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balanced cooperative games
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Abstract
Inspired by Kalai-Samet [4] and Tijs [11], weighted average lexicographic values are introduced for
share sets and for cores of cooperative games using induction arguments. Continuity properties and
monotonicity properties of these weighted lexicographic values are studied. For subclasses of games
(convex games, simplex games, big boss games) relations are established with weighted (exact) Shap-
ley values.
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1 Introduction

The average lexicographic value (AL value) is introduced in [11] for balanced games. It is, in an
n-player situation, the average of the n! lexicographic maxima of the core corresponding to the n!
orderings of the players. The idea was extended in ([2]) for share opportunity sets. Much emphasis
is there on the continuity properties of the AL-value on compact convex share sets and especially
for perfect share sets. Inspired by the literature on weighted Shapley values ([9],[10],[4]) we became
interested in the existence of weighted AL-values. At first sight, there are two approaches to define
weighted lexicographic values. On one hand, one on can put weights on orderings of the players
leading to mixed lexicographic values. On the other hand, one can have weights on the players or
a hierarchical weight system on the players leading to weighted lexicographic values. The outline
of the paper is as follows.
Section 2 is devoted to preliminaries and notations. In section 3, µ-mixed lexicographic values are
introduced. In section 4 and 5, we introduce p-weighted and (p, S)-weighted lexicographic values
respectively and their relations with µ-mixed lexicographic values are studied. In section 6 the re-
lations between (p, S)-weighted lexicographic values and weighted Shapley values of some classes of
games are investigated. In section 7 monotonicitity of p-weighted lexicographic values with respect
to the weights is studied.

2 Preliminaries and notations

An n-person cooperative game ([7]) 〈N, v〉 with player set N = {1, 2, ..., n} is a map v : 2N −→ R
with v(∅) = 0, where 2N is the collection of subsets of N . Let us denote by GN the set of all
n-person cooperative games. The core C(v) of the game 〈N, v〉 is the bounded polyhedral set

C(v) = {x ∈ Rn | x(N) = v(N), x(S) ≥ v(S) for each S ⊆ N},

where x(S) = Σi∈Sxi. Games with a non empty core are called balanced games. We denote by
BAN the set of all n-person balanced games.
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The imputation set of 〈N, v〉 is the set

I (v) =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

xi = v (N) , xi ≥ v ({i})∀i ∈ N

}
,

Given x ∈ Rn, we denote with x−j the vector belonging to Rn−1 obtained from x by deleting
its j-th coordinate.

A game 〈N, v〉 is called:

• a monotonic game if v(S) ≤ v(T ) for all S ⊆ T ;

• a convex game if v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all S ⊆ T ⊆ N \ {i}. We denote
by CGN the set of all n-person convex games;

• a simplex game if I(v) = C(v);

• a big boss game (BBG for short) with big boss 1 if:
1) v(S) = 0 if 1 6∈ S;
2) v is monotonic;
3) v(N)− v(N \ S) ≥ Σi∈S(v(N)− v(N \ {i})) if 1 6∈ S.

• a clan game with clan T ⊆ N if:
1) v(S) = 0 if T 6⊆ S;
2) v is monotonic;
3) v(N)− v(N \ S) ≥ Σi∈S(v(N)− v(N \ {i})) if S ⊆ N \ T.

• an exact game if the core C(v) of 〈N, v〉 is non empty and for every S ⊆ N there exists
x ∈ C(v) such that x(S) = v(S) (see [9]).

Given a balanced game 〈N, v〉, its exactification is the game
〈
N, vE

〉
with vE(S) = minx∈C(v) x(S)

for each S ∈ 2N .
Given an ordering σ = (σ(1), σ(2), ..., σ(n)) in N and a compact subset A of Rn, the Lexico-

graphic maximum of A with respect to σ is the vector Lσ(A) ∈ A such that:
(Lσ(A))σ(i) = max{xσ(i) | x ∈ A , ((Lσ(A))σ(j) = xσ(j)) ∀j ∈ N, j < i}.

The Average Lexicographic maximum AL(A) of A is the average over all Lσ(A) i.e.
AL(A) = 1

n!Σσ∈Π(N)L
σ(A), where Π(N) denotes the set of all possible orderings in N . Given

a balanced game 〈N, v〉, we denote by AL(v) the vector AL(C(v)) (see Tijs in [11]).
The Lexicore, LEC(v) of 〈N, v〉 is defined (see [3]) as

LEC(v) = conv({Lσ(v) | σ ∈ Π(N)}).

We denote by 4N = {p = (p1, p2, ..., pn) ∈ Rn | 0 ≤ pi ≤ 1,Σn
i=1pi = 1} and by Int(4N ) =

{p = (p1, p2, ..., pn) ∈ Rn | 0 < pi < 1,Σn
i=1pi = 1}

3 µ-mixed lexicographic values

The average lexicographic value was defined in [11] for balanced games and then extended in [2] to
share sets, i.e. elements C ∈ Kn, where

Kn = ∪α∈RKn
α,

Kn
α being the family of all compact subsets of Hα = {x ∈ Rn | x(N) = α}.
For C ∈ Kn, here we denote the AL-value of C by AL(C), AL(C) = 1

n!Σσ∈Π(N)L
σ(C), i.e. the

average of all lexicographic maxima of C.
Inspired by this definition, here we give the definition of the µ-mixed lexicographic value of C.

