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Inventory models need information about the demand distribution. In practice, this information
is not known with certainty and has to be estimated with often relatively few historical demand
observations. Using these estimates leads to underperformance. This paper focuses on gamma
distributed demand and a periodic review, order-up-to inventory control policy, where the order-
up-to level satisfies a service equation. Under this policy the underperformance is quantified
analytically under strong assumptions and with help of simulation if these assumptions are
relaxed. The analytical results can be used to improve the attained service level, such that it
approaches the desired service level more closely, even if the assumptions are not met. With
help of simulation we show that in some cases this improvement results in reaching the desired
service level. For the remaining cases, i.e., the cases in which the desired service level is not
reached, the underperformance decreases; improvements range from almost 17% up to over 90%.
Moreover, with help of simulation and linear regression further improvements can be obtained.
The desired service level is reached in more cases and the underperformance in the other cases is
decreased even more compared to using only the first improvement. These improvements range
from 57% up to 99% compared to the base case (i.e., do not use analytical results) and from
35% up to over 90% compared to using the analytical results, except for a few cases in which
the service hardly improved, but in those cases the attained service level was already very close
to the desired one. Finally, the method developed in this paper is applied to real demand data
using simulation. The total improvements in this case study range from 53% up to 96%.

Keywords: Unknown Demand Parameters, Inventory Control, Gamma Distribution, Ser-
vice Level Criterion, Case Study

JEL-classification: C13, C53.
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1. Introduction

Inventory control models need information about the demand distribution. These models
are developed assuming that all the information they need (e.g., moments, family of
distribution, parameters) are known with certainty. However, in practice often relatively
few historical demand observations are known and these are used to estimate the demand
distribution characterization that is needed. Although this problem is already known for
a long time, see, e.g., Scarf (1958) and Hayes (1969), most literature still considers either
forecasting or inventory control and not the effect of forecasting on inventory control.
Recent papers in which this effect is studied, include e.g. Silver and Rahnama (1986,
1987), Watson (1987), Strijbosch and Heuts (1992), Snyder et al. (2002), Bertsimas and
Thiele (2006), Lu et al. (2006), Syntetos and Boylan (2006), and Janssen et al. (2006);
the last mentioned study provides a short overview of literature on how to deal with
uncertainty about the demand distribution. Strijbosch and Heuts (1992) use simulation to
show the trade-off between attained service and expected average costs while estimating
the lead time demand in four different ways, including a distribution-free approach. Snyder
et al. (2002) consider both forecasting and inventory control and use simulation to show
the effects of using their forecasting model, which incorporates the possibility of having
nonconstant variance. Syntetos and Boylan (2006) show the effect of using four different
estimators under a periodic review, order-up-to inventory control policy with help of
simulation. The other studies will be considered in the remainder of this section.

In this paper the family of distributions to which the demand belongs, is assumed to
be known, but its parameters are not. Hence, estimates are needed to use the inventory
model and the effect of using these estimates is studied. Scarf (1958), Bertsimas and Thiele
(2006) and Lu et al. (2006) also consider demand uncertainty explicitly, but differently
from the approach here. All three papers consider a cost criterion and furthermore Scarf
(1958) and Bertsimas and Thiele (2006) assume that the mean and variance of the demand
are known, while the family to which it belongs, is not. Lu et al. (2006) focus on the way
the demand forecasts evolve as more information becomes available over time and use
that to find solution bounds and cost error bounds for general dynamic inventory models
with possibly nonstationary and autocorrelated demands.

Silver and Rahnama (1986, 1987) and Janssen et al. (2006) studied the effects of using
estimates with normally distributed demand; the former have considered a cost criterion
while the latter considered service criteria. Although the normal distribution is commonly
assumed in inventory control, it certainly has some problems. According to Burgin (1975)
demand distributions generally only exist for nonnegative values of demand and the shape
of the density function changes from monotonic decreasing (low mean demand) via a
unimodal distribution that is skewed to the right to a normal type distribution that is
truncated at zero (high mean demand). A normal distribution does not fit all these crite-
ria: the probability that a normally distributed variable can be negative, is nonnegligible
(more than 1%) if the coefficient of variation (standard deviation divided by mean) is
larger than 0.43; further, the normal distribution is symmetric. The gamma distribution
does fit the criteria of Burgin (1975), since it is nonnegative and the value of the shape
parameter can be adjusted to get all three forms described. The gamma distribution also
has some nice properties which makes it relatively easy to work with, although maybe
not as easy as the normal distribution and that is probably why that distribution is used
so often in literature and in practice. But the gamma distribution has proven its worth.
Watson (1987) considers an Erlang distribution (i.e., a special case of the gamma distri-
bution) and studies the effect forecasting has on attaining the desired service level using
simulation. Note that the Erlang assumption implies that demand during lead time has
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a relatively small coefficient of variation, hence demand cannot be highly variable, which
limits the applicability of Watson (1987). Furthermore, he does restrict his research to
intermittent demand. Segerstedt (1994) develops another inventory control policy, which
also uses gamma distributions. Yeh (1997) slightly adapts this policy to implement it in
an electronics industrial company. Both mention that parameters in the model need to be
estimated, but they do not show the effects of doing this. The consultancy firm Involvation
(www.involvation.com) uses the gamma distribution in their stock control software and its
customers are satisfied with the achieved improvements. This consultancy firm generously
provided demand data of one of their customers, the Dutch Ministry of Defence, to us
which will be used to test the method developed in this paper.

In this paper demand is assumed to follow a gamma process, i.e., the demand during
a period of length `, denoted by X`, has a gamma distribution with shape parameter `ρ
and scale parameter 1/λ, or X` ∼ Γ(`ρ,λ) for short. If ` = 1 demand will be denoted by
X. Also, demands during disjoint time intervals are independent. Furthermore, an (R,S)
inventory control policy is used with R = 1 (without loss of generality). This policy states
that every R periods the inventory level is reviewed and replenished up to S. The order
is then delivered after a fixed and deterministic lead time L. Demand is assumed to be
stationary for t + 1 + L periods, which means that the actual demand during the first t
periods can be used to estimate the demand during the last (L+1) periods. This method
of forecasting is known as moving average and it is used in practice because either one
wants to account for nonstationarity or one has only few observations. The order-up-to
level S is chosen such that the required service level is reached. The two service level
criteria considered in this paper are P1 (cycle service) and P2 (fill rate). The demand that
cannot be satisfied immediately, is backlogged.

