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Abstract

A highway problem is determined by a connected graph which provides all potential

entry and exit vertices and all possible edges that can be constructed between vertices, a

cost function on the edges of the graph and a set of players, each in need of constructing

a connection between a specific entry and exit vertex. Mosquera and Zarzuelo (2006)

introduce highway problems and the corresponding cooperative cost games called high-

way games to address the problem of fair allocation of the construction costs in case the

underlying graph is a chain. In this note, we study the concavity and the balancedness

of highway games on more general graphs. A graph G is called highway-game concave if

for each highway problem in which G is the underlying graph the corresponding highway

game is concave. The main result of our study is that a graph is highway-game concave

if and only if it is weakly triangular. Moreover, we provide sufficient conditions on

highway problems defined on cyclic graphs such that the corresponding highway games

are balanced.
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1 Introduction

Mosquera and Zarzuelo (2006) address the problem of fair allocation of the construction

costs of a highway network. For this aim, they formally consider highway problems and

analyze the corresponding cooperative cost games called highway games. In a highway

problem, the possibilities regarding the construction of the highway network are determined

by a connected graph. The set of vertices of the graph represents the potential entry and

exit points and the edges in the graph represent the possible highway connections that

can be constructed. Each edge in the graph has an associated cost which in general will

depend on its length or the geographical properties that may affect the construction costs

of the highway. Each player in a highway problem has to establish a connection between

two vertices in the graph, i.e., between his entry and exit point. Given a highway problem,

a corresponding highway game is defined as a cooperative cost game which associates to

each coalition of players the total cost of the cheapest selection of edges in the graph which

connects the entry and exit point of every member of the coalition. Mosquera and Zarzuelo

(2006) restricted attention to highway problems in which the underlying graph is a chain.

In this setting, there is only one path between an entry and exit point.

In this note, we study highway problems which allow for more general graphs. In par-

ticular, these graphs may contain cycles and hence, there will exist multiple paths between

some entry and exit points. Note that, in this setting, a coalition of players can further

reduce the joint construction costs by an optimal coordination of paths to construct. That

is, the joint minimal cost of a coalition is now obtained as a result of solving a combinatorial

optimization problem. Concavity (and hence balancedness) is a straightforward result for

highway games induced by chain graphs. However, balancedness and concavity results are

not immediate even for the simplest generalization of highway problems on chain graphs to

cyclic graphs.

We start our analysis of highway games by investigating their concavity properties. A

cooperative cost game is called concave if it exhibits the property that the incentives to join

a coalition increases as the coalition becomes larger. We proceed as Herer and Penn (1995)

on traveling salesman problems and Granot et al. (1999) on Chinese postman problems,

and focus on the question for which class of graphs the corresponding games are always

concave. We define a graph to be highway game-concave (HG-concave), if for every player

set, for every choice of entry and exit points for the players and for every cost specification,

the corresponding highway game is concave. The main result of this note is that a graph is

HG-concave if and only if it is weakly triangular. Here, a graph is called weakly triangular

if it is weakly cyclic, i.e., every edge in the graph is contained in at most one cycle and,

moreover, if every cycle is a triangle, i.e., every cycle is composed of three edges.

We then investigate the core of the highway games. The core of a cost game is defined

as the set of cost allocations that are stable in the sense that no coalition of players can do

better by splitting off. A game with a nonempty core is called balanced. Highway games
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induced by chains and trees, that is the graphs which provide only one path between any two

vertices, are always balanced. However, highway games induced by graphs which allow for

multiple paths between vertices need not be balanced in general. In this note, we first focus

on highway problems defined on cycles and provide several sufficient conditions such that

the corresponding highway games are balanced. Finally, we prove that the same conditions

are also sufficient for the balancedness of highway games induced by weakly cyclic graphs.

The outline of the paper is as follows. Section 2 recalls basic notions from cooperative

game theory and graph theory and formally introduces highway problems and highway

games. Section 3 presents the main result of the paper: the characterization of HG-concave

graphs. Section 4 presents our results regarding the balancedness of highway games on

weakly cyclic graphs. Section 5 concludes.

