
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2008–84 

 
  

A GAME THEORETICAL APPROACH TO SHARING 
PENALTIES AND REWARDS IN PROJECTS 

 

 

By Arantza Estévez-Fernández 
 
 
 

September 2008 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6908872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A game theoretical approach to sharing penalties and rewards in

projects∗

Arantza Estévez-Fernández1

Abstract:

This paper analyzes situations in which a project consisting of several activities is not realized according to plan. If the

project is expedited, a reward arises. Analogously, a penalty arises if the project is delayed. This paper considers the

case of arbitrary monotonic reward and penalty functions on the total expedition and delay, respectively. Attention

is focused on how to divide the total reward (penalty) among the activities: the core of a corresponding cooperative

project game determines a set of stable allocations of the total reward (penalty). In the definition of project games,

surplus (cost) sharing mechanisms are used to take into account the specific characteristics of the reward (penalty)

function at hand. It turns outs that project games are related to bankruptcy and taxation games. This relation allows

us to establish the nonemptiness of the core of project games.

Keywords: Project planning, delay, expedition, cost sharing mechanism, surplus sharing mechanism, bankruptcy

problems, taxation problems, cooperative game, core.

JEL classification: C71

1 Introduction

A project consists of a set of activities, which interconnections are known, being completed over a period of

time and intended to achieve a particular aim. The project time is the minimum time needed to end all the

activities in a project. A good planning of a project is important to reduce the project time. Two important

methods to schedule and coordinate the activities in a project are the PERT (Program Evaluation Review

∗The author thanks to René van der Brink, Harold Houba, Gerard van der Laan and Ines Lindner for their comments and

suggestions on a first version of this paper. Special thanks go to Peter Borm and Herbert Hamers for their encouragement and

their helpful discussion and comments.
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Technique) and the CPM (Critical Path Method). Although PERT has represented a big advance in the

field of project management, many issues have been addressed during the last decades as the question of

assessing the project success in Pinto and Slevin (1988) and Tubig and Abeti (1990), the role of research

in projects in Sherwin and Isenson (1967), behavioral functions in technology-based innovative projects in

Roberts and Fusfeld (1981), the classification of projects in types depending on the management style in

Shenhar and Dvi (1996), the search of adequate success criteria for project management in Atkinson (1999)

and the study of project scheduling with resource constrains in Dorndorf, Pesch and Phan-Huy (2000) and

Möhring, Schulz, Stork and Uetz (2003).

An important issue while planning a project is the estimation of the time of the different activities. In

many real-life situations the estimated duration and the duration after realization (or real duration) of an

activity may differ and as a result the real duration of the project may not coincide with its planned duration.

Usually, a penalty (reward) arises if a project is delayed (expedited). Two motivating examples are given

below.

A usual case of penalties associated to delayed projects can be found in the building of a house. When

a company is hired to build a house, there is usually a clause in the contract in which a penalty for the

company is agreed upon if the house is finished later than planned. If the company has contracted out some

specialized jobs to other firms, and these firms have incurred some delay, it is important to know for which

part of the penalty these firms can be hold responsible.

An example of rewards associated to expedited projects can be found in projects ordered by a government.

During the term of office of a government, it has been decided to build a new hospital in a city. For political

reasons (e.g. the approach of new elections), the government wants it to be finished before the planned time.

As an incentive, a bonus is promised if the works are expedited. In such a case it is important to know which

activities (and therefore the companies involved in such activity) are responsible of the final expedition in

order to allocate the bonus.

In practice, activities are often entrusted to different companies. If the project is delayed or expedited,

an allocation problem arises: how to share the penalty (in case of delay) or the reward (in case of expedition)

among the various activities and its corresponding companies. Cooperative games are a mathematical tool

to provide an answer to this type of allocation problems. The focus of our study will be on defining a game

in an adequate way and analyzing the corresponding core. The core of a game (Gillies (1953)) provides

allocations of the total penalty or the total reward that are stable, i.e. no group of activities can reasonably

object to allocations in the core. The interaction between operations research and cooperative game theory

already goes back to the seventies, for a survey on the topic see Borm, Hamers and Hendrickx (2001).

The main focus in the literature on project problems has been on delayed project problems. Branzêi,

Ferrari, Fragnelli and Tijs (2002) study delayed project problems in the framework of taxation problems and
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propose a specific allocation rule. Bergantiños and Sánchez (2002), analyze two other allocation rules for

delayed project problems. A common feature in these papers is however that game theoretical aspects are

only indirectly present in analyzing the allocation problem at hand. Estévez-Fernández, Borm and Hamers

(2007) is the first paper to approach the related allocation problem from a direct game theoretical point

of view. Moreover, Estévez-Fernández et al. (2007) is the first article where both delayed and expedited

project problems are analyzed. Still, the paper is restricted to project problems where the penalty (reward)

function is proportional with respect to the total delay (expedition) of the project. An important aspect of

Estévez-Fernández et al. (2007) is that it provides the tools to obtain “fair” allocations of the corresponding

penalty or reward by explicitly considering the structure of the project, i.e. the interconnections among the

different activities.

In this paper, we extend the work in Estévez-Fernández et al. (2007) by analyzing project problems with

arbitrary but monotonic penalty and reward functions. As in Estévez-Fernández et al. (2007), this is done by

defining project games associated to project problems and considering the corresponding core as the solution

set to the underlying allocation problem. Here, two stages are needed to define project games for monotonic

penalty (reward) functions. In the first stage cost (surplus) sharing problems are used. As a first approach

to share the penalty (reward) of a project, we look at each path in the project separately and we share

the penalty (reward) that the path can be held responsible of among its activities by making use of a cost

(surplus) sharing mechanism which is chosen by taking into account the specific characteristics of the penalty

(reward) function at hand. In this first stage, the total amount shared among all the activities may exceed

the total penalty (reward) of the project, hence a second stage is needed to exactly obtain allocations of

the total penalty (reward). In the second stage, a project game is defined in the spirit of Estévez-Fernández

et al. (2007) using the allocations obtained in the first stage.

For clarity of exposition, we have divided our study on project problems in three parts. First, we study

delayed project problems, which are project problems in which the project has been delayed and none of

the activities has been expedited. Second, we analyze expedited project problems, where a project has been

expedited and none of the activities has been delayed. To conclude, we turn our attention to general project

problems, in which activities in a project may be either delayed or expedited, possibly bringing a difference

on the overall planned time for the project.

Our main result is that project games have a nonempty core. Moreover, it turns out that the games

associated to delayed project problems can be described as the maximum of as many taxation games as

paths in the project. On the other hand, the games associated to expedited project problems are convex and

can be described as the maximum of a number of bankruptcy games (see O’Neill (1982)).

The structure of this paper is as follows. Section 2 recalls some basic notions from project problems, cost

and surplus sharing problems, cooperative games, and bankruptcy and taxation problems. Sections 3 and 4
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are dedicated to delayed project problems and expedited project problems, respectively. Section 5 analyzes

general project problems. Section 6 concludes.

2 Preliminaries

2.1 Projects

A project consists of a set of activities for which the inter-connections are known. These activities are

completed over a period of time and intended to achieve a particular aim. Let N denote the set of activities

of a project. Given an activity i ∈ N , let Pi denote the set of predecessors of i, i.e. the set of activities that

have to be processed before i can start. Analogously, let Fi be the set of followers of i, i.e. the set of activities

that need i to be completed before starting. A project is defined as a collection of ordered subsets of N or

paths, {N1 , . . . ,Nm}, where a bijection σa : {1, . . . |Na|} → Na describes the order in Na, a ∈ {1, . . . , m},

satisfying the following conditions:

(i) N =
⋃m

a=1 Na;

(ii) Fσa(|Na|) = ∅, Pσa(1) = ∅, and Pσa(r) = {σa(1), . . . , σa(r − 1)} for every a ∈ {1, . . . , m} and every

r ∈ {2, . . . , |Na|};

(iii) for a, b ∈ {1, . . . , m}, if i, j ∈ Na ∩ Nb with σ−1
a (i) < σ−1

a (j), then σ−1
b (i) < σ−1

b (j).

Throughout, there is no specific need to explicitly keep track of the ordering. Therefore, σ1, . . . , σm are

suppressed from the notations.

Note that a project can be represented by a directed graph where the set of arcs corresponds to the set of

activities. In order to avoid multiple arcs, dummy activities are introduced in the graph (a dummy activity

is an activity that does not consume neither time nor resources). Dummy activities are represented by a

dashed arc.

Example 2.1. Table 1 gives the set of activities of a project with their corresponding predecessors.

