX as
{∫

Ω1
+

∫
Ω2

+
∫
Ω3

}
xdF (x). By the same argument as in Lemma

A.4, we will treat only part concerning
∫
Ω3

and assume without loss of generality that i = n.

First, since the expectation

E

{
sup
β∈B

|tn(β)νin(β)|
}

= E

{
sup
β∈B

|tn(β)νin(β)| · sup
β∈B

|νin(β)|
}

is finite by the assumption of the corollary and the Lebesgue theorem (see Lemma A.1 for

details) and P
(
supβ∈B |νin(β)| = 1

)
converges to zero as n → +∞ (Lemma A.4), the whole

expectation converges to zero as well, which is the first claim of this corollary.

Second, similarly to (32)–(33), we can write due to Assumption F4

E

{
sup

β∈U(β0,ε)

|tn(β)νnn(β)|
}
≤

∫

Ω3

{
sup

β∈U(β0,ε)

|tn(β)νnn(β)|
}

dP (ω)

≤
∫

ω′∈Ωn−1

∫

ωn∈Ω
E

{
sup

β∈U(β0,ε)

|tn(β)νnn(β)|
∣∣∣∣∣ sup

β∈U(β0,ε)

νnn(β) 6= 0

}
×

× sup
β∈U(β0,ε)

|νnn(β)| dP (ωn|ω′)dP (ω′)

≤ Mt

∫

ω′∈Ωn−1

∫

ωn∈Ω
sup

β∈U(β0,ε)

|νnn(β)| dP (ωn|ω′)dP (ω′)

≤ n−
1
2 MtMgg

∫

ω′∈Ωn−1

√
n sup

β∈U(β0,ε)

∣∣∣r[hn](β, ω′)−G−1
β (λ)

∣∣∣ dP (ω′).

Thus, we obtain from Lemma A.3

E

{
sup
β∈B

|tn(β)νnn(β)|
}
≤ n−

1
2 MtMggELn = O

(
n−

1
2

)
. ¤

Corollary A.6 Under assumptions of Corollary A.5, it holds that supβ∈B

∣∣ 1
n

∑n
i=1 ti(β)νin(β)

∣∣

= op(1) and there is ε > 0 such that supβ∈U(β0,ε)

∣∣∣ 1√
n

∑n
i=1 ti(β)νin(β)

∣∣∣ = Op(1) as n → +∞.

Proof: This result follows directly from the Markov inequality, P (X ≥ K) ≤ EX/K, since

E sup
β∈B

∣∣∣∣∣
1
n

n∑

i=1

ti(β)νin(β)

∣∣∣∣∣ ≤ E sup
β∈B

|ti(β)νin(β)| = o(1)

and

E sup
β∈U(β0,ε)

∣∣∣∣∣
1√
n

n∑

i=1

ti(β)νin(β)

∣∣∣∣∣ ≤ n1/2 E sup
β∈U(β0,ε)

|ti(β)νin(β)| = O(1)

as n → +∞ by Corollary A.5 and the expectations are thus uniformly bounded in n ∈ N. ¤
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Lemma A.7 Let Assumptions D, F, and I hold. Given constants λ ∈ (0, 1〉 and M > 0, it

holds that

n−
1
2 sup

t∈Tm

∣∣∣S′n(β0 − n−
1
2 t)− S

′
n(β0) + n

1
2 {Qs(λ) + Js(λ)} t

∣∣∣ = op(1)

as n → +∞, where Tm = {t ∈ Rp| ‖t‖ ≤ M} and Js(λ) = ∂
∂β> E

[
s
′
i(β

0)ν1i(β)
]∣∣∣

β=β0
.

Proof: We aim to analyze the term S
′
n(β0 − n−

1
2 t)− S

′
n(β0), that is, by Lemma 2.1

S
′
n(β0 − n−

1
2 t)− S

′
n(β0) =

n∑

i=1

s
′
i(β

0 − n−
1
2 t) · ιin(β0 − n−

1
2 t)−

n∑

i=1

s
′
i(β

0) · ιin(β0).

