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Robust and Efficient Adaptive Estimation of

Binary-Choice Regression Models

Pavel Č́ıžek1

The binary-choice regression models such as probit and logit are used

to describe the effect of explanatory variables on a binary response vari-

able. Typically estimated by the maximum likelihood method, estimates

are very sensitive to deviations from a model, such as heteroscedastic-

ity and data contamination. At the same time, the traditional robust

(high-breakdown point) methods such as the maximum trimmed like-

lihood are not applicable since, by trimming observations, they induce

the separation of data and non-identification of parameter estimates. To

provide a robust estimation method for binary-choice regression, we con-

sider a maximum symmetrically-trimmed likelihood estimator (MSTLE)

and design a parameter-free adaptive procedure for choosing the amount

of trimming. The proposed adaptive MSTLE preserves the robust prop-

erties of the original MSTLE, significantly improves the finite-sample

behavior of MSTLE, and additionally, ensures asymptotic efficiency of

the estimator under no contamination. The results concerning the trim-

ming identification, robust properties, and asymptotic distribution of

the proposed method are accompanied by simulation experiments and

an application documenting the finite-sample behavior of some existing

and the proposed methods.
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1. INTRODUCTION

Binary-choice regression models, such as probit and logit, are frequently used in

statistic and econometric applications. These models are used to describe the effect

of explanatory variables xi on a binary response yi ∈ {0, 1}; most usually, the

probability P (yi = 1|xi) is modelled as F (x>i β), where F is referred to as a link

function. For example, applications of the binary-choice models include estimating

probability of a firm’s bankruptcy or a disease diagnosis and modeling of decisions

to work, to retire, or to have children. Such models are typically estimated by the

maximum likelihood estimator (MLE) because of its asymptotic efficiency under a

parametric model. On the other hand, MLE is very sensitive to atypical data: if

there are misclassified observations with large values of covariates, MLE estimates

can be severely biased (Croux et al. 2002). This can happen, for example, when a

model does not account for all features of data (e.g., by missing some variables, by

not accounting for or misspecifying of heteroscedasticity and misclassification) or

data come from a heavy-tailed distribution. The first attempts to fix this sensitivity

of MLE stem from Pregibbon (1981), followed by Copas (1988), Carrol and Pederson

(1993), Christmann (1994), Bianco and Yohai (1996), Kordzakhia et al. (2001),

Croux and Haesbroeck (2003), Müller and Meykov (2003), and Gervini (2005), for

instance. Our aim is to propose an alternative to these methods that, on the one

hand, improves upon their robustness to atypical data (which badly influence MLE)

and that, on the other hand, is asymptotically efficient as MLE if data followed the

assumed model and are free of erroneous observations.
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A predominant approach in making MLE more robust in the context of binary-

choice regression is based on M-estimation: one replaces the likelihood function (or

its score) by another function of explanatory variables xi, which increases with xi

at a slower rate or is even bounded. As noted by Carroll and Pederson (1993),

for instance, such a change can make estimates asymptotically biased and a bias-

correction term has to be included in the objective function (Bianco and Yohai

1996). The form of the correction term depends on the link function F used and it

might be difficult to obtain for generalizations of the binary-choice model accounting

for heteroscedasticity or misclassification (e.g., Hausman et al. 1998). Additionally,

a weighting function w(xi) is sometimes introduced to diminish or eliminate influ-

ence of observations with large values of covariates since the M-estimators are also

sensitive to misclassified observations with extreme value of explanatory variables

(Croux and Haesbroeck 2003; Gervini 2005). Such (down-)weighting of observations

is however done irrespectively of their influence on the model.

Another class of robust (high-breakdown point) methods that form an alternative

to M-estimation are estimators based on trimming of individual observations from

the objective function; for example, the nonlinear least trimmed squares (Stromberg

and Ruppert 1992; Č́ıžek 2005) and the maximum trimmed likelihood (MTLE;

Müller and Neykov 2003). These methods are however not applicable in binary-

response models since, by trimming observations, they induce the separation of

data and thus non-identification of parameter estimates (Albert and Anderson 1984;

Č́ıžek 2006). The only exception are data sets containing large strata, where the

number of observations at any observed point xi grows with sample size (Christmann

1994).

Here we propose a new robust estimator of binary-choice models, which is highly

robust without model-unrelated downweighting of observations, which is consistent
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even without any bias-correction terms (and thus widely and easily applicable),

and which is additionally asymptotically efficient under the model. The proposed

estimator relies on the maximum symmetrically-trimmed likelihood estimator (MS-

TLE) proposed by Č́ıžek (2006), which is a generally applicable robust estimator of

binary-choice regression with relatively poor finite-sample performance (asymptotic

results are not available with the exception of consistency). To improve its finite-

sample behavior, we complement MSTLE by a data-adaptive procedure for the

selection of trimming proportion based on the average likelihood criterion. Further,

we derive the asymptotic distribution of the adaptively-trimmed MSTLE and show

that the proposed estimator is asymptotically efficient while preserving the robust

properties of the original MSTLE. Although the adaptive MSTLE is discussed here

within the framework of the parametric MLE estimation, the concept is straight-

forward to extend to parametric models with more complex parametric forms and

heteroscedasticity and to semiparametric single-index models and estimators (e.g.,

Klein and Spady 1993).

In the rest of this paper, we first introduce main concepts and definitions in

Section 2. Further, we discuss conditions under which the proposed method is

identified and asymptotically normal in Section 3, where both robust and asymptotic

properties of the proposed adaptive MSTLE are derived. Finally, we compare the

proposed and some existing methods using Monte Carlo simulations and real data

in Section 4. Proofs are provided in Appendix B.