It is a weighted average of the lexicographic maxima of C.
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Definition 3.1 Given a system of non negative numbers µ = (µσ)σ∈Π(N), such that 0 ≤ µσ ≤ 1
and

∑
σ∈Π(N) µσ = 1, we define the µ-mixed lexicographic value of C with system of weights µ, as

the vector:
MµL(C) =

∑
σ∈Π(N)

µσLσ(C).

Remark 3.2 If µσ = 1
n! for every σ ∈ Π(N), then the µ-mixed lexicographic value of C is AL(C).

Remark 3.3 The set of all µ-mixed lexicographic values of C is the convex hull of the set {Lσ(C) |
σ ∈ Π(C)}. If C is the core of a balanced game 〈N, v〉 (C = C(v)), then the set of all µ-mixed
lexicographic values of C(v) is the Lexicore of 〈N, v〉.

4 p-weighted lexicographic values

For i ∈ N , and C ∈ Kn,, let M i(C) be the set

M i(C) = arg max{xi | x ∈ C},

and let Ci be the set

Ci =
{
a−i ∈ Rn−1 |a ∈ arg max{xi | x ∈ C}

}
⊆ Rn−1.

Then Ci ∈ Kn−1
αi where αi = α − max{xi | x ∈ C}. Let πi : M i(C) −→ Ci the i-th projection

defined as πi(x) = x−i and let π−1
i : Ci −→ M i(C) the inverse of πi. Note that here π−1

i is a
function.

Observe that AL(C) satisfies the following recursive formula:

AL (C) =
1
n

∑
i∈N

π−1
i (AL(πi(M i(C)))). (4.1)

In fact:
AL (C) = 1

n!

∑
σ∈Π(N) Lσ (C) = 1

n ·
∑

i∈N
1

(n−1)!

∑
σ−i∈Π(N\{i}) π−1

i (Lσ−i(Ci)) =
1
n

∑
i∈N π−1

i (AL(πi(M i(C)))).
Inspired by the formula (4.1) for the average lexicographic value, we give, by induction on n,

the following definition of the p-weighted lexicographic values.

Definition 4.1 Let C ∈ Kn
α, p ∈ Int(4n) if n ≥ 2, p = 1 if n = 1. We define the p-weighted

lexicographic value (ApL(C)) by induction on n.
If n = 1 then p = 1 and A1L (C) = α.
Suppose now we have defined the weighted lexicographic values for elements belonging to Kn−1

α .
We will define the p-weighted lexicographic value for elements C ∈ Kn

α. Given p ∈ Int(4n), we
define the p-weighted lexicographic value of C with system of weights p as the vector

ApL (C) =
∑
i∈N

piπ
−1
i (Ap−iL(πi(M i(C)))),

where πi(M i(C)) are (n − 1)-dimensional share sets and p−i is the system of positive weights on
π

i
(M i(C)) whose j-th component (j 6= i) is

(p−i)j =
pj∑

k 6=i pk
.

The following result holds:
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Theorem 4.2 Given p ∈ Int(4n), the following system of positive weights µ = (µσ)σ∈Π(N), where

µσ =
n∏

j=1

pσ(j)∑
r∈N\Tj

pσ(r)

with Tj =
{
∅ if j = 1,
{σ (1) , σ (2) , ..., σ (j − 1)} if j = 2, 3, ...n

satisfies the equality

Ap(L(C)) =
∑

σ∈Π(N)

µσLσ(C) = Mµ(L(C)).

Proof. Let us prove this result by induction on n. For n = 2 it is trivial. Let us suppose
that it holds for n − 1. Let us fix the ordering σ = {σ (1) , σ (2) , ..., σ (n)} ∈ Π(N) and let us
set σ′ = {σ (2) , ..., σ (n)}, N ′ = N\ {σ (1)} and T ′

j = Tj\ {σ (1)} . Then we have, by induction
hypothesis in (n− 1)-dimensions,

µσ′ =
n∏

j=2

pσ(j)∑
r∈N ′\T ′

j

pσ(r)
=

n∏
j=2

pσ(j)∑
r∈N\Tj

pσ(r)

because, for j ≥ 2, N ′ \ T ′
j = N \ Tj .

The weight µσ is given by

µσ = pσ(1)µσ′ = pσ(1)

n∏
j=2

pσ(j)∑
r∈N\Tj

pσ(r)
=

pσ(1)∑
r∈N\T1

pσ(r)

n∏
j=2

pσ(j)∑
r∈N\Tj

pσ(r)
=

=
n∏

j=1

pσ(j)∑
r∈N\Tj

pσ(r)
,

being T1 = ∅ and
∑

r∈N\T1

pσ(r) = 1.

We prove now that µ satisfies the condition 0 < µσ ≤ 1 for each σ ∈ Π(N) and
∑

σ∈Π(N)

µσ = 1.