Activity Predecessors

A

B

C A,B

Table 1: Predecessors of activities in Example 2.1.
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Here, the set of activities is N = {A, B, C} and the collection of paths is {N1, N2}, with N1 = {A, C},

and N2 = {B, C}. The graphical representation of this project is given in Figure 1.

b

b b b

B

A

C

Figure 1: Representation of the project given in Table 1.
3

Associated to a project {N1 , . . . ,Nm}, there is a duration function l : N → R+ with l(i) denoting

the length or duration of activity i ∈ N . Given a project {N1 , . . . ,Nm} and a duration function l, we

define the duration of a path Na according to l, D(Na, l), as the sum of the duration of its activities, i.e.

D(Na, l) =
∑

i∈Na
l(i). The duration of the project according to l, D(l), is the maximum duration of its paths,

i.e. D(l) = max1≤a≤m {D(Na, l)}. The slack of Na according to l, slack(Na, l), is the maximum time that the

activities of Na can be delayed without altering the duration of the project, i.e. slack(Na, l) = D(l)−D(Na, l).

We say that a path is critical if it has slack zero.

Example 2.2. Consider the project given in Example 2.1 and let l : N → R+ be given by l(A) = 15,

l(B) = 10, and l(C) = 8. Table 2 summarizes the duration and slack of the paths. Note that D(l) = 23.

Na D(Na, l) slack(Na, l)

AC 23 0

BC 18 5

Table 2: Duration and slack of the paths in Example 2.2. 3

Throughout, we use a fixed notation for two specific duration functions. We denote by p : N → R+ the

function representing the planned or estimated time of the activities and by r : N → R+ the function giving

the real time of the activities after the realization of the project. We define the delay function d : N → R+

as d(i) = (r(i) − p(i))+(:= max{r(i) − p(i), 0}), i.e. d(i) represents the delay of activity i. Analogously, we

define the expedition function e : N → R+ as e(i) = (p(i) − r(i))+, i.e. e(i) represents the expedition of

activity i.

Example 2.3. Consider the project given in Example 2.1; let the planned time p : N → R+ be given by

p(A) = 15, p(B) = 10, and p(C) = 8, and let the real time r : N → R+ be given by r(A) = 16, r(B) = 3,

and r(C) = 10. The delay and expedition functions are given in Table 3. 3
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A B C

d(i) (16 − 15)+ = 1 (3 − 10)+ = 0 (10 − 8)+ = 2

e(i) (15 − 16)+ = 0 (10 − 3)+ = 7 (8 − 10)+ = 0

Table 3: Delay and expedition functions in Example 2.3.

2.2 Cost sharing and surplus sharing problems

A cost sharing problem is defined by a tuple (N, q, c) where N = {1, 2, . . . , n} is the set of agents (or players),

q ∈ R
N
+ is a vector of nonnegative numbers, with qi representing the demand of agent i ∈ N , and c : R → R+

is a nondecreasing cost function satisfying c(t) = 0 for t ≤ 0. A cost sharing mechanism on a class of cost

sharing problems C is a mapping y that assigns to each (N, q, c) ∈ C a vector of cost shares y(N, q, c) ∈ R
N
+ ,

i.e.
∑

i∈N yi(N, q, c) = c(
∑

i∈N qi), satisfying that if qi = 0, then yi(N, q, c) = 0.

Several mechanisms can be found in the literature (see e.g. Koster (1999)); we recall here one of the most

studied cost sharing mechanisms in the literature, the serial cost sharing mechanism, ys. Let (N, q, c) be a

cost sharing problem and assume without loss of generality that q1 ≤ q2 ≤ . . . ≤ qn, then the serial cost

sharing mechanism is defined by

ys
1(N, q, c) =

c(nq1)

n
,

ys
i (N, q, c) =

c(nq1)

n
+

i
∑

k=2

c(
∑k−1

j=1qj +(n − k + 1)qk) − c(
∑k−2

j=1 qj +(n − k + 2)qk−1)

n − k + 1
for every i∈N \{1}.

Example 2.4. Let (N, q, c) be a cost sharing problem with N = {1, 2, 3}, q = (2, 5, 6), and c defined by

c(t) =







0 if t ≤ 0;

t2 + 100, if t > 0.

In this case, c(2 + 5 + 6) = 269 and ys(N, q, c) = (45 1
3 , 99 1

3 , 124 1
3 ). Table 4 summarizes the computation of

the serial cost sharing rule.

t c(t)

3q1 = 6 136

q1 + 2q2 = 12 244

q1 + q2 + q3 = 13 269

i
c(6)
3

c(12)−c(6)
2

c(13)−c(12)
1 ys

1 136
3 = 45 1

3 45 1
3

2 136
3 = 45 1

3
108
2 = 54 99 1

3

3 136
3 = 45 1

3
108
2 = 54 25

1 = 25 124 1
3

Table 4: Computation of the cost sharing rule in Example 2.4. 3

Analogously to cost sharing problems, one can think of surplus sharing problems. All definitions given

above for cost sharing problems can easily be translated to surplus sharing problems.
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2.3 TU games

A cooperative (TU) game in characteristic function form is an ordered pair (N, v) where N is a finite set of

players and v : 2N → R satisfying v(∅) = 0. In general, v(S) represents the value of coalition S, i.e. the joint

payoff that can be obtained by this coalition when its members decide to cooperate.

A cooperative game can reflect costs or rewards. A game reflecting costs is denoted by a map c, while a

game reflecting rewards is denoted by a map v.

The core of a game (N, v) is defined by

Core(v) = {x ∈ R
N |
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S) for all S ∈ 2N},

i.e. the core is the set of efficient allocations of v(N) to which no coalition can reasonably object. An important

subclass of games with nonempty core is the class of convex games (see Shapley (1971)). A game (N, v) is

said to be convex if v(S ∪ {i})− v(S) ≤ v(T ∪ {i}) − v(T ) for every i ∈ N and every S ⊂ T ⊂ N \ {i}.

Let (N, c) be a cost game. The corresponding cost savings game (N, v) is defined by

v(S) =
∑

i∈S

c({i}) − c(S)

for all S ⊂ N .

The properties and solutions concepts for cooperative cost games can consequently be derived from the

above definitions. The equivalent of a convex game for a cost game is a concave game.

2.4 Bankruptcy and taxation problems

A bankruptcy problem is defined by a tuple (N, E, c) where N = {1, . . . , n} is the set of agents (or players),

E is the estate that must be shared among the agents, and c ∈ R
N is the vector of claims of the agents,

satisfying
∑

i∈N ci > E. Bankruptcy problems have being firstly studied from a game theoretical viewpoint

in O’Neill (1982). Given a bankruptcy problem (N, E, c), the corresponding bankruptcy game, (N, v(N,E,c))

is defined by

v(N,E,c)(S) =

(

E −
∑

i∈N\S

ci

)

+

for every S ⊂ N . In Curiel et al. (1987) it is shown that bankruptcy games are convex.

Taxation problems can be seen as dual of bankruptcy problems. A taxation problem is defined by a tuple

(N, E, c) where N = {1, . . . , n} is the set of agents (or players), E is the tax that must be collected among

the agents, and c ∈ R
N is the vector of the abilities to pay of the players, satisfying

∑

i∈N ci > E. Given a

taxation problem (N, E, c), the corresponding taxation game, (N, c(N,E,c)), is defined by

c(N,E,c)(S) = min

{

E,
∑

i∈S

ci

}
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for every S ⊂ N . In Branzêi et al. (2002) it is shown that taxation games are concave.

3 Delayed project games

A delayed project problem arises when the planned time of the activities in a project was underestimated,

incurring delay of the project. Associated to the delay of the project, there is a non-decreasing penalty

function K : R → R+ satisfying K(t) = 0 for every t ≤ 0. A delayed project problem can be described by a

4-tuple ({N1 , . . . ,Nm}, p, r, K), where p and r satisfy p ≤ r.

When a penalty forms due to the delay of the project, one can think of sharing the delay of the project

among the activities in a first (linear) stage and allocating the (possibly nonlinear) penalty among the activ-

ities according to the delay they have been held responsible of in a second stage. This approach has already

been suggested in Branzêi et al. (2002). The problem with this procedure is that the specific characteristics

of the penalty function may be neglected. We show the inadequacy of this procedure in the following ex-

ample in which the allocation of the total delay is obtained by considering the core of the game defined in

Estévez-Fernández et al. (2007), which we subsequently recall.

Let ({N1 , . . . ,Nm}, p, r, K̃) be a delayed project problem with K̃(t) = t if t > 0 and K̃(t) = 0 if t ≤ 0.

The associated (linear) delayed project game, (N, c̃), is defined by

c̃(S) = max
a∈P(S)







min







∑

i∈Na∩S

d(i),

(

∑

i∈Na

d(i) − slack(Na, p)

)

+













for S ⊂ N , where P(S) is the set (of indices) of paths in which activities in S are involved, i.e. P(S) = {a ∈

{1, . . . , m}| Na ∩ S 6= ∅}.