The remainder of the paper consists of three parts. Section 2 considers the P1 service
criterion. The theoretically correct order-up-to level is provided and the impact of using
estimates for the unknown parameters is investigated. We prove that underperformance
always occurs under the assumption that demand is exponentially distributed and that it
occurs when the desired service level is over 50% in case of Erlang demand with a known
shape parameter. Relaxing these assumptions leads to intractable results and at this point
simulation is used to show that underperformance exists for values of the desired service
level that are commonly used in practice. With help of simulation a correction to the
order-up-to level is found such that the desired service level is reached and regression
techniques are applied to estimate the relation between the correction needed and the
parameters of the model. Using the regression equation to correct the order-up-to level
results in reaching the desired service level more closely; improvements range from 75% up
to over 99%. Section 3 has approximately the same layout, but focuses on the P2 service
criterion. It provides the theoretically correct order-up-to level under the assumption
that the complete demand distribution is known and the effects of using estimates. We
prove that the order-up-to levels under the P1 and the P2 criterion are equal in case of
exponentially distributed demand and hence the results of the P1 criterion can be adopted.
For the remainder of this section simulation is used to show that underperformance exists if
the desired service level is relatively high. Further, a correction to the estimated order-up-
to level is provided and using this correction decreases the underperformance significantly;
improvements range from 57% to almost 96%. Section 4 will use the order-up-to levels
developed in Sections 2 and 3 on actual demand data. In case of the P1 criterion the total
improvement ranges from 63% to 96%; in case of the P2 criterion it ranges from 53% to
95%. Section 5 concludes this paper with a short summary of the results and ideas for
further research.
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2. P1 service level criterion

This section focuses on the P1 service level criterion, which states that the fraction of
replenishment cycles without backlogged demand should be at least α, or mathematically
P (X1+L ≤ S1) ≥ α. Since keeping inventory as low as possible is desirable, equality will
hold. Furthermore, we know that X1+L ∼ Γ((1 + L)ρ,λ). Define ρ̃ := (1 + L)ρ. If the
parameters of a gamma distribution are known, the order-up-to level is easily determined:

α = Fρ̃,λ(S1) ⇔ S1 = F−1
ρ̃,λ(α) ⇔ S1 = 1

λ
F−1

ρ̃,1 (α). (1)

The function Fρ,λ (F−1
ρ,λ) is the distribution function (inverse distribution function) of a

gamma distribution with parameters ρ and λ. In the next section also fρ,λ is used, which
denotes the corresponding density function.

2.1. Using estimates for the determination of the order-up-to level

The order-up-to level determined in (1) is correct, given that the parameters ρ and λ
are known. This is of course not true in practice. So this section will consider the effect
of estimating the parameters. First, only λ is considered to be unknown, so ρ and thus
the coefficient of variation (ν = ρ−1/2) are assumed to be known; the last part of this
subsection considers the situation that ρ is unknown too. One possible estimator for λ is
derived from the relation E [X] = ρ/λ, leading to λ̂ = ρ/x = (ν2x)−1, where x = 1

t

∑t

i=1 xi

is the sample mean. The estimated order-up-to level in this case is then Ŝ1 = F−1
ρ̃,1 (α)ν2x.

Define gα = F−1
ρ̃,1 (α)ν2; note that gα consists of non-random terms and that x∼ Γ(tρ, tλ).

This results in Ŝ1 ∼ Γ(tρ, t
gα

λ). Now let us consider the fraction of replenishment cycles
with backlogged demand when using the order-up-to level Ŝ1:

P
(
X1+L > Ŝ1

)
= P

(
λX1+L > λŜ1

)
= P

(
X∗

1+L > Ŝ∗1
)

.

Note that X∗
1+L = λX1+L ∼ Γ(ρ̃,1) and Ŝ∗1 = λŜ1 ∼ Γ(tρ, t

gα
), so λ does not play a role

in the derivation. Moreover, assuming ρ̃ ∈ N and tρ ∈ N, fρ̃,·(·) and ftρ,·(·) are density
functions of an Erlang distributed variable, which is used in the derivation below, after
(2).

P
(
X∗

1+L > Ŝ∗1
)

=
∫ ∞

0

P
(
X∗

1+L > s
)
f

tρ,
t

gα

(s)ds =
∫ ∞

0

(1−Fρ̃,1(s))ftρ,
t

gα

(s)ds (2)

=
∫ ∞

0

(
e−s

ρ̃−1∑
i=0

(s)i

i!

)


(
s t

gα

)tρ−1

e
−s

t
gα t

gα

(tρ− 1)!


ds

=
ρ̃−1∑
i=0

∫ ∞

0

e−se
−s

t
gα

sistρ−1
(

t
gα

)tρ

i!(tρ− 1)!
ds

=
ρ̃−1∑
i=0

(tρ− 1+ i)!(
t

gα

)i

(tρ− 1)!i!

∫ ∞

0

e−sf
tρ+i,

t
gα

(s)ds (3)

=
ρ̃−1∑
i=0

(tρ− 1+ i)!(
t

gα

)i

(tρ− 1)!i!

(
t

gα

t
gα

+1

)tρ+i

=
(

t

t+ gα

)tρ ρ̃−1∑
i=0

(
tρ− 1+ i

i

)(
gα

t+ gα

)i

(4)
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Table 1 Values of α for which the non-stockout probability using order-up-to level Ŝ1 equals α (ρ known).

