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Abstract

In normal-form games, rationalizability (Bernheim [3], Pearce [11]) on its own

fails to exclude some very implausible strategy choices. Three main refinements of

rationalizability have been proposed in the literature: cautious, perfect, and proper

rationalizability. Nevertheless, some of these refinements also fail to eliminate un-

reasonable outcomes and suffer from several drawbacks. Therefore, we introduce the

trembling-hand rationalizability concept, where the players’ actions have to be best

responses also against perturbed conjectures. We also propose another refinement:

weakly perfect rationalizability, where players’ actions that are not best responses are

only played with a very small probability.

We show the relationship between perfect rationalizability and weakly perfect ra-

tionalizability as well as the relationship between proper rationalizability and weakly

perfect rationalizability : weakly perfect rationalizability is a weaker refinement than

both perfect and proper rationalizability. Moreover, in two-player games it holds that

weakly perfect rationalizability is a weaker refinement than trembling-hand rational-

izability. The other relationships between the various refinements are illustrated by

means of examples. For the relationship between any other two refinements we give

examples showing that the remaining set of strategies corresponding to the first re-

finement can be either smaller or larger than the one corresponding to the second

refinement.

JEL Classification: C72; Keywords: rationalizability, refinements.

∗We would like to thank Eric van Damme, Claude d’Aspremont, Pierre Dehez, Françoise Forges and

Hans Peters for helpful comments and suggestions. The usual disclaimer applies. This paper is an extended

version of Vannetelbosch [16]. P.J.J. Herings is financially supported by the Netherlands Organization for

Scientific Research (NWO), grant PPS-96-010.
†Corresponding author: CORE, 34 voie du Roman Pays, B-1348 Louvain-la-Neuve, Belgium.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6908882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

A notion like the Nash equilibrium assumes common expectations of the players’ be-

haviour. That is, each player holds a correct conjecture about her opponents’ strategy

choice. But once we admit the possibility that a player may have several strategies that

she could reasonably use, conjectures and strategies actually played may be mismatched.

This is what distinguishes rationalizability (Bernheim [3], Pearce [11]) from equilibrium

concepts.

Figure 1: The extensive form of G1

But rationalizability for normal-form games on its own fails to exclude some implausible

strategy choices. Consider the following game in extensive-form given in Figure 1. At

the beginning of the game G1, player 1 chooses between her action X2 or letting player

2 decide on one of the feasible outcomes: 5 − 1 and 1 − 5 (action X1). Then, if the

game has not ended, player 2 chooses between the outcome 5 − 1 (action Y1) and the

outcome 1 − 5 (action Y2). The normal-form of G1 is given in Figure 2. It can be

shown that {(X1, Y1) , (X1, Y2) , (X2, Y1) , (X2, Y2)} are rationalizable; in other words, all

pure strategies are possible best responses and rationalizable in G1. But once we look

at the extensive-form of G1 (see Figure 1), player 2’s action Y2 is an optimal action for

him whenever the subgame is reached, while Y1 is not a credible choice (Y1 is strictly

dominated in the subgame which starts with player 2’s move). Therefore, (X2, Y2) is the

only plausible rationalizable choice.

To avoid unreasonable outcomes, three main refinements of rationalizability have been

proposed in the literature: perfect rationalizability (Bernheim [3]), proper rationalizability

(Schuhmacher [12]), and cautious rationalizability (Pearce [11]). We also propose anoth-

er refinement: weakly perfect rationalizability, where players’ actions that are not best

responses are only played with a very small probability. Nevertheless, these refinements

may also fail to exclude implausible outcomes and suffer from some drawbacks: adding
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Figure 2: A two-player game: G1

dominated strategies may enlarge the set of rationalizable strategies, while adding a pure

strategy which was already available as a mixed strategy may reduce the set of ratio-

nalizable strategies. To remedy these drawbacks, we introduce another refinement, the

trembling-hand rationalizability concept, where players’ actions have to be best responses

also against perturbed conjectures.

The main results of the paper are as follows. We show the relationship between perfect

rationalizability and weakly perfect rationalizability as well as the relationship between

proper rationalizability and weakly perfect rationalizability : weakly perfect rationaliz-

ability is a weaker refinement than both perfect and proper rationalizability. Moreover, in

two-player games it holds that weakly perfect rationalizability is a weaker refinement than

trembling-hand rationalizability. The other relationships between the various refinements

are illustrated by means of examples. For the relationship between any other two refine-

ments we give examples showing that the remaining set of strategies corresponding to the

first refinement can be either smaller or larger than the one corresponding to the second

refinement. Finally, we also show that all these refinements of rationalizability possess the

so-called pure strategy property.

The paper is organized as follows. In Section 2 the rationalizability concept is present-

ed. Section 3 is devoted to the refinements. We derive some generally holding relationships

there. Section 4 shows by means of examples that there are no other relationships between

the refinements of rationalizability for normal-form games than the ones derived in Section

3.

2 Rationalizability

We consider a normal-form game Γ (I, S, U), where I is a finite set of players. Each player

i ∈ I has a finite pure-strategy set Si. We denote by S ≡
∏
i∈I Si the Cartesian product

set of strategy profiles. Let U = (Ui)i∈I be a list of all players’ payoff functions Ui : S → R

that give player i’s vN-M utility Ui (s) for each strategy profile s ∈ S. Let Mi be the set
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of player i’s mixed strategies; Mi is the set of all possible probability distributions over Si.

A mixed strategy ci ∈Mi is a probability distribution over pure strategies. We denote by

ci (si) the probability that ci assigns to si. Let M ≡
∏
i∈IMi be the set of mixed strategy

profiles; where c ∈ M is a mixed strategy profile. The support of a mixed strategy ci is

the set of pure strategies to which ci assigns positive probability. A mixed strategy profile

c gives rise to an expected payoff for each player. Let Ui (c) be player i’s expected payoff

to strategy profile c, which is equal to
∑
s∈S

(∏
j∈I cj (sj)

)
Ui (s). Player i’s opponents in

the game Γ (I, S, U) are denoted by −i.

As general notation, given any set X , we denote by ch(X) the convex hull of the set

X , i.e. the smallest convex set containing X .

Rationalizability (Bernheim [3], Pearce [11]) for normal-form games is based on the fol-

lowing assumptions: (A1) the players are rational, (A2) A1 is common knowledge among

the players, and (A3) the structure of the game (strategy sets, payoff functions) is com-

mon knowledge. Our formulation of rationality is based on expected utility maximization

given uncorrelated1 conjectures about the opponents’ strategies.

Definition 1 A strategy ci ∈Mi is rational if there exists a conjecture c−i = (cj)j∈I\{i} ∈∏
j 6=iMj such that ∀ c

′

i ∈Mi : Ui (ci, c−i) ≥ Ui
(
c
′

i, c−i
)

.

Formally, rationalizability for normal-form games is defined by the following iterative

process.

Definition 2 Let R0 ≡M . Then Rk ≡
∏
i∈I R

k
i (k ≥ 1) is inductively defined as follows:

for i ∈ I, ci ∈ Rki if: (i) ci ∈ Mi; (ii) ∃ c−i ∈
∏
j 6=ich

(
Rk−1
j

)
such that ∀ c

′

i ∈ Mi :

Ui (ci, c−i) ≥ Ui
(
c
′

i, c−i
)

. The set of rationalizable mixed strategy profiles is the limit set

R∞ ≡ limk→∞R
k =

⋂∞
k=0 R

k.

For the purposes of expected utility calculations2, Pearce [11] has shown that a conjec-

ture over Rk−1
j can be regarded as an element of ch

(
Rk−1
j

)
. Part (ii) in Definition 2 means

that player i holds uncorrelated conjectures (or beliefs) about her opponents’ strategies.