Since 0 < µσ ≤ 1 is obvious, we prove by induction that
∑

σ∈Π(N)

µσ = 1. For n = 1 it is obvious.

Let us suppose it holds in (n− 1)-dimensions, i.e. fixed h ∈ N, let σ−h be the generic ordering of
N ′ = N\ {h} (σ−h ∈ Π (N ′)), (Tj)−h = Tj\ {h}, we have

1 =
∑

σ−h∈Π(N ′)

µσ−h
=

∑
σ−h∈Π(N ′)

∏
j∈N ′

pσ(j)∑
r∈N ′\(Tj)

′
pσ(r)

.

Let us consider the orderings in N defined by σh = (h, σ−h) and let us denote the set of orderings
σh by Σh. Then, we have that∑
σ∈Π(N)

µσ =
n∑

h=1

∑
σh∈Σh µσh =

n∑
h=1

ph

∑
σ−h∈Π(N ′)

µσ−h
=

=
n∑

h=1

ph

∑
σ−h∈Π(N ′)

∏
j∈N ′

pσ(j)P

r∈N′\(Tj)
′
pσ(r)

=
n∑

h=1

pı̂ = 1.

Remark 4.3 In the case where C = C(v) is the core of a balanced game 〈N, v〉, Theorem 4.2
guarantees that every weighted lexicographic value of C = C(v) belongs to the lexicore of 〈N, v〉.
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5 (p, S)-weighted lexicographic values

Here we extend the definition of p-weighted lexicographic values to the case of nonnegative weights.
The problem is that if we consider a system of weights p = (p1, ..., pn) such that several of them are
0, we are not able to state how to divide the amount inside the coalitions containing only 0-weight
players. To avoid this problem, we introduce (as in [4]) a partition S = (S1, ..., Sm) of N , Sj 6= ∅ for
all j, and a hierarchy between the elements of the partition in the sense that all players belonging
to Sj are “more important” then players belonging to Si with i < j (i.e. the weight of a player in
Si is 0 with respect to players in Sj).

Definition 5.1 Consider the set C ∈ Kn
α. Let p =∈ Int(4n) if n ≥ 2, p = 1 if n = 1 and let

S = (S1, ..., Sm) be a partition of N that here and in the following has the property that Sj 6= ∅ for
every j ∈ {1, ...,m}.

If n = 1 then p = 1 and A(p,S)L (C) = α. Suppose now n ≥ 2 and we have defined the
(p, S)-weighted lexicographic values for elements belonging to Kn−1

α . We define the (p, S)-weighted
lexicographic values for elements C ∈ Kn

α. Let

λi =

{
piP

r∈Sn
k

pr
if i ∈ Sn

k ,

0 if i /∈ Sn
k ,

where k = max {j |Sj 6= ∅} . We define the (p, S)-weighted lexicographic value of C with p ∈
Int(4n) and partition S as the vector

A(p,S)L (C) =
∑
i∈N

λiπ
−1
i (A(p−i,S

i)L(πi(M i(C)))),

where πi(M i(C)) are (n − 1)-dimensional share set and p−i is the system of positive weights on
πi(M i(C)) whose j-th component (j 6= i) is:

(p−i)j =
pj∑

k 6=i pk
,

and the partition Si of N ′ = N\ {i} is given by the sets Si = (Si
1, S

i
2, ...S

i
k) such that

Si
j =

 Sj\ {i} if Sr 6= {i} for all r ≤ j,

Sj+1 if there exists r ≤ j such that Sr = {i} , j ≤ m− 1.

Given p =∈ Int(4n) if n ≥ 2, p = 1 if n = 1 and a partition S of N , let

ci =
{
| Si | if i ∈ {1, ...,m} ,

0 if i = m + 1

and

kj =
{ ∑m

i=j+1 ci, if j ∈ {0, ...,m− 1} ,

0 if j = m

(observe that kj < kj−1 and k0 =
∑m

i=1 ci = n). Let Γ(N) be the set of σ ∈ Π(N) such that
σ = (σSm

, σSm−1 , ..., σS1) with σSj
∈ Π(Sj), j = 1, ...m. The following result holds:

Remark 5.2 Observe that if S = (N) then A(p,S)L(C) = ApL(C)

Theorem 5.3 Given p ∈ Int(4n) and a partition S of N , µ = (µσ)σ∈Π(N) where

µσ =


∏m

j=1

∏kj−1
s=kj+1

pσ(s)P

r∈Sj\T s
j

pσ(r)

 if σ ∈ Γ(N)

0 if σ /∈ Γ(N)
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with

T s
j =

{
∅ if s = kj + 1,
{σ (kj + 1) , σ (kj + 2) , ..., σ (kj + s)} if kj+1 ≤ s ≤ kj − 1

satisfies the equality
A(p,S)L(C) =

∑
σ∈Π(N)

µσLσ(C) = Mµ(C).