L = 0 L = 1 L = 3
ρ t = 2 t = 10 t = 20 t = 50 t = 2 t = 10 t = 20 t = 50 t = 2 t = 10 t = 20 t = 50

2 0.2499 0.2612 0.2627 0.2636 0.3288 0.3474 0.3500 0.3517 0.3688 0.3932 0.3971 0.3996
6 0.3729 0.3817 0.3828 0.3836 0.4055 0.4172 0.4189 0.4200 0.4253 0.4400 0.4423 0.4438
10 0.4038 0.4107 0.4116 0.4122 0.4274 0.4366 0.4380 0.4388 0.4423 0.4537 0.4556 0.4567
20 0.4329 0.4380 0.4387 0.4391 0.4489 0.4556 0.4565 0.4571 0.4593 0.4674 0.4687 0.4695
50 0.4579 0.4612 0.4616 0.4619 0.4678 0.4720 0.4727 0.4730 0.4743 0.4794 0.4803 0.4808

Note that the integral part of (3) is the Laplace-Stieltjes transform of an Erlang-(tρ + i)
distribution. Now consider the special case of exponentially distributed demand (ρ = 1)
and zero lead time. Then gα =− ln(1−α) and (4) simplifies to the following equation.

P
(
X∗

1+L > Ŝ∗1
)

=
(

t

t+ gα

)t

=
(

t

t− ln(1−α)

)t

Now we prove that the desired service level is not reached, in other words that
( t

t−ln(1−α)
)t > 1−α. This can be rewritten as ( t+ln((1−α)−1)

t
)t < (1−α)−1; note that the left

hand side is increasing in t. We finish our derivation as follows.

1+

ln
(

1
1−α

)

t




t

< lim
t→∞


1+

ln
(

1
1−α

)

t




t

= e
ln

(
1

1−α

)

=
1

1−α

So in case of exponentially distributed demand and zero lead time, the desired service
level will not be attained and the underperformance is larger if t is smaller. If we would
replace α by α′ = 1− exp(t(1− (1−α)−1/t)), where obviously α′ > α, the desired service
would be attained again. Unfortunately, we cannot find such analytical results if L > 0 or
if ρ∈N/{1}.

Now let us assume that ρ̃ ∈ N and tρ ∈ N, with ρ ≥ 2. In this case we can use (4)
to investigate the attained service level numerically. These calculations, not shown here,
indicate that at low desired service levels the attained service level exceeds the desired
one, while this reverses at higher values of α. If α approximates either 0 or 1, the attained
service level approximates the desired one. This is easily explained: if α = 0, gα = 0 and
thus Ŝ1 = 0, so demand is not satisfied in any period. On the other hand, if α = 1, gα →∞
and thus Ŝ1 → ∞. In that case we can always satisfy demand. Further, there is one
α∈ (0,1) such that the attained service equals the desired service level. These breakeven
points are shown in Table 1 for several combinations of ρ, t and L. Table 1 clearly shows
that the breakeven point gets higher if ρ is larger, if t is larger or if L is larger. It also
appears to converge to some value if ρ increases. In that case the coefficient of variation
gets smaller and the gamma distribution looks more and more like a normal distribution.
For this distribution it can easily be shown that the breakeven point is at α = 0.50 (see
Janssen et al. 2006).

Now let us consider ρ̃ > 0 and tρ > 0, not necessarily integer. In this case it is no
longer possible to derive a closed-form expression, but we can numerically evaluate the
integral in (2). The results of these evaluations are shown in Figure 1 for three non-
integer values of ρ (ρ ∈ { 1

3
, 44

13
, 165

17
}). This figure shows the relative deviation from the

stockout probability, which is defined as δα(α̂0) = (1−α̂0)−(1−α)

1−α
, where α̂0 is the service level

determined by evaluating (2). We have chosen for this measure, since we think that the
perceived customer service is mainly determined by stock out occurrences, so we choose to



6

Figure 1 Relative deviation (δα(α̂0)) with non-integer but known values of ρ.
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measure the performance relative to the probability of having a stockout (1−α). If δα(·)
is positive, the attained service level is lower than the desired one and if δα(·) is negative,
it is higher. Note that the z-axes of different desired service levels have different scales.
Further, we have chosen to show the results only graphically; the corresponding numerical
results listed in tables are available upon request. Only high values of α are considered,
since these are used in practice. The results in Figure 1 show that the earlier findings for
tρ and ρ̃ both integer also hold when these assumptions are relaxed: the desired service
level is not reached. Furthermore we see that the underperformance is larger if ρ is smaller
(ceteris paribus; c.p. for short), if t is smaller (c.p.), if L is larger (c.p.) and if α is larger
(c.p.). If ρ is small, the coefficient of variation is large and hence demand will be more
variable, which implies that Ŝ1 will be more variable as well (cf. Janssen et al. 2006). Also
if t is small, the estimator x will be more variable and this also implies that Ŝ1 will be
more variable. If L is large, we have to estimate demand for a longer period of time using
the estimate of E [X] for one period. However, this estimate is multiplied by gα and this
factor is larger when L is larger. So the error made by estimating E [X] is enlarged if L is
larger and hence Ŝ1 will be more variable. The same line of reasoning applies to α being
larger: in that case gα is larger and the error made by estimating E [X] is enlarged, hence
Ŝ1 will be more variable. So intuitively the relative deviation of the desired service level
will be larger in these cases and the numerical results confirm this intuition.

We assumed that ρ is known. In the remainder of this subsection this assumption
is relaxed, hence, an estimate of ρ is needed. The sample mean and sample variance(
s2 = 1

t−1

∑t

i=1(xi−x)2
)

are used to estimate ρ and λ: ρ̂ = x2/s2 and λ̂ = x/s2. Using

these in the estimate of the order-up-to level results in Ŝ1 = F−1
(1+L)ρ̂,1(α)/λ̂ and this is no

longer gamma distributed. So derivations become intractable and hence simulation is used
to determine the attained service level α̂1 (see Appendix A). This simulation is restricted
to high values of α, since values lower than 0.90 will not often be used in practice. The
simulation has n = 100,000 replicates for each combination of ρ, t, α and L and its results
are displayed in Figure 2. Note that the z-axes of the graphs equal the z-axes of Figure 1 for
easy comparison. The same holds for the z-axes of Figures 3 and 5. Figure 2 clearly shows
that in all cases considered the desired service level is not reached. The underperformance
again is larger if ρ is smaller (c.p.), if t is smaller (c.p.), if L is larger (c.p.) and if α is
larger (c.p.).