For any t ∈ Tm, there is some n0 ∈ N such that β0 − n−
1
2 t ∈ U(β0, min{δ, ε}) for all n ≥ n0

(see Assumptions F). Using the Taylor expansion s
′
i(β

0− n−
1
2 t) = s

′
i(β

0)− s
′′
i (ξ)n−

1
2 t, where

ξ ∈ [
β0, β0 − nt

]
κ, we may write

S
′
n(β0 − n−

1
2 t)− S

′
n(β0) =

n∑

i=1

s
′
i(β

0) ·
{

ιin(β0 − n−
1
2 t)− ιin(β0)

}
(34)

− n−
1
2

n∑

i=1

s
′′
i (β0)t · ιin(β0) (35)

− n−
1
2

n∑

i=1

s
′′
i (β0)t ·

{
ιin(β0 − n−

1
2 t)− ιin(β0)

}
(36)

− n−
1
2

n∑

i=1

{
s
′′
i (ξ)− s

′′
i (β0)

}
t · ιin(β0 − n−

1
2 t). (37)

We will now show that terms (36) and (37) are asymptotically negligible with respect to

expressions (34) and (35), which behave like Op

(
n

1
2

)
.

First of all, (36) is Op(1) by the triangle inequality and Corollary A.6 since s
′′
i (β0) is

independent of β and t is bounded. Similarly, Assumption F1 implies that with an arbitrarily

high probability, one can write for each element
∣∣∣
{

s
′′
i (ξ)− s

′′
i (β0)

}
kl

∣∣∣ ≤ Ls

∥∥ξ − β0
∥∥, k, l =

1, . . ., p, and hence,

n−
1
2

n∑

i=1

∥∥∥
{

s
′′
i (ξ)− s

′′
i (β0)

}
t
∥∥∥ ·

∣∣∣ιin(β0 − n−
1
2 t)

∣∣∣ ≤ n−
1
2

n∑

i=1

p2MLs

∥∥ξ − β0
∥∥ ≤ p2M2Ls.

Expression (37) is thus also Op(1).
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Next, let us look at (35), which can be rewritten as

n−
1
2

n∑

i=1

s
′′
i (β0)t · ιin(β0) = n−

1
2

n∑

i=1

s
′′
i (β0)t · [ιin(β0)− ν1i(β0)

]
(38)

+ n−
1
2

n∑

i=1

{
s
′′
i (β0)t · ν1i(β0)− E

[
s
′′
i (β0)t · ν1i(β0)

]}
(39)

+ n
1
2 E

[
s
′′
i (β0)t · ν1i(β0)

]
. (40)

The first term (38) behaves likeOp(1) by Corollary A.6. Next, using the central limit theorem,

each element of vector (39) converges in distribution to a normally distributed random variable

with zero mean and a finite variance uniformly bounded for t ∈ Tm (the result of Arcones

and Yu, 1994, applies due to Assumptions D1 and F2; alternatively, one can apply standard

central limit theorem such as Davidson, 1994, Theorem 24.5). Hence, (39) is bounded in

probability as well. Finally, the last element (40) can be rewritten as

n
1
2 E

[
s
′′
i (β0) · ν1i(β0)

]
t = n

1
2 Qs(λ)t,

and hence for n → +∞,

sup
t∈Tm

∥∥∥∥∥n−
1
2

n∑

i=1

s
′′
i (β0)t · ιin(β0)− n

1
2 Qs(λ)t

∥∥∥∥∥ = Op(1)

The last term to analyze is the right-hand side part of (34). The triangle inequality

and Corollary A.6 imply that it behaves like Op

(
n

1
2

)
. We first show that (34) without its

expectation is op

(
n

1
2

)
, that is,

n−
1
2

n∑

i=1

(
s
′
i(β

0)
{

ιin(β0 − n−
1
2 t)− ιin(β0)