Proof. Let us prove this result by induction on n. For n = 2 it is trivial. Let us suppose that
the assertion holds for n − 1. We want to prove that it holds for n. Let us fix the ordering σ =
{σ (1) , σ (2) , ..., σ (n)} ∈ Γ(N), and let σ′ = {σ (2) , ..., σ (n)}. Let us set S′

m = Sm\ {σ (1)} , S′
j =

Sj , j = 1, 2, ...m − 1 and in N ′ = N\ {σ (1)} let us consider the partition (S′
1, S

′
2, ...S

′
m) if Sm 6=

{σ (1)} or
(
S′

1, S
′
2, ...S

′
m−1

)
if Sm = {σ (1)}. Then, σ′ ∈ Γ(N ′) and, by the induction hypothesis,

the coefficient of Lσ′ is

µσ′ =



∏m−1
j=1

∏kj−1
s=kj+1

pσ(s)P

r∈S′
j
\(T s

j )′
pσ(r)

 if S′
m = ∅,

∏m
j=1

∏kj−1
s=kj+1

pσ(s)P

r∈S′
j
\(T s

j )′
pσ(r)

 if S′
m 6= ∅,

with
(
T s

j

)′ = T s
j \ {σ (1)}. Now, we want to calculate the coefficient given to Lσ. By definition of

A(p,S)L (C), we have that µσ = λσ(1) · µσ′ , that is

µσ = λσ(1) · µσ′ =



λσ(1) ·
∏m−1

j=1

∏kj−1
s=kj+1

pσ(s)P

r∈S′
j
\(T s

j )′
pσ(r)

 if S′
m = ∅,

λσ(1) ·
∏m

j=1

∏kj−1
s=kj+1

pσ(s)P

r∈S′
j
\(T s

j )′
pσ(r)

 if S′
m 6= ∅.

Observe that, for j ≤ m− 1,
(
T s

j

)′ = T s
j being σ (1) ∈ Sm. In the first case we have that

λσ(1) · µσ′ = λσ(1) ·
m−1∏
j=1

 kj−1∏
s=kj+1

pσ(s)∑
r∈S′j\(T s

j )′
pσ(r)

 =
pσ(1)

pσ(1)
·

m−1∏
j=1

 kj−1∏
s=kj+1

pσ(s)∑
r∈Sj\T s

j

pσ(r)

 =

=
m−1∏
j=1

pσ(1)

pσ(1)
·

kj−1∏
s=kj+1

pσ(s)∑
r∈Sj\T s

j

pσ(r)

 =

=
m−1∏
j=1

 pσ(1)∑
r∈Sm\T 1

m

pσ(r)
·

kj−1∏
s=kj+1

pσ(s)∑
r∈Sj\T s

j

pσ(r)

 =
m∏

j=1

 kj−1∏
s=kj+1

pσ(s)∑
r∈Sj\T s

j

pσ(r)


being the third equality due to the fact that, in this first case, Sm = {σ (1)}, T 1

m = ∅ and∑
r∈Sm\T 1

m

pσ(r) = pσ(1). We can see that it coincides with µσ. Let us consider now the case S′
m 6= ∅.
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Observe that here as well T 1
m = ∅. In this second case we have

λσ(1) · µσ′ = λσ(1) ·
m∏

j=1

 kj−1∏
s=kj+1

pσ(s)∑
r∈S′j\(T s

j )′
pσ(r)

 =
pσ(1)∑

r∈Sm

pσ(r)
·

m∏
j=1

 kj−1∏
s=kj+1

pσ(s)∑
r∈S′j\(T s

j )′
pσ(r)

 =

=
pσ(1)∑

r∈Sm\T 1
m

pσ(r)
·

m∏
j=1

 kj−1∏
s=kj+1

pσ(s)∑
r∈S′j\(T s

j )′
pσ(r)

 =

=
m∏

j=1

 pσ(1)∑
r∈Sm\T 1

m

pσ(r)

kj−1∏
s=kj+1

pσ(s)∑
r∈S′j\(T s

j )′
pσ(r)

 =
m∏

j=1

 kj−1∏
s=kj+1

pσ(s)∑
r∈Sj\T s

j

pσ(r)

 = µσ.

We prove now that µ satisfies the conditions 0 < µσ ≤ 1 and∑
σ∈Π(N)

µσ = 1. Since 0 < µσ ≤ 1 is obvious, then let us prove that
∑

σ∈Π(N)

µσ = 1. If n = 1 it is

trivial. Let us suppose it holds in (n− 1)-dimensions, i.e. fixed h ∈ N, we define σ−h the generic
ordering of N ′ = N\ {h} (σ−h ∈ Π (N ′)), S′

j = Sj , j = 1, 2, ...m, and
(
T s

j

)
−h

= T s
j \ {h} . By the

induction hypothesis

∑
σ−h∈Π(N ′)

µσ−h
=

∑
σ−h∈Π(N ′)

µσ−h
=

∑
σ−h∈Π(N ′)

m∏
j=1

 kj−1∏
s=kj+1

pσ(s)∑
r∈Sj\T s

j

pσ(r)

 = 1

holds. Let us consider the orderings in N defined by σh = (h, σ−h) . Then we have that, being
µσ = 0 if σ /∈ Γ (N) ,∑

σ∈Π(N)

µσ =
∑

h∈Sm

µσh =
∑

h∈Sm

λh

∑
σ−h∈Π(N ′)

µσ−h
=

=
∑

h∈Sm

ph∑
r∈Sm

pr

∑
σ−h∈Π(N ′)

∏
j∈N ′

pσ(j)∑
r∈N ′\(Tj)

′
pσ(r)

=
∑

h∈Sm

ph∑
r∈Sm

pr
= 1.

and the proof is complete.