2 Highway Problems and Highway Games

In this section, we formally define highway problems and the corresponding cooperative

cost games, called highway games.

2.1 Preliminaries

A cooperative (cost) game is a pair (N, c), where N is a nonempty, finite set of players and

c is a mapping, c : 2N → R with c(∅) = 0. A coalition is a set of players S ⊂ N and N

is called the grand coalition. For any coalition S ⊂ N , c(S) is interpreted as the minimal

joint cost of coalition S. A game (N, c) is monotonic if c(S) ≥ c(T ) for every S, T ∈ 2N

with T ⊂ S and it is called subadditive if c(S) + c(T ) ≥ c(S ∪ T ) for every S, T ∈ 2N

with T ∩ S = ∅. A game (N, c) is concave if c(S ∪ {i}) − c(S) ≤ c(T ∪ {i}) − c(T ) for

every i ∈ N and S, T ⊂ N\{i} with T ⊂ S. Equivalently, a game (N, c) is concave if

c(T ∪ S) + c(T ∩ S) ≤ c(T ) + c(S) for every S, T ⊂ N .

The core C(c) of a game (N, c) is defined as the set of efficient cost allocations for

which no coalition has an incentive to split off from the grand coalition, i.e., C(c) = {x ∈

RN |
∑

i∈N xi = c(N) and
∑

i∈S xi ≤ c(S) for all S ∈ 2N}. A game with a nonempty core is

called balanced. In particular, concave games are balanced.

An (undirected) graph G is a pair (V,E), where V is a nonempty and finite set of vertices

and E is a subset of all edges {i, j} with i, j ∈ V , i 6= j. Let G = (V,E) be a graph. A

path in G between vertices i and j is a collection of edges {{i0, i1}, {i1, i2}, ..., {ik−1, ik}}

such that i0 = i, ik = j, {iq−1, iq} ∈ E for all q ∈ {1, ..., k} and all intermediate vertices

are distinct, i.e., iq 6= ir for all q, r ∈ {1, 2, ..., k − 1} with q 6= r. A cycle in G is a path

from i to i for some i ∈ V . A graph is called weakly cyclic if every edge in the graph is

contained in at most one cycle. Vertices i, j ∈ V are said to be connected in G if there exists

a path between i and j in G. G is connected if any two vertices in V are connected. If G is

connected, an edge e ∈ E is called a bridge in G if the graph (V,E\{e}) is not connected.
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A subgraph of G is a graph G′ = (V ′, E′) with V ′ ⊂ V , V ′ 6= ∅ and E′ is a subset of all

edges {i, j} ∈ E with i, j ∈ V ′, i 6= j.

2.2 Highway Games

A highway problem is defined as a tuple Γ = (N,G, {{si, ti}}i∈N , w). N = {1, ..., n} is

a nonempty, finite set of players and G = (V,E) is a connected graph. The graph G

determines the possibilities regarding the construction of the highway network. That is,

any constructed highway network has to be a subgraph of G. Note that G need not be the

complete graph, since the construction of some edges may be infeasible due to geographic or

socioeconomic reasons. For each player i ∈ N , si and ti are vertices in G and they are called

the connection vertices of i. The connection vertices of player i represent the locations (think

of entry and exit) that i has to establish a connection in between. Furthermore, w : E → R+

is called a cost function and associates to each edge, e ∈ E, the nonnegative cost w(e) of

constructing e. The total cost of constructing a set of edges E′ ⊂ E is abbreviated by

w(E′) =
∑

e∈E′ w(e).

In a highway problem, a coalition S of cooperating players will construct the cheapest

set of edges that connects the connection points of every member of S. Therefore, given a

highway problem Γ = (N,G, {{si, ti}}i∈N , w), the corresponding highway game (N, cΓ) is

defined by

cΓ(S) = minE′⊂E{w(E′)|si and ti are connected in (V,E′) for every i ∈ S} (1)

for all S ⊂ N . Clearly, (N, cΓ) is subadditive and monotonic.