In the case of an exponential distribution (ρ = 1) and zero lead time, using α′ instead
of α ascertains that the desired service level is met. Using α′ while ρ is unknown and
L ≥ 0 will probably not lead to meeting the desired service level, but since α′ > α it
will certainly increase the attained service level, denoted by α̂2. The results of replacing
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Figure 2 Relative deviation (δα(α̂1)) when α is used (ρ unknown).
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Figure 3 Relative deviation (δα(α̂2)) when α′ is used (ρ unknown).
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α by α′ are shown in Figure 3 and these show that indeed the performance improves
significantly compared to using α; improvements range from almost 18% up to almost
80%. These relative improvements, denoted by Iα(α̂i, α̂j), are measured by considering
the percentage change in the attained stockout probability. α̂i is the attained service level
using the order-up-to level determined by method i, here α̂1, while α̂j is the attained
service level using method j, α̂2. The improvements are calculated using

Iα(α̂i, α̂j) =
δα(α̂i)− δα(α̂j)

δα(α̂i)
· 100% =

(α− α̂i)− (α− α̂j)
α− α̂i

· 100%.

So if Iα(α̂i, α̂j) is between 0 and 100%, α̂j is closer to the desired service level than α̂i.
If it is negative, this reverses, i.e., the α̂i is closer to the desired service level than α̂j. If
Iα(α̂i, α̂j) is larger than 100%, using method j instead of i results in overperformance, if
under i there was underperformance and vice versa. If it is smaller than 200%, α̂j is closer
to the desired service level compared to α̂i and this reverses if the improvement is larger
than 200%.

Four cases are considered in detail; see Table 2. In the first case the attained service level
increases from 0.8016 (δα(α̂1) = 0.984) to 0.8350 (δα(α̂2) = 0.650), which is an improvement
of (0.8350−0.8016)/(0.90−0.8016) ·100% = 33.94%. Using the relative deviations (δα(·)),
the same improvement is found: (0.984−0.650)/0.984 ·100% = 33.94%. In the second case
one can see that, although the attained service level is already pretty close to the desired
service level (compared to the first and fourth case), a large improvement is possible using
α′ instead of α. This leads to almost reaching the desired service level. In the third case
the desired service level is reached even closer. In the fourth case the attained service level
is a lot closer to the desired service level, but there is still a large underperformance. This



8

Table 2 Examples of improvement of attained service using α′

instead of α.

α ρ t L α̂1 (δα(α̂1)) α̂2 (δα(α̂2)) Iα(α̂1, α̂2)

0.90 44
13

8 4 1
3

0.8016 ( 0.984) 0.8350 ( 0.650) 33.94%
0.95 9 12 1 0.9178 ( 0.644) 0.9375 ( 0.250) 61.18%
0.95 6 12 0 0.9262 ( 0.464) 0.9449 ( 0.102) 78.57%
0.99 1

2
4 6 0.7579 (23.210) 0.8445 (14.550) 37.31%

Table 3 Parameter values used for finding correction values.

Parameter Values used in simulation

ρ 0.5, 1, 2, 4, 6, 8, 10
t 4, 6, 8, 10, 12, 20
α 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99
L 0, 0.5, 1, 3, 6

Figure 4 Corrections needed while using a P1 service criterion.
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case has the most difficult parameter setting: both ρ and t are small while both α and L
are large.

2.2. Determine the correction

As seen in Subsection 2.1 the desired service level is not met when using estimates in
the determination of the order-up-to level. The attained service level can be improved by
using α′ instead of α, but still the desired service level is not reached. Another idea could
be to use (an estimate of) the variance of the forecast error instead of the variance of
demand (cf. Janssen et al. (2006)). We have tried using this correction, but unfortunately
the initial simulation results did not show consistent improvement and hence we decided
to consider other methods to improve the attained service level.

In this section it is shown that the attained service level is further improved (compared
to only using α′ instead of α) by using a multiplicative correction. That is, the estimated
order-up-to level is multiplied by a certain factor that depends on the value of ρ, t, α
and L. First, simulation is used to find the value this factor should have for different
values of ρ, t, α and L; the used parameter values are listed in Table 3. The values of
the corrections are found by first determining the order-up-to levels one would get while
using ρ̂, λ̂ and α′. Then the factor by which this order-up-to level should be multiplied
in order to reach the desired service level is determined numerically. Figure 4 shows the
corrections needed for different values of ρ, t, α and L. These values could be tabulated
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Figure 5 Relative deviation (δα(α̂3)) using Ŝ1 · ek̂1(ρ̂,t,α,L).
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and then used to correct the order-up-to level, but a formula for the correction is easier
to use. A regression technique is applied to find such a function. The natural logarithm
of the correction is used as the dependent variable, since this transformation ensures that
the correction increases more smoothly. The resulting function, k̂1(ρ, t,α,L), is shown in
(5). Note that at the right hand side a is used, where a = ln((1−α)−1). The idea of using
a instead of α originates from the fact that gα = a in case of exponentially distributed
demand and zero lead time, hence a influences the order-up-to level directly.

k̂1(ρ, t,α,L) =−0.0014− 0.0988t−1.10 +(0.0005+0.0860t−1.80)a1.90

+ [0.0613− 0.3845t−0.45 +(−0.0043+0.5375t−0.85)a0.85]ρ−1.00 (5)
+

(−0.0282+0.0518t−0.15 +(0.0000− 0.0231t−3.00)a2.75

+ [0.0703− 0.0225t0.35 +(0.0044+0.1840t−1.45)a0.90]ρ−0.75
)
L0.55

In short, (5) is found as follows: we first choose only one dependent variable (L in case
of (5)) and regress that on the logarithm of the correction needed, with different values
for the power. We choose the power that results in the lowest sum of squared errors.
Next we choose a second variable (ρ) and that is regressed on the coefficients found in
the first regression. Also the third (a) and fourth (t) variable are treated in this manner;
see Janssen et al. (2006) for a detailed description of the method. We choose to use this
method, instead of, e.g., stepwise linear regression, because of the way the values of the
powers are determined.