2. BINARY-CHOICE MODEL AND ITS ESTIMATION

Let us now introduce the model and concepts used in the paper. First, the model

and its MLE estimation is discussed. Next, we describe the existing MTLE method
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(Section 2.1) and propose the adaptive MSTLE estimator (Section 2.2).

The most frequently used binary-choice regression models characterize the con-

ditional expectation of a binary response yi ∈ {0, 1} conditional on explanatory

variables xi ∈ Rp as a function of a linear combination (index) of xi:

P (yi = 1|xi) = F (x>i β), (1)

where F is a link function (e.g., the standard normal distribution function Φ for

probit) and β ∈ Rp is a vector of unknown parameters. Within this paper, the link

function F is assumed to be a known non-decreasing function, although extensions

to semiparametric models with an unknown monotonic function F are possible.

For a known link function F , model (1) is typically estimated by MLE, which is

defined by

β̂
(MLE)

= arg max
β∈B

n∑
i=1

l(yi,xi; β), (2)

where B represents the parameter space and the log-likelihood contributions are

l(yi,xi; β) = yi ln F (x>i β) + (1− yi) ln{1− F (x>i β)}. (3)

This estimator is identified only if there is an overlap in data; that is, if the two parts

of data given by the values of the response variable, {xi|yi = 1} and {xi|yi = 0}, are

not separated in the space of explanatory variables (Albert and Anderson 1984).

MLE is asymptotically normal and efficient, but it can behave rather poorly if

data are contaminated by outliers; for example, if data contain misclassified observa-

tions with large values of explanatory variables. This can be documented using one

of the (global) measures of an estimator’s sensitivity to atypical data – the break-

down point. It can be defined as the largest fraction m/n of observations that can be

5



added at arbitrary locations without making the estimator “useless”; and naturally,

adding then m+1 observations in a right way can make the estimator “useless”. An

estimator is considered useless if it does not depend on sample data anymore, that is,

if it is a non-random constant (Genton and Lucas 2003). (Note that we introduced

the so-called aditive breakdown point instead of more usual replacement breakdown

point, which is not informative in the binary-choice regression, see Christman 1994.)

In the case of binary-choice regression and MLE, the MLE estimates can become

zero independently of sample data if only 2p outliers are added (Croux et al. 2002).

Hence, the breakdown point of MLE is bounded by 2p/n and approaches zero as

n →∞.

2.1. Maximum trimmed likelihood

The lack of robustness of MLE gave rise to more robust alternatives, mostly based

on M -estimators (e.g., Carroll and Pederson 1993; Bianco and Yohai 1996; Gervini

2005), which however require asymptotic bias-corrections to achieve consistency

and model-independent downweighting of observations to achieve robustness (e.g.,

Croux and Haesbroeck 2003; Gervini 2005). In models with continuous response,

there is another high-breakdown point method derived from the MLE criterion: the

maximum trimmed likelihood estimator (MTLE). For a sample (xi, yi)
n
i=1, MTLE is

defined by (Hadi and Luceno 1997)

β̂
(MTLE,hn)

= arg max
β∈B

n∑

j=n−hn+1

l[j](xi, yi; β), (4)

where l[j](xi, yi; β) represents the jth order statistics of likelihood contributions

l(xi, yi; β), i = 1, . . . , n, and hn is the trimming constant, n/2 < hn ≤ n. Com-

pared to MLE, the n−hn observations with smallest likelihood values, that is, least
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probable observations under a given model, are left out of the likelihood function.

This intuitively indicates that the breakdown of MTLE should be close to (n−hn)/n,

which can asymptotically approach 1/2 if hn = [n/2] + 1 ([x] represents the integer

part of x). The robust properties of MTLE were studied in the linear and general-

ized linear regression models by Vandev and Neykov (1998) and Müller and Neykov

(2003), respectively.

The trimmed estimators such as MTLE are however not applicable in the binary-

choice model (1) unless the number of observations at any observed point xi grows

with sample size (Christmann 1994), that is, unless all variables are discrete. One

reason is the non-identification of parameters if a large proportion of data, for exam-

ple hn = [n/2]+1, is trimmed from the objective function: intuitively, splitting sam-

ple to parts where responses yi = 1 or yi = 0 are more likely, Sk = {(yi,xi)|P (yi =

k|xi) ≥ 0.5} for k = 1 and k = 0, respectively, there are generally less observations

with response yi = 1−k than with response yi = k in Sk, k = 0, 1; at the same time,

observations with response value yi = 1 − k in Sk are less probable than observa-

tions with yi = k in Sk; consequently, all observations in Sk with response yi = 1−k

will be trimmed from the objective function (4) and only two separated groups of

observations without overlap will be kept in (4), which causes the non-identification

of parameters. See Christmann and Rousseeuw (2001) and Č́ıžek (2006) for details.

2.2. Adaptive maximum symmetrically-trimmed likelihood

To adapt the trimmed estimators to the binary-choice models, Č́ıžek (2006) intro-

duced the maximum symmetrically-trimmed likelihood estimator (MSTLE), which
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trims observations independently of the response values yi:

β̂
(MSTLE,hn)

= arg max
β∈B

n∑
j=1

l(xi, yi; β) · I(
r(xi; β) ≥ r[n−hn+1](xi; β)

)
, (5)

where r(xi; β) = miny∈{0,1} l(xi, y; β). Consequently, MSTLE trims observations

(yi,xi) such that one of responses is improbable, be it yi = 1 or yi = 0. Since

MSTLE cannot trim just observations with yi = 1 or just with yi = 0, it does not

create a separation of data and parameters are identified (see Č́ıžek 2007, Section

4.3, for details).