Example 2.1 Let G = (V,E) be a cyclic graph with V = {v1, v2, v3, v4} and E =

{{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}}. The construction costs of the edges are given by:

w({v1, v2}) = w({v2, v3}) = 2 and w({v3, v4}) = w({v4, v1}) = 3. Consider N = {1, 2, 3}

with s1 = v1, t1 = v3, s2 = v2, t2 = v3, s3 = v4, t3 = v1. The corresponding highway

problem Γ = (N,G, {{si, ti}}i∈N , w) is depicted in Figure 1.

v1

v2

v3

v4

2

23

3

t3 = = s1

= s2

t1 = = t2

s3 =

Figure 1: A highway problem with three players

Consider player 1. There are two paths in G between player 1’s connection vertices v1

and v3: {{v1, v2}, {v2, v3}} and {{v1, v4}, {v4, v3}}. Since player 1 will not construct any
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superfluous edges, cΓ({1}) is the minimum of w({v1, v2})+w({v2, v3}) = 4 and w({v1, v4})+

w({v4, v3}) = 6, i.e., cΓ({1}) = 4.

Next, consider the coalition {1, 3}. Clearly, players 1 and 3 will construct the set of

edges {{v1, v4}, {v3, v4}}. Hence, cΓ({1, 3}) = 6.

The complete corresponding highway game (N, cΓ) is given below:

S {1} {2} {3} {1,2} {1,3} {2,3} N

cΓ(S) 4 2 3 4 6 5 7

Observe that this highway game is not concave:

cΓ({1, 2}) + cΓ({1, 3}) < cΓ({1}) + cΓ({1, 2, 3}).

⋄

Recall that when the underlying graph is a chain as it is the case for the highway

problems considered by Mosquera and Zarzuelo (2006), the induced highway games are

concave. In chain graphs, there exists only one path between the connection vertices of a

player. However, if there are multiple paths between the connection vertices of players in

the underlying graph, the above example illustrates that players can select different paths in

different coalitions and this may lead to the violation of concavity conditions of the induced

highway game.

3 HG-Concavity

In this section, we characterize HG-concave graphs. Recall that a graph G is HG-concave if

for every highway problem (N,G, {{si, ti}}i∈N , w), the corresponding highway game (N, cΓ)

is concave. Explicitly, we show that a graph is HG-concave if and only if it is weakly

triangular, i.e., every edge in the graph is contained in at most one cycle and every cycle

has three edges.

For this aim, we first show that every highway game on a triangle is concave.

Lemma 3.1 Let Γ = (N,G, {{si, ti}}i∈N , w) be a highway problem where G is a cyclic

graph with three edges. Then, the corresponding highway game (N, cΓ) is concave.

Proof. Without loss of generality, assume that si 6= ti for all i ∈ N . It can easily be

observed that

(i) for every coalition, it is optimal to construct either one edge in G or the two cheaper

edges in G;

(ii) for a coalition S ⊂ N , if it is optimal to construct one edge {u, v} in G, then {si, ti} =

{u, v} for every i ∈ S;
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(iii) for a coalition S ⊂ N , if it is optimal to construct the two cheaper edges in G, then

constructing the two cheaper edges is optimal for any superset of S, too.

Now, we will show that cΓ(S ∪ T ) + cΓ(S ∩ T ) ≤ cΓ(S) + cΓ(T ) for every S, T ⊂ N , i.e.,

that the corresponding highway game (N, cΓ) is concave. Take S, T ⊂ N and assume that

S ∩ T 6= ∅. For, if S ∩ T = ∅, then the inequality follows directly from the subadditivity of

(N, cΓ).

Firstly, (i) implies that, for any coalition K ⊂ N , c(K) is either equal to the sum of the

costs of the two cheaper edges in G or equal to the cost of one of the three edges in G.

If both cΓ(S) and cΓ(T ) are equal to the sum of the costs of the two cheaper edges in

G, then the inequality follows from the monotonicity of cΓ and (iii). If only one of cΓ(S)

and cΓ(T ) is equal to the sum of the costs of the two cheaper edges in G and the other is

equal to the cost of one edge, say e, in G, then (iii) implies that cΓ(S ∪ T ) is equal to the

sum of the costs of the two cheaper edges in G and (ii) implies that cΓ(S ∩ T ) is also equal

to the cost of e. Hence, cΓ(S ∪ T ) + cΓ(S ∩ T ) = cΓ(S) + cΓ(T ).