Remark that in Definition 2,
{
Rki ; k ≥ 0

}
is a weakly decreasing sequence, i.e. Rk+1

i ⊆ Rki ,

∀ k ∈ N, ∀ i ∈ I . Bernheim [3] and Pearce [11] have shown that, ∀ i ∈ I , the limit set

R∞i ≡ limk→∞R
k
i =

⋂∞
k=0 R

k
i is nonempty and closed, and that the sequence converges in

1Correlated rationalizability, introduced by Brandenburger and Dekel [6], weakens rationalizability be-

cause allowing correlated conjectures about the strategies of the opponents makes more strategies ratio-

nalizable. In the paper, we only consider the case where the players hold uncorrelated conjectures.
2The convex hull operator is used in Definition 2 because, when player i holds a conjecture about which

strategies belonging to Rk−1
j player j will use, it may be that, although both mixed strategies c

′

j and c
′′

j

are in Rk−1
j , the mixture c

′′′

j = 1
2 c
′

j + 1
2 c
′′

j is not.
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Figure 3: A two-player game: G2

a finite number of steps. Moreover, Pearce [11] has shown that, ∀ k ∈ N, ∀ i ∈ I , the set

Rki has the pure strategy property. Let SRki ≡
{
si ∈ Si | ci (si) > 0 for some ci ∈ R

k
i

}
.

Definition 3 Rki has the pure strategy property if SRki = {si ∈ Si | ci(si) = 1 for some

ci ∈ R
k
i

}
.

That is, Rki has the pure strategy property if ci ∈ Rki implies that every pure strat-

egy given positive weight by ci is also in Rki ; the set SRki coincides with the set of pure

strategies in Rki . By definition, ∀ i ∈ I , Mi has the pure strategy property. Since, ∀ k ∈ N,

∀ i ∈ I , the set Rki has the pure strategy property, it follows that the set of rational-

izable strategies, R∞i , contains at least one pure strategy for each player. Note that all

Nash equilibrium strategies are rationalizable; therefore, every strategy which is used with

positive probability in some Nash equilibrium must be rationalizable.

Theorem 1 For every game in normal-form we have, ∀ i ∈ I, R∞i =
⋂∞
k=0 R

k
i 6= ∅, the

limit set R∞i is closed and satisfies the pure strategy property ∀i ∈ I, and there exists

n ∈ N such that: Rk+1
i = Rki , ∀k ≥ n, ∀ i ∈ I.

We denote by Rk the set of k-step rationalizable mixed strategy profiles, i.e. the set

of mixed strategy profiles which survive k rounds of iteration.

Consider the two-player normal-form game G2 (see Figure 3) from Pearce [11]. This

game possesses two pure Nash equilibria: {(X1, Y1) , (X2, Y2)}. Then, it is straightforward

that SR∞ = {(X1, Y1) , (X1, Y2) , (X2, Y1) , (X2, Y2)}; i.e. all pure strategy profiles are

rationalizable. Nonetheless, the pure strategy profiles (X1, Y2), (X2, Y1) and (X2, Y2) seem

unreasonable: these profiles are weakly dominated by the profile (X1, Y1). Moreover, the

outcomes associated to these profiles are risk dominated and Pareto dominated by the

outcome associated to (X1, Y1).

To exclude these unreasonable outcomes, we consider various refinements of the ratio-

nalizability concept, all of which require a rationalizable strategy profile to satisfy some

particular robustness condition.
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3 Refinements of Rationalizability

3.1 Perfect Rationalizability

Perfect rationalizability is due to Bernheim [3]. The idea behind the perfectness notion

is that each player with a small probability makes mistakes, which has the consequence

that every pure strategy is chosen with a positive (although possibly small) probability.

Börgers [4, p.274] has given the following informal definition3.

Consider any finite normal-form game. Assume that every player has to choose each

of his pure strategies with a certain strictly positive minimum probability. Assume

that the minimum probabilities are common knowledge. Then apply rationalizability

to this perturbed game. Strategies are perfectly rationalizable if they are the limit

of rationalizable strategies in perturbed games as the minimum probabilities in these

perturbed games converge to zero.

Let int (Mi) denote the interior of Mi. The mixed strategies in the subset int (Mi) ⊆Mi

are called interior or completely mixed strategies of player i. These mixed strategies assign

positive probabilities to all pure strategies of player i. We denote by Mi (µ) the set of

strategies of player i that assign probabilities of at least µ > 0 to all pure strategies of

player i; Mi (µ) ≡ {ci ∈ int (Mi) | ci (si) ≥ µ, ∀ si ∈ Si}. That is, Mi (µ) ⊆ int (Mi) ⊆

Mi. Formally, perfect rationalizability for normal-form games is defined by the following

iterative procedure4.

Definition 4 Let B0 (µ) ≡
∏
i∈IMi (µ). Then Bk (µ) ≡

∏
i∈I B

k
i (µ) (k ≥ 1) is induc-

tively defined as follows: for i ∈ I, ci ∈ Bki (µ) if: (i) ci ∈ Mi (µ); (ii) ∃ c−i ∈∏
j 6=i ch

(
Bk−1
j (µ)

)
such that ∀ c

′

i ∈ Mi (µ) : Ui (ci, c−i) ≥ Ui
(
c
′

i, c−i
)

. The set of

perfectly rationalizable strategy profiles is the limit set B∞ ≡ limµ→0+ B∞ (µ) where

B∞ (µ) ≡ limk→∞ Bk (µ) =
⋂∞
k=0 B

k (µ).

In Definition 4, the limit set B∞ is given by

lim
µ→0+

B∞ (µ) =
{
c ∈M | ∃

{
µt
}∞
t=0
→ 0+, ∃

{
ct
}∞
t=0
→ c, ct ∈ B∞

(
µt
)}

.

3Börgers [4] has shown that it is approximate common knowledge that the players maximize expected

utility using full support conjectures (with also correlated conjectures allowed) if and only if they play

strategies that survive the procedure which begins with one round of elimination of weakly dominated

strategies and continues with iterated elimination of strictly dominated strategies.
4Our definition of perfect rationalizability is slightly different from Bernheim’s definition: we assume

that the minimum probabilities are the same for all pure strategies and for all players. It is straightfor-

ward that every perfectly rationalizable strategy profile c ∈ B∞ is perfectly rationalizable in the sense of

Bernheim’s definition. And one can verify that all the relationships we derive and counterexamples that

we give, would still be valid if one uses Bernheim’s definition.
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It is easy to show that for every µ > 0 the set B∞(µ) is nonempty and compact, from

which it follows easily that the set B∞ is nonempty and compact. Moreover, it is not

difficult to show that, ∀ k ∈ N, ∀ i ∈ I , the set Bki (µ) has the pure strategy property,

defined as follows. Let

Mk
i (µ) ≡

{
ci ∈Mi(µ) | for some c′i ∈ B

k
i (µ), c′i(si) > µ, and ci (si) = 1− (#Si − 1)µ

}
.

Definition 5 Bki (µ) has the pure strategy property if Mk
i (µ) ⊆ Bki (µ).

That is, Bki (µ) has the pure strategy property if c′i ∈ B
k
i (µ) and si is a pure strategy

that is given weight exceeding µ by c′i implies that the strategy ci where ci gives the

minimum probability µ to all pure strategies s′i 6= si and the maximal probability 1 −

(#Si − 1)µ to pure strategy si is also in Bki (µ). We chose to retain the name pure

strategy property since, for µ small, the strategy ci is indeed close to the pure strategy si.

For limit sets we can always employ the Definition of the pure strategy property as given

in Definition 3. This also applies to limit sets of refinements to be discussed later in the

paper.

Theorem 2 For every game in normal-form we have, ∀ i ∈ I, B∞i = limµ→0+ B∞i (µ) 6=

∅. Moreover, the limit set B∞i is closed and satisfies the pure strategy property ∀i ∈ I.

We will denote the pure strategies that are approximately in Bki (µ) by SBki (µ), so

SBki (µ) = {si ∈ Si | ∃ ci ∈ B
k
i (µ) with ci(si) = 1− (#Si − 1)µ}.

Note that all pure strategies that are played with positive probability in a uniformly

perfect equilibrium, the equilibrium concept used for instance in Harsanyi and Selten [8],

are perfectly rationalizable.