Using (5) on the parameter values listed in Table 3 results in an R2 (determination coef-
ficient) of 0.9988 (adjusted R2 = 0.9987), which is very high. However, using (5) implies
that ρ is known, which is obviously not true in practice. This could be solved by using
the estimate for ρ, but that will be at the expense of a lower attained service. This is
checked with help of simulation (n = 100,000) and in this simulation the coefficients are
rounded to 10−4, which means that the term a2.75L0.55 is not included, since its coeffi-
cient is zero, if rounded. The order-up-to level in this simulation is thus determined by
Ŝ1 · exp(k̂1(ρ̂, t,α,L)) and the attained service level is denoted by α̂3. Figure 5 shows that
indeed the desired service level is reached more closely (in case of ρ large, α = 0.90 and
t = 12 the desired service is reached completely); additional improvements for the remain-
der of the cases range from 60% to 99%. Total improvements for the cases in which the
desired service level is not met range from 76% up to 99%. See Table 4 for the four cases
that were also considered in Table 2. In the first case the attained service level is improved
a lot and the desired service level is almost reached. In the second and third case we can
state that it actually is reached and in the fourth case we again see a large improvement
upon the situation without using a correction, but unfortunately the underperformance
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Table 4 Examples of improvement of attained service using the correction
k̂1(ρ̂, t,α,L) instead of only α′.

α ρ t L α̂2 (δα(α̂2)) α̂3 (δα(α̂3)) Iα(α̂2, α̂3) Iα(α̂1, α̂3)

0.90 44
13

8 4 1
3

0.8350 ( 0.650) 0.8911 (0.089) 86.31% 90.96%
0.95 9 12 1 0.9375 ( 0.250) 0.9498 (0.004) 98.40% 99.38%
0.95 6 12 0 0.9449 ( 0.102) 0.9493 (0.014) 86.27% 97.06%
0.99 1

2
4 6 0.8445 (14.550) 0.9508 (3.920) 73.06% 83.11%

Table 5 Extreme deviations for α∈ {0.90,0.95,0.99} when using Ŝ1 · ek̂1(ρ,t,α,L).

Desired service level Minimum attained service (δα(α̂4)) Maximum attained service (δα(α̂4))

α = 0.90 0.8972 (0.028) 0.9047 (-0.047)
α = 0.95 0.9473 (0.054) 0.9522 (-0.044)
α = 0.99 0.9889 (0.110) 0.9909 (-0.090)

is still quite large in this case. The fact that the desired service level is not reached com-
pletely in almost all cases (see Figure 5), is due to using ρ̂ instead of ρ. If this true value
could be used, simulation shows (resulting in attained service levels α̂4) that the desired
service level would be reached; the extreme deviations are denoted in Table 5.

3. P2 service level criterion

This section considers the P2 service level criterion, which states that at least a frac-
tion β of demand has to be satisfied immediately. Mathematically this is denoted by
E [(X1+L−S2)+]−E [(XL−S2)+]≤ (1−β)E [X], where x+ = max(0, x). Note that short-
ages at the start of a replenishment cycle are included and if L = 0, this term (the second
expectation) vanishes. When assuming that both parameters are known, it is not difficult
to find the order-up-to level that satisfies this criterion. We have to find the value of S2

that satisfies the equality version of the inequality above. First note that the left hand
side can be rewritten.

E
[
(X1+L−S2)+

]−E
[
(XL−S2)+

]

=
∫ ∞

S2

(x−S2)fρ̃,λ(x)dx−
∫ ∞

S2

(x−S2)fLρ,λ(x)dx =:Lρ̃,λ(S2)−LLρ,λ(S2) (6)

It is well known that Lρ,λ(y) =
∫∞

y
(x−y)fρ,λ(x)dx = ρ

λ
[1−Fρ+1,λ(y)]−y[1−Fρ,λ(y)]. Note

that there is no closed-form expression for the order-up-to level in general, hence we need
to solve it numerically. However, if an exponential distribution is assumed, the order-up-to
level using the P2 criterion equals the order-up-to level using the P1 criterion when α = β
(see Appendix B). Hence, if ρ = 1, S2 = 1

λ
F−1

1+L,1(β).

3.1. Using estimates for the determination of the order-up-to level

Let us first consider the case that only λ is unknown and ρ = 1, hence we have exponentially
distributed demand during the review period. Since in the case of exponentially distributed
demand the theoretically correct order-up-to levels of the P1 and the P2 criterion are
equal, the order-up-to level in case of the P2 criterion can be estimated by Ŝ2 = gβx, where
gβ = F−1

1+L,1(β). Then it is known that Ŝ2 ∼ Γ(t, t
gβ

λ). The attained service, using again
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Figure 6 Relative deviation from the desired service levels (δβ(β̂0)) (ρ known).
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the fact that 1/λ is a scale parameter and Ŝ∗2 = λŜ2, will be as follows (using relation (10)
in Appendix B).

E
[
(X∗

1+L− Ŝ∗2)
+
]
−E

[
(X∗

L− Ŝ∗2)
+
]
= E

[
E

[
(X∗

1+L− Ŝ∗2)+|Ŝ∗2]
−E

[
(X∗

L− Ŝ∗2)+|Ŝ∗2]]

App.= E

[
P

(
X∗

1+L > Ŝ∗2|Ŝ∗2
)]

= P
(
X∗

1+L > Ŝ∗2
)

=
(

t

t+ gβ

)t L∑
i=0

(
t− 1+ i

i

)(
gβ

t+ gβ

)i
L=0=

(
t

t+ gβ

)t

> 1−β

Hence, in case of zero lead time the attained service will always fall short of the desired one.
In fact, as long as we are considering exponentially distributed demand during the review
period, the results of the P1 criterion also hold for the P2 criterion. Unfortunately, if ρ 6= 1,
no tractable results can be derived, due to the non-existence of a closed-form expression
for Ŝ2. Hence, simulation is used in this case (again with n = 100,000 replicates) to obtain
the performance of using an estimate for λ (λ̂ = ρ/x) in determining the order-up-to
level. Note that ρ is still assumed to be known. The relative deviation from the desired
fraction of backlogged demand (δβ(β̂0) = (1−β̂0)−(1−β)

1−β
, where β̂0 is the service attained in

simulation; see Appendix A) is shown in Figure 6. Note that the scales of the z-axes vary
across the different desired service levels. Figure 6 shows that the desired service level is
not met when we have to use estimates instead of the true value of one of the parameters.
Also the underperformance is larger if ρ is smaller (c.p.), if t is smaller (c.p.), if L is larger
(c.p.) and if β is larger (c.p.).