Lastly, assume that cΓ(S) and cΓ(T ) are equal to the cost of an edge in G. Then, since

S∩T 6= ∅, (ii) implies that cΓ(S) and cΓ(T ) have to be equal to the cost of the same edge in

G. Then, both cΓ(S ∪T ) and cΓ(S ∩T ) are equal to the cost of the same edge, too. Hence,

cΓ(S ∪ T ) + cΓ(S ∩ T ) = cΓ(S) + cΓ(T ). �

We now discuss some properties of weakly cyclic graphs. Let G = (V,E) be a weakly

cyclic graph. Clearly, each edge in G is either a bridge edge or belongs to a cycle in G. Let

C(G) denote the set of cycles in G and BE(G) denote the set of bridge edges in G. Observe

that every path in G which connects two vertices has to pass through (has a common edge

with) the same set of cycles and the same set of bridge edges in G. More specifically,

every path that connects the same two vertices, passes through the same cycles and the

same bridge edges but the edges followed in cycles may differ. Moreover, every path that

connects the same two vertices in G enter and leave a cycle that they pass through at the

same vertices.

Before presenting the main result of this section, we will show that for every highway

problem on a weakly cyclic graph, the corresponding highway game is equal to the sum

of specific sub-highway games on each cycle and on each bridge edge in the graph. These

sub-highway games are formally defined as follows.

Consider a highway problem Γ = (N,G, {{si, ti}}i∈N , w) where G is a weakly cyclic

graph. Let C be a cycle in G. There exists a set of vertices VC = {v1, v2, ..., vk} ⊂ V

(k ≥ 3) such that C = {{v1, v2}, {v2, v3}, ..., {vk , v1}}. Now, the sub-highway problem

with respect to C is defined by ΓC = (N, (VC , C), {{sC
i , tCi }}i∈N , w|C), where w|C is the

restriction of the cost function w to the edges in C. For each player i ∈ N , if the paths

connecting si and ti pass through C, then sC
i and tCi are the vertices in C at which the

paths connecting si and ti enter and leave C. If the paths connecting si and ti do not pass
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through C, then we set sC
i = tCi = v1.

Next, let e = {u, v} be a bridge edge in G. Then, the sub-highway problem with respect

to e is defined by Γe = (N, ({u, v}, {e}), {{se
i , t

e
i}}i∈N , w|{e}). Set se

i = u and tei = v if the

paths connecting si and ti pass through e. Otherwise, set se
i = tei = u.

Lemma 3.2 Let Γ = (N,G, {{si, ti}}i∈N , w) be a highway problem where G is a weakly

cyclic graph. Then, cΓ(S) =
∑

C∈C(G) cΓC (S) +
∑

e∈BE(G) cΓe(S) for every S ⊂ N .

We omit the proof of Lemma 3.2 since it is straightforward.

We are now ready to present the main result of this section.

Theorem 3.1 A graph G is HG-concave if and only if it is weakly triangular.

Proof. We first show the if-part. Let G = (V,E) be a weakly triangular graph and consider

a highway problem Γ = (N,G, {{si, ti}}i∈N , w). We will show that the corresponding

highway game (N, cΓ) is concave.

We know by Lemma 3.2 that cΓ(S) =
∑

C∈C(G) cΓC (S) +
∑

e∈BE(G) cΓe(S) for every

S ⊂ N . By Lemma 3.1, we have that cΓC is concave for every triangle C ∈ C(G) and we

also know that highway games induced by chains are concave. In particular, cΓe is concave

for every e ∈ BE(G). We may conclude that cΓ is concave, since it is a non-negative linear

combination of concave games.

For the only-if part of the proof, choose a graph G = (V,E) that is not weakly trian-

gular. Now, we construct a player set N , connection vertices si, ti for each player i in N

and a cost function w such that the highway game corresponding to the highway problem

(N,G, {{si, ti}}i∈N , w) is not concave.