Example 3.1. Consider the delayed project problem ({N1, N2} , p, r, K) with N1 = {A, C}, N2 = {B, C},

p(A) = 3, p(B) = 5, p(C) = 2, r(A) = 8, r(B) = 9, r(C) = 3, and K(t) = 0 if t ≤ 0, K(t) = t2 if 0 < t ≤ 4,

and K(t) = 2t2 if t > 4. The project is represented in Figure 2 together with the duration of the paths

according to the planned and real times.

b

b b b

B

A

C

Na D(Na, p) slack(Na, p) D(Na, r)

AC 5 2 11

BC 7 0 12

Figure 2: Representation of the project in Example 3.1 and durations of the paths.

In this delay problem, D(p) = 7 and D(r) = 12, therefore there is a total delay of D(r)−D(p) = 5, with an
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associated cost of K(5) = 50.

Note that path N1 = {A, C} gives a delay of 11 − 7 = 4 to the project with an associated penalty of

K(4) = 16, while path N2 = {B, C} is responsible of a delay of 12 − 7 = 5 with an associated penalty of

K(5) = 50.

Following the proposed two-stage approach, we first share the total delay of 5 among the activities

by making use of the associated linear delayed project game, which coalitional values are: c̃({A}) = 4,

c̃({B}) = 4, c̃({C}) = 1, c̃({A, B}) = 4, c̃({A, C}) = 4, c̃({B, C}) = 5, c̃(N) = 5. It can be checked that

Core(c̃) = conv{(0, 4, 1), (3, 1, 1)}.

Let us consider (3, 1, 1) as the allocation of the total delay among the activities. In a second stage, we

divide the total penalty proportionally to this allocation of responsibilities, as suggested in Branzêi et al.

(2002), giving an allocation of (30, 10, 10). Note that this allocation assigns a total penalty of 30 + 10 = 40

to A and C together, which is more than 16, the penalty associated to the delay induced by N1 = {A, C}. 3

The inadequacy in first sharing delay “responsibilities” among the activities and then the penalty in a

second stage is that the characteristics of the penalty function are not reflected on the final share of the

total penalty. Our approach will follow the opposite reasoning. We first allocate the penalty associated to

the gross delay of each path (i.e. the total delay created by its activities, without taking into account the

slack of the path) among its activities. In a second step, we use cooperative games to share the penalty of

the project among all its activities, using the initial allocations as reference points.

If activities in a path are delayed and they cause a delay of the project, we can consider this as a cost

sharing problem where the demands of the activities are their delays and the cost function is the penalty

function. Given a delayed project problem ({N1 , . . . ,Nm}, p, r, K), for each a ∈ {1, . . . , m} we consider the

cost sharing problem

(Na, qa, K)

with qa
i = d(i) for every i ∈ Na.

Selecting a cost sharing mechanism y by taking into account the type of penalty function at hand,

we denote by ya the allocation proposed by our mechanism to the cost sharing problem (Na, qa, K), i.e.

ya = y(Na, qa, K). Here, we pessimistically assume that the activities in Na are not allowed to make use

of the planned slack in the path and have to pay the cost associated to their total delay. In this way, ya
i

represents the cost that i is held responsible of for the cost associated to the total delay of the activities in

Na. By using these allocations as starting points, we associate a delayed project game to a delayed project

problem where the set of players is the set of activities and the cost of a coalition is the maximal amount the

coalition can be held responsible of with respect to the different paths involved in the coalition. Formally,
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given a delayed project problem ({N1 , . . . ,Nm} , p, r ,K ) and a cost sharing mechanism y, we define the

associated cost game (N, cy) by

cy(S) = max
a∈P(S)

{

min

{

∑

i∈Na∩S

ya
i , K

(

∑

i∈Na

d(i) − slack(Na, p)

)}}

for every S ⊂ N . Recall that P(S) = {a ∈ {1, . . . , m}| Na ∩ S 6= ∅} represents the set of paths in which

activities of S are involved.

The game pessimistically assigns to a coalition the maximum penalty that the coalition can be held

responsible of, taking into account that the activities in a path should never pay more than neither their

initial allocation in the path nor the penalty associated to the net delay of the path (i.e. the total delay of

the activities in the path minus the planned slack of the path).

Example 3.2. Consider the delayed project problem given in Example 3.1. Recall that N1 = {A, C},

N2 = {B, C}, p(A) = 3, p(B) = 5, p(C) = 2, r(A) = 8, r(B) = 9, r(C) = 3, and K(t) = 0 if t ≤ 0,

K(t) = t2 if 0 < t ≤ 4, and K(t) = 2t2 if t > 4. Note that d(A) = 5, d(B) = 4, d(C) = 1. As cost

sharing mechanism, we take the serial cost sharing mechanism, then y1 = y({A, C}, (5, 1), K) = (70, 2) and

y2 = y({B, C}, (4, 1), K) = (48, 2). Table 5 gives the values of the associated delayed project game.

S {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

cy(S) 16 48 2 48 16 50 50

Table 5: Values of the delayed project game in Example 3.2.

Next, we show how to compute the value of coalition {A,C}. Note that P(S) = {1, 2} since A,C ∈ N1

and C ∈ N2. Then,

cy({A, C}) = max{min{y1
A + y1

C , K(5 + 1 − 2)}, min{y2
C , K(4 + 1 − 0)}}

= max{min{70 + 2, 16}, min{2, 50}}

= max{16, 2} = 16.

It can be checked that the core of the game is Core(cy) = conv{(0, 48, 2), (14, 34, 2)}. Note that this game

is not concave by taking i = B, S = {A}, and T = {A, C}. 3

Given a delayed project problem ({N1 , . . . ,Nm}, p, r, K) and a cost sharing mechanism y, the associated

delayed project game, (N, cy), can be described as the maximum of as many taxation games as paths in the

project, where the taxation problem associated to path a ∈ {1, . . . , m} is

(N, Ea, cy,a) (3.1)

with Ea = K(
∑

i∈Na
d(i) − slack(Na, p)), c

y,a
i = ya

i if i ∈ Na and c
y,a
i = 0 otherwise.
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Theorem 3.1. Let ({N1 , . . . ,Nm}, p, r, K) be a delayed project problem, let y be a cost sharing mechanism,

and let (N, cy) be the associated delayed game. Then,

cy(S) = max
a∈{1,...,m}

{c(N,Ea,cy,a)(S)}

for every S ⊂ N .

Proof: Let S ⊂ N , then

cy(S) = max
a∈P(S)

{

min

{

∑

i∈Na∩S

ya
i , K

(

∑

i∈Na

d(i) − slack(Na, p)

)}}

= max
a∈P(S)

{

min

{

∑

i∈Na∩S

c
y,a
i , Ea

}}

= max
a∈P(S)

{

min

{

∑

i∈S

c
y,a
i , Ea

}}

= max
a∈P(S)

{

c(N,Ea,cy,a)(S)
}

= max
a∈{1,...,m}

{c(N,Ea,cy,a)(S)}

where the second equality is an immediate consequence of the definitions of cy,a and Ea, the third one follows

because c
y,a
i = 0 for every i ∈ N \Na, and the last equality is a direct consequence of c(N,Ea,cy,a)(S) = 0 for

every a ∈ {1, . . . , m} \ P(S) since c
y,a
i = 0 for every i ∈ Na with a ∈ {1, . . . , m} \ P(S). 2

Example 3.3. Consider the delayed project game in Example 3.2. Associated to each path Na we have a

taxation problem (N, Ea, cy,a):

N1 = {A, C}, E1 = K(5 + 1 − 2) = 16, cy,1 = (y1
A, 0, y1

C) = (70, 0, 2),

N2 = {B, C}, E2 = K(4 + 1 − 0) = 50, cy,2 = (0, y2
B, y2

C) = (0, 48, 2).

Table 6 gives the values of the corresponding taxation games and delayed project game. 3

S {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

c(N,E1,c1)(S) 16 0 2 16 16 2 16

c(N,E2,c2)(S) 0 48 2 48 2 50 50

cy(S) 16 48 2 48 16 50 50

Table 6: Values of the taxation games and delayed project game in Example 3.3.