If also ρ is assumed to be unknown, we will have to estimate that parameter too. The
estimates for the parameters ρ and λ are ρ̂ = x2/s2 and λ̂ = x/s2, where x is the sample
mean and s2 the sample variance. The order-up-to level based on these estimates (Ŝ2) is
determined by numerically solving (7) to get Ŝ∗2 and then Ŝ2 = Ŝ∗2/λ̂.

L(1+L)ρ̂,1(Ŝ∗2)−LLρ̂,1(Ŝ∗2) = (1−β)ρ̂ (7)

Next, simulation is used to estimate the performance of the order-up-to level determined
in this way; β̂1 denotes the attained service. The results of this simulation, again based on
n = 100,000 replicates, are shown in Figure 7. The z-axes in this figure equal the z-axes
in Figure 6 for easy comparison, just as the z-axes in Figures 8 and 10. Comparing this
figure to Figure 6 clearly shows that the underperformance is larger if both ρ and λ are
assumed to be unknown. Furthermore, we again see that the underperformance is larger
when ρ is smaller (c.p.), when t is smaller (c.p.), when L is larger (c.p.) and when β is
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Figure 7 Relative deviation (δβ(β̂1)) when β is used (ρ unknown).
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Figure 8 Relative deviation (δβ(β̂2)) when β′ is used (ρ unknown).
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Table 6 Examples of improvement of attained service using β′

instead of β.

β ρ t L β̂1 (δβ(β̂1)) β̂2 (δβ(β̂2)) Iβ(β̂1, β̂2)

0.90 44
13

8 4 1
3

0.8065 ( 0.935) 0.8391 ( 0.609) 34.87%
0.95 9 12 1 0.9294 ( 0.412) 0.9477 ( 0.046) 88.83%
0.95 6 12 0 0.9366 ( 0.268) 0.9538 (-0.076) 128.36%
0.99 1

2
4 6 0.7390 (25.100) 0.8295 (16.050) 36.06%

larger (c.p.). In case of exponential demand and zero lead time under the P1 criterion the
desired service level could be attained by using α′ instead of α. Since the order-up-to levels
under the P1 and P2 criterion are equal in case of exponential demand, the same holds
here; i.e., if β is replaced by β′ = 1−exp(t(1− (1−β)−1/t)), the desired service level is met
again, when lead time is zero. Of course, when demand is not exponentially distributed,
this will no longer hold, but we can use this correction as a first improvement. The results
of using β′ instead of β are shown in Figure 8; β̂2 denotes the attained service level. This
figure clearly shows that, although the desired service is still not met (except for some
cases where ρ large, L = 0 and t large), the attained service is significantly improved. In
the cases where the desired service level is not met, improvements range from 16% to
99%; see Table 6 for the four cases of the previous examples. The improvements shown in
this table are actually quite similar compared to the improvements for the P1 criterion,
except for the third case. In this case the desired service level is met, which leads to an
improvement of more than 100%, i.e., overperformance. In the second case the desired
service level is almost reached (closer compared to the P1 criterion) and in the fourth case
the attained service levels are a little below those of the P1 criterion.



13

Figure 9 Corrections needed while using a P2 service criterion.

1
3

5
7

9

0
1

2
3

4
5

6

1

2

3

4

5

6

ρ

β = 0.90

L

C
or

re
ct

io
ns

 n
ee

de
d

t=4
t=8
t=12

1
3

5
7

9

0
1

2
3

4
5

6

1

2

3

4

5

6

ρ

β = 0.95

L

C
or

re
ct

io
ns

 n
ee

de
d

t=4
t=8
t=12

1
3

5
7

9

0
1

2
3

4
5

6

1

2

3

4

5

6

ρ

β = 0.99

L

C
or

re
ct

io
ns

 n
ee

de
d

t=4
t=8
t=12

Figure 10 Relative deviation (δβ(β̂3)) using Ŝ2 · ek̂2(ρ̂,t,β,L).
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3.2. Determine the correction

Analogously to Section 2.2 we try to find a multiplicative correction in case a P2 criterion
is used. First the sizes of these corrections are determined with help of simulation: the
order-up-to levels based on ρ̂, λ̂ and β′ are calculated for different values of ρ, t, β and
L (see Table 3, with α = β). The corrections needed to attain the service level are then
determined numerically and these corrections for different combinations of ρ, t, β and L
are shown in Figure 9. The same linear regression technique as outlined in Section 2.2 is
used to find a function that estimates the logarithms of the corrections needed and the
resulting function is shown in Equation (8), where b = ln((1−β)−1).

k̂2(ρ, t, β,L) =−0.0154− 1.0112t−1.25 +(−0.1363+0.2797t−0.20)ρ−1.45

+ [0.0034+0.4644t−1.15 +(0.0082− 0.2634t−0.75)ρ−1.15]L0.35 (8)
+

(−0.0014+1.2026t−2.90 +(0.0230+0.7037t−1.05)ρ−0.85

+ [0.0029− 17.2361t−5.85 +(−0.0034+0.1449t−1.00)ρ−0.80]L0.55
)
b0.85

Using this function to estimate the corrections needed results in an R2 of 0.9987 (adjusted
R2 = 0.9987), which is again very high. However, this function implies that one needs to
know the true value of ρ, which is not known in practice. Hence, ρ̂ is used to calculate
the correction needed and simulation (n = 100,000) is performed to determine the effect
of using Ŝ2 · exp(k̂2(ρ̂, t, β,L)) to estimate the order-up-to level; the attained service level
is denoted by β̂3. Like in the case of the P1 criterion, the coefficients are rounded to 10−4.
The results are shown in Figure 10. This figure shows that the desired service level is
reached more closely, but not reached completely yet; also in the few cases it was reached
before (see Figure 8) the service is not reached, since the correction needed is smaller than
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Table 7 Examples of improvement of attained service using the correction
k̂2(ρ̂, t, β,L) instead of only β′.