Remark 5.4 As in the case with positive weights, if C = C(v) is the core of a balanced game
〈N, v〉, Theorem 5.3 guarantees that every weighted lexicographic value of C = C(v) belongs to the
lexicore of 〈N, v〉.

The following results hold.

Theorem 5.5 Let β ∈ R+ and C1, C2 ∈ Kn
α. Then for every p ∈ Int(4n) and for every partition

S of N :

A(p,S)L (βC1) = βA(p,S)L (C1) ; A(p,S)L (C1 + C2) = A(p,S)L (C1) + A(p,S)L (C2) .

In [2] we studied continuity properties for the average lexicographic maximum which here we
can easily extend to weighted average lexicographic maxima. First, we remind the definition of a
perfect set ([2]).

Definition 5.6 We say that C ⊆ Hα has a perfect structure if for each S ∈ 2N there exists
βS ∈ R such that

C =
⋂

S∈2N

{x ∈ Rn | x (S) ≥ βS}.

7



Let

Pn
α= {D ∈ Kn

α | D has a perfect structure}

and
Pn = ∪α∈RPn

α .

The following theorem holds.

Theorem 5.7 For every p ∈ Int(4(N)) and for every partition S, A(p,S)L : Pn −→ Rn is contin-
uous on Pn.

Proof. The proof can be easily obtained by induction on n using continuity of the multifunction
argmax on Pn (see [2] Lemma1 and Lemma2).

Definition 5.8 Let 〈N, v〉 be a balanced game. We define

A(p,S)L (v) = A(p,S)L (C (v)) .

6 Relations between weighted weighted lexicographic values
and weighted Shapley values

Let us remind the definition of unanimity games. Given the coalition ∅ 6= T ⊆ N , the unanimity
game 〈N,uT 〉 is the game s.t.

uT (S) =
{

1 if T ⊆ S,
0 otherwise.

Recall that every game 〈N, v〉 can be written as

v =
∑

T∈2N\∅

ξT uT ,

with
ξT =

∑
S⊆T

(−1)|T |−|S|v(S).

Let us consider the set:
S = T ∩ Sm.

In [9] and [10] Shapley introduced the concept of Shapley value and weighted Shapley value
with a system of positive weights. In [4] Kalai and Samet extended this definition to a system of
nonnegative weights. Here, we remind this definition. Let uT be a unanimity game. Then, the
weighted Shapley value of uT with system of weights p = (p1, p2, ..., pn) ∈ Int(4n) is defined as

Φ(p,S) (uT )i =

{
piP

r∈S pr
if i ∈ S

0 if i /∈ S

Given the game 〈N, v〉, the weighted Shapley value of 〈N, v〉 is defined by linearity:

Φ(p,S) (v) =
∑

T∈2N

ξT Φ(p,S) (uT ) .

Lemma 6.1 A(p,S)L(uT ) = Φ(p,S)(uT ).
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Proof. Let us prove this result by induction. Let us consider N, a partition S of N and T ⊆ N ,
and let us remind that in Definion 5.1, C is the core of the unanimity game uT :

C (uT ) =

{
x ∈ Rn |

∑
i∈T

xi = 1, xi ≥ 0

}
.

First of all, we observe that for n = 1 the two definitions trivially coincide. Let us suppose then
that the two definitions coincide for n− 1 players. We must prove that they coincide for n players.
According to Definition 5.1, the coefficients we must give to arg max

x∈C(uT )

xi are

λi =

{
piP

k∈Sm
pk

if i ∈ Sm,

0 if i /∈ Sm,

This means that the payoff for player i, when he chooses first, is

λi · max
x∈C(uT )

xi =


piP

k∈Sm
pk
· 1 if i ∈ Sm ∩ T,

piP
k∈Sm

pk
· 0 = 0 if i ∈ Sm\T,

0 · 1 = 0 if i ∈ T\Sm,
0 · 0 = 0 if i /∈ T ∪ Sm.

Let us fix h ∈ Sm ∩ T , and let us try to calculate now the contribution to his payoff given by other
players j (i.e. when j chooses first). Now, in cases j ∈ Sm ∩ T, j ∈ T\Sm, j /∈ T ∪ Sm, player h
cannot receive anything else, being or the coefficient λj = 0 (cases 2 and 3) or the whole amount
(1) already assigned (to player j itself). We must consider then the contribution to payoff of player
h given by player j ∈ Sm\T . In this case, let us consider the new (n− 1)-dimensional unanimity
game uT ′ with set of players N ′ = N\{j}, T ′ = T, S′

r = Sr, r = 1, 2, ...,m− 1, S′
m = Sm\{j} and

the new partition of N ′, (S′
1, S

′
2, ...S

′
m). The core of uT ′ is (if j /∈ T, max xj

x∈C(uT )j

= 0)

C (uT ′) = (arg max
x∈C(uT )

xj)−j =

{
x ∈ Rn−1 |

∑
k∈T

xk = 1, xk ≥ 0

}
.