}
− E

[
s
′
i(β

0)
{

ιin(β0 − n−
1
2 t)− ιin(β0)

}])
= op(1),

(41)

where E
[
s
′
i(β

0)
{

ιin(β0 − n−
1
2 t)− ιin(β0)

}]
= O

(
n−

1
2

)
due to the triangle inequality and

Corollary A.5. To prove this, note also that

E
∣∣∣n 1

4 s
′
i(β

0)
{

ιin(β0 − n−
1
2 t)− ιin(β0)

}∣∣∣
2

= E

{
n

1
2

∣∣∣s′i(β0)
∣∣∣
2 ∣∣∣ιin(β0 − n−

1
2 t)− ιin(β0)

∣∣∣
}

= O(1)
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by Corollary A.5. Hence, the law of large numbers for L2-mixingales (Davidson, 1994, Corol-

lary 20.16) can be applied to

1

n
1
2
+ 1

4

n∑

i=1

n
1
4

(
s
′
i(β

0)
{

ιin(β0 − n−
1
2 t)− ιin(β0)

}
− E

[
n

1
4 s

′
i(β

0)
{

ιin(β0 − n−
1
2 t)− ιin(β0)

}])
,

and consequently, (41) holds. The only remaining term is thus the expectation of (38), which

equals asymptotically to

lim
n→∞n

1
2 E

[
s
′
i(β

0)
{

ιin(β0 − n−
1
2 t)− ιin(β0)

}]

= lim
n→∞ lim

m→∞n
1
2 E

[
s
′
i(β

0)
{

ιim(β0 − n−
1
2 t)− ιim(β0)

}]

= lim
n→∞n

1
2 E

[
s
′
i(β

0)
{

ν1i(β0 − n−
1
2 t)− ν1i(β0)

}]

=
∂

∂β>
E

[
s
′
i(β

0)ν1i(β)
]∣∣∣∣

β=β0

t

(see Assumption F3 and Lemma A.4). ¤

B Proof of consistency and convergence rate

Proof of Theorem 3.1: This is a standard proof of consistency based on the uniform law

of large numbers and the convergence of the order statistics r[hn](β) to the corresponding

quantile G−1
β (λ). By definition, P

(
Snn

(
β̂

(GTE,hn)
n

)
< Snn

(
β0

))
= 1. For any δ > 0,

1 = P
(
Snn

(
β̂(GTE,hn)

n

)
< Snn

(
β0

))

= P
(
Snn

(
β̂(GTE,hn)

n

)
< Snn

(
β0

)
and β̂(GTE,hn)

n ∈ U(β0, δ)
)

+ P
(
Snn

(
β̂(GTE,hn)

n

)
< Snn

(
β0

)
and β̂(GTE,hn)

n ∈ B\U(β0, δ)
)

≤ P
(
β̂(GTE,hn)

n ∈ U(β0, δ)
)

+ P

(
inf

β∈B\U(β0,δ)
Snn (β) < Snn

(
β0

))
.

Hence, P
(
infβ∈B\U(β0,δ) Snn (β) < Snn

(
β0

)) → 0 as n → +∞ implies P (β̂(GTE,hn)
n ∈ U(β0, δ))

→ 1 as n → +∞, that is, the consistency of β̂
(GTE,hn)
n (δ was an arbitrary positive number).

To verify P
(
infβ∈B\U(β0,δ) Snn (β) < Snn

(
β0

)) → 0 note that

P

(
inf

β∈B\U(β0,δ)
Snn (β) < Snn

(
β0

))
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= P

(
inf

β∈B\U(β0,δ)
[Snn (β)− S(β) + S(β)] < Snn

(
β0

))

≤ P

(
inf

β∈B\U(β0,δ)
[Snn (β)− S(β)] < Snn(β0)− inf

β∈B\U(β0,δ)
S(β)

)

≤ P

(
sup
β∈B

|Snn (β)− S(β)| > inf
β∈B\U(β0,δ)

S(β)− Snn(β0)

)

≤ P

(
2 sup

β∈B
|Snn (β)− S(β)| > inf

β∈B\U(β0,δ)
S(β)− S(β0)

)
.