3.2 Weakly Perfect Rationalizability

Unlike the perfect rationalizability concept, in the weakly perfect rationalizability concept,

a player is not required to optimize against her conjecture subject to an explicit constraint

on minimum weights, but her conjecture must put less than ε weight on strategies that are

not best responses5. Formally, we define weakly perfect rationalizability by the following

iterative procedure.

Definition 6 Let D0 (ε) ≡
∏
i∈I int (Mi). Then Dk (ε) ≡

∏
i∈I D

k
i (ε) (k ≥ 1) is in-

ductively defined as follows: for i ∈ I, ci ∈ Dk
i (ε) if: (i) ci ∈ int (Mi); (ii) ∃ c−i ∈∏

j 6=ich
(
Dk−1
j (ε)

)
such that: ∀ si, s

′

i ∈ Si : Ui
(
s
′

i, c−i
)
< Ui (si, c−i) ⇒ ci

(
s
′

i

)
≤ ε.

5This non-conventional way to optimize has been introduced by Myerson [10].
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The set of weakly perfectly rationalizable strategy profiles is D∞ ≡ limε→0+ D∞ (ε) where

D∞ (ε) ≡ limk→∞D
k (ε) =

⋂∞
k=0 D

k (ε).

The set D∞ could equivalently have been defined as D∞ ≡ limε→0+ cl (D∞ (ε)) . Since

the sets cl (D∞ (ε)) are easily seen to be nonempty and compact, it follows that the set

D∞ is nonempty and closed. Again, it is not difficult to show that, ∀ k ∈ N, ∀ i ∈ I , the

set Dk
i (ε) has the pure strategy property. Let

M̃k
i (ε) ≡

{
ci ∈ int(Mi) | for some c′i ∈ D

k
i (ε) , c′i(si) > ε, and ci

(
s′i
)
≤ ε, ∀s′i 6= si

}
.

Definition 7 Dk
i (ε) has the pure strategy property if M̃k

i (ε) ⊆ Dk
i (ε).

That is, Dk
i (ε) has the pure strategy property if c′i ∈ D

k
i (ε) and si is a strategy that

is given weight exceeding ε by c′i implies that every strategy ci where ci gives weight less

than or equal to ε to all pure strategies s′i 6= si and the remaining probability to pure

strategy si is also in Dk
i (ε). Summarizing, we have the following result.

Theorem 3 For every game in normal-form we have, ∀ i ∈ I, D∞i = limε→0+ D∞i (ε) 6= ∅.

Moreover, the limit set D∞i is closed and satisfies the pure strategy property ∀i ∈ I.

We will denote the pure strategies that are approximately in Dk
i (ε) by SDk

i (ε), so

SDk
i (ε) =

{
si ∈ Si | ∃ ci ∈ D

k
i (ε) with ci(s

′
i) = ε, ∀s′i 6= si

}
. Clearly, all pure strategies

that are played with positive probability in a perfect equilibrium as defined in van Damme

[15] are weakly perfectly rationalizable.

Reconsider the two-player normal-form game G2 (see Figure 3). Remember that the

pure strategy profiles (X1, Y2), (X2, Y1) and (X2, Y2), which seem unreasonable, are ratio-

nalizable. Nevertheless, none of these pure strategy profiles are perfectly or weakly perfect-

ly rationalizable. Indeed, it is obvious that D1 (ε) = Dk (ε) for all k > 1 and that D1 (ε)

is such that for all (c1, c2) ∈ D1
1 (ε) ×D1

2 (ε) : c1 (X2) ≤ ε and c2 (Y2) ≤ ε. Then, the set

of weakly perfectly rationalizable strategy profiles is D∞ ≡ limε→0+ D∞ (ε) = {(X1, Y1)}.

Therefore, there is a unique strategy profile which survives this refinement (or perfect

rationalizability) and it is (X1, Y1), i.e. the weakly dominant profile.

Theorem 4 Every perfectly rationalizable strategy profile is weakly perfectly rationaliz-

able.

Proof. We have to show that, ∀ i ∈ I, ci ∈ B∞i ⇒ ci ∈ D∞i . Remark that

B0
i (µ) ≡ {ci ∈ int (Mi) | ci (si) ≥ µ ∀ si ∈ Si} and D0

i (ε) = int (Mi); therefore,

B0
i (µ) ⊆ D0

i (ε) ∀ i ∈ I. Suppose µ = ε in Definitions 4 and 6, and let ε =

(maxi∈I (#Si))
−1

. It is quite easy to show by induction on k that, ∀ k ∈ N, we have
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Figure 4: A two-player game: G3

that Bki (ε) ⊆ Dk
i (ε) ∀ i ∈ I, ∀ ε ∈ (0, ε). Assume Bk−1

i (ε) ⊆ Dk−1
i (ε) ∀ i ∈ I,

∀ ε ∈ (0, ε). If ci ∈ Bki (ε) [it means that (i) and (ii) in Definition 4 are satis-

fied, and that all pure strategies si ∈ Si which are not best responses against any

c−i ∈
∏
j 6=i ch

(
Bk−1
j (ε)

)
are assigned a probability of ε by all ci ∈ Bki (ε); i.e.

ci (si) = ε] then, since
∏
j 6=i ch

(
Dk−1
j (ε)

)
⊇
∏
j 6=i ch

(
Bk−1
j (ε)

)
, it is straightfor-

ward that (i), (ii) and (iii) are also satisfied in Definition 6; therefore ci ∈ Dk
i (ε).

Thus, ∀ k ∈ N, we have that Bki (ε) ⊆ Dk
i (ε) ∀ i ∈ I, ∀ ε ∈ (0, ε); it implies that

B∞i (ε) =
⋂∞
k=0B

k
i (ε) ⊆

⋂∞
k=0D

k
i (ε) = D∞i (ε) ∀ i ∈ I, ∀ ε ∈ (0, ε) [note that since

each set Si is finite, the limits B∞i (ε) and D∞i (ε) are reached after a finite number

of iterations, ∀ i ∈ I]. Taking the limit ε→ 0+, we have B∞i ⊆ D
∞
i ∀ i ∈ I.

Theorem 4 would still be true if Bernheim’s definition of perfect rationalizability would

have been used. In Section 4 we will give an example showing that the converse of Theo-

rem 4 is not necessarily true. There exist games where the set of perfectly rationalizable

strategy profiles is a proper subset of the set of weakly perfectly rationalizable ones, even

if Bernheim’s weaker definition of rationalizability approach is used. This is in contrast

with the equilibrium approach, where perfect equilibrium can be defined in either way.

Consider now the example G3, taken from Myerson [10], which highlights how the per-

fectness notion (perfect or weakly perfect rationalizability) fails to eliminate all intuitively

unreasonable outcomes. As in G2, (X1, Y1) would seem like the obvious outcome for the

game G3. There are three Nash equilibria, and all are in pure strategies; these equilibria

are (X1, Y1), (X2, Y2), and (X3, Y3). Of these three Nash equilibria, (X3, Y3) is not perfect

nor proper, (X2, Y2) is perfect but not proper, and (X1, Y1) is both perfect and proper.

The strategy profile (X2, Y2) is also weakly perfectly rationalizable. Indeed, D1 (ε) is such

that for all (c1, c2) ∈ D1
1 (ε)×D1

2 (ε) : c1 (X3) ≤ ε and c2 (Y3) ≤ ε. Then, player 1 may hold

the following conjecture c2 such that c2 (Y1) = ε, c2 (Y2) = 1− 2ε, c2 (Y3) = ε. Given this

8



conjecture, her best response is to play X2; indeed, ∀ ε ∈ (0, 1) we have that U1 (X1, c2) =

−8ε < U1 (X2, c2) = −7ε. Player 2 may hold a conjecture c1 such that c1 (X1) = ε,

c1 (X2) = 1−2ε, c1 (X3) = ε. Given this conjecture, his best response is to play Y2; indeed,

∀ ε ∈ (0, 1) we have that U2 (c1, Y1) = −8ε < U2 (c1, Y2) = −7ε. Then, it is quite straight-

forward that D∞ ≡ limε→0+ D∞ (ε) ⊃ {(X1, Y1) , (X1, Y2) , (X2, Y1) , (X2, Y2)}, X3 /∈ D
∞
1 ,

and Y3 /∈ D∞2 . In fact, adding the row X3 and the column Y3 to the game G2 has convert-

ed (X2, Y2) into an weakly perfectly rationalizable strategy profile, even though X3 and

Y3 are weakly dominated strategies. Proper rationalizability is a refinement which deletes

such unreasonable outcomes, like (X1, Y2), (X2, Y1), and (X2, Y2).