β ρ t L β̂2 (δβ(β̂2)) β̂3 (δβ(β̂3)) Iβ(β̂2, β̂3) Iβ(β̂1, β̂3)

0.90 44
13

8 4 1
3

0.8391 ( 0.609) 0.8881 (0.119) 80.46% 87.27%
0.95 9 12 1 0.9477 ( 0.046) 0.9484 (0.032) 30.43% 92.23%
0.95 6 12 0 0.9538 (-0.076) 0.9486 (0.028) 136.84% 89.55%
0.99 1

2
4 6 0.8295 (16.050) 0.9459 (4.410) 72.52% 82.43%

Table 8 Extreme deviations for β ∈ {0.90,0.95,0.99} using Ŝ2 · ek̂2(ρ,t,β,L).

Desired service level Minimum attained service (δβ(β̂4)) Maximum attained service (δβ(β̂4))

β = 0.90 0.8944 (0.056) 0.9031 (-0.031)
β = 0.95 0.9475 (0.050) 0.9519 (-0.038)
β = 0.99 0.9887 (0.130) 0.9911 (-0.110)

1 for those cases. In general, additional improvements range from only a few percent or
even a little decline, in the cases were the desired service level was (almost) met, to 94%.
The total improvements range from 66% to 94%. Table 7 shows the four cases we have
considered earlier. In the first case the attained service level is improved upon considerably
and the desired service level is almost reached. In the second case we only see a minor
improvement, due to the fact that the attained service level was already very close to
the desired one. The third case shows what is mentioned above, i.e., due to the fact that
the correction needed is smaller than one, the attained service level declines a little. It
is again below, but very close to the desired service level. Finally, in the fourth case the
underperformance is still substantial, however, using the correction improves the attained
service considerably. Again, not reaching the desired service level completely is due to
the fact that ρ̂ is used instead of ρ. If the true value of ρ is used, simulation (resulting
in attained service levels β̂4) shows that the desired service level is reached; the extreme
deviations are denoted in Table 8.

4. Case study

The consultancy firm Involvation provided daily demand data for a period of 9 years and
4 months of the Dutch Ministry of Defence, which is one of their customers. The data is
from a department that manages the inventories of all kinds of not perishable products,
ranging from screws and bolts to first aid equipment and spare parts for vehicles. We use
these data to test the method for determining the order-up-to level developed in Sections
2 and 3. Since gamma demand is assumed, the demand should be continuous. However,
with daily demand this will be difficult to accomplish, so we aggregated the daily demand
data to monthly demand data (resulting in 112 months). The review period R is set to 1
month and the lead time L is expressed in months. Still a lot of articles have intermittent
demand and therefore we selected articles that faced demand in every month for at least
17 consecutive months; 2462 articles satisfied this requirement. Of those 2462 articles 602
had two or more periods with monthly demand occurrence for at least 17 consecutive
months, resulting in 3153 demand streams to work with. The length of the demand stream
ranges from 17 to 112 months, with most (84%) between 17 and 50 months. Next, we used
a two-tailed Anderson-Darling test to test whether each of the 3153 demand streams are
gamma distributed or not at a significance level of 5%. In 401 cases there is evidence to
support that the demand is not gamma distributed; in the remaining 2752 cases there is
not enough evidence. However, we do not discard those 401 cases from our simulation.
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Figure 11 Relative deviation (δα) using the P1 criterion in the case study simulation.
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Since the shape parameter ρ is now determined by the demand data available, we only
have 3 parameters left: the number of observations used (t∈ {4,8,12}), the desired service
level (α(β)∈ {0.90,0.95,0.99}) and the lead time (L∈ {0,1,4}). For every demand stream
we determined the order-up-to levels under the P1(P2) criterion using α(β), α′(β′) and
the correction k̂1(k̂2) for every combination of t, α(β) and L as follows. Since we need
independent observations of the stockout occurrences (P1) and the demand backlogged
(P2), the data streams were split up into parts, each containing t + L + 1 observations
(therefore we selected articles with at least 17 consecutive periods with demand: 12 +
4 + 1 = 17). The first t are used to estimate ρ and λ and those estimates are used
to find the order-up-to levels. Next the demand during the lead time (the (t+1)th up
till the (t + L)th observation) is subtracted, if L 6= 0, to get the net inventory at the
start of the replenishment cycle. Finally the demand in the replenishment cycle (the
(t + L + 1)th observation) is subtracted, which results in the net inventory at the end of
the replenishment cycle. These can then be used to determine the attained service level;
see Figures 11 and 12 for the resulting underperformance.

One can clearly see in Figure 11 that using α′ instead of α results in less underperfor-
mance; improvements range from 22% to 85%. It can be verified (results not shown here),
using a t-test with a significance level of 5%, that the improvement is significant, except
for two cases (t = 12, L = 0 and α = 0.90,0.95). Using the correction instead of just α′

again results in less underperformance; additional improvements range from almost 50%
to 94%. In one case (t = 8, L = 0 and α = 0.90) an improvement of over 100% is achieved,
so here underperformance changes to overperformance. All the additional improvements
turn out to be significant. Also, all the total improvements, ranging from 63% to 96%
(plus one case with 113%), are significant as well. Hence, using the correction function
given in (5) results in a significantly better performance in this case study.

Also in case of the P2 criterion using the corrections improves the attained service
level; see Figure 12. Using β′ instead of β results in improvements ranging from almost
23% to 98%, plus one case (t = 8, L = 1, β = 0.90) in which the desired service level is
attained; the attained service level is 0.9004. Unfortunately, not all of these improvements
are significant according to a t-test with a significance level of 5%; 10 out of the 27 cases
are not: all the cases at which t = 12 plus the case at which t = 8, L = 4 and β = 0.90. If
not only β′ is used, but also the correction function given in (8), additional improvements,
ranging from 2% up to 90% can be achieved in case the desired service level is not reached
completely. In four more cases the desired service level is reached: α = 0.90,0.95, t = 8,12
and L = 0. Only if L = 4 and t = 4,8 these improvements turn out to be significant (for
all the desired service levels). The total improvements range from 53% to 95% for the
22 cases in which the desired service level is not reached completely, and from 110% to
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Figure 12 Relative deviation (δβ) using the P2 criterion in the case study simulation.
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161% for the five cases in which the underperformance changes to overperformance. If we
consider the total improvements all of them, except for t = 12, L = 1 and β = 0.90,0.99,
are significant. Hence we can state that using the correction function and β′ together will
improve the attained service level.