Theorem 3.2. Delayed project games have a nonempty core.
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Proof: Let ({N1 , . . . ,Nm}, p, r, K) be a delayed project problem and let y be a cost sharing mechanism. Let

ā ∈ {1, . . . , m} be such that cy(N) = c(N,Eā,cy,ā)(N). The core of (N, c(N,Eā,cy,ā)) is nonempty since taxation

games are concave, then we can take x ∈ Core(c(N,Eā,cy,ā)) and

∑

i∈N

xi = c(N,Eā,cy,ā)(N) = cy(N) (3.2)

where the first equality follows by definition of core element and the second one by assumption. Moreover,

for every S ⊂ N we have

∑

i∈S

xi ≤ c(N,Eā,cy,ā)(S) ≤ max
a∈{1,...,m}

{c(N,Ea,cy,a)(S)} = cy(S) (3.3)

where the first inequality follows by definition of core element and the equality is a direct consequence of

Lemma 3.1. By equations (3.2) and (3.3) we have that x ∈ Core(cy). 2

4 Expedited project games

An expedited project problem forms when the planned time of the activities was overestimated, i.e. the

real time of an activity is at most its planned time, bringing expedition to the project. Associated to the

expedition of the project, we have a non-decreasing reward function R : R → R+ satisfying R(t) = 0 for every

t ≤ 0. An expedited project problem can be then described by a 4-tuple ({N1 , . . . ,Nm}, p, r, R) where p and

r satisfy p ≥ r. At this stage, one may think about using the duality between delayed and expedited project

problems: an expedited project problem can be viewed as a delayed project problem by interchanging the

planned and real time vectors. This dual approach however is inadequate to solve expedited project games.

For an example see Example 4.1 in Estévez-Fernández et al. (2007).

As in the case of delayed project problems, when a reward arises due to an expedition of the project,

one can think of sharing the expedition of the project among the activities in a first (linear) stage, and

allocating the (possibly nonlinear) reward among the activities according to the expedition they have been

held responsible of in a second stage. Similarly to delayed project problems, this approach may be inadequate

since the specific characteristics of the reward function may be disregarded in the final allocation of the total

reward.

In defining expedited project games, we follow the ideas in Estévez-Fernández et al. (2007). Before

starting with the description of expedited project games, we give the following example that illustrates the

ideas behind the model.

Example 4.1. Consider the expedited project problem ({N1, N2, N3} , p, r, R) with N1 = {A, B}, N2 = {C},

N3 = {D}, p(A) = 9, p(B) = 12, p(C) = 17, p(D) = 16, r(A) = 6, r(B) = 8, r(C) = 15, r(D) = 13, and

12



R(t) = 0 if t ≤ 0, R(t) = t4 if 0 < t ≤ 4, and R(t) = t2 + 240 if t > 4. The project is represented in Figure 3

together with the duration of the paths according to the planned and real times.

b

b b

b

A B

C

D

Na D(Na, p) slack(Na, p) D(Na, r)

AB 21 0 14

C 17 4 15

D 16 5 13

Figure 3: Representation of the project in Example 4.1 and durations of the paths.

In this expedited project problem, D(p) = 21 and D(r) = 15, therefore there is a total expedition of

D(p) − D(r) = 6 and a reward of R(6) = 276.

Note that the critical path N1 = {A, B} is indispensable to expedite the project. We subsequently explain

how this expedition is achieved. First, suppose that only the activities in N1 act according to realization while

activities in N2 and N3 act according to plan, then the project is expedited in 4 with an associated reward

of R(4) = 256, N2 becomes critical, and N3 has a slack of 1. Note that N1 is responsible by itself of a reward

of 256 and that N2 becomes indispensable to continue expediting. Second, suppose that only the activities

in N1 and N2 act according to realization while activities in N3 act according to plan, then the project is

expedited in one extra unit of time with an associated marginal reward of R(5)−R(4) = 265− 256 = 9, and

N3 becomes critical. Note that N1 and N2 are exclusively responsible of an extra reward of 9 and that N3

becomes indispensable to continue expediting. Finally, suppose that all activities act according to realization,

then there is an additional expedition of 1 with a marginal reward of R(6)−R(5) = 276− 265 = 11 of which

N1, N2, and N3 are responsible. The contribution of the paths to the reward obtained by the expedition of

the project is summarized in Table 7.

Phase 1 Phase 2 Phase 3

N1 256 9 11

N2 0 9 11

N3 0 0 11

Table 7: Durations of the paths in Example 4.1.

Note that the sum of the first row gives the total reward. This type of decomposition into levels of expedition

plays an important role in the definition of expedited project games. 3

In order to solve expedited project problems, we first optimistically allocate the part of the expedition

that each path could contribute to among its activities. In a second step, we use cooperative games to share

13



the total reward among all the activities in the project using for this the initial allocations as reference

points.

Before defining expedited project games, we need to introduce some notation. Let ({N1 , . . . ,Nm}, p, r, R)

be an expedited project problem. We denote by I1 the set (of indices) of critical paths according to the

planned time. Formally,

I1 = {a ∈ {1, . . . , m}| slack(Na, p) = 0} .

Recursively, we define for k ≥ 2,

Ik =

{

a ∈ {1, . . . , m} \
k−1
⋃

l=1

Il| slack(Na, p) ≤ slack(Nb, p) for all b ∈ {1, . . . , m} \
k−1
⋃

l=1

Il

}

,

i.e. Ik corresponds to all paths that would be critical in the (sub)project if all the paths in I1, . . . , Ik−1

were not present. By slack(Ik) we denote the slack of the paths in Ik according to the planned time, i.e.

slack(Ik) = slack(Na, p) for each a ∈ Ik. Let h ≥ 1 be such that slack(Ih) < D(p) − D(r) ≤ slack(Ih+1).

For k = 1, . . . , h, we define F k as the marginal contribution of the paths in I1, . . . , Ik to the total reward

associated to the expedition. Formally,

F k =







R(slack(Ik+1)) − R(slack(Ik)) if 1 ≤ k < h;

R(D(p) − D(r)) − R(slack(Ih)) if k = h.

Note that
∑h

k=1 F k = R(D(p) − D(r)) since R(slack(I1)) = 0.

Next, we define the maximal amount of reward that an activity can claim for itself. For this, we consider

for each a ∈ {1, . . . , m} the surplus sharing problem

(Na, pa, Ra)

with pa
i = e(i) for every i ∈ Na and

Ra(t) :=







R(t + slack(Na, p)) − R(slack(Na, p)) if t ≥ 0,

0 otherwise.

Selecting a surplus sharing mechanism z (taking into account the type of reward function at hand), we

denote by za the allocation proposed by our mechanism to the surplus sharing problem (Na, pa, Ra), i.e.

za = z(Na, p
a, Ra). Here, za

i is the maximum amount that i can claim according to the surplus sharing

mechanism if its path is awarded with the total expedition that it can bring to the project. Then, we

optimistically define the vector of maximal rewards, fz, by

fz
i = max

a:Na∋i
{za

i },

14



i.e. fz
i is the maximum reward that activity i can claim from the expedition of the project when the surplus

sharing mechanism z is considered.

Following the underlying ideas in Estévez-Fernández et al. (2007), to an expedited project problem we

associate an expedited project game where the set of players is the set of activities and the value of a coalition

is the sum over all k ∈ {1, . . . , h} of those specific parts of the contribution to the total reward F k for which

the activities outside the coalition that are in paths of
⋃k

l=1 Il cannot be held responsible for anymore at

that phase. Formally, given an expedited project problem ({N1 , . . . ,Nm} , p, r ,R) we define the associated

game (N, vz), where vz is defined by

vz(S) =

h
∑

k=1

(

F k − wk
z (S)

)

for every S ⊂ N , where for all k ∈ {1, . . . , h}, wk
z (S) is recursively defined by

wk
z (S) = min

{

∑

i∈(
S

k
l=1 NIl

)\S

fz
i −

k−1
∑

l=1

wl
z(S), F k

}

,

where NIl
:= ∪a∈Il

Na. Here, wk
z (S) represents the part of the contribution to the total reward F k that

players in S maximally would have to concede to players in the paths corresponding to
⋃k

l=1 Il outside S,

taking into account earlier concessions from the previous phases. Note that wk
z is non-negative. Moreover,

vz(N) equals the total expedition of the project because wk
z (N) = 0 for any k ∈ {1, . . . , h}.

Example 4.2. Consider the expedited project problem given in Example 4.1. Recall that the problem

was given by ({N1, N2, N3} , p, r, K) with N1 = {A, B}, N2 = {C}, and N3 = {D}, p(A) = 9, p(B) = 12,

p(C) = 17, p(D) = 16, r(A) = 6, r(B) = 8, r(C) = 15, r(D) = 13, and R(t) = 0 if t ≤ 0, R(t) = t4 if

0 < t ≤ 4, and R(t) = t2 + 240 if t > 4.

Here, D(p) = 21 and D(r) = 15, and then the total expedition is D(p) − D(r) = 6 with an associated

reward of R(6) = 276. Besides, e(A) = 3, e(B) = 4, e(C) = 2 and e(D) = 3; I1 = {1}, I2 = {2}, and I3 = {3};

h = 3; F 1 = R(4) − R(0) = 256, F 2 = R(5) − R(4) = 9, and F 3 = R(6) − R(5) = 11.