Since G is not weakly triangular, it contains a cycle with more than three edges. Let

(V ′, E′) be a subgraph of G corresponding to one such cycle C, i.e., V ′ = {v1, v2, ..., vk}

with k ≥ 4 and E′ = {{v1, v2}, {v2, v3}, ..., {vk−1, vk}, {vk, v1}}. Let the player set be

N = {1, 2, 3} and let s1 = v1, t1 = v3, s2 = v2, t2 = v3 and s3 = vk, t3 = v1. Define the

cost function w by:

w(e) =























2 if e ∈ {{v1, v2}, {v2, v3}}

0 if e ∈ {{v3, v4}, ..., {vk−2, vk−1}}

3 if e ∈ {{vk, v1}, {vk, vk−1}}

100 if e 6∈ C

Figure 2 provides a figure depicting a part of the highway problem (N,G, {{si, ti}}i∈N , w).

Now, it can easily be shown that the highway game corresponding to the highway problem

(N,G, {{si, ti}}i∈N , w) is equal to the highway game presented in Example 2.1, which is

not concave. �
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v1

v2

v3vk−1

vk

2

23

3

100

100

100

... 0 ...

t3 = = s1

= s2

= t2= t1

s3 =

Figure 2: An auxiliary figure for the proof of Theorem 3.1

4 Balancedness of Highway Games on Weakly Cyclic Graphs

In this section, we determine sufficient conditions on a highway problem such that the

induced highway game is balanced. We first focus on highway problems on single cycles

and establish three sufficient conditions for the balancedness of the induced highway games.

Our first result states that if the number of players is less than or equal to three, then

highway games on a cycle are balanced. Consider a highway problem (N,G, {{si, ti}}i∈N , w),

where G is a cyclic graph. Observe that each player has two alternative paths that connect

his connection vertices in G. For player i, we denote an individually optimal path for i by

Pi and the alternative path by Qi. We first prove two preliminary results.

Lemma 4.1 Let the highway problem Γ = (N,G, {{si, ti}}i∈N , w) be such that G = (V,E)

is a cyclic graph and let j, k ∈ N . Then,

w(Pj ∩ Pk) ≤ w(E\(Pj ∪ Pk)).

Proof. Pj can be partitioned into two sets of edges: Pj ∩ Pk and Pj\Pk. Similarly, Qj can

be partitioned into Qj ∩ Pk = Pk\Pj and Qj\Pk = E\(Pj ∪ Pk): See also Figure 3.

v1

v2

v3

v4

Pj\Pk

Pj ∩ PkPk\Pj

E\(Pj ∪ Pk)
PjQj

Pk

= sj

= sk

tj =

tk =

Figure 3: An auxiliary figure for the proof of Lemma 4.1

Since w(Pj) ≤ w(Qj),

w(Pj) = w(Pj ∩ Pk) + w(Pj\Pk) ≤ w(Pk\Pj) + w(E\(Pj ∪ Pk)) = w(Qj). (2)
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Similarly, since w(Pk) ≤ w(Qk),

w(Pk) = w(Pj ∩ Pk) + w(Pk\Pj) ≤ w(Pj\Pk) + w(E\(Pj ∪ Pk)) = w(Qk). (3)

By summing inequalities (2) and (3), one obtains

w(Pj ∩ Pk) ≤ w(E\(Pj ∪ Pk)). (4)

�

Lemma 4.2 Let the highway problem Γ = (N,G, {{si, ti}}i∈N , w) be such that G = (V,E)

is a cyclic graph. Let j, k ∈ N (j 6= k) be such that w(Pj) ≤ w(Pk). Then,

cΓ({j, k}) = min{w(Pj ∪ Pk), w(Pj ∪ Qk)}.