As in this case T ∩ S′
m = T ∩ Sm 6= ∅ (̂ı ∈ T ∩ Sm), the contribution to the payoff of player i given

by player j ∈ Sm\T is, by the induction hypothesis,

ph∑
k∈Sm∩T ′ pk

=
ph∑

k∈Sm∩T pk
.

Let us calculate then the final payoff for player h:

ph∑
k∈Sm

pk
+

∑
j∈Sm\T

pj∑
k∈Sm

pk

ph∑
k∈Sm∩T pk

=
ph

(∑
k∈Sm∩T pk

)
+ ph

(∑
j∈Sm\T

pjP
k∈Sm

pk

)
(∑

k∈Sm
pk

) (∑
k∈Sm∩T pk

) =

=
ph

(∑
k∈Sm

pk

)(∑
k∈Sm

pk

) (∑
k∈Sm∩T pk

) =
ph(∑

k∈Sm∩T pk

)
this is the h-th component of Φ(p,S)(uT ). Let us suppose now h /∈ Sm ∩ T. In this case his payoff
is zero due to the fact that max

x∈C(uT )
xh = 0 if h /∈ T or if h ∈ T\Sm, because his coefficient is

zero with respect to coefficients of other players j ∈ Sm ∩ T who take all the amount and then
(arg max

x∈C(uT )

xj) = 0.

The following theorem is true:
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Theorem 6.2 If 〈N, v〉 is a convex game (〈N, v〉 belongs to CGN ), p ∈ Int(4n) and S a partition
of N , then

A(p,S)L (v) = Φ(p,S) (v) .

Proof. Let us suppose that v ∈ CGN . Then

v =
∑

T∈Υ−

ξT uT +
∑

T∈Υ+

ξT uT

where Υ+ and Υ− are the sets of coalitions s.t. ξT are positive and negative respectively. Then,
we have

v −
∑

T∈Υ−

ξT uT =
∑

T∈Υ+

ξT uT

and
A(p,S)L(v +

∑
T∈Υ−

−ξT uT ) = A(p,S)L(
∑

T∈Υ+

ξT uT ).

Being v, uT ∈ CGN , and being A(p,S)L additive and positively homogeneous on CGN (5.5), we
have

A(p,S)L (v) +
∑

T∈Υ−

−ξT A(p,S) (uT ) =
∑

T∈Υ+

ξT Ap,SL (uT ) ,

A(p,S)L (v) +
∑

T∈Υ−

−ξT Φ(p,S) (uT ) =
∑

T∈Υ+

ξT Φ(p,S) (uT )

and then

A(p,S)L (v) =
∑

T∈Υ+

ξT Φ(p,S) (uT )−
∑

T∈Υ−

−ξT Φ(p,S) (uT ) =
∑
T∈Υ

ξT Φ(p,S) (uT ) = Φ(p,S) (v) .

Theorem 6.3 If 〈N, v〉 is a convex game, then

A(p,S)L (v) = Φ(p,S) (v) .

Proof. Let CGN be the cone of convex games. Then, in CGN the core is an additive correspondence
(see[1]), and, using Theorem 6.2 the proof is completed.

Remark 6.4 Due to Theorems 6.2 and [5] (theorem A), for every convex game v and for every
x ∈ C(v) there exists a system of weights p such that x = A(p,S)(v).

Theorem 6.5 If 〈N, v〉 is a simplex game or a dual simplex game, or a big boss game or a clan
game, then

A(p,S) (v) = A(p,S)
(
vE

)
= Φ(p,S)

(
vE

)
.

Proof. Due to Theorems 3.1 and 4.2 of [11] the exactification of simplex, dual simplex bigboss and
clan game is a convex game and, using Theorem 6.2, we obtain the result.

Remark 6.6 Let 〈N, v〉 be a monotonic game. Then, [A(p,S)L (v)]i ≥ 0 for all i ∈ N . In fact, if
〈N, v〉 is monotonic, then minx∈C(v) xi ≥ 0, that implies [Lσ (v)]i ≥ 0 for all σ ∈ Π(N). This means
that [A(p,S)L (v)]i ≥ 0 being a convex combination of [Lσ (v)]i.
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7 Monotonicity properties of weighted lexicographic values

In this section we want briefly analize what happens to the i-th component of the weighted average
lexicographic value when the weight assiciated to the i-th player increases. At the beginning we are
discussing the monotonicity properties of ApL(C) i.e. the case when S = {N}. From now on we
consider p = (p1, p2, ...pn) and p′ = (p′1, p

′
2, ...p

′
n), p, p′ ∈ Int (∆n) and, without loss of generality,

we us suppose that p′1 ≥ p1. In general it is not true that [Ap′L(C)]1 ≥ [ApL(C)]1, also when C is
a perfect set (i.e. the core of a game), as we can see in the following examples.