For the computation of fz, we consider the serial surplus sharing mechanism. Associated to each path

Na we have the surplus problem:

(N1, p
1, R1): N1 = {A, B}, p1 = (3, 4), R1 = R, and then z1 = (138, 151),

(N2, p
2, R2): N2 = {C}, p2 = (2), R2(t) =







R(t + 4) − R(4) if t ≥ 0,

0 otherwise,
and then z2 = (20),

(N3, p
3, R3): N3 = {D}, p3 = (3), R3(t) =







R(t + 5) − R(5) if t ≥ 0,

0 otherwise,
and then z3 = (39),
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which gives fz = (138, 151, 20, 39).

Let (N, vz) be the associated expedited project game. For coalition {A, C} we have:

w1
z({A, C}) = min

{

fz
B, F 1

}

= min {151, 256} = 151,

w2
z({A, C}) = min

{

fz
B − w1

z({A, C}), F 2
}

= min {151 − 151, 9} = 0,

w3
z({A, C}) = min

{

fz
B + fz

D − w1
z({A, C}) − w2

z({A, C}), F 3
}

= min {151 + 39 − 151 − 0, 11} = 11,

and therefore

vz({A, C}) = (F 1 − w1
z({A, C})) + (F 2 − w2

z({A, C})) + (F 3 − w3
z({A, C}))

= (256 − 151) + (9 − 0) + (11 − 11) = 114.

All coalitional values are given in Table 8.

S {A} {B} {C} {D} {A, B} {A, C} {A, D} {B, C} {B, D} {C, D}

vz(S) 105 118 0 0 256 114 105 127 118 0

S {A, B, C} {A, B, D} {A, C, D} {B, C, D} {A, B, C, D}

vz(S) 265 256 125 138 276

Table 8: Values of the expedited project game in Example 4.2. 3

Given an expedited project problem ({N1 , . . . ,Nm}, p, r, R) and a surplus sharing mechanism z, the

associated project game (N, vz) can be expressed as the maximum of as many bankruptcy games as levels of

expedition in the project, where the bankruptcy problem associated to level of expedition k ∈ {1, . . . , h} is

(N, Ek, cz,k) (4.1)

with Ek = R(slack(Ik+1)) if k < h and Eh = R(D(p) − D(r)), and c
z,k
i = fz

i if i ∈ ∪k
l=1NIl

and c
z,k
i = 0

otherwise.

Theorem 4.1. Let ({N1 , . . . ,Nm}, p, r, R) be an expedited project problem, let z be a surplus sharing mech-

anism, and let (N, vz) be the associated expedited project game. Then,

vz(S) = max
k∈{1,...,h}

{v(N,Ek,cz,k)(S)}

for every S ⊂ N .

Proof: We proceed by induction on h. Let h = 1 and S ⊂ N , then

vz(S) = F 1 − w1
z(S) = F 1 − min







∑

i∈N\S

fz
i , F 1







= max







F 1 −
∑

i∈N\S

fz
i , 0







= v(N,E1,cz,1)(S).

16



Next, assume that the result is satisfied for 1, . . . , h − 1. Let S ⊂ N , then

vz(S) =

h
∑

k=1

(

F k − wk
z (S)

)

=

h
∑

k=1

F k −
h−1
∑

k=1

wk
z (S) − min







∑

i∈(
S

h
k=1 NIk

)\S

fz
i −

h−1
∑

k=1

wk
z (S), F k







= max







h
∑

k=1

F k −
∑

i∈(
S

h
k=1 NIk

)\S

fz
i ,

h−1
∑

k=1

F k −
h−1
∑

k=1

wk
z (S)







= max







h
∑

k=1

F k −
∑

i∈(
S

h
k=1 NIk

)\S

fz
i , max

k∈{1,...,h−1}
{v(N,Ek,cz,k)(S)}







= max















h
∑

k=1

F k −
∑

i∈(
S

h
k=1 NIk

)\S

fz
i





+

, max
k∈{1,...,h−1}

{v(N,Ek,cz,k)(S)}











= max









Eh −
∑

i∈N\S

c
z,h
i





+

, max
k∈{1,...,h−1}

{v(N,Ek,cz,k)(S)}







= max

{

v(N,Eh,cz,h)(S), max
k∈{1,...,h−1}

{v(N,Ek,cz,k)(S)}

}

= max
k∈{1,...,h}

{v(N,Ek,cz,k)(S)}

where the fourth equality follows by induction, the fifth one is a consequence of maxk∈{1,...,h−1}{v(N,Ek,cz,k)(S)}

≥ 0, and the sixth one follows because
∑h

k=1 F k = R(D(p)−D(r)) = Eh and because, by definition of cz,h,

we have c
z,h
i = fz

i if i ∈
⋃h

k=1 NIk
and c

z,h
i = 0 otherwise. 2

Example 4.3. Consider the expedited project game in Example 4.2. Associated to each level of expedition

Ik we have a bankruptcy problem (N, Ek, cz,k):

E1 = R(slack(I2)) = R(4) = 256, cz,1 = (fz
A, fz

B, 0, 0) = (138, 151, 0, 0),

E2 = R(slack(I3)) = R(5) = 265, cz,2 = (fz
A, fz

B, fz
C, 0) = (138, 151, 20, 0),

E3 = R(D(p) − D(r)) = R(6) = 276, cz,3 = (fz
A, fz

B, fz
C, fz

D) = (138, 151, 20, 39).

Table 9 gives the values of the corresponding bankruptcy games and expedited project game. 3

Note that, by definition of cz,k, we have that c
z,k′

i ≤ c
z,k
i for every i ∈ N and every k′ ≤ k. For U ⊂ N ,

let k̂(U, vz) denote the smallest index satisfying vz(U) = v
(N,Ek̂(U,vz ),cz,k̂(U,vz))

(U), i.e.

k̂(U, vz) = min{k ∈ {1, . . . , h} | vz(U) = v(N,Ek,cz,k)(U)}.
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S {A} {B} {C} {D} {A, B} {A, C} {A, D} {B, C} {B, D} {C, D}

v(N,E1,cz,1)(S) 105 118 0 0 256 105 105 118 118 0

v(N,E2,cz,2)(S) 94 107 0 0 245 114 94 127 107 0

v(N,E3,cz,3)(S) 66 79 0 0 217 86 105 99 118 0

vz(S) 105 118 0 0 256 114 105 127 118 0

S {A, B, C} {A, B, D} {A, C, D} {B, C, D} {A, B, C, D}

v(N,E1,cz,1)(S) 256 256 105 118 256

v(N,E2,cz,2)(S) 265 245 114 127 265

v(N,E3,cz,3)(S) 237 256 125 138 276

vz(S) 265 256 125 138 276

Table 9: Values of the bankruptcy games and expedited project game in Example 4.3.

Lemma 4.2. Let ({N1 , . . . ,Nm}, p, r, R) be an expedited project problem and let z be a cost sharing mecha-

nism. Then, k̂(S, vz) ≤ k̂(T, vz) for every S ⊂ T ⊂ N .

Proof: Since z is fixed, we denote cz,k by ck. By Lemma 4.3 it follows

vz(T ) = max
k∈{1,...,h}

{

v(N,Ek,ck)(T )
}

= max
k∈{1,...,h}

{

(

Ek−
∑

j∈N\T

ck
j

)

+

}

= max
k∈{1,...,h}

{

(

Ek−
∑

j∈N\S

ck
j +

∑

j∈T\S

ck
j

)

+

}

We proceed by contradiction. Assume that k̂(S, vz) > k̂(T, vz) ≥ 1, then vz(S) > 0 and

vz(T ) = v
(N,Ek̂(T,vz ),ck̂(T,vz ))

(T )

=

(

Ek̂(T,vz) −
∑

j∈N\T

c
k̂(T,vz)
j

)

+

=

(

Ek̂(T,vz) −
∑

j∈N\S

c
k̂(T,vz)
j +

∑

j∈T\S

c
k̂(T,vz)
j

)

+

≤

(

Ek̂(T,vz) −
∑

j∈N\S

c
k̂(T,vz)
j

)

+

+
∑

j∈T\S

c
k̂(T,vz)
j

< Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j +

∑

j∈T\S

c
k̂(T,vz)
j

≤ Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j +

∑

j∈T\S

c
k̂(S,vz)
j

=

(

Ek̂(S,vz) −
∑

j∈N\T

c
k̂(S,vz)
j

)

+

= v
(N,Ek̂(S,vz ),ck̂(S,vz ))

(T )
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which contradicts the definition of k̂(T, vz). Here, the first and second equalities follow by definition of

k̂(T, vz) and v
(N,Ek̂(T,vz ),ck̂(T,vz ))

(T ), respectively. The second inequality follows because k̂(T, vz) < k̂(S, vz),

and then vz(S) = v
(N,Ek̂(S,vz),ck̂(S,vz))

(S) > v
(N,Ek̂(T,vz ),ck̂(T,vz ))

(S) by definition of k̂(S, vz), together with

vz(S) > 0. The last inequality follows because k̂(T, vz) < k̂(S, vz), and then ck̂(T,vz) ≤ ck̂(S,vz) by definition

of ck. The fourth equality is a consequence of Ek̂(S,vz) −
∑

j∈N\S c
k̂(S,vz)
j ≥ 0 and ck̂(S,vz) ≥ 0. 2

Theorem 4.3. Expedited project games are convex.