Proof. Clearly, cΓ({j, k}) = min{w(Pj ∪ Pk), w(Pj ∪ Qk), w(Qj ∪ Pk), w(Qj ∪ Qk)}. We

will show that w(Pj ∪Qk) ≤ w(Qj ∪ Pk) and w(Pj ∪Pk) ≤ w(Qj ∪Qk). Note that Pj ∪Qk

can be partitioned into two sets Pj and Qk\Pj = E\(Pj ∪ Pk). Hence, w(Pj ∪ Qk) =

w(Pj) + w(E\(Pj ∪ Pk)). Similarly, w(Qj ∪ Pk) = w(Pk) + w(E\(Pj ∪ Pk)). We know that

w(Pj) ≤ w(Pk). Hence, w(Pj ∪ Qk) ≤ w(Qj ∪ Pk).

One can easily observe that w(Pj ∪ Pk) = w(E) − w(E\(Pj ∪ Pk)) and w(Qj ∪ Qk) =

w(E) − w(Pj ∩ Pk). Then, by Lemma 4.1, w(Pj ∪ Pk) ≤ w(Qj ∪ Qk). �

Proposition 4.1 Let Γ = (N,G, {{si, ti}}i∈N , w) with |N | ≤ 3 be a highway problem such

that G is a cyclic graph. Then the corresponding highway game (N, cΓ) is balanced.

Proof. If |N | = 2, balancedness of (N, cΓ) follows from the subadditivity of the game. Set

N = {1, 2, 3}. Without loss of generality, assume that w(P1) ≤ w(P2) ≤ w(P3). We will

show that x = (cΓ({1}), cΓ({1, 2}) − cΓ({1}), cΓ(N) − cΓ({1, 2})) ∈ C(cΓ). Since (N, cΓ) is

subadditive, we only need prove the core inequality corresponding to the coalition {1, 3},

i.e., we need to prove that

cΓ(N) − cΓ({1, 2}) + cΓ({1}) ≤ cΓ({1, 3}). (5)

By Lemma 4.2, cΓ({1, 2}) is either equal to w(P1 ∪ Q2) or equal to w(P1 ∪ P2) and

cΓ({1, 3}) is either equal to w(P1 ∪ Q3) or equal to w(P1 ∪ P3). Firstly, assume that

cΓ({1, 2}) = w(P1 ∪ P2) and cΓ({1, 3}) = w(P1 ∪ P3). Then,

cΓ({1, 2}) + cΓ({1, 3}) − cΓ({1}) = w(P1 ∪ P2) + w(P1 ∪ P3) − w(P1)

= w(P1 ∪ P2) + w(P3\P1)

≥ w(P1 ∪ P2) + w(P3\(P1 ∪ P2))

= w(P1 ∪ P2 ∪ P3) ≥ cΓ(N), (6)

where the second equality follows from the fact that P1 ∪ P3 can be partitioned into sets

P1 and P3\P1. Analogously, the remaining cases regarding the choice of cΓ({1, 2}) and
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cΓ({1, 3}) lead to the same result. �

In fact, in the proof of Proposition 4.1, we specify an allocation which always belongs to

the core of a three person highway game on a cyclic graph. This allocation corresponds to

a marginal of the highway game corresponding to an order in which the players are ordered

on the basis of individual costs. The following example illustrates that, for highway games

on cyclic graphs with more than three players, such a marginal need not be in the core.

Example 4.1 Consider the highway problem Γ = (N,G, {{si, ti}}i∈N , w) with N = {1, 2, 3, 4}

as depicted in Figure 4.

v1 v2

v3

v4v5

v6

v7

5

3

8

2

2

6

5

s4 = = t2

s1 =

s3 =

t4 = t1 = = s2

= t3

= t2

Figure 4: A highway problem with four players

The highway game (N, cΓ) corresponding to this problem is given by:

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N

cΓ(S) 8 11 12 13 19 18 13 15 18 20 21 20 21 20 23

Observe that cΓ(1) ≤ cΓ(2) ≤ cΓ(3) ≤ cΓ(4). Then the marginal corresponding to

the order (1234) in which players are ranked on the basis of their individual costs is x =

(8, 11, 2, 2). This marginal is not in C(cΓ), since x1 + x2 + x4 = 21 > 20 = cΓ({1, 2, 4}).

Note however that (N, cΓ) is balanced. For example, the cost allocation (6, 3, 12, 2) is in

C(cΓ). ⋄

In the following proposition we show that if, in a highway problem defined on a cyclic

graph, all players’ individually optimal paths are disjoint, then the corresponding highway

game is balanced.