The MSTLE estimator is a robust positive breakdown-point method, but con-

trary to the estimation of continuous-response models, the breakdown point of MS-

TLE cannot asymptotically exceed 1/3 (Č́ıžek 2006). This can be achieved for

hn = [(2n)/3] (smaller values of hn are possible, but do not lead to an increase of

the breakdown point). Furthermore, the symmetric trimming eliminates observa-

tions with P (yi|xi) close to 0 or 1, which can significantly influence the estimator if

they are misclassified, but which are best fit by the model if they are correct. Hence,

the variance of MSTLE estimates is rather large unless hn is close to n.

As a remedy, we propose a data-adaptive procedure to determine the amount of

trimming so that observations are not trimmed unnecessarily. In this context, the

key observation is that, due to the monotonicity of the link function F , the average

log-likelihood of non-trimmed observations increases with hn under the model (1).

Lemma 1 Let (xi, yi) be a random vector, F a non-decreasing link function, and

β0 ∈ Rp the underlying parameter value such that the expectation El(xi, yi; β0) is

finite. Then it holds that E [l(xi, yi; β0)|r(xi; β0) ≥ C] is non-increasing in C, C < 0,

and hence,

E
[
l(xi, yi; β0)|r(xi; β0) ≥ r[n−hn+1](xi; β0)

]
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is non-decreasing in hn for any given sample size n ∈ N.

Consequently, if there are no influential misclassified observations, MSTLE estimates

for all values of trimming constant hn will be consistent, close to the true parameter

value β0, and by Lemma 1, the average log-likelihood of non-trimmed observations

will increase with hn. On the other hand, if there are influential misclassified ob-

servations, the parameter estimates become biased (usually towards zero) once hn

is sufficiently large so that the misclassified observations are not trimmed from the

objective function (5). Subsequently, the property derived in Lemma 1 will not

apply anymore.

The above stated observation motivates the following data-adaptive procedure.

Select a grid 2/3 = λ1 < . . . < λM = 1 of M points, where M ∈ N is fixed. For

each m = 1, . . . , M , define hm
n = [λmn] and perform the corresponding MSTLE es-

timation, which results in an estimate β̂
m

and the maximal symmetrically-trimmed

likelihood value Lm
n from (5). Next, select m∗

n maximizing the average log-likelihood

Lm
n /hm

n ,

m∗
n = arg max

m=1,...,M

1

hm
n

n∑
j=1

l(xi, yi; β̂
m

) · I
(
r(xi; β̂

m
) ≥ r[n−hm

n +1](xi; β̂
m

)
)
.

Finally, define the adaptive MSTLE estimator as β̂
(AMSTLE)

= β̂
m∗

n
, which corre-

sponds to the MSTLE estimator using the trimming constant h∗ = h
m∗

n
n . (Note that

one could theoretically perform an optimization over all hn, 2n/3 ≤ hn ≤ n, which

would however be computationally impractical.)
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3. PROPERTIES OF ADAPTIVE MSTLE

In this section, the robust and asymptotic properties of the proposed adaptive MS-

TLE estimator will be studied. Let us therefore introduce first the assumptions

concerning the model (1) and the random variables xi and yi. The below stated

assumptions have to be accompanied by some further regularity assumptions that

are summarized in Appendix A.

Assumptions

1. Let the link function F (z) be a strictly increasing and twice continuously

differentiable function on its support {z|0 < F (z) < 1} and let F (0) = 1/2.

Moreover, functions ln F (z) and ln{1− F (z)} are assumed to be concave.

2. Let random variables {yi,xi}i∈N form an identically distributed absolutely

regular sequence of random vectors with finite second moments. Further, let

E(xix
>
i ) be a positive definite matrix.

3. The distribution function Gβ of F (x>i β) is assumed to be absolutely continu-

ous with a density function gβ, which is positive on its support and uniformly

bounded over a neighborhood β ∈ U(β0, δ) for some δ > 0.

First, note that the assumptions concerning the link function F , especially the

monotonicity and concavity of its logarithm, are sufficient conditions for the exis-

tence and uniqueness of MLE (Silvapulle 1981); assumption F (0) = 1/2 just identi-

fies the intercept in binary-choice regression. Next, the assumptions concerning the

random variables xi and yi allow for a dependence across observations. At the same

time, some of the variables (with non-zero coefficients) have to be continuously dis-

tributed so that the regression function F (x>i β0) is continuously distributed. This
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is however not an important limitation: if all explanatory variables are discrete,

any location estimator can be applied and no specific method is necessary (e.g.,

Christmann 1994).

3.1. Breakdown point

As indicated in Section 2.2, the breakdown point of MSTLE can be (asymptotically)

at most 1/3, but in general, it depends on the data generating process (this is

typical especially for nonlinear models and under dependency, Genton and Lucas

2003). Thus for a given model and sample, let εm
n denote the breakdown point of the

MSTLE estimator using the trimming constant hm
n = [λmn], m = 1, . . . , M . We will

now show that the adaptive MSTLE method preserves the breakdown properties of

the original MSTLE.

Theorem 1 For a sample of size n, consider a grid 2/3 = λ1 < . . . < λM = 1

of M points, the MSTLE estimators defined by trimming constants hm
n = [λmn],

m = 1, . . . , M , and the corresponding breakdown points ε1
n, . . . , εM

n . Under Assump-

tion 1, the breakdown point εa
n of the adaptive MSTLE estimator then equals to

εa
n = maxm=1,...,M εm

n at any sample of size n, where MLE is identified.

Theorem 1 confirms that the breakdown point of the adaptive MSTLE proce-

dure is equal to the breakdown point of MSTLE with the most robust choice of

the trimming constant. Thus, the adaptive choice of trimming does not adversely

influence the breakdown properties of MSTLE.