5. Conclusions and further research

In this paper we considered the case of an (R,S) inventory control model with gamma
demand and a service criterion. It is shown that using estimates in the determination of
the order-up-to levels derived under the assumption that all parameters are known, leads
to underperformance. If demand is exponentially distributed and the lead time is zero, it is
shown that the desired service level is never reached. For the case of the P1 criterion, Erlang
demand, integer lead time and known shape parameter, we derived closed-form expressions
for the attained service and use these to show that the desired service is not met for higher
values of α, i.e., α≥ 0.50. For the most realistic situation treated in this paper (demand
is truly gamma distributed with unknown parameters) simulation is used to show that
indeed underperformance exists for both the P1 and P2 criterion and the desired service
level set at 0.90 or higher; these values are used in practice. Part of this underperformance
could be solved by using α′ instead of α for the P1 criterion (improvements range from
18% to 80%) and β′ instead of β for the P2 criterion (improvements range from 16% to
99% in case the desired service level is not met; it is met in 17 out of 180 cases).

Further improvements are obtained by applying a multiplicative correction to the esti-
mated order-up-to level. This correction is found using simulation and with help of linear
regression a function is constructed. Using this correction function, given in (5) for the P1

case and in (8) for P2, causes the attained service to reach the desired service even more
closely. However, the desired service level is not reached completely, due to the fact that
the correction functions are determined using the true value of ρ while in practice only ρ̂
can be used. The additional (total) improvements range from 60% to 99% (76% to 99%)
for the P1 criterion. The results for the additional improvements of the P2 criterion are a
bit more complicated, since in some cases the desired service level is (almost) met without
using the multiplicative correction. So in some cases the attained service level declines a
little, but in general the additional improvements are between a few percent up to 94%.
Total improvements range from 66% to 94%.

We also applied the corrections developed in this paper to real demand data, that was
provided by Involvation and the Dutch Ministry of Defence. In case of the P1 criterion
the total improvements range from 63% to 96% and in one case the desired service level is
met. For the P2 criterion the total improvements range from 53% to 95% in the 22 cases
in which the desired service level is not met; it is met in the remaining 5 cases.
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In this paper only the (R,S) policy is considered. One direction for further research is
to consider other policies, like (s,Q), (R,s,S) or (R,s,Q). Also the lead time is assumed
to be deterministic, while in practice it can very well be random to a greater or lesser
degree, so this randomness could be taken into account in a follow-up study. A third idea
is to consider other forecasting methods. In this paper one of the most simple forecasting
methods is used: the moving average. More complex forecasting methods might lead to
less underperformance, but it will probably be impossible to find analytical results using
those methods. Finally, we consider the gamma distribution, which implies that demand
occurs in every period. However, not having demand in each period is very common for a
lot of product types; consider, e.g., spare parts. So the fourth direction for further research
is to include this possibility, i.e., consider intermittent demand.

Appendix A: The attained service level in simulation
i : Simulation run (i = 1, . . . , n);
diR : Demand during review in ith run;
diL : Demand during lead time in ith run;
si : Estimated order-up-to level in ith run;
I(c) : Indicator function: 1 if c is true and 0 otherwise.

In case of a P1 criterion the attained service level (α̂j, j ∈ {1,2,3,4}) is determined as
follows.

α̂ =
∑n

i=1 I(si > diR + diL)
n

In case of a P2 criterion the attained service level (β̂j, j ∈ {0,1,2,3,4}) is determined as
follows.

β̂ = 1−
∑n

i=1(diR + diL− si)+− (diL− si)+

∑n

i=1 diR

Appendix B: Equality order-up-to levels under P1 and P2 if demand is exponential

Remember that in case of the P1 criterion the order-up-to level S1 satisfied the equality
P (X1+L > S1) = 1−α or P

(
X∗

1+L > S∗1
)
= 1−α, where S∗1 = λS1. Let us now consider the

service equality in case of a P2 criterion. Choose S2 such that it satisfies the following.
Note that, analogously to the P1 case, X∗

` = λX` ∼ Γ(`,1) and S∗2 = λS2.

E
[
(X1+L−S2)+

]−E
[
(XL−S2)+

]
= (1−β)E [X]

⇔ 1
λ

(
E

[
(X∗

1+L−S∗2)
+
]−E

[
(X∗

L−S∗2)
+
])

= (1−β) 1
λ

⇔ E
[
(X∗

1+L−S∗2)
+
]−E

[
(X∗

L−S∗2)
+
]
= 1−β (9)

Since α = β, the right hand sides of both service equations are equal, so if the left hand
sides of the service equations are equal as well, then S∗2 = S∗1 or S2 = S1. So consider the
left hand side of (9). Note that rf1+r,1(x) = xfr,1(x) and F1+r,1(x) = Fr,1(x)− f1+r,1(x).

E
[
(X∗

1+L−S∗2)
+
]−E

[
(X∗

L−S∗2)
+
]
=L1+L,1(S∗2)−LL,1(S∗2)

= (1+L)[1−F2+L,1(S∗2)]−S∗2 [1−F1+L(S∗2)]−LL,1(S∗2)
= (1+L)[1−F1+L,1(S∗2)+ f2+L(S∗2)]−S∗2 [1−FL(S∗2)+ f1+L(S∗2)]−LL,1(S∗2)
= (1+L)[1−F1+L,1(S∗2)]−S∗2 [1−FL(S∗2)]+ (1+L)f2+L(S∗2)−S∗2f1+L(S∗2)−LL,1(S∗2)
= 1−F1+L,1(S∗2)+LL,1(S∗2)+S∗2f1+L(S∗2)−S∗2f1+L(S∗2)−LL,1(S∗2)
= 1−F1+L,1(S∗2) = P

(
X∗

1+L > S∗2
)

(10)
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Thus, the left hand sides of the service equations are equal as well and therefore the
order-up-to levels under the P1 and P2 criterion will be equal if demand is exponentially
distributed.
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