Proof: Let ({N1 , . . . ,Nm}, p, r, R) be an expedited project problem, let z be a cost sharing mechanism, and

let (N, vz) be the associated expedited project game. Since z is fixed, we denote cz,k by ck. Let i ∈ N and

S ⊂ T ⊂ N \ {i}, we have to show that vz(S ∪ {i}) − vz(S) ≤ vz(T ∪ {i}) − vz(T ).

If vz(S ∪ {i}) − vz(S) = 0 or vz(S) = vz(T ), then the condition is satisfied by monotonicity of (N, vz).

We can then assume without loss of generality that vz(S ∪ {i}) > vz(S) and vz(T ) > vz(S). Note that then

vz(S ∪ {i}) > 0 and vz(T ) > 0 since vz is nonnegative. We distinguish between two cases.

Case 1: k̂(S ∪ {i}, vz) ≤ k̂(T, vz). Then,

vz(S ∪ {i})− vz(S) = Ek̂(S∪{i},vz) −
∑

j∈N\S

c
k̂(S∪{i},vz)
j + c

k̂(S∪{i},vz)
i −

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

≤ Ek̂(S∪{i},vz) −
∑

j∈N\S

c
k̂(S∪{i},vz)
j + c

k̂(S∪{i},vz)
i −

(

Ek̂(S∪{i},vz) −
∑

j∈N\S

c
k̂(S∪{i},vz)
j

)

+

≤ c
k̂(S∪{i},vz)
i

≤ c
k̂(T,vz)
i

= Ek̂(T,vz) −
∑

j∈N\T

c
k̂(T,vz)
j + c

k̂(T,vz)
i − Ek̂(T,vz) +

∑

j∈N\T

c
k̂(T,vz)
j

≤ Ek̂(T∪{i},vz) −
∑

j∈N\T

c
k̂(T∪{i},vz)
j + c

k̂(T∪{i},vz)
i −

(

Ek̂(T,vz) −
∑

j∈N\T

c
k̂(T,vz)
j

)

= vz(T ∪ {i})− vz(T )

where the first equality is a direct consequence of the definition of k̂ applied to S ∪ {i} and S and because

v(S ∪ {i}) > v(S)(≥ 0) by assumption; the first inequality follows by definition of k̂ applied to coalition

S; the second inequality is a direct consequence of (x)+ = max{0, x}; the third inequality follows because

k̂(S ∪ {i}, vz) ≤ k̂(T, vz) and by definition of ck we have ck̂(S∪{i},vz) ≤ ck̂(T,vz); the last inequality follows

by definition of k̂ applied to coalition T ∪ {i} and vz(T ∪ {i}) ≥ vz(T ) > 0; and the last equality is a direct

consequence of the definition of k̂ and vz(T ∪ {i}) ≥ vz(T ) > 0 by assumption.

Case 2: k̂(S ∪ {i}, vz) > k̂(T, vz). In this case we show that the equivalent condition vz(S ∪ {i}) + vz(T ) ≤
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vz(T ∪ {i}) + vz(S) is satisfied.

vz(S ∪ {i}) + vz(T ) = Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(T,vz) −
∑

j∈N\T

c
k̂(T,vz)
j

)

+

= Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(T,vz) −
∑

j∈N\S

c
k̂(T,vz)
j +

∑

j∈T\S

c
k̂(T,vz)
j

)

+

≤ Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(T,vz) −
∑

j∈N\S

c
k̂(T,vz)
j

)

+

+
∑

j∈T\S

c
k̂(T,vz)
j

≤ Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

+
∑

j∈T\S

c
k̂(T,vz)
j

≤ Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

+
∑

j∈T\S

c
k̂(S∪{i},vz)
j

= Ek̂(S∪{i},vz) −
∑

j∈N\(T∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

≤ Ek̂(T∪{i},vz) −
∑

j∈N\(T∪{i})

c
k̂(T∪{i},vz)
j +

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

= vz(T ∪ {i}) + vz(S),

where the first equality is a direct consequence of the definition of k̂ applied to S ∪ {i} and T together

with the assumption vz(S ∪ {i}) > vz(S)(≥ 0); the second inequality follows by definition of k̂ applied

to S; the third inequality is a direct consequence of k̂(T, vz) < k̂(S ∪ {i}, vz) and by definition of ck we

have ck̂(T,vz) ≤ ck̂(S∪{i},vz); the fourth inequality follows by definition of k̂ applied to coalition T ∪ {i} and

vz(T ∪ {i}) ≥ vz(T ) > 0; finally, the last equality follows by definition of k̂ together with vz(T ∪ {i}) ≥

vz(S ∪ {i})(> 0) by monotonicity of vz. 2

5 Project games

A project problem arises when the planned time of the activities has been incorrectly estimated, possibly

bringing delay or expedition to the project. A non-decreasing reward function R : R → R is associated to

the difference between the planned and real times of the project, satisfying R(t) ≤ 0 for t < 0, R(t) = 0 for

t = 0, and R(t) ≥ 0 for t > 0. A project problem can be described by a 4-tuple ({N1 , . . . ,Nm}, p, r, R) where

p and r satisfy p 6= r.

Associated to a project problem ({N1 , . . . ,Nm}, p, r, R) we define a project game where the set of players

is the set of activities and the value of a coalition combines the underlying ideas from Sections 3 and 4. In

determining the value of a coalition we pessimistically assume that all delayed activities have indeed acted
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according to realization and that all expedited activities outside the coalition have acted according to plan.

Then, if the expedition given by the expedited activities in the coalition itself is not enough to expedite the

duration of the project, the value of the coalition is negative and is determined along the lines of delayed

project games. Otherwise, the value of the coalition is positive and is determined along the lines of expedited

project games. Formally, given a project problem ({N1 , . . . ,Nm} , p, r ,R), a cost sharing mechanism y, and a

surplus sharing mechanism z, we denote by (N, uyz) the associated project game, still to be defined formally.

Let E denote the set of expedited activities, i.e. E = {i ∈ N | e(i) > 0}.

If D(p|E\S , r|N\(E\S)) ≥ D(p), then the expedition carried by the expedited activities in S is not enough

to expedite the project and c̄y(S) reflects the maximum delay the coalition can be held responsible of. For

every a ∈ {1, . . . , m}, consider the cost sharing problem

(Na, qa, K)

with qa
i = d(i) for every i ∈ Na and K(t) = −R(−t) if t > 0 and K(t) = 0 otherwise. Let ya = y(Na, qa, K),

then coalition S cannot be held responsible neither for more than the total cost assigned to it by the cost

sharing mechanism, nor for more than the net delay of the path as a consequence of the delay of activities

in the path and the expedition of the activities within the coalition. Formally,

c̄y(S) = max
a∈P(S)

{

min

{

∑

i∈Na∩S

ya
i , K

(

∑

i∈Na

d(i) −
∑

i∈Na∩S

e(i) − slack(Na, p)

)}}

. (5.1)

If D(p|E\S , r|N\(E\S)) < D(p), then the expedition carried by the expedited activities in S is enough to

expedite the project and v̄z(S) reflects the amount of reward from the expedition that the coalition may

claim. In order to define v̄z(S) we need to introduce some notation.

We denote by rslack(Na, p, r) the amount of remaining slack of a path with respect to the planned duration

if only its delayed activities act according to realization, i.e. rslack(Na, p, r) = slack(Na, p) −
∑

i∈Na
d(i).

Note that rslack(Na, p, r) can be negative, meaning that the delayed activities have consumed all the initial

slack and would produce a delay on the project, as a whole, of − rslack(Na, p, r) if the expedited activities

had acted according to plan. We denote by J1 the set (of indexes) of paths with remaining slack less than

or equal to zero:

J1 = {a ∈ {1, . . . , m}| rslack(Na, p, r) ≤ 0} .

Recursively, we define for k ≥ 2

Jk =

{

a ∈ {1, . . . , m} \
k−1
⋃

l=1

Jl| rslack(Na, p, r) ≤ rslack(Nb, p, r) for all b ∈ {1, . . . , m} \
k−1
⋃

l=1

Jl

}

,

i.e. Jk contains all paths that would have smallest remaining slack if the paths in J1, . . . , Jk−1 where not

present. Set rslack(J1) := 0 and let rslack(Jk) denote the remaining slack of the paths in Jk for k ≥ 2, i.e.
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rslack(Jk) = rslack(Na, p, r) for each a ∈ Jk, k ≥ 2. Let g be such that rslack(Jg) < D(p) − D(r) ≤

rslack(Jg+1) if D(p) − D(r) > 0 and g = 0 otherwise. For k = 1, . . . , g, we define F k as the marginal

contribution of the paths in J1, . . . , Jk to the total reward associated to the expedition. Formally,

F k =







R(rslack(Jk+1)) − R(rslack(Jk)) if 1 ≤ k < g;

R(D(p) − D(r)) − R(rslack(Jg)) if k = g.