3.2. Asymptotic distribution

Although the adaptive MSTLE does not lose the robust properties of the original

MSTLE method, it is crucial that it improves the quality of estimation (e.g., the
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variance of estimates), especially if data do not contain any influential or atypical

observations. Therefore, the asymptotic distribution of MSTLE is derived first.

Later, we focus on the adaptive estimation using data generated from model (1)

and prove that the adaptive MSTLE is asymptotically efficient.

The asymptotic distribution of MSTLE can be derived using the results of Č́ıžek

(2007) on the general trimmed estimation.

Theorem 2 Under Assumptions 1–8, the MSTLE estimator β̂
(MSTLE,hn)

, where

hn = [λn] and 0 < λ ≤ 1, is asymptotically normal; that is,
√

n(β̂
(MSTLE,hn)−β0) →

N(0, V ) in distribution as n →∞.

Note that the above result concerning the asymptotic normality of MSTLE does

not specify the precise form of the asymptotic variance. Even though it can be

formally derived, it does not have a computationally feasible form (see Č́ıžek 2007).

Hence, it has to be computed by a parametric or a robust nonparametric bootstrap,

for instance (e.g., Hall and Presnell 1999; Salibian-Barrera and Zamar 2002).

Now, considering the adaptive MSTLE procedure performed on a grid Λ =

(λ1, . . . , λM), the asymptotic distribution is determined by the chosen level of trim-

ming. Provided that the average log-likelihood at the true parameter value,

E
[
l(xi, yi; β0)|r(xi; β0) ≥ r[n−hn+1](xi; β0)

]
,

has a unique minimum on Λ, say at λs, the optimal amount of trimming λm∗
n

will

converge in probability to λs, λm∗
n
→ λs as n → ∞. Consequently, the asymptotic

distribution of the adaptive MSTLE will be equivalent to the one of MSTLE with

trimming equal to hn = [λsn]. A particular case of this general conjecture for data

without any contamination is derived in the following theorem.
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Theorem 3 Consider a grid 2/3 = λ1 < . . . < λM = 1 of M points and the

MSTLE estimators defined by hm
n = [λmn], m = 1, . . . , M . Under Assumptions 1–

8, the adaptive MSTLE estimator β̂
(AMSTLE)

has the same asymptotic distribution

as the MLE estimator of the same model. Specifically as n → ∞, m∗
n → M in

probability, λm∗
n
→ 1 in probability, and finally,

√
n(β̂

(AMSTLE)−β0) → N(0, V MLE)

in distribution, where V MLE denotes the asymptotic variance of MLE.

The most important consequence of Theorem 3 is that, for data described by

model (1), the adaptive MSTLE procedure selects the correct amount of trimming,

λ = 1, and additionally, this selection does not influence the asymptotic distribution

of the estimator (at least up to the order
√

n). Hence, the adaptive MSTLE is

asymptotically efficient.

4. FINITE-SAMPLE PROPERTIES

To compare the performance of various methods for estimating binary-choice regres-

sion models in finite samples, Monte Carlo simulations (Sections 4.1 and 4.2) and

a real data set (Section 4.3) are used. In this section, we compare the proposed

MSTLE and adaptive MSTLE (AMSTLE) methods with MLE and the Bianco and

Yohai (1996) estimator (BYE), which is based on a bias-corrected M-estimator and

was implemented by Croux and Haesbroeck (2003). We also consider weighted forms

of MLE and BYE, denoted WMLE and WBYE, respectively. They are based on

weights defined by wi = I(RD2
i ≤ χ2

p,0.975), where χ2
p,0.975 denotes the 97.5% quantile

of χ2 distribution with p degrees of freedom and RDi represents the Mahalanobis

distance of observation xi based on a robust estimate of location and covariance (see

Croux and Haesbroeck 2003 for details). Such a choice of weights, which depend

just on the position of observations in the space of explanatory variables and down-
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Table 1: Bias and MSE of all methods for data CLEAN using p = 2 variables and
sample sizes n = 100, 200, and 400.

Estimation n = 100 n = 200 n = 400
method Bias MSE Bias MSE Bias MSE
MLE 0.094 0.273 0.040 0.127 0.021 0.051
W MLE 0.093 0.294 0.040 0.135 0.024 0.053

BYE 0.101 0.290 0.046 0.134 0.033 0.054
W BYE 0.101 0.308 0.045 0.141 0.031 0.055

MSTLE 0.468 1.065 0.256 0.367 0.180 0.151
A MSTLE 0.150 0.328 0.047 0.131 0.021 0.051

weight all distant observations, is frequently used in the case of M-estimators (e.g.,

Gervini 2005).

As BYE is currently implemented only for logit, we compare all methods using

a logistic model. In the case of simulated data, we generate p explanatory variables

x1, . . . , xp ∼ N(0, 1), and for a given parameter vector β = (β0, β1, β2, 0, . . . , 0)>, we

define y = I(β0 + β1x1 + β2x2 + ε ≥ 0), where ε ∼ Λ(0, 1) (N(µ, σ) and Λ(µ, s) refer

to the Gaussian and logistic distributions, respectively). If a generated data set is

not further modified, we refer to it as CLEAN. Next, to examine robust properties

of all estimators, we also use contaminated data: a given fraction α ∈ (0, 1) of

observations is shifted by (∆1, ∆2) ∈ R2 and misclassified, which corresponds to

transformations x∗1 = x1 + ∆1, x
∗
2 = x2 + ∆2, and y∗ = I(β0 + β1x

∗
1 + β2x

∗
2 < 0).

Such data sets are referred to as OUTLIERS(α; ∆1, ∆2).