Example 7.1 Let C = co{( 1
2 , 1

2 , 0), (0, 0, 1)}, p = ( 1
100 , 98

100 , 1
100 ) and p′ = ( 1

3 , 1
3 , 1

3 ). In this case
ApL(C) = ( 99

200 , 99
200 , 1

100 ) and Ap′L(C) = ( 1
3 , 1

3 , 1
3 ), that is [Ap′L(C)]1 = 1

3 < 99
200 =[ApL(C)]1 even

if p1 = 1
100 < 1

3 = p
′
1
.

Example 7.2 Let < N, v > be the following game: N = {1, 2, 3} v({i}) = 0 ∀i = 1, 2, 3, v{2, 3} =
v{1, 2} = 0, v{1, 3} = 1

2 let C the core of < N, v >, and p′ = ( 1
3 , 1

3 , 1
3 ). In this case Ap′L(C) =

( 5
12 , 2

12 , 5
12 ). Let p = (1

3 +k, k, 2
3 −2k). Now p−2 = ( 1

1−k ( 1
3 +k), 1

1−k ( 2
3 −k)) and the first coordinate

of ApL(C) is:

1 · (1
3

+ k) +
1
2
· k

1− k
(
1
3

+ k) = (
1
3

+ k)(1 +
1
2
· k

1− k
)

and the limit of this number when k −→ 0 is 1
3 < 5

12 .

We can conclude that in general we have no monotonicity of the component of the weighted
average lexicographic value with respect to the associated weight, but we have monotonicity prop-
erties if we consider the case when one weight increases and all other weights decrease or do not
change, as we can see in the following theorem.

Theorem 7.3 Let us consider p, p′ ∈ Int(∆n) such that p′1 = p1 + k1, p′j = p′j − kj for j 6= 1,
ki ≥ 0 for all i = 1, 2, ...n, k1 = Σn

j=2kj. Then

[ApL(C)]1 ≤ [Ap′L(C)]1.

pf Let us prove this result by induction. For n = 2 it is obvious. Let us suppose now it is true
for n− 1 and we prove it is true for n.

Let us observe first that [π−1
1 (Ap−1L (π1(C)))]1 = max{x1 | x ∈ D} = [π−1

1 (Ap′−1L (π1(C)))]1.
Let us consider now [π−1

j (Ap−j L (πj(C)))]1 and [π−1
j (Ap′−j L (πj(C)))]1 for j 6= 1.

First of all let us observe that [π−1
j (Ap−j L(πj(C)))]1 = [Ap−j L(πj(C))]1 and [π−1

j

(
Ap′−j L(πj(C))

)
]1 =

[Ap′−j L(πj(C))]1. The weights we have used in calculating [Ap−j L(πj(C))]1 are

pi

Σh6=jph
, i ∈ {1, 2, ...n} \ {j} ,

while for [Ap′−j L(πj(C))]1 are

p′1
Σh6=jp′h

=
p1 + k1

Σh6=jph + kj
and

p′i
Σh6=jp′h

=
pi − ki

Σh6=jph + kj

i ∈ {2, 3, ...n} \ {j}.
These weights satisfy the induction hypothesis as

p′1
Σh6=jp′h

≥ p1

Σh6=jph
and

p′i
Σh6=jp′h

≤ pi

Σh6=jph

for all i 6= 1, being

p′1(Σh6=jph) = (p1 + k1) (Σh6=jph) ≥= p1 (Σh6=jph − Σh6=jkh) = p1(Σh6=jp
′
h).
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As, by induction hypothesis, monotonicity holds in dimension n− 1, that is, for all j 6= 1,

[π−1
j (Ap−j L(πj(C))]1 = [Ap−j L (πj(C))]1 ≤ [Ap′−j L(πj(C)]1 = [π−1

j

(
Ap′−j L(πj(C

)
)]1. (7.2)

Let us set

wj : = [π−1
j (Ap−j L(πj(C))]1, w′

j := [π−1
j

(
Ap′−j L(πj(C

)
)]1

and w1 : = [π−1
1 (Ap−1Lπ1(C))]1 = max{x1 | x ∈ C} = [π−1

1 (Ap′−1Lπ1(C))]1 =: w′
1

and let us remark that by induction hypothesis (7.2)

wj ≤ w′
j ≤ w1 = w′

1 := max{x1 | x ∈ C}. (7.3)

Then if we consider the first component of the n-dimensional average lexicographic value we have
[Ap′L(C)]1 =

∑n
i=1 p′iw

′
i = p′1[π

−1
1

(
Ap′−1Lπ1(C)