3.3 Proper Rationalizability

Schuhmacher [12] has developed the proper rationalizability concept which assumes that

it is common knowledge that every player satisfies the ε-proper trembling condition, but

the players have still no common expectations about the strategies of the opponents6. The

ε-proper trembling condition requires that every player trembles in a more or less rational

way7. That is, the players make more costly mistakes with a much smaller probability than

less costly ones. Formally, given some ε > 0, a player i satisfies the ε-proper trembling

condition if, given her conjecture c−i ∈
∏
j 6=iint(Mj), she plays a completely mixed strategy

ci ∈ int(Mi), that satisfies

∀ si, s
′

i ∈ Si : Ui
(
s
′

i, c−i
)
< Ui (si, c−i)⇒ ci

(
s
′

i

)
≤ ε ci (si)

Schuhmacher has shown that the common knowledge among the players of the ε-proper

trembling condition implies that every player plays a strategy which survives the following

procedure.

Definition 8 Let A0 (ε) ≡
∏
i∈I int (Mi). Then Ak (ε) ≡

∏
i∈I A

k
i (ε) (k ≥ 1) is in-

ductively defined as follows: for i ∈ I, ci ∈ Aki (ε) if: (i) ci ∈ int (Mi); (ii) ∃ c−i ∈∏
j 6=i ch

(
Ak−1
j (ε)

)
such that ∀ si, s

′

i ∈ Si : Ui
(
s
′

i, c−i
)
< Ui (si, c−i)⇒ ci

(
s
′

i

)
≤ ε ci (si).

The set of properly rationalizable strategy profiles is A∞ ≡ limε→0+ A∞ (ε) where A∞ (ε) ≡

limk→∞A
k (ε) =

⋂∞
k=0 A

k (ε).

Part (iii) in the definition is the ε-proper trembling condition: if strategy s
′

i is worse

than strategy si against her conjecture c−i about the behaviour of her opponents, then the

6The properness notion has been first introduced by Myerson [10], in the equilibrium approach, to refine

the perfect equilibrium concept due to Selten [13]. Schuhmacher [12] has shown that proper rationalizability

implies the backward induction outcome for generic extensive-form games with perfect information.
7The basic idea underlying the properness notion is that a player, although making mistakes, will try

much harder to prevent the more costly mistakes than she will try to prevent the less costly ones; i.e. there

is an element of rationality in the mistake technology.
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probability of strategy s
′

i is at most ε times the probability of strategy si. Schuhmacher

[12] has shown that the limit set
⋂∞
k=0 A

k
i (ε) contains at least the ε-proper equilibria. From

Myerson [10], we have that for every normal-form game Γ (I, S, U) there exists an ε-proper

equilibrium. Therefore, the set of properly rationalizable strategy profiles is nonempty.

Again, it is possible to define a pure-strategy property, although the definition becomes a

bit more artificial in the case of proper rationalizability.

Definition 9 Aki (ε) has the pure strategy property if c′i ∈ Aki (ε) and c′i(si) > ε implies

there exists ci ∈ Aki (ε) such that ci(s
′
i) ≤ ε, ∀s

′
i 6= si.

That is, Aki (ε) has the pure strategy property if c′i ∈ A
k
i (ε) and si is a strategy that is

given weight exceeding ε by c′i implies that some strategy ci where ci gives weight less than

or equal to ε to all pure strategies s′i 6= si and the remaining probability to pure strategy

si is also in Aki (ε). Notice that, opposite to the definition of the pure strategy property

as defined for weakly perfect rationalizability, it can now no longer be required that every

strategy ci that gives weight less than or equal to ε to all pure strategies s′i 6= si and the

remaining probability to pure strategy si also belongs to Aki (ε).

Theorem 5 For every game in normal-form we have, ∀ i ∈ I, A∞i = limε→0+ A∞i (ε) 6= ∅.

Moreover, the limit set A∞i is closed and satisfies the pure strategy property ∀i ∈ I.

We will denote the pure strategies that are approximately in Aki (ε) by SAki (ε), so

SAki (ε) =
{
si ∈ Si | ∃ ci ∈ A

k
i (ε) with ci(s

′
i) ≤ ε, ∀s

′
i 6= si

}
.

Theorem 6 Every properly rationalizable strategy profile is weakly perfectly rationalizable.

Proof. We have to show that, ∀ i ∈ I, ci ∈ A∞i ⇒ ci ∈ D∞i . It is quite easy

to show by induction on k that, ∀ k ∈ N, we have that Aki (ε) ⊆ Dk
i (ε) ∀ i ∈

I, ∀ ε ∈ (0, 1). Remark that A0
i (ε) = D0

i (ε) ∀ i ∈ I, ∀ ε ∈ (0, 1). Assume

Ak−1
i (ε) ⊆ Dk−1

i (ε) ∀ i ∈ I, ∀ ε ∈ (0, 1). If ci ∈ Aki (ε) [it means that (i), (ii) and

(iii) in Definition 8 are satisfied] then, since ε ci (si) ≤ ε and
∏
j 6=i ch

(
Dk−1
j (ε)

)
⊇∏

j 6=i ch
(
Ak−1
j (ε)

)
, it is straightforward that (i), (ii) and (iii) are also satisfied in Defi-

nition 6; therefore ci ∈ Dk
i (ε). Thus, ∀ k ∈ N, we have that Aki (ε) ⊆ Dk

i (ε) ∀ i ∈ I,

∀ ε ∈ (0, 1); it implies that A∞i (ε) =
⋂∞
k=0 A

k
i (ε) ⊆

⋂∞
k=0 D

k
i (ε) = D∞i (ε) ∀ i ∈ I,

∀ ε ∈ (0, 1) [note that since each set Si is finite, the limits A∞i (ε) and D∞i (ε) are

reached after a finite number of iterations, ∀ i ∈ I]. Taking the limit ε→ 0+, we have

A∞i ⊆ D
∞
i ∀ i ∈ I.

Reconsider the two-player normal-form game G3 (see Figure 4). The strategy profile

(X1, Y1) is the unique properly rationalizable strategy profile of G3. Indeed, A1 (ε) is such

that for all (c1, c2) ∈ A1
1 (ε)×A1

2 (ε) : c1 (X3) ≤ ε c1 (X2) and c2 (Y3) ≤ ε c2 (Y2). Therefore,

10



Figure 5: A two-player game: G4

for all c1 ∈ A
1
1 (ε) we have that U2 (c1, Y1) > U2 (c1, Y3); and for all c2 ∈ A

1
2 (ε) we have that

U1 (X1, c2) > U1 (X3, c2). This implies that for all (c1, c2) ∈ A2
1 (ε) × A2

2 (ε) : c1 (X3) ≤

ε c1 (X2), c1 (X3) ≤ ε c1 (X1), c2 (Y3) ≤ ε c2 (Y1), and c2 (Y3) ≤ ε c2 (Y2). Therefore,

for all c1 ∈ A2
1 (ε) and ε ∈

(
0, 1

2

)
we have that U2 (c1, Y1) > U2 (c1, Y2); and for all

c2 ∈ A2
2 (ε) and ε ∈

(
0, 1

2

)
we have that U1 (X1, c2) > U1 (X2, c2). This implies that for

all (c1, c2) ∈ A3
1 (ε)× A3

2 (ε) : c1 (X3) ≤ ε c1 (X2), c1 (X3) ≤ ε c1 (X1), c1 (X2) ≤ ε c1 (X1),

c2 (Y2) ≤ ε c2 (Y1), c2 (Y3) ≤ ε c2 (Y1), and c2 (Y3) ≤ ε c2 (Y2). So c1 (X2) ≤ ε c1 (X1) ≤ ε,

c1 (X3) ≤ ε c1 (X2) ≤ ε2, c2 (Y2) ≤ ε c2 (Y1) ≤ ε, c2 (Y3) ≤ ε c2 (Y2) ≤ ε2. Since the

probabilities must sum to one, c1 (X1) ≥ 1− ε− ε2 and c2 (Y1) ≥ 1− ε− ε2. Therefore, we

have thatA∞ ≡ limε→0+ A∞ (ε) = {(X1, Y1)}; i.e. there is a unique properly rationalizable

strategy profile, namely (X1, Y1). Thus, although (X2, Y2) is perfectly rationalizable for

this game G3, it is not properly rationalizable.