Finally, let us note that the simulated results discussed in this section are ob-

tained for β0 = 0.5, β1 = 1, and β2 = −1 using sample sizes n = 100, 200, and

400 and 500 simulations. The MSTLE estimator is computed using the trimming

constant hn = [0.75n] and the adaptive MSTLE estimator chooses the trimming

parameter λ ∈ {0.66, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00}.
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Table 2: Bias and MSE of all methods for data OUTLIERS(0.05; 1.5, -1.5) using
p = 2 variables and sample sizes n = 100, 200, and 400.

Estimation n = 100 n = 200 n = 400
method Bias MSE Bias MSE Bias MSE
MLE 0.768 0.709 0.762 0.637 0.776 0.632
W MLE 0.788 0.766 0.788 0.683 0.804 0.680

BYE 0.602 0.515 0.608 0.442 0.637 0.441
W BYE 0.623 0.565 0.632 0.477 0.664 0.478

MSTLE 0.352 1.227 0.159 0.441 0.045 0.193
A MSTLE 0.203 0.681 0.024 0.189 0.072 0.109

4.1. Estimation with no contamination

The performance of all methods is first analyzed for data CLEAN, which are not

contaminated by misclassified observations. The absolute values of bias and mean

squared error (MSE) for each method are recorded in Table 1. For such data, MLE

is the optimal estimation method as is confirmed by the simulations at all sample

sizes: both the bias and MSE of MLE are minimal. The performance of MLE is

closely matched by its weighted form and also by the (W)BYE estimators. On the

other hand, MSTLE exhibits both a sizeable bias and large MSE (as expected).

In contrast to this, the adaptive MSTLE is, in terms of MSE, slightly worse than

(W)MLE and (W)BYE for n = 100, outperforms all methods but MLE for n = 200,

and becomes identical to MLE at n = 400. The behavior of all methods is similar

also for a more complex model with p = 12 variables, see Table 5 in Appendix C.

4.2. Estimation under contamination

All methods are now compared for contaminated data sets, where 5% observations

are misclassified distant observations. Two cases, OUTLIERS(0.05; 1.5,−1.5) and
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Table 3: Bias and MSE of all methods for data OUTLIERS(0.05; 5.0, -5.0) using
p = 2 variables and sample sizes n = 100, 200, and 400.

Estimation n = 100 n = 200 n = 400
method Bias MSE Bias MSE Bias MSE
MLE 1.396 2.039 1.397 1.996 1.398 1.976
W MLE 0.110 0.329 0.025 0.136 0.048 0.056

BYE 0.941 1.339 1.069 1.397 1.156 1.483
W BYE 0.120 0.346 0.026 0.142 0.049 0.059

MSTLE 0.277 1.394 0.060 0.636 0.085 0.395
A MSTLE 0.240 0.473 0.052 0.144 0.043 0.051

OUTLIERS(0.05; 5.0,−5.0), are considered that differ by the distance of outlying

observations from the rest of the data. We refer to the two cases as data with near

outliers and data with distant outliers, respectively. The absolute values of bias and

mean squared error (MSE) for both experiments are in Tables 2 and 3, respectively.

In the case of data with near outliers, the MSE of all methods, but MSTLE,

are similar at n = 100, although their large values have different sources – large

bias in the cases of (W)MLE and (W)BYE and large variance in the case of the

adaptive MSTLE. As the sample size increases, the biases and MSEs of (W)MLE

and (W)BYE remains approximately on the same levels, whereas both measures

significantly decrease in the case of (A)MSTLE. The adaptive MSTLE is thus the

best performing method in this case since WMLE and WBYE are not able to detect

and withstand this type of contamination at all.

The situation is different in the case of data with distant outliers. Even though

MLE and BYE are extremely biased, their weighted versions WMLE and WBYE

exhibit relatively small bias and MSE because the outlying points are now severely

downweighted due to their distance from the rest of the data in the space of the

explanatory variables. The adaptive MSTLE method, that does not a priori remove
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Figure 1: Data on 33 leukemia patients; symbol ‘+’ represents AG positive patients,
whereas ‘◦’ stands for AG negative patients.

observations due to their position in the space, performs worse than WMLE at

n = 100, but closely matches the performance of the weighted methods at n = 200,

and slightly outperforms WMLE and WBYE at n = 400.

The presented simulation results are representative also for higher levels of con-

tamination (see Tables 7 and 9 in Appendix C) as well as for models with more

explanatory variables (see Tables 6 and 8 in Appendix C).

4.3. Application

Let us now compare the (W)MLE, (W)BYE, and adaptive MSTLE using data on 33

leukemia patients. This data set, studied for example by Cook and Weisberg (1992)
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Table 4: Parameter estimates by all methods for the leukemia data. Estimate
MLE(-15) represents the MLE estimate for the data without the 15th observation.

Estimation Intercept AG WBC
method Est. Std. err. Est. Std. err. Est. Std. err.
MLE -1.307 2.711 2.261 3.155 -0.032 0.024
MLE(-15) 0.212 1.400 2.558 1.805 -0.235 0.184
W MLE 0.212 1.367 2.558 1.769 -0.235 0.179

BYE 0.159 1.161 1.928 1.430 -0.177 0.125
W BYE 0.198 1.286 2.398 1.695 -0.221 0.166

A MSTLE 0.212 1.384 2.558 1.936 -0.235 0.175

and Kordzakia et al. (2001), indicate whether a patient survives longer than one year

(dependent variable yi = 1) conditional on the white blood cell count (measured in

thousands, variable WBC) and a dichotomous morphological factor AG. Data are

depicted on Figure 1, where we can observe that the chance to survive more than

one year decreases with high values of WBC. Moreover, there is one extreme data

point (observation 15) for a patient living longer than one year despite his WBC

value being equal to 100 (other AG positive patients with WBC values above 50 did

not survive longer than 5 weeks; see Feigl and Zelen 1965). This could possibly be

due to some other unobservable physiological conditions of that particular patient.