Note that
∑g

k=1 F k = R(D(p) − D(r)) since R(rslack(J1)) = 0.

For every a ∈ {1, . . . , m}, consider the surplus sharing problem

(Na, pa, Ra)

with pa
i = e(i) for every i ∈ Na and Ra(t) = R(t + (rslack(Na, p))+) − R((rslack(Na, p))+) if t ≥ 0 and

Ra(t) = 0 otherwise.

Let za = z(Na, pa, Ra). Similarly as in Section 4, za
i is the maximum amount that i can claim according

to the surplus sharing mechanism if its path is awarded with the total expedition that it can bring to the

project. Then, we optimistically define fz by

fz
i = max

a:Na∋i
{za

i }, (5.2)

i.e. fz
i is the maximum reward that activity i can claim from the expedition of the project when the surplus

sharing mechanism z is considered.

Next, we define v̄z(S) representing the sum over all k = 1, . . . , g of those specific parts of the corresponding

level of expedition F k for which expedited activities outside the coalition that are in paths of
⋃k

l=1 Jl cannot

be held responsible of. Formally,

v̄z(S) =

g
∑

k=1

(

F k − w̄k
z (S)

)

(5.3)

where w̄k
z (S) represents the part of the level of expedition F k that players in S maximally would have to

concede to players in
⋃k

l=1 Jl outside S, taking into account concessions from the previous phases. Formally,

w̄k
z (S) = min







∑

i∈(
S

k
l=1 NJl

)\S

fz
i −

k−1
∑

l=1

w̄l
z(S), F k







, (5.4)

for all k ∈ {1, . . . , g}, where NJl
=
⋃

a∈Jl
Na.

Finally, we define the associated project game (N, uyz) by

uyz(S) =







− c̄y(S), if D(p|E\S , r|N\(E\S)) ≥ D(p);

v̄z(S), if D(p|E\S , r|N\(E\S)) < D(p).
(5.5)

for every S ⊂ N .
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Note that if the project problem is a delayed project problem, then c̄y = cy and uyz = − cy since

D(p|E\S , r|N\(E\S)) = D(r) ≥ D(p). Besides, if the project problem is an expedited project problem, then

v̄z = vz and uyz = vz since, for all S ⊂ N , D(p|E\S , r|N\(E\S)) ≥ D(p) implies vz(S) = 0(= uyz(S)).

Given a project problem ({N1 , . . . ,Nm}, p, r, R), and a surplus sharing mechanism z, the corresponding

game (N, v̄z) can be described as the maximum of as many bankruptcy games as levels of expedition in the

project, where the bankruptcy problem associated to level of expedition k ∈ {1, . . . , g} is

(N, Ēk, c̄k)

with Ēk = R(rslack(Jk+1)) if k < g and Ēg = R(D(p) − D(r)), and c̄k
i = fz

i if i ∈ ∪k
l=1NJl

and c̄k
i = 0

otherwise. Besides, it turns out that (N, v̄z) is convex. The proofs of both results follow the same lines of

those in Theorems 4.1 and 4.3 and are therefore omitted.

Lemma 5.1. Let ({N1 , . . . ,Nm}, p, r, R) be a project problem and let z be a surplus sharing mechanism.

Then, (N, v̄z) is convex and

v̄z(S) = max
k∈{1,...,g}

{v(N,Ēk,c̄k)(S)}

for every S ⊂ N .

The following example illustrates the computation of a project game.

Example 5.1. Consider the expedited project problem ({N1, N2, N3} , p, r, R) with N1 = {A, B}, N2 =

{A, D}, N3 = {C, D}, p(A) = 10, p(B) = 20, p(C) = 15, p(D) = 15, r(A) = 12, r(B) = 7, r(C) = 16,

r(D) = 8, and R(t) = −t4 − 100 if t < 0, R(0) = 0, and R(t) = t2 + 200 if t > 0. The project is represented

in Figure 4.

b

b b

b

A B

C D

Na D(Na, p) slack(Na, p) D(Na, r)

AB 30 0 19

AD 25 5 20

CD 30 0 24

Figure 4: Representation of the project given in Example 4.1 and duration of the paths.

Here, D(p) = 30 and D(r) = 24, and then the total expedition is D(p) − D(r) = 6 with an associated

reward of R(6) = 236. Besides, d(A) = 2, d(B) = 0, d(C) = 1 and d(D) = 0; e(A) = 0, e(B) = 13, e(C) = 0

and e(D) = 7; rslack(AB, p, r) = −2, rslack(AD, p, r) = 3, rslack(CD, p, r) = −1; J1 = {1, 3} and J2 = {2};

F 1 = R(3) − R(0) = 209 and F 2 = R(6) − R(3) = 27.
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For the computation of (N, uyz), we first compute (N, c̄y) and (N, v̄z). For the computation of (N, c̄y)

we use the serial cost sharing mechanism. Associated to each path Na, we have the cost sharing pro-

blem (Na, qa, K) with qa
i = d(i) and K(t) = 0 if t ≤ 0 and K(t) = t4 + 100 if t > 0. Then, y1 =

y({A, B}, (2, 0), K) = (116, 0), y2 = y({A,D}, (2, 0), K) = (116, 0), and y3 = y({C, D}, (1, 0), K) = (101, 0).

For the computation of (N, v̄z) we use the serial surplus sharing mechanism. Associated to each path Na

we have the surplus problem:

(N1, p
1, R1): N1 = {A, B}, p1 = (0, 13), R1(t) = R(t) if t ≥ 0 and R1(t) = 0 otherwise, and z1 = (0, 369),

(N2, p
2, R2): N2 = {A, D}, p2 = (0, 7), R2(t) =







R(t + 3) − R(3) if t ≥ 0,

0 otherwise,
z2 = (0, 91),

(N3, p
3, R3): N3 = {C, D}, p3 = (0, 7), R3(t) = R(t) if t ≥ 0 and R3(t) = 0 otherwise, and z3 = (0, 249),

which gives fz = (0, 369, 0, 249). All coalitional values are given in Table 10.

S {A} {B} {C} {D} {A, B} {A, C} {A, D} {B, C} {B, D} {C, D}

D(p|E\S, r|N\(E\S)) 32 31 32 32 31 32 32 31 24 32

c̄y(S) 116 0 101 0 0 116 116 101 0 0

v̄z(S) 0 0 0 0 0 0 0 0 236 0

uyz(S) −116 0 −101 0 0 −116 −116 −101 236 0

S {A, B, C} {A, B, D} {A, C, D} {B, C, D} {A, B, C, D}

D(p|E\S , r|N\(E\S)) 31 24 32 24 24

c̄y(S) 101 0 116 0 0

v̄z(S) 0 236 0 236 236

uyz(S) −101 236 −116 236 236

Table 10: Computation of the cost sharing rule in Example 4.2.

It can be checked that the core of the game is

Core(uyz) = conv{ (−15, 135,−101, 217), (−116, 236, 0, 116), (0, 0, 0, 236),

(−116, 352, 0, 0), (−15, 251,−101, 101), (0, 236, 0, 0)}

Note that this game is not convex by taking i = D, S = {C}, and T = {A,C}. 3

Theorem 5.2. Project games have a nonempty core.

Proof: Let ({N1 , . . . ,Nm}, p, r, R) be a project problem, let y and z be a cost and surplus sharing mechanism,

respectively, and let (N, uyz) be the associated project game. We distinguish between two cases.
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Case 1: D(p) ≤ D(r).

In this case, D(p) ≤ D(r) ≤ D(p|E\S , r|N\(E\S)) for every S ⊂ N , and therefore uyz(S) = − c̄y(S) for every

S ⊂ N . Consequently, (N, uyz) has a nonempty core if and only if (N, c̄y) has a nonempty core.

Let â ∈ {1, . . . , m} be such that D(r) = D(Nâ, r), i.e. Nâ is responsible of the total delay of the project.