Myerson’s [10] properness notion was motivated by the fact that the perfectness no-

tion has the drawback that adding dominated strategies may enlarge the set of perfect

equilibria. In the non-equilibrium approach, we have shown that perfect and weakly per-

fect rationalizability may also suffer from this drawback. Nevertheless, van Damme [15]

has shown that, for the equilibrium approach, the properness notion may suffer from the

same drawback as well. The game G4 is such an example where both the perfectness

notion and the properness notion fail to eliminate all intuitively unreasonable outcomes.

In Figure 5, we have the normal-form of G4 taken from Pearce [11]. The game G4 has

two pure Nash equilibria: {(X2, Y1) , (X1, Y2)}. In fact, these two Nash equilibria are al-

so trembling-hand perfect equilibria and proper equilibria. It can easily be shown that

among the pure strategies, only player 1’s action X3 is not a properly rationalizable one;

11



Figure 6: A two-player game: G5

X3 /∈ A
∞
1 , {(X1, Y1) , (X1, Y2) , (X2, Y1) , (X2, Y2)} ⊂ A∞.

Van Damme [15] has mentioned a second drawback of the properness notion: in the

equilibrium approach, the set of proper equilibria may change when a strategy that is

already available as a mixed strategy is explicitly added as a pure strategy. This second

drawback is illustrated by the games G5 and G6 (see Figures 6 and 7) taken from van

Damme [15]8. The game G6 results from G5 by adding the mixture X4 = (1− y)X1+yX3

with 0 < y < 1. We have that (X3, Y2) is a proper equilibrium of G5, but it is not proper

in G6 when y ≥ 1
2 . This second drawback also applies to proper rationalizability. Indeed,

we have that among the pure strategies, only player 1’s action X2 is not a properly

rationalizable one in G5; X2 /∈ A∞1 and {(X1, Y1) , (X1, Y2) , (X3, Y1) , (X3, Y2)} ⊂ A∞.

Nevertheless, proper rationalizability singles out a unique outcome for G6, namely the

strategy profile (X1, Y1), when y ≥ 1
2 . These two drawbacks motivate us to introduce a

further refinement: trembling-hand rationalizability for normal-form games.

3.4 Trembling-Hand Rationalizability

The starting point of trembling-hand rationalizability (THR) is that, in the definition of

rationalizability, the rationality concept is strengthened by asking that a player’s strategy

be optimal not only given her conjecture but also given perturbed conjectures9. In the

definition of THR, the perturbed conjecture puts weight on each pure strategy which

8This second drawback of the properness notion matters if both games G5 and G6 are considered as

equivalent games (Kohlberg and Mertens [9] have studied the equivalence of games; see also van Damme

[15, pp.259-265]).
9This restriction on the best-response correspondence may be interpreted as if the players have some

doubt about the strategies played by their opponents.

12



Figure 7: A two-player game: G6

hasn’t yet been deleted. Formally, THR is defined by modifying the iterative procedure

of Definition 2.

Definition 10 Let T 0 ≡M . Then T k ≡
∏
i∈I T

k
i (k ≥ 1) is inductively defined as follows:

for i ∈ I, ci ∈ T ki if: (i) ci ∈ T
k−1
i ; (ii) ∃ c−i ∈

∏
j 6=ich

(
T k−1
j

)
such that: cj gives positive

weight to each pure strategy in T k−1
j , and ∀ c

′

i ∈ T
k−1
i : Ui (ci, c−i) ≥ Ui

(
c
′

i, c−i
)

. The set

of trembling-hand rationalizable strategy profiles is T∞ ≡ limk→∞ T
k =

⋂∞
k=0 T

k.

In Definition 10, the set T 1
i is the set of player i’s trembling-hand rational strategies.

At each step of the iteration, a strategy ci of player i has to be a best response against

some perturbed conjecture. That is, at step k of the iteration, to belong to T ki , a strategy

ci of player i has to be a best response against some perturbed conjecture c−i = (cj)j 6=i ∈∏
j 6=ich

(
T k−1
j

)
where cj gives positive weight to each pure strategy in T k−1

j . At step k

of the iteration, no pure strategy in the set T k−1
j is regarded as completely impossible.

In Definition 10,
{
T ki ; k ≥ 0

}
is a weakly decreasing sequence, i.e. T k+1

i ⊆ T ki ∀ k ∈ N,

∀ i ∈ I . We denote by T k the set of k-step trembling-hand rationalizable strategy profiles,

i.e. the set of mixed strategy profiles which survive k rounds of iteration. The limit set

is given by T∞i ≡ limk→∞ T
k
i =

⋂∞
k=0 T

k
i , ∀ i ∈ I . The pure strategy property is defined

in the same way as for rationalizability, Definition 3. We will denote the pure strategies

in T ki by ST ki . The proof of the following result goes along the same lines as the proof of

Theorem 1 and is therefore omitted.

Theorem 7 For every game in normal-form we have, ∀ i ∈ I, T∞i =
⋂∞
k=0 T

k
i 6= ∅, the

limit set T∞i is closed and satisfies the pure strategy property ∀ i ∈ I, and there exists
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n ∈ N such that: T k+1
i = T ki ∀ k ≥ n, ∀ i ∈ I.

In Theorem 4 we have shown that perfectly rationalizable strategy profiles are weakly

perfectly rationalizable and in Theorem 6 that properly rationalizable strategy profiles

are weakly perfectly rationalizable. Since the ideas lying underneath the trembling-hand

rationalizability concept are closely related to those of the weakly perfect and proper ratio-

nalizability concepts, we might expect that trembling-hand rationalizable strategy profiles

are also weakly perfectly rationalizable, or even that they are properly rationalizable. In

fact, the trembling-hand rationalizability concept does not only require bad strategies to

be expected with low probability, but even with zero probability. Therefore, Theorem 8

does not come as a surprise.

Theorem 8 For any finite two-player game in normal-form, every trembling-hand ratio-

nalizable strategy profile is weakly perfectly rationalizable.

Proof. We have to show that, ∀i ∈ I, ci ∈ T∞i ⇒ ci ∈ D∞i . Notice that ci ∈ T 1
i

implies that there is no mixed strategy in Mi which weakly dominates ci, using Lemma

4 of Pearce [11]. First we will show by induction on k that, ∀k ∈ N, ST ki ⊆ SDk
i (ε),

∀i ∈ I, ∀ε ∈ (0, 1
maxi∈I #Si

). Remark that ST 0
i = SD0

i = Si. Assume ST k−1
i ⊆

SDk−1
i (ε). If s1

i ∈ ST
k
i , then there is c1j ∈ ch(T k−1

j ) such that c1j gives positive weight

to each sj ∈ ST
k−1
j , j 6= i, and ∀ci ∈ T

k−1
i , Ui(s

1
i , c

1
j) ≥ Ui(ci, c

1
j). Suppose there is

s∗i ∈ Si \ ST
k−1
i such that Ui(s

∗
i , c

1
j) > Ui(s

1
i , c

1
j). Without loss of generality s∗i can

be assumed to be a best response to c1j . Since c1j ∈ ch(T k−1
j ) ⊆ ch(T l−1

j ), ∀l ≤ k,

it follows that s∗i ∈ ST k−1
i , a contradiction. Consequently, Ui(s

1
i , c

1
j) ≥ Ui(si, c

1
j),

∀si ∈ Si. Since s1
i ∈ ST 1

i , there is c2j ∈ int(Mj) such that Ui(s
1
i , c

2
j) ≥ Ui(si, c

2
j),

∀si ∈ Si. It follows that Ui(s
1
i , (1 − ε)c

1
j + εc2j ) ≥ Ui(si, (1 − ε)c1j + εc2j ), ∀si ∈ Si.