To provide a benchmark for comparing various estimators, we compute the MLE

estimates both for the whole data and for data without the 15th observation. To-

gether with (W)MLE, (W)BYE, and the adaptive MSTLE, all estimates are pre-

sented in Table 4. The corresponding standard errors are obtained by a parametric

bootstrap (using 10000 replications) because of the small sample size.

First, let us observe that, for the parameter WBC, the MLE estimate based on

all data is more than 7 times smaller than the MLE estimate after omission of the

15th observation. Next, the WMLE and adaptive MSTLE with adaptively chosen
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trimming h∗ = 31 = [0.95 ·33] provide the same estimates as MLE after omitting the

15th observation, although they have slightly smaller of WBC estimate. Note that

rather small standard errors of the adaptive MSTLE relative to results previously

achieved in simulations likely come from the fact that trimming occurs here only on

one side of data, that is, for large values of WBC (see Figure 1). Finally, although

the WBYE estimates are rather close to those by WMLE and adaptive MSTLE,

both BYE and WBYE seem to exhibit a downward bias since all their coefficients

are 0.75 and 0.94 multiples of (W)MLE, respectively.

5. CONCLUSION

The adaptive maximum symmetrically-trimmed likelihood estimator proposed in

this paper is shown to be generally applicable in binary-choice models, robust to

various kinds of contamination, and at the same time, asymptotically efficient under

no contamination. The combination of these properties is not currently matched by

any other existing robust method in the context of the binary-choice regression.

Moreover, the proposed methods allows the use of a robust estimation procedure

without sacrificing the quality of estimation, especially at larger samples.

Further improvements could be obtained by replacing the hard (complete) re-

jection of observations in MSTLE by weighting, which could then be determined

in a data-adaptive way similar to the data-adaptive choice of trimming. Another

interesting field of study is a combination of the adaptive MSTLE procedure with

the MLE methods accounting for data misclassification (e.g., Hausman et al. 1998).

Finally, the principle of the adaptive MSTLE estimation can be also applied to semi-

parametric likelihood estimators (e.g., Klein and Spady 1993) under monotonicity

constraint.
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A. Assumptions

Further regularity assumptions used in Section 3.

Assumptions

4. The parameter space B is compact.

5. The mixing coefficients bm of the sequence {xi, yi}i∈N satisfy

mr/(r−2)(log m)2(r−1)/(r−2)bm → 0

for m →∞ and some r > 2.

6. Expectation E supβ∈B |l(xi, yi; β)|r is finite.

7. Expectation E supβ∈U(β0,δ) |l′(xi, yi; β)|r is finite for some δ > 0.

8. Expectation E supβ∈U(β0,δ) |l′′(xi, yi; β)|1+ε is finite for some δ > 0 and ε > 0.

B. Proofs

Proof of Lemma 1. Let us first derive an auxiliary results concerning function

h(t) = t ln t + (1 − t) ln(1 − t) for t ∈ (0, 1). Taking its first derivative leads to

h′(t) = ln t− ln(1− t), which is negative for t < 1/2 and positive for t > 1/2. Hence,

h(t) is decreasing for t < 1/2 and increasing for t > 1/2 (property P1).

Now, the conditional expectation to analyze can be rewritten as

E [l(xi, yi; β0)|r(xi; β0) ≥ C]

= E
[
yi ln F (x>i β0) + (1− yi) ln{1− F (x>i β0)}|r(xi; β0) ≥ C

]

= E
[
E(yi|xi) ln F (x>i β0) + {1− E(yi|xi)} ln{1− F (x>i β0)}|r(xi; β0) ≥ C

]
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= E
[
F (x>i β0) ln F (x>i β0) + {1− F (x>i β0)} ln{1− F (x>i β0)}|r(xi; β0) ≥ C

]
.

Denoting random variable t = F (x>i β0), it follows that the trimming rule r(xi,β0) =

min{ln t, ln(1− t)} and we can write

E [l(xi, yi; β0)|r(xi; β0) ≥ C]

= E [t ln t + (1− t) ln(1− t)|min{t, 1− t} ≥ exp(C)] .

Because condition min{t, 1 − t} ≥ exp(C) means that t ∈ 〈exp(C), 1 − exp(C)〉
for exp(C) ≤ 1/2 and increasing C shrinks this interval, property P1 implies that

E [t ln t + (1− t) ln(1− t)|min{t, 1− t} ≥ exp(C)] is non-increasing in C. Hence,

the result of the lemma follows from the fact that the order statistics r[n−hn+1](xi; β0)

decreases as hn increases. ¤

Proof of Theorem 1. As discussed in Croux et al. (2002), an estimator of a binary-

choice regression model can break down under contamination in two ways: either

the estimates diverge and become infinite or they converge to a non-random zero

vector. Assuming that the MLE estimate is identified, that is, there is an overlap

in data, an estimator based on the likelihood criterion cannot diverge since some

likelihood contributions would become infinite (see Croux et al. 2002, Theorem 1).

Therefore, we only have to deal with the breakdown to a zero vector.

The adaptive MSTLE just chooses the amount of trimming λ on a grid 2/3 =

λ1 < . . . < λM = 1. Hence, we only have to show that the adaptive procedure

selects a MSTLE estimator that does not break down. Considering a sample of size

n and the number of contaminated observations k such that k/n ≤ maxm=1,...,M εm
n ,

there are sequences of samples with k additional (contaminated) observations such

that the norm of the corresponding MSTLE estimate converges to 0 if k/n > εm
n
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and stays bounded away from 0 for any such sequence if k/n ≤ εm
n ; m = 1, . . . , M .