Proposition 4.2 Let Γ = (N,G, {{si, ti}}i∈N , w) be a highway problem such that G is a

cyclic graph. If Pi∩Pj = ∅ for all i, j ∈ N with i 6= j, then the corresponding highway game

(N, cΓ) is balanced.

Proof. Let N = {1, 2, ..., n} and assume that cΓ({n}) ≥ cΓ({i}) for every i ∈ N . It is

easily observed that

cΓ(S) =











w(∪i∈SPi) if n ∈ S and w(Pn) ≤ w(E\ ∪i∈S Pi)

w(Qn) if n ∈ S and w(E\ ∪i∈S Pi) ≤ w(Pn)

w(∪i∈SPi) if n 6∈ S.
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Now, it is readily seen that the allocation in which every player i 6= n pays cΓ({i}) =

w(Pi) and n pays w(Pn) if w(Pn) ≤ w(E\ ∪i∈S Pi) and w(E\ ∪i∈S Pi) if w(E\ ∪i∈S Pi) ≤

w(Pn), is a core allocation of (N, cΓ). �

In the following proposition we will prove that for a highway problem defined on a

cyclic graph, if each player wants to establish a connection with the same location, then the

corresponding highway game is balanced.

Proposition 4.3 Let Γ = (N,G, {{si, ti}}i∈N , w) be a highway problem such that G is a

cyclic graph and si = sj for every i, j ∈ N . Then, the corresponding highway game (N, cΓ)

is balanced.

Proof. Let G = (V,E) be a cyclic graph with V = {v0, v1, ..., vk} (k ≥ 2) and E =

{{v0, v1}, {v1, v2}, ..., {vk , v0}}. Assume that si = sj = v0 for every i, j ∈ N . Moreover, let

E∗ ⊂ E be a set of edges that is optimal to construct for N , i.e., cΓ(N) = w(E∗). In the

following, we will assign each player i ∈ N the cost of a (possibly empty) subset E∗
i of E∗

and show that the corresponding cost allocation is in the core of (N, cΓ).

Firstly, let Nv = {i ∈ N |ti = v} for each v ∈ V . Now, consider a vertex vt ∈ V

with Nvt 6= ∅. Clearly, either the path {{vt, vt+1}, ..., {vk , v0}} is in E∗ or the path

{{vt, vt−1}, ..., {v1, v0}} is in E∗ so that vt and v0 are connected in (V,E∗). Also E∗ can al-

ways be decomposed into two (possibly empty) disjoint paths {{v0, v1}, {v1, v2}..., {vq−1, vq}}

and {{v0, vk}, {vk, vk−1}, ..., {vr+1, vr}} for some vq ∈ V and vr ∈ {vq+1, ..., v0}.

We first consider the path {{v0, v1}, {v1, v2}..., {vq−1, vq}}. Let vt1 be the first vertex

in the sequence (v0, v1, ..., vq) such that Nvt1 6= ∅, i.e., Nvt1 6= ∅ and t1 ≤ t′ for every t′ ∈

{0, 1, ..., q} such that Nvt′ 6= ∅. Pick a player i ∈ Nvt1 and set E∗
i = {{v0, v1}, ..., {vt1−1, vt1}}.

Set E∗
j = ∅ for every j ∈ Nvt1\{i}. If t1 = q, then we are done. Otherwise, let vt2 be the

first vertex in the sequence (vt1+1, ..., vq) such that Nvt2 6= ∅. Pick a player i ∈ Nvt2

and set E∗
i = {{vt1 , vt1+1}, ..., {vt2−1, vt2}}. Set E∗

j = ∅ for every j ∈ Nvt2\{i}. If

t2 = q, then we are done. Otherwise, one can repeat the procedure above until vq is

reached. Notice that the sets of edges assigned to players form a partition of the path

{{v0, v1}, {v1, v2}..., {vq−1, vq}}. Obviously, one can apply a similar procedure to allocate

the cost of the path {{v0, vk}, {vk, vk−1}, ..., {vr+1, vr}}.