Moreover, (1 − ε)c1j + εc2j is a completely mixed strategy putting weight less than ε

on each pure strategy in Sj \ ST
k−1
j ⊇ Sj \ SD

k−1
j (ε), j 6= i, where the induction

hypothesis is used for the inclusion. Therefore, using that Dk−1
j (ε), j 6= i, satisfies the

pure strategy property, (1−ε)c1j+εc2j ∈ ch(Dk−1
j (ε)). So, c1i ∈ D

k
i (ε) where c1i (si) = ε,

∀si 6= s1
i , and hence s1

i ∈ SD
k
i (ε). We have shown that ST ki ⊆ SD

k
i (ε).

Since the sets T ki and Dk
i (ε), ∀i ∈ I, ∀ε ∈ (0, 1

maxi∈I #Si
), can only change if the sets

ST kj and SDk
i (ε) change, it follows that ∀k, l ≥ m, where m =

∑
i∈I(#Si−1), ∀i ∈ I,

∀ε ∈ (0, 1
maxi∈I #Si

), T ki = T li and Dk
i (ε) = Dl

i(ε).

If c′i ∈ T∞i , then c′i ∈ T ki with k ≥ m + 1, so there is c3j ∈ ch(T kj ) such that c3j

gives positive weight to each sj ∈ ST kj and ∀ci ∈ T ki , Ui(c
′
i, c

3
j) ≥ Ui(ci, c

3
j), from

which it follows as above that Ui(c
′
i, c

3
j) ≥ Ui(si, c

3
j), ∀si ∈ Si. Since c′i ∈ T

1
i , there is

c4j ∈ int(Mj) such that Ui(c
′
i, c

4
j) ≥ Ui(si, c

4
j), ∀si ∈ Si. It follows that Ui(c

′
i, (1−ε)c

3
j +

εc4j) ≥ Ui(si, (1−ε)c
3
j +εc4j ), ∀si ∈ Si. Moreover, (1−ε)c3j +εc4j is a completely mixed

strategy putting weight less than ε on each pure strategy in Sj \ ST kj ⊇ Sj \ SD
k
j (ε).

Therefore, using that Dk
j (ε), j 6= i, satisfies the pure strategy property, (1 − ε)c3j +
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Figure 8: A three-player game: G7

εc4j ∈ ch(Dk
j (ε)). So, c′′i (ε) ∈ Dk

i (ε) = D∞i (ε) where c′′i (ε)(si) = ε, if c′(si) = 0, and

c′′i (ε)(si) = c′i(si)(1−#{s′i | c
′
i(s
′
i) = 0}ε) if c′(si) 6= 0. If ε→ 0+, then c′′i (ε)→ c′i, so

c′i ∈ D
∞
i .

The proof of Theorem 8 is only valid for the two-player case since it relies on the

linearity of Ui (si, ·). Surprisingly, Theorem 8 cannot be generalized to three or more player

games as is shown by Game G7 (see Figure 8). It is easily seen that ST 1
1 = {X1, X2, X3},

ST 1
2 = {Y1, Y2}, and ST 1

3 = {Z1, Z2}. It is not possible in the first iteration to eliminate any

pure strategy of player 1, since all strategies of player 1 are equally good against (c2, c3) =

((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)). In the second iteration it is clearly impossible to eliminate

any other pure strategy of player 2 or 3. Against (c2, c3) = ((1/2, 1/2, 0), (1/2, 1/2, 0))

all pure strategies of player 1 are equally good, so no further eliminations are possible.

Consequently, for every k ≥ 1, ST k1 = {X1, X2, X3}, ST
k
2 = {Y1, Y2}, and ST k3 = {Z1, Z2}.

Now we consider the weakly perfect rationalizability concept. Let any ε smaller than

1/3 be given. Obviously, in the first iteration again only the pure strategies Y3 and Z3

are eliminated, so SD1
1(ε) = {X1, X2, X3}, SD

1
2(ε) = {Y1, Y2}, and SD1

3(ε) = {Z1, Z2}.

In the second iteration, it is again impossible to eliminate any other pure strategy of

player 2 or 3. Next we show that pure strategy X3 of player 1 is eliminated in the

second iteration, although it is easily seen that X3 is not weakly dominated by any mixed

strategy. Intuitively, compared to strategies X1 and X2, strategy X3 is good against

the conjectures (Y1, Z1), (Y2, Z2), and (Y3, Z3), but bad against all other pure strategy

combinations. If every pure strategy is played with at least a small probability, then the

pure strategy combinations against which strategy X3 is bad will necessarily arise with

positive probability. It will turn out that against any such conjecture at least one of the

pure strategiesX1 and X2 performs better. Let any c2 ∈ ch(D1
2(ε)) and any c3 ∈ ch(D1

3(ε))

be given. To simplify notation, let s and t denote the probability of the first action of
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player 2 and player 3, respectively, and β and γ the probability of the third action of player

2 and player 3, respectively, so s = c2(Y1), t = c3(Z1), β = c2(Y3) ≤ ε, and γ = c3(Z3) ≤ ε.

Let us consider the payoffs of the pure strategies of player 1.

Strategy Payoff

X1 2st+ (1− s− β)t+ s(1− t− γ) + γ(1− β)

X2 (1− s− β)t+ s(1− t− γ) + 2(1− s− β)(1− t− γ) + γ(1− β)

X3 2st+ 2(1− s− β)(1− t− γ) + 2βγ

Table 1: The payoffs of the pure strategies of player 1

Pure strategy X3 is at least as good as pure strategy X1 if t(3−3β)+s(3−3γ)+3γ ≤

4st+ 5βγ + 2− 2β. So, if,

3− 3γ − 4t > 0 and s ≤
(3β − 3)t− 3γ − 2β + 2 + 5βγ

3− 3γ − 4t
(1)

or

3− 3γ − 4t < 0 and s ≥
(3β − 3)t− 3γ − 2β + 2 + 5βγ

3− 3γ − 4t
.

If 3− 3γ − 4t = 0, then X3 is strictly worse than X1. Consider the case 3 − 3γ − 4t < 0.

It only holds that the right-hand side, i.e. the minimum probability to be put on strategy

Y1, is less than 1−β if t > 1−2βγ/(1−β). But then t+γ > (1−β+γ−3βγ)/(1−β) > 1

since β < 1/3, a contradiction since the sum of t and γ should be strictly less than 1. So

only case (1) remains.

Pure strategy X3 is at least as good as X2 if t(1−β) + s(1−γ) +γ ≤ 4st+ 3βγ. So, if,

1− γ − 4t > 0 and s ≤
3βγ − γ − (1− β)t

1− γ − 4t

or

1− γ − 4t < 0 and s ≥
3βγ − γ − (1− β)t

1− γ − 4t
. (2)

If 1 − γ − 4t = 0, then X3 is strictly worse than action X2. Consider the case where

1 − γ − 4t > 0. It holds that the numerator of the right-hand side is negative (use that

β < 1/3), a contradiction since s should be positive. So only case (2) remains.

Concluding, X3 may be a best response of player 1 if

1− γ − 4t < 0 < 3− 3γ − 4t

and
3βγ − γ − (1− β)t

1− γ − 4t
≤ s ≤

(3β − 3)t− 3γ − 2β + 2 + 5βγ

3− 3γ − 4t
.
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Next it is shown that the latter inequality can never be satisfied since the first term is

always bigger than the third. Now, 1 − γ − 4t < 0 < 3 − 3γ − 4t and (3βγ − γ − (1 −

β)t)/(1− γ − 4t) ≤ ((3β − 3)t− 3γ − 2β + 2 + 5βγ)/(3− 3γ − 4t) implies

t2(4− 4β) + t(4β − 4 + 4γ − 4βγ) + 1− β − γ − βγ + 2βγ2 ≤ 0. (3)

The left-hand side of (3) is a quadratic function in t. Computing “b2−4ac” to find the zero

points of this function yields 16γ(γ−1)(1−4β+3β2) which is smaller than 0 (use β < 1/3).