To verify the claim of the theorem, we thus have to show that the selection criterion

at an MSTLE estimate β̂
m

, which does not break down,

S(hm
n , β̂

m
) =

1

hm
n

n∑
j=1

l(xi, yi; β̂
m

) · I
(
r(xi; β̂

m
) ≥ r[n−hm

n +1](xi; β̂
m

)
)
, (6)

is larger than the selection criterion at ‖β‖ = 0.

To prove this, note that the selection criterion (6) is independent of hn if ‖β‖ = 0

because l(xi, yi; 0) = ln(1/2). If we now consider trimming hm
n such that k/n ≤ εm

n ,

the corresponding MSTLE estimate β̂
m

does not break down and stays bounded

away from 0. Since β̂
m

maximizes the trimmed likelihood (5), and thus, for a

fixed hm
n , also the selection criterion (6), S(hm

n , β̂
m

) > S(hm
n , 0) = S(h, 0) for any

h = [n/2], . . . , n. ¤

Proof of Theorem 2. The asymptotic normality of MSTLE directly follows from

Č́ıžek (2007, Theorem 3.3), where most distributional and functional assumptions

of the theorem are parts of Assumptions 1–8. The exceptions are the identification

assumptions, which are verified in Č́ıžek (2007, Section 4.3) under Assumption 1–8,

and assumptions that F0 = {r(xi; β)|β ∈ B} and F1 = {l′(xi, yi; β)|β ∈ U(β0, δ)}
form VC classes of functions, which are verified in the following paragraphs.

First, note that r(xi; β) = min{ln F (x>i β), ln[1−F (x>i β)]}. Since {x>i β|β ∈ B}
is (a part of) a finite dimensional vector space and ln F is a monotonic function,

F0 is a VC class of functions (van der Waart and Wellner 1996, Lemmas 2.6.15 and

2.6.18).

Second, the derivative l′(xi, yi; β) of the likelihood contribution equals to

l′(xi, yi; β) =
yif(x>i β)

F (xi>β)
− (1− yi)f(x>i β)

1− F (xi>β)
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= (2yi − 1) max

{
yif(x>i β)

F (x>i β)
,
(1− yi)f(x>i β)

1− F (x>i β)

}
,

see (3). Because functions f/F and f/(1− F ) are derivatives of concave functions

ln F and ln(1 − F ), respectively, they are monotonic. Hence, F1 is a VC class of

functions by the same argument as above (van der Waart and Wellner 1996, Lemmas

2.6.15 and 2.6.18). ¤

Proof of Theorem 3. The selection criterion determining the optimal amount of

trimming can be expressed as

Cm =
1

hm
n

n∑
j=1

l(xi, yi; β̂
m

) · I
(
r(xi; β̂

m
) ≥ r[n−hm

n +1](xi; β̂
m

)
)
. (7)

By Theorem 2, the β̂
m → β0 for all m = 1, . . . , M . This implies that the order

statistics r[n−hm
n +1](xi; β̂

m
) → R−1(1 − λm) (Č́ıžek 2007, Lemma A.2), where R

denotes the distribution function of r(xi; β0). Note that, by Assumption 3, R is

absolutely continuous, and by definition, R−1(1 − λm) > R−1(1 − λM) for m < M

since λM = 1.

An immediate consequence is that, by Lemma 1 and Assumption 3, expectation

Em = E
[
l(xi, yi; β0)|r(xi; β0) ≥ R−1(1− λm)

]

as a function of m has a unique maximum at m = M (λM = 1). Since Č́ıžek (2007,

Lemma A.1) implies that the average (7) converges to Em uniformly in m, one can

find for any ε > 0 some n0 ∈ N such that |Cm − Em| < (EM − EM−1)/2 with

probability higher than 1 − ε, which implies P (m∗
n = M) ≥ 1 − ε for any n > n0.

Thus, m∗
n → M in probability, and consequently, λm∗

n
→ 1 in probability as n →∞.
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Therefore,

√
n(β̂

(AMSTLE) − β0) =
M∑

m=1

√
n(β̂

(MSTLE,[λmn]) − β0)I(m = m∗
n)

=
√

n(β̂
(MSTLE,n) − β0) + oP (1)

as n →∞ by Theorem 2. This concludes the proof since β̂
(MSTLE,n)

= β̂
(MLE)

. ¤
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C. Further simulation results

Table 5: Bias and MSE of all methods for data CLEAN using p = 12 variables and
sample sizes n = 100, 200, and 400.

Estimation n = 100 n = 200 n = 400
method Bias MSE Bias MSE Bias MSE
MLE 0.333 1.423 0.125 0.464 0.046 0.190
W MLE 0.385 1.886 0.114 0.499 0.044 0.205

BYE 0.454 1.921 0.142 0.498 0.057 0.203
W BYE 0.760 2.821 0.138 0.540 0.056 0.222

MSTLE 2.384 11.275 0.828 2.215 0.443 0.646
A MSTLE 0.981 4.330 0.193 0.568 0.046 0.190

Table 6: Bias and MSE of all methods for data OUTLIERS(0.05; 1.5, -1.5) using
p = 12 variables and sample sizes n = 100, 200, and 400.

Estimation n = 100 n = 200 n = 400
method Bias MSE Bias MSE Bias MSE
MLE 0.763 1.290 0.773 0.863 0.776 0.734
W MLE 0.855 1.724 0.817 0.975 0.806 0.798

BYE 0.546 1.082 0.604 0.645 0.626 0.526
W BYE 0.658 1.486 0.656 0.748 0.659 0.579

MSTLE 1.797 11.646 0.739 1.816 0.451 0.679
A MSTLE 0.518 3.523 0.102 0.695 0.068 0.268
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Table 7: Bias and MSE of all methods for data OUTLIERS(0.10; 1.5, -1.5) using
p = 2 variables and sample sizes n = 100, 200, and 400.