Since Assumption I2 implies that there is α > 0 such that infβ∈B\U(β0,δ) S(β) − S(β0) > α,

it is enough to show for all α > 0 that P
(
supβ∈B |Sn (β)− S(β)| > α

) → 0 as n → +∞.

This is a direct consequence of Corollary A.6 and Lemma A.1 for function ti(β) = si(β), see

Assumptions D, F1, and F3, because

Snn (β)− S(β) =
1
n

n∑

i=1

si(β)νin(β) +
1
n

n∑

i=1

{si(β)ν1i(β)− E [si(β)ν1i(β)]} . ¤

After proving the consistency of GTE, we aim to derive the asymptotic distribution of

GTE using its asymptotic linearity (Lemma A.7). However to use it, one has to show first

that the GTE estimates converge at rate n−
1
2 .

Lemma B.1 Let Assumptions D, F, and I hold. Then β̂
(GTE,hn)
n is

√
n-consistent, that is,

√
n

(
β̂

(GTE,hn)
n − β0

)
= Op(1) as n → +∞.

Proof : We already know that β̂
(GTE,hn)
n is consistent. Hence P

(∥∥∥β̂
(GTE,hn)
n − β0

∥∥∥ > ρ
)
→ 0

as n → +∞ for any ρ > 0 (Theorem 3.1).

Further, we employ the almost sure second-order differentiability of Snn(β) at β0 (see

Lemma 2.1 and Assumption F1). Since Snn(β) = 1
n

∑n
i=1 si(β)νin(β) + 1

n

∑n
i=1 si(β)ν1i(β),

Assumptions F, Lemma A.1, and Corollary A.6 imply Snn(β) → S(β) as n → +∞ in prob-

ability. Using the same argument for the first two derivatives of Snn(β), see Lemma 2.1,

S
′
nn(β) → S

′
(β) and S

′′
nn(β) → S

′′
(β) as n → +∞ uniformly in β ∈ U(β0, δ), whereby

S
′′
(β0) = E

{
s
′′
i (β0)ν1i(β)

}
= Qs > 0 by Assumptions D2 and F3. Since Qs is a positive

definite matrix by Assumption F3, there is a constant ρ, δ > ρ > 0, such that
∥∥∥S

′
(β)

∥∥∥ ≥
C

∥∥β − β0
∥∥ for all β ∈ U(β0, ρ) and some C > 0. Due to the consistency of β̂

(GTE,hn)
n , this

implies that for any ε > 0 there is some n0 ∈ N such that β̂
(GTE,hn)
n ∈ U(β0, ρ) and subse-

quently
∥∥∥S(β̂(GTE,hn)

n )
∥∥∥ ≥ C

∥∥∥β̂
(GTE,hn)
n − β0

∥∥∥ for all n > n0 with probability at least 1− ε.
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Therefore, it is sufficient to show that
√

n
∥∥∥S

′
(β̂(GTE,hn)

n )
∥∥∥ = Op(1) to prove the theorem.

Let us express
√

nS
′
(β̂(GTE,hn)

n ) for n > n0 with probability greater than 1− ε as

√
nE

[
s
′
i(β̂

(GTE,hn)
n )ν1i(β̂(GTE,hn)

n )
]
≤ sup

β∈U(β0,ρ)

1√
n

n∑

i=1

{
E
[
s
′
i(β)ν1i(β)

]
− s

′
i(β)ν1i(β)

}
(42)

− sup
β∈U(β0,ρ)

1√
n

n∑

i=1

s
′
i(β)νin(β) (43)

(recall that S
′
nn(β̂(GTE,hn)

n ) = 0 by Lemma 2.1). We only have to show that both terms

are bounded in probability. This result for the first term on the right-hand side of (43)

is a consequence of Corollary A.6 together with Assumptions F1, F3, and F4. The other

part (42) on the right-hand side can be bounded in probability by the following argument.