Therefore, the quadratic function in t has no zero points. By trying any value of the

parameters, one sees that the left-hand side of (3) is actually positive everywhere, leading

to a contradiction. Consequently, there are no values of s and t, given any β, γ < 1/3, for

which X3 is the best response. So, X3 can be eliminated. After this no further eliminations

are possible. Consequently, for every k ≥ 2, SDk
1(ε) = {X1, X2} ⊂ ST k1 = {X1, X2, X3},

SDk
2(ε) = ST k2 = {Y1, Y2}, and SDk

3(ε) = ST k3 = {Z1, Z2}.

In many games, trembling-hand rationalizability can rule out implausible strategies

that cannot be excluded by proper rationalizability (although in Section 4 we show that

even for two-player normal-form games trembling-hand rationalizability is not a refinement

of proper rationalizability). In Game G4, once we apply our concept THR, we obtain the

following iterative deletion of pure strategy profiles: ST 1 = {(X2, Y1) , (X1, Y2) , (X2, Y2) ,

(X1, Y1)}; ST 2 = {(X2, Y1) , (X1, Y1)}; T 3 = {(X2, Y1)}. Once player 1 will never play

X3, player 2’s action Y2 is never a best response against any trembling conjecture which

puts weight on X1 and X2. Therefore, Y1 is the unique trembling-hand rationalizable

strategy of player 2. Knowing that player 2’s choice is Y1, player 1’s best response is to

play X2 which is player 1’s unique trembling-hand rationalizable strategy. In both G2

and G3, the strategy profile (X1, Y1) is the unique trembling-hand rationalizable strategy

profile. Game G4 shows that sometimes it is possible to eliminate unreasonable strategies

by means of trembling-hand rationalizability which cannot be eliminated by weakly perfect

rationalizability, proper rationalizability, or even the proper equilibrium concept since the

strategy profile (X1, Y2) constitutes a proper equilibrium in Game G4.

For some games the commonality of the knowledge that players are trembling-hand

rational runs into problems. The following example10 illustrates this inconsistency. In

G8 (see Figure 9), trembling-hand rationalizability singles out the unique strategy profile

(X1, Y1). Player 1 has two pure strategies; S1 = {X1, X2}. Player 2 has also two pure

strategies; S2 = {Y1, Y2}. It is quite obvious that T 1
1 = T∞1 = {X1} and T 1

2 = T∞2 = {Y1}.

10This inconsistency problem has been studied by Börgers and Samuelson [5]. To resolve such an

inconsistency of common knowledge of cautious rationality, Asheim and Dufwenberg [1] have changed the

object for the common knowledge: instead of common knowledge of rational choice, they assume common

knowledge of rational reasoning.
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Figure 9: A two-player game: G8

Mutual knowledge of order 1 of trembling-hand rationality means that player 1 knows that

player 2 will play Y1. Therefore, player 1 is indifferent in playing X1 or X2. Nevertheless,

the action X2 is not trembling-hand rationalizable. The logical problem is: why should

player 1 play a trembling-hand rationalizable strategy if player 1 knows that player 2 will

play a trembling-hand rationalizable strategy?

Let T
0
≡ M . Then T

k
≡
∏
i∈I T

k
i (k ≥ 1) is inductively defined as follows: for

i ∈ I , ci ∈ T
k
i if: (i) ci ∈ Mi; (ii) ∃ c−i ∈

∏
j 6=ich

(
T
k−1
j

)
such that: (iii) cj gives

positive weight to each pure strategy in T
k−1
j ; (iv) ∀ c

′

i ∈ Mi, Ui (ci, c−i) ≥ Ui
(
c
′

i, c−i
)
.

Thus each set T
k
i consists of unconstrained best responses, while each set T ki consists

of constrained best responses. The difference between the two iterative procedures that

yield the sets T
k
i and T ki is that, in the kth step of the construction of the sets T ki , only

trembling-hand best responses among the sets T k−1
i of surviving strategies are considered.

Strategies which have already been eliminated at a previous step as not trembling-hand

rationalizable should never be readmitted into the set of trembling-hand rationalizable

strategies. But a refinement of rationalizability admitting unconstrained best responses

runs into problems since the limit set T
∞
≡ limk→∞ T

k
may not exist. As an example,

reconsider briefly Game G8. For player 1, we have that T
k
1 = M1 if k even and T

k
1 = {X1}

if k odd, whereas, ∀ k > 0, T k1 = {X1}. For player 2, we have that T
k
2 = M2 if k even and

T
k
2 = {Y1} if k odd, whereas, ∀ k > 0, T k2 = {Y1}.

Also the perfect, weakly perfect and proper rationalizability concepts suffer from a

similar drawback albeit in a somewhat more disguised form. As long as µ and ε are positive,

no problems arise as can be easily seen from the definitions of the sets Bk(µ), Dk(ε), and

Ak(ε) (Definitions 4, 6, and 8, respectively). However, for the limit sets B∞, D∞, and

A∞ exactly the same problem arises as can be verified by means of Game G8, since for

all concepts only the strategies X1 and Y1 remain. Again: why should player 1 stick to

strategy X1 if player 1 knows that player 2 will play Y1?
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3.5 Cautious Rationalizability

Cautious rationalizability, due to Pearce [11], imposes the condition on the set of ratio-

nalizable strategy profiles that the players do not take unnecessary risks. This condition

requires that the players’ conjectures give positive weight to all rationalizable alterna-

tives, whereas the strategy profiles that are not rationalizable should be given zero weight.

Formally, cautious rationalizability is defined by the following iterative procedure.

Definition 11 Let C0 ≡M . Then Ck ≡
∏
i∈I C

k
i (k ≥ 1) is inductively defined as follows:

for i ∈ I, ci ∈ Cki if: (i) ci ∈ R∞i
(
Ck−1

)
; (ii) ∃ c−i ∈

∏
j 6=i ch

(
R∞j

(
Ck−1

))
such that:

cj gives positive weight to each pure strategy in R∞j

(
Ck−1

)
, and ∀ c

′

i ∈ R∞i

(
Ck−1

)
:

Ui (ci, c−i) ≥ Ui
(
c
′

i, c−i
)

. The set of cautiously rationalizable strategy profiles is C∞ ≡

limk→∞C
k =

⋂∞
k=0 C

k.

In Definition 11, R∞i

(
Ck−1

)
is player i’s set of rationalizable strategies given that the

set of players’ strategy profiles is Ck−1. That is, ∀ i ∈ I , the set R∞i

(
Ck−1

)
is the limit set

R∞i of the iterative procedure of Definition 2 starting with R0 ≡ Ck−1. In Definition 11, at

each step of the iterative procedure, strategies that are not best responses are eliminated

first, and then those that are not cautious responses are removed. We will denote the pure

strategies in Cki by SCki .

Consider the following example taken from Pearce [11]. Figure 10 gives us the payoff

matrix of the normal-form game G9. In G9, action X2 of player 1 is not perfectly nor

weakly perfectly nor properly nor trembling-hand rationalizable. However, this action is

cautiously rationalizable: SC∞1 = {X1, X2} and C∞2 = {Y1}. Pearce [11] has shown that,

∀ i ∈ I , the limit set C∞i is nonempty, closed, and satisfies the pure strategy property.

Theorem 9 For every game in normal-form we have, ∀ i ∈ I, C∞i =
⋂∞
k=0 C

k
i 6= ∅, the

limit set C∞i is closed and satisfies the pure strategy property ∀i ∈ I, and there exists

n ∈ N such that: Ck+1
i = Cki ∀k ≥ n, ∀i ∈ I.

The next section will make clear that the set of cautiously rationable strategy profiles

can be either smaller or bigger than the set of strategy profiles obtained by any other

refinement of rationalizability.