Estimation n = 100 n = 200 n = 400
method Bias MSE Bias MSE Bias MSE
MLE 1.162 1.457 1.144 1.365 1.150 1.345
W MLE 1.203 1.585 1.181 1.460 1.192 1.451

BYE 1.112 1.343 1.095 1.252 1.105 1.244
W BYE 1.164 1.492 1.138 1.357 1.153 1.357

MSTLE 0.075 1.232 0.041 0.561 0.061 0.271
A MSTLE 0.073 1.043 0.032 0.316 0.048 0.107

Table 8: Bias and MSE of all methods for data OUTLIERS(0.05; 5.0, -5.0) using
p = 12 variables and sample sizes n = 100, 200, and 400.

Estimation n = 100 n = 200 n = 400
method Bias MSE Bias MSE Bias MSE
MLE 1.421 2.708 1.408 2.268 1.396 2.076
W MLE 0.367 2.011 0.141 0.566 0.099 0.255

BYE 0.841 2.218 1.022 1.595 1.009 1.349
W BYE 0.447 2.024 0.172 0.627 0.115 0.278

MSTLE 1.751 11.665 0.713 2.017 0.429 0.750
A MSTLE 0.897 3.981 0.289 0.764 0.145 0.286

Table 9: Bias and MSE of all methods for data OUTLIERS(0.10; 5.0, -5.0) using
p = 2 variables and sample sizes n = 100, 200, and 400.

Estimation n = 100 n = 200 n = 400
method Bias MSE Bias MSE Bias MSE
MLE 1.562 2.546 1.559 2.481 1.557 2.443
W MLE 0.106 0.323 0.053 0.148 0.038 0.043

BYE 1.555 2.533 1.552 2.462 1.550 2.422
W BYE 0.123 0.352 0.055 0.159 0.040 0.043

MSTLE 0.259 2.269 0.377 1.507 0.156 0.621
A MSTLE 0.248 1.714 0.099 0.208 0.035 0.042
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[8] Č́ıžek, P. (2007), “General trimmed estimation: robust approach to nonlinear

and limited dependent variable models,” CentER Discussion Paper 2007/1,

Tilburg University; submitted to Econometric Theory.

[9] Cook, R. D., and Weisberg, S. (1982), Residuals and Influence in Regression,

London: Chapman and Hall.

27



[10] Copas, J. B. (1988), “Binary regression models for contamination data,” Jour-

nal of Royal Statistical Society, Ser. B, 50, 225–265.

[11] Croux, C., Flandre, C., and Haesbroeck, G. (2002), “The breakdown behavior

of the maximum likelihood estimator in the logistic regression model,” Statistics

and Probability Letters, 60, 377–386.

[12] Croux, C., and Haesbroeck, G. (2003), “Implementing the Bianco and Yohai

estimator for logistic regression,” Computational Statistics and Data Analysis,

44, 273–295.

[13] Feigl, P., and Zelen, M. (1965), “Estimation of exponential survival probabilities

with concomitant information,” Biometrics, 21, 826–838.

[14] Genton, M. G., and Lucas, A. (2003), “Comprehensive definitions of break-

down points for independent and dependent observations,” Journal of Royal

Statistical Society, Ser. B, 65, 81–94.

[15] Gervini, D. (2005), “Robust adaptive estimators for binary regression models,”

Journal of Statistical Planning and Inference, 131, 297–311.

[16] Hadi, A., and Luceño, A. (1997), “Maximum trimmed likelihood estimators:

a unified approach, examples and algorithms,” Computational Statistics and

Data Analysis, 25, 251–272.

[17] Hall, P., and Presnell, B. (1999), “Biased bootstrap methods for reducing the

effects of contamination, ” Journal of Royal Statistical Society, Ser. B, 61,

661–680.

28



[18] Hausman, J. A., Abrevaya, J., and Scott-Morton, F. M. (1998), “Misclassi-

fication of the dependent variable in a discrete-response setting,” Journal of

Econometrics, 87, 239–269.

[19] Kordzakhia, N., Mishra, G. D., and Reiersølmoen, L. (2001), “Robust esti-

mation in the logistic regression model,” Journal of Statistical Planning and

Inference, 98, 211–223.

[20] Klein, R. W., and Spady, R. H. (1993), “An efficient semi-parametric estimator

for binary response models,” Econometrica, 61, 387–421.

[21] Müller, C. H., and Neykov, N. M. (2003), “Breakdown points of trimmed like-

lihood estimators and related estimators in generalized linear models,” Journal

of Statistical Planning and Inference, 116, 503–519.

[22] Pregibon, D. (1981), “Logistic regression diagnostics,” The Annals of Statistics,

9, 705–724.

[23] Salibian-Barrera, M., and Zamar, R. H. (2002), “Bootstrapping robust esti-

mates of regression,” The Annals of Statistics, 30, 556–582.

[24] Silvapulle, M. J. (1981), “On the existence of maximum likelihood estimates

for the binomial response models,” Journal of Royal Statistical Society, Ser. B,

43, 310–313.

[25] Stromberg, A. J., and Ruppert, D. (1992), “Breakdown in nonlinear regression,”

Journal of American Statistical Association, 87, 991–997.

[26] Van der Vaart, A. W., and Wellner, J. A. (1996), Weak convergence and em-

pirical processes: with applications to statistics, New York: Springer.

29