We will now show that the cost allocation x = (w(E∗
1 ), w(E∗

2 ), ..., w(E∗
n)) is in the core

of (N, cΓ). One can easily observe that
∑

i∈N w(E∗
i ) = w(E∗) = cΓ(N) by construction.

Suppose that there exists a coalition S ⊂ N such that
∑

i∈S w(E∗
i ) > cΓ(S). Let E∗

N\S =

∪i∈N\SE∗
i and let ES be a set of edges that is optimal to construct for S, i.e., cΓ(S) = w(ES).

Then,

cΓ(N) =
∑

i∈S

w(E∗
i ) +

∑

i∈N\S

w(E∗
i ) > cΓ(S) +

∑

i∈N\S

w(E∗
i ) = w(ES) + w(E∗

N\S). (7)

By the construction of E∗, for each i ∈ N\S, either there exists a path in E∗
N\S which

connects ti with v0 or there exists a path in E∗
N\S which connects ti with a vertex v such
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that Nv ∩ S 6= ∅. Then, for every player i ∈ N , connection points si and ti are connected

via (E∗
N\S ∪ES) and hence, (7) contradicts with the optimality of the edge set E∗ for N . �

We have obtained three sufficient conditions ensuring the balancedness of a highway

game on a cyclic graph. In the following theorem, we show that, if each sub-highway

problem with respect to a cycle (as defined in Section 3) in a weakly cyclic graph satisfies

one of the three sufficiency conditions, then the highway game induced by the weakly cyclic

graph is balanced.

Theorem 4.1 Let Γ = (N,G, {{si, ti}}i∈N , w) be a highway problem such that G is a weakly

cyclic graph. The highway game (N, cΓ) is balanced, if for every C ∈ C(G), the sub-

highway problem ΓC = (N, (VC , C), {{sC
i , tCi }}i∈N , w|C) satisfies one of the following three

conditions:

(i) |N | ≤ 3.

(ii) PC
i ∩ PC

j = ∅ for all i, j ∈ N with i 6= j.

(iii) sC
i = sC

j for every i, j ∈ N .

Proof. We know by propositions 4.1, 4.2 and 4.3 that if a sub-highway problem induced

by a cycle in G satisfies one of the conditions (i), (ii) and (iii), then the corresponding

sub-highway game is balanced. Moreover, by Lemma 3.2, a highway game on a weakly

cyclic graph is equal to the sum of the sub-highway games with respect to each of its

cycles and with respect to each bridge edge in the graph, i.e., cΓ(S) =
∑

C∈C(G) cΓC (S) +
∑

e∈BE(G) cΓe(S) for every S ⊂ N . Pick yC ∈ C(cΓC ) for each C ∈ C(G) and ye ∈ C(cΓe)

for each e ∈ BE(G). Set x =
∑

C∈C(G) yC +
∑

e∈BE(G) ye. Clearly, x ∈ C(cΓ). �

5 Concluding Remarks

Most of the current literature on the allocation of the construction costs of networks focuses

on minimum cost spanning tree (mcst) problems (cf. Granot and Huberman, 1981). These

problems consider a group of players, each of whom has to be connected to a source, either

directly or via other players. The main difference between highway problems and mcst

problems is that, in a highway problem, there is no particular vertex every player has to

be connected to. A difference less important is that usually, in mcst problems, a coalition

S is not allowed to use vertices other than the vertices of S and the source. Indeed, if this

restriction is relaxed, then the corresponding relaxed mcst game is a special type of highway

game.

Moreover, for complete graphs, highway problems are related to minimum cost forest

(mcf) problems introduced by Kuipers (1997). Mcf problems are generalizations of mcst

problems which allow for more than one source, where each source offers a different type
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of service and each customer has to be connected with a nonempty subset of the available

sources. Kuipers (1997) establishes sufficient conditions for the balancedness of the corre-

sponding mcf games. Highway games on complete graphs form a subclass of the class of

mcf games. As Kuipers (1997) provides an example of a three person mcf problem, in which

every player has to be connected to exactly one source, that leads to a non-balanced game,

it follows that a three person highway game on a complete graph need not be balanced.
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