4 The Remaining Relationships

4.1 Two More Examples

The first example, G10, is due to Börgers [4]. Figure 11 gives us the payoff matrix of this

two-player normal-form game. In G10, player 1’s pure strategies or actions X1, X2, X3 and
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Figure 10: A two-player game: G9

Figure 11: A two-player game: G10

player 2’s actions Y1, Y2, Y3 are properly, trembling-hand, and cautiously rationalizable.

Meanwhile, only player 1’s actions X1, X2 and player 2’s action Y2 are perfectly rationaliz-

able in G10. Given both examples G10 and G3, we conclude that there is no relationship

between perfect rationalizability and these other refinements (proper, trembling-hand, and

cautious rationalizability): perfect rationalizability may be weaker (example G3) or even

stronger (example G10). Even if Bernheim’s weaker definition of perfect rationalizability

would be used, it would still be possible to eliminate pure strategy X3 in G10.

The second example is the two-player normal-form game G11. Figure 12 gives us

the payoff matrix of G11. In G11, proper and cautious rationalizability single out a

unique strategy profile: (X1, Y2). Nevertheless, player 2’s action Y1 is trembling-hand

rationalizable: T∞1 = {X1} and T∞2 = M2. Therefore, there is no relationship between

trembling-hand rationalizability and proper or cautious rationalizability: trembling-hand

rationalizability may be weaker (Example G11) or stronger (Examples G9 and G4).
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Figure 12: A two-player game: G11

4.2 The Burning Money Game

Before concluding we briefly consider Ben-Porath and Dekel’s [2] burning money game to

get more insight into the consequences of using a particular refinement. This two-stage

game is based on an idea of van Damme [14]. In the first stage, player 1 has a choice

between her action B (burn money) that leads to a loss of 2 units of utility for her, and

her action N (not burn money). After this choice is observed, player 1 and player 2 play a

simultaneous-move game of coordination (see Figure 13). After the action N the payoffs

are given by the right-hand matrix. After the action B the payoffs are given by the left-

hand matrix; compared with the right-hand matrix, player 1’s payoffs have all been reduced

by 2 units, but player 2’s payoffs are exactly the same. In the corresponding normal-form of

this game (see Figure 14), player 1 has four pure strategies; S1 = {BX1, BX2, NX1, NX2}.

Player 2 has also four pure strategies; S2 = {Y1Y1, Y1Y2, Y2Y1, Y2Y2}. The pure strategy

Y1Y2 of player 2 means that he plays Y1 if player 1 has burned money while he plays Y2

otherwise.

For this burning money game, trembling-hand rationalizability singles out a unique

strategy profile: (NX1, Y1Y1); that is, the fact that player 1 could have chosen to burn

utility but did not do so ensures that she obtains her most preferred outcome. Indeed, in

the game G12, once we apply our concept THR, we obtain the following iterative deletion

of pure strategies: BX2 /∈ ST 1
1 ; Y2Y1, Y2Y2 /∈ ST 2

2 ; BX2, NX2 /∈ ST 3
1 ; Y2Y1, Y2Y2, Y1Y2 /∈

ST 4
2 = {Y1Y1}; BX1, BX2, NX2 /∈ ST 5

1 = {NX1}; T
5 = {(NX1, Y1Y1)}. Nevertheless,

player 1’s action BX1 (where player 1 burns money) is properly rationalizable. Indeed,

A1 (ε) is such that for all (c1, c2) ∈ A1
1 (ε)×A1

2 (ε) : c1 (BX2) ≤ ε c1 (NX1) and c1 (BX2) ≤

ε c1 (NX2). Given these restrictions, for each pure strategy of player 2 there exists a conjec-
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Figure 13: The burning money game

Figure 14: Ben-Porath and Dekel’s burning money game: G12
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ture c1 ∈ A1
1 (ε) such that it is a best response against c1. Indeed, for all c1 ∈ A1

1 (ε), player

2’s expected payoffs are: U2 (c1, Y1Y1) = c1 (BX1) + c1 (NX1); U2 (c1, Y1Y2) = c1 (BX1) +

5 c1 (NX2); U2 (c1, Y2Y1) = 5 c1 (BX2) + c1 (NX1) ≤ (1 + 5ε) c1 (NX1); U2 (c1, Y2Y2) =

5 c1 (BX2) + 5 c1 (NX2) ≤ (5 + 5ε) c1 (NX2). For example, for all ε ∈ (0, 1), each

pure strategy of player 2 is a best response against the conjecture c1 ∈ A1
1 (ε) defined

by c1 (BX1) = 5ε
6(1+ε) , c1 (BX2) = ε

6(1+ε) , c1 (NX1) = 5
6(1+ε) , c1 (NX2) = 1

6(1+ε) . For

each pure strategy of player 1 belonging to {BX1, NX1, NX2} there exists a conjecture

c2 ∈ A2
2 (ε) such that it is a best response against c2. For example, each pure strate-

gy belonging to {BX1, NX1, NX2} is a best response against the conjecture c2 ∈ A1
2 (ε)

defined by c2 (Y1Y1) = 1
12 , c2 (Y1Y2) = 29

60 , c2 (Y2Y1) = 1
12 , c2 (Y2Y2) = 7

20 . Then, the set-

s of properly rationalizable strategies are the limit sets A∞1 ⊃ {BX1, NX1, NX2} and

A∞2 ⊃ {Y1Y1, Y1Y2, Y2Y1, Y2Y2}; only player 1’s pure strategy BX2 does not belong to A∞1 .

Note that (NX1, Y1Y1) is also the unique cautiously rationalizable strategy profile, with

(5, 1) as the resulting payoffs. Therefore, trembling-hand and cautious rationalizability

single out the outcome of forward induction (see Ben-Porath and Dekel [2], Hammond

[7], van Damme [14]), while proper rationalizability (or weakly perfect rationalizability or

perfect rationalizability) does not.

4.3 Conclusion

We conclude by summarizing the relationships between the refinements of rationalizability

for normal-form games (see Table 2).

B∞ ⊆ D∞ Theorem

Perfect rationalizability Weakly perfect rationalizability 4

A∞ ⊆ D∞ Theorem

Proper rationalizability Weakly perfect rationalizability 6

T∞ ⊆ D∞ Theorem

Trembling-hand rationalizability Weakly perfect rationalizability 8

2-person games

Table 2: The relationships between the refinements

We have shown the relationship between perfect rationalizability and weakly perfect

rationalizability (see Theorem 4) as well as the relationship between proper rationalizabili-

ty and weakly perfect rationalizability (see Theorem 6): weakly perfect rationalizability is

a weaker refinement than both perfect and proper rationalizability. Moreover, for 2-player

normal-form games it holds that weakly perfect rationalizability is a weaker refinement
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than trembling-hand rationalizability (see Theorem 8). Unfortunately, there is no rela-

tionship between the other refinements (see Table 3).

A∞ ⊂ T∞ Example G11, Figure 12

A∞ ⊃ T∞ Example G12, Figure 14

B∞ ⊂ T∞ Example G10, Figure 11

B∞ ⊃ T∞ Example G3, Figure 4

T∞ ⊂ C∞ Example G9, Figure 10

T∞ ⊃ C∞ Example G11, Figure 12

D∞ ⊂ T∞ Example G7, Figure 8

D∞ ⊃ T∞ Example G3, Figure 4

C∞ ⊂ A∞ Example G12, Figure 14

C∞ ⊃ A∞ Example G9, Figure 10

D∞ ⊂ C∞ Example G9, Figure 10

D∞ ⊃ C∞ Example G3, Figure 4

C∞ ⊂ B∞ Example G3, Figure 4

C∞ ⊃ B∞ Example G9, Figure 10

A∞ ⊂ B∞ Example G3, Figure 4

A∞ ⊃ B∞ Example G10, Figure 11

A∞ : set of properly rationalizable strategy profiles

B∞ : set of perfectly rationalizable strategy profiles

C∞ : set of cautiously rationalizable strategy profiles

D∞ : set of weakly perfectly rationalizable strategy profiles

T∞ : set of trembling-hand rationalizable strategy profiles

Table 3: No relationship between most refinements
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