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Summary. Integer-valued autoregressive (INAR) processes have been introduced to model

nonnegative integer-valued phenomena that evolve over time. The distribution of an INAR(p)

process is essentially described by two parameters: a vector of autoregression coefficients

and a probability distribution on the nonnegative integers, called an immigration or innovation

distribution. Traditionally, parametric models are considered where the innovation distribution

is assumed to belong to a parametric family. This paper instead considers a more realistic

semiparametric INAR(p) model where there are essentially no restrictions on the innovation

distribution. We provide an (semiparametrically) efficient estimator of both the autoregression

parameters and the innovation distribution.

Keywords: count data, nonparametric maximum likelihood, infinite-dimensional Z-estimator,

semiparametric efficiency

1. Introduction and notation

Al-Osh and Alzaid (1987) introduced the INAR(1) process to model nonnegative integer-
valued phenomena that evolve in time. The INAR(1) process is defined by the recursion

Xt = θ ◦ Xt−1 + εt, t ∈ Z+ = N ∪ {0}, (1)

where

θ ◦ Xt−1 =

Xt−1
∑

j=1

Z
(t)
j .

Here an empty sum equals, by definition, 0. The variables (Z
(t)
j )j∈N,t∈Z+

are i.i.d. Bernoulli
variables with success probability θ ∈ [0, 1], independent of the i.i.d. innovation sequence
(εt)t∈Z+

with distribution G on Z+. The starting value X−1, with distribution ν on Z+, is
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group, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
E-mail: B.J.M.Werker@TilburgUniversity.nl
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independent of (εt)t∈Z+
and (Z

(t)
j )j∈N,t∈Z+

. Display (1) can be interpreted as a branching
process with immigration: Xt is composed of the surviving elements of Xt−1 during the pe-
riod (t−1, t], θ◦Xt−1, and the number of immigrants during this period, εt. Each element of
Xt−1 survives with probability θ and its survival has no effect on the survival of the other
elements, nor on the number of immigrants. In the literature on statistical inference for
branching processes with immigration it is assumed that one observes both the X process
and the ε process. We consider the empirically more common situation where the number
of immigrants εt is not observed. Note, even if the true parameter θ would be known, the
number of immigrants cannot be derived from the total Xt in the INAR(1) model.

The more general INAR(p) processes were first introduced by Al-Osh and Alzaid (1990)
but Du and Li (1991) proposed a different setup. In the setup of Du and Li (1991) the
autocorrelation structure of an INAR(p) process is the same as that of an AR(p) process,
whereas it corresponds to the one of an ARMA(p, p− 1) process in the setup of Al-Osh and
Alzaid (1990). The setup of Du and Li (1991) has been followed by most authors, and we
use their setup as well. The INAR(p) process is an analogue of (1) with p lags. An INAR(p)
process is recursively defined by,

Xt = θ1 ◦ Xt−1 + θ2 ◦ Xt−2 + · · · + θp ◦ Xt−p + εt, t ∈ Z+, (2)

where, for i = 1, . . . , p,

θi ◦ Xt−i =

Xt−i
∑

j=1

Z
(t,i)
j .

Here (Z
(t,i)
j )j∈N,t∈Z+

, i ∈ {1, . . . , p}, are p mutually independent collections of i.i.d. Bernoulli
variables with respective success probabilities θi ∈ [0, 1], i = 1, . . . , p, independent of the
Z+-valued i.i.d. G-distributed innovations (εt)t∈Z+

. The starting value (X−1, . . . , X−p)
T is

independent of (εt)t∈Z+
and (Z

(t,i)
j )i∈{1,...,p},j∈N,t∈Z+

, and has distribution ν on Z
p
+. The

corresponding probability space is denoted by (Ω,F , Pν,θ,G), where θ = (θ1, . . . , θp)
T .

Applications of INAR processes in the medical sciences can be found in, for example, Franke
and Seligmann (1993), Bélisle et al. (1998), and Cardinal et al. (1999); an application to psy-
chometrics in Böckenholt (1999a), an application to environmentology in Thyregod et al.
(1999); recent applications to economics in, for example, Böckenholt (1999