Assumption F2 together with van der Vaart and Wellner (1996, Lemma 2.6.18) imply that

Fn,δ =
{

s
′
i(β)ν1i(β) : β ∈ U(β0, δ)

}
form a VC class of functions. Therefore, Assumptions D1

and F2 permit the use of the uniform central limit theorem of Arcones and Yu (1994), which

implies that Fn,δ converges in distribution to a Gaussian process with uniformly bounded

and continuous paths, which confirms that (42) is bounded in probability. ¤

Proof of Theorem 3.2: The asymptotic normality of GTE is a direct consequence of the
√

n consistency of the estimator (Theorem B.1) and its asymptotic linearity (Lemma A.7).

Since tn =
√

n(β̂(GTE,hn)
n − β0) = Op(1) as n → +∞, we can write

S
′
n(β0 − n−

1
2 tn)− S

′
n(β0) + n

1
2 {Qs(λ) + Js(λ)} tn = op

(
n

1
2

)

with a probability arbitrarily close to one. Substituting for S
′
n and tn yields

n∑

i=1

s
′
i(β̂

(GTE,hn)
n )ιin(β̂(GTE,hn)

n )−
n∑

i=1

s
′
i(β

0)ιin(β0)+n {Qs(λ)+Js(λ)} (β̂(GTE,hn)
n −β0) = op

(
n

1
2

)
.

Since the first sum is by the definition of GTE equal to zero (Lemma 2.1), it follows that

√
n(β̂(GTE,hn)

n − β0) = n−
1
2 {Qs(λ) + Js(λ)}−1

n∑

i=1

s
′
i(β

0)ιin(β0)

= n−
1
2 {Qs(λ) + Js(λ)}−1

n∑

i=1

s
′
i(β

0)
{
ιin(β0)− ν1i(β0)

}
(44)

+ n−
1
2 {Qs(λ) + Js(λ)}−1

n∑

i=1

s
′
i(β

0)ν1i(β0) + op(1). (45)
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First, we show that (44) is asymptotically negligible in probability. Expectations

E
∣∣∣n 1

4 s
′
i(β

0)
{
ιin(β0)− ν1i(β0)

}∣∣∣
l
= E

{
n

l
4

∣∣∣s′i(β0)
∣∣∣
l ∣∣ιin(β0)− ν1i(β0)

∣∣
}

= O(1)

are bounded for l = 1, 2 due to Corollary A.5. Assumption I3 further indicates that the

summands in (44) multiplied by n
1
4 form a stationary sequence of random variables with zero

means and finite variances. Thus, the law of large numbers for mixingales (e.g., Davidson,

1994, Corollary 20.16) leads to

n−
3
4

n∑

i=1

n
1
4 s

′
i(β

0)
{
ιin(β0)− ν1i(β0)

} → 0,

which implies that (44) is negligible in probability as n →∞. Hence,

√
n(β̂(GTE,hn)

n − β0) = n−
1
2 {Qs(λ) + Js(λ)}−1

n∑

i=1

s
′
i(β

0)ν1i(β0) + op(1).

Second, the summands in (45), s
′
i(β

0)ν1i(β0), form a sequence of identically distributed

random variables with zero mean and finite second moments (Assumptions D1, F3, and I3).

Since by the law of large numbers for L1-mixingales (Andrews, 1988)

1
n

n∑

i=1

s
′
i(β

0)s
′
i(β

0)> · ν1i(β0) → Vs(λ)

in probability as n → +∞, we can employ the central limit theorem for (45) (e.g., Arcones

and Yu, 1994, by Assumptions D1 and F2). This results directly in the asymptotic normality

of β̂
(GTE,hn)
n with the asymptotic variance given by (Davidson, 1992, Theorem 22.8)

V (λ) = {Qs(λ) + Js(λ)}−1 ·Vs(λ) ·{Qs(λ) + Js(λ)}−1 . ¤
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