Consider the taxation problem (N, Eâ, câ) given by Eâ = K(
∑

i∈Nâ
d(i)−

∑

i∈Nâ
e(i)−slack(Nâ, p)), câ

i = yâ
i

if i ∈ Nâ and câ
i = 0 if i ∈ N \ Nâ. Then,

c̄y(N) = max
a∈P(N)

{

min

{

∑

i∈Na

ya
i , K

(

∑

i∈Na

d(i) −
∑

i∈Na

e(i) − slack(Na, p)

)}}

= min

{

∑

i∈Nâ

yâ
i , K

(

∑

i∈Nâ

d(i) −
∑

i∈Nâ

e(i) − slack(Nâ, p)

)}

= min

{

∑

i∈N

câ
i , Eâ

}

= c(N,Eâ,câ)(N)

where the second equality follows because D(r) = D(Nâ, r) and the third one is a direct consequence of the

definition of Eâ and câ. Moreover, for any S ⊂ N we have

c̄y(S) = max
a∈P(S)

{

min

{

∑

i∈Na∩S

ya
i , K

(

∑

i∈Na

d(i) −
∑

i∈Na∩S

e(i) − slack(Na, p)

)}}

≥ min

{

∑

i∈Nâ∩S

yâ
i , K

(

∑

i∈Nâ

d(i) −
∑

i∈Nâ∩S

e(i) − slack(Nâ, p)

)}

≥ min

{

∑

i∈Nâ∩S

yâ
i , K

(

∑

i∈Nâ

d(i) −
∑

i∈Nâ

e(i) − slack(Nâ, p)

)}

= min

{

∑

i∈S

câ
i , Eâ

}

= c(N,Eâ,câ)(S)

where the second inequality follows because R is nondecreasing and therefore K is also nondecreasing, and

the second equality is a direct consequence of the definitions of Eâ and câ.

Since (Nâ, c(N,Eâ,câ)) is concave, we know that there is an x ∈ Core(c(N,Eâ,câ)). Then,
∑

i∈N xi =

c(N,Eâ,câ)(N) = c̄y(N) and
∑

i∈S xi ≤ c(N,Eâ,câ)(S) ≤ c̄y(S) for every S ⊂ N , and therefore x ∈ Core(c̄y).

Case 2: D(p) < D(r).

In this case, uyz(N) = v̄z(N) and uyz(S) ≤ v̄z(S) for every S ⊂ N . By Lemma 5.1 we know that

(N, v̄z) is convex and therefore Core(v̄z) 6= ∅. Let x ∈ Core(v̄z), then
∑

i∈N xi = v̄z(N) = uyz(N) and
∑

i∈S xi ≥ v̄z(S) ≥ uyz(S) for every S ⊂ N , and therefore x ∈ Core(uyz). 2
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We now show that the core of project games satisfies some basic and desirable properties for solutions of

project problems.

In many project problems the general manager of the project does not have legal authority to oblige

delayed activities to compensate expedited activities for their contribution to decrease the total delay of the

project. In this situation, a set-valued solution should satisfy: if the project is neither delayed, nor expedited,

then there should be a solution in which nobody is neither punished, nor rewarded, i.e. if D(r) = D(p), then

the zero vector should be a possible solution; if the project is delayed, then there should be a solution in which

the delayed activities pay exactly the total cost associated to the total delay, i.e. expedited activities are not

compensated; if the project is expedited, then there should be a solution in which the delayed activities don’t

have to compensate expedited activities, i.e. expedited activities get exactly the total reward associated to

the total expedition.

Let D be the set of delayed activities, i.e. D = {i ∈ N |p(i) < r(i)}, and recall that E is the set of

expedited activities, i.e. E = {i ∈ N |p(i) > r(i)}.

Theorem 5.3. Let ({N1 , . . . ,Nm}, p, r, R) be a project problem, let y and z be a cost and surplus sharing

mechanism, respectively, and let (N, uyz) be the associated project game.

(i) If D(p) < D(r), then there exist x ∈ Core(uyz) such that xi = 0 for every i ∈ N \ D.

(ii) If D(p) = D(r), then 0 ∈ Core(uyz).

(iii) If D(p) > D(r), then there exist x ∈ Core(uyz) such that xi = 0 for every i ∈ N \ E.

Proof: (i) If D(p) < D(r), then D(p) ≤ D(p|E\S , r|N\(E\S)) ≤ D(r) for every S ⊂ N , and therefore

uyz(S) = − c̄y(S) for every S ⊂ N . Let â ∈ {1, . . . , m} be such that D(r) = D(Nâ, r), i.e. Nâ is responsible

of the total delay of the project. Consider the taxation problem (N, Eâ, câ) given by Eâ = K(
∑

i∈Nâ
d(i) −

∑

i∈Nâ
e(i)− slack(Nâ, p)), câ

i = yâ
i if i ∈ Nâ and câ

i = 0 if i ∈ N \Nâ. Note that câ
i = 0 for every i ∈ Nâ \D.

By the proof of Theorem 5.2 we know that Core(c(N,Eâ,câ)) ⊂ Core(c̄y). Moreover, it is well known that any

x ∈ Core(c(N,Eâ,câ)) satisfies 0 ≤ x ≤ câ, and therefore xi = 0 for every i ∈ N \ (Nâ ∩ D).

(ii) If D(p) = D(r), then D(p) ≤ D(p|E\S , r|N\(E\S)) ≤ D(r) for every S ⊂ N , and therefore uyz(S) =

− c̄y(S) ≤ 0 for every S ⊂ N . Moreover, uyz(N) = 0, and then 0 ∈ Core(uyz).

(iii) If D(p) > D(r), then uyz(N) = v̄z(N) and uyz(S) ≤ v̄z(S) for every S ⊂ N . Then, Core(v̄z) ⊂ Core(uyz).

Since fz
i = 0 for every i ∈ N \ E, we have v̄z(S ∪ {i}) = v̄z(S) for every i ∈ N \ E and therefore xi = 0 for

every x ∈ Core(v̄z) and i ∈ N \ E. 2
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6 Final remarks

We have used cooperative games to find solutions to project problems. The associated project game, in our

opinion, provides an adequate thought experiment to evaluate coalitional influence and the core of this game

provides a suitable answer to the allocation problem at hand.

Contrary to our focus on finding suitable allocations satisfying some basic properties, Castro, Gómez

and Tejada (2007) concentrate on finding a game related to project problems satisfying some “desirable”

properties. They put forward the properties of separability, non-manipulability by splitting, and independent

slack and propose a cooperative game to share the total delay or expedition of a project satisfying these three

properties. One can question the desirability of these three properties when we concentrate on the allocation

of the rewards (or penalties) created by a project that has not performed as planned. For instance, the

property of separability says that if a project can be decomposed in two different (sub)projects (i.e. if there

is a node used by all paths in the project), then the associated game can be decomposed as the sum of

the two games associated to the two corresponding (sub)projects. Note that the total reward of the project

does not need to equal the sum of the rewards of the (sub)projects since we allow for non additive reward

functions too. Hence, in our setting, separability does not need to be satisfied by project problems, let alone

by the associated games.

In our opinion, it is not the properties of the game as a whole that are relevant, but rather the properties

of the derived solutions (except of course from adequately modeling the coalitional possibilities).

As mentioned above, Castro, Gómez and Tejada (2007) define a cooperative game to share the total

delay or expedition of a project. If one uses the core of this game to share the total reward in a project

problem where the reward function is proportional to the total expedition or delay of the project, one

encounters unwanted features in the allocations proposed by the core. It turns out that for projects in which

the corresponding graph is a line, the game in Castro et al. (2007) is additive (i.e. the value of a coalition

equals the sum of the individual values of its members). Therefore, the core of this game does not need to

satisfy any of the properties proposed in Section 5.

Example 6.1. Consider the project problem ({N1} , p, r, R) with N1 = {A, B}, p(A) = 10, p(B) = 15,

r(A) = 13, r(B) = 12, and R(t) = t. The project is represented in Figure 5.

b b b

A B

Figure 5: Representation of the project in Example 6.1.

In this problem, D(p)−D(r) = 0, d(A) = 2, d(B) = 0, e(A) = 0, e(B) = 2, the values of their corresponding

game are v({A}) = −2, v({B}) = 2, v({A, B}) = 0, and Core(v) = {(−2, 2)}. 3
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Möhring, R. H., Schulz, A. S., Stork, F. and Uetz, M. (2003), ‘Solving project scheduling problems by

minimum cut computations’, Management Science 49, 330–350.

O’Neill, B. (1982), ‘A problem of rights arbitration from the talmud’, Mathematical Social Sciences 2, 345–

371.

Pinto, J. and Slevin, D. (1988), ‘Project success: Definitions and measurements techniques’, Project Man-

agement Journal 19, 67–72.

28



Roberts, E. and Fusfeld, A. (1981), ‘Staffing the innovative technology based organization’, Sloan Manage-

ment Review 22, 19–34.

Shapley, L. S. (1971), ‘Cores of convex games’, International Journal of Game Theory 1, 11–26.

Shenhar, A. and Dvi, D. (1996), ‘Toward a typological theory of project management’, Sloan Management

Review 25, 607–632.

Sherwin, C. and Isenson, R. (1967), ‘Project hindsight: A defense department study of the utility of research’,

Science 156, 1571–1577.

Tubig, S. and Abeti, P. (1990), ‘Variables influencing the performance of defense r&d contractors’, IEEE

Transactions on Engineering Management 37, 22–30.

29