)
]1+p′2[π

−1
2 (Ap′−2L (π2(C))]1+...p′n[π−1

n (Ap′−nL (πn(C))]1 =

= (p1+k1)[π−1
1

(
Ap′−1L(π1(C

)
)]1+(p2 − k2) [π−1

2 (Ap′−2L (π2(C))]1+...(pn−kn)[π−1
n

(
Ap′−nL(πn(C

)
)]1 =

= (p1 + k1) w′
1 +

∑n
i=2(pi − ki)w′

i =
∑n

i=1 piw
′
i + k1w

′
1 −

∑n
i=2 kiw

′
i =

=
∑n

i=1 piw
′
i +

∑n
i=2 kiw

′
1 −

∑n
i=2 kiw

′
i =

∑n
i=1 piw

′
i +

∑n
i=2 ki (w′

1 − w′
i)

(remember that k1 =
∑n

i=2 ki ). Due to (7.3) and to non negativity of ki we have that for all i∑n
i=2 ki(w′

1 − w′
i) ≥ 0

and, if we consider positivity of pi for all i and induction hypothesis (7.2), then∑n
i=1 piw

′
i +

∑n
i=2 ki (w′

1 − w′
i) ≥

∑n
i=1 piwi = [ApL(C)]1, that is our thesis.

If we consider the case of A(p,S)L(C) i.e. the case when the partition S of N is not trivial, also
under the hypothesis of the previous theorem monotonicity does not hold, as we can see in the
following example.

Example 7.4 N = {1, 2, 3} , S1 = {1} , S2 = {2, 3} , C = co
{(

1
2 , 0, 1

2

)
, ( 3

4 , 1
4 , 0)

}
, p =

(
1
3 , 1

3 , 1
3

)
.

In this case λ = (0, 1
2 , 1

2 ) and A(p,S)L(C) = ( 5
8 , 1

8 , 2
8 ). Let us consider now the new system of

weights p′ = (1− ε− δ, ε, δ) with ε, δ small and positive. Now λ′ = (0, ε
ε+δ , δ

ε+δ ) and Ap′,S)L(C) =
( 3ε+2δ
4(ε+δ) ,

ε
ε+δ

1
4 , δ

ε+δ
1
2 ). We can observe that 1

3 < 1 − ε − δ for ε, δ small enough, but 3ε+2δ
4(ε+δ) > 5

8 if
and only if ε > 3δ. If we choose, for example, ε = 1

12 and δ = 4
12 , p′ = ( 7

12 , 1
12 , 4

12 ), λ′ = (0, 1
5 , 4

5 )

and [A(p′,S)L(C)]1 = 3ε+2δ
4(ε+δ) = 11

20 < 5
8 , that is A(p,S)L(C) is not monotonic.

8 Concluding remarks

In Section 4 we have seen that every p-weighted lexicographic value of a balanced game 〈N, v〉
(p ∈ Int(∆n)) belongs to the interior of the lexicore of 〈N, v〉 and in Section 5 we have seen
that every (p, S)-weighted lexicographic value of 〈N, v〉 belongs to the lexicore of 〈N, v〉. Given
an element x belonging to the lexicore of 〈N, v〉, the problem of the existence of p ∈ Int(∆n) and
partition S such that the (p, S)-weighted lexicographic value of 〈N, v〉 coincides with x is still open.

For monotonicity prpperties we do not have complete results for A(p,S)L and the example is
referred to share sets and not to games.

Acknowledgement. We thank Rodica Branzei for her detailed and insightful comments on a
previous version of the paper.

References

[1] Branzei R., Tijs S., “Additivity regions for solutions in cooperative game theory”, Libertas
Mathematica, 21, 155-167, 2001;

12



[2] Caprari E., Patrone F., Pusillo L., Tijs S., Torre A., “Share opportunity sets and cooperative
games”, CentER Discussion paper 2006-115, Tilburg University, The Netherlands;

[3] Funaki Y., Tijs S., Branzei R., “Leximals, the Lexicore and the Average Lexicographic Value”,
in preparation, 2007;

[4] Kalai E., Samet D., “Weighted Shapley values” in The Shapley value. Essays in honor of Lloyd
S. Shapley, edited by Alvin E. Roth. Cambridge University Press, Cambridge, 83-99, 1988;

[5] Monderer D., Samet D., Shapley L.S., “Weighted values and the core” International Journal
of Game Theory, 21, 27-39, 1992;

[6] Muto S., Nakayama M., Potters J., Tijs S. “On Big Boss Games”, Economic Studies Quarterly,
39, 303-321, 1988;

[7] Owen G., Game theory, 3rd edition, Academic press, New York, 1995;

[8] Schmeidler D., “Cores of exact games I, ”J. of Math Anal. Application, 40, 214-225, 1972;

[9] Shapley L. S., “Additive and nonadditive set functions” PhD thesis, Department of Mathe-
matics, Princeton University, 1953;

[10] Shapley L. S, “A value for n-person games” in Contributions to the theory of games, Vol. 2,
307-317, Princeton Univ. Press, Princeton, NJ, 1953;

[11] Tijs S., “The first step with Alexia, the average lexicographic value”, CentER Discussion
Paper, 123, Tilburg University, The Netherlands, 2005;

[12] Young H. P., “Monotonic solutions of cooperative games” Internat. J. Game Theory 14 no. 2,
65-72, 1985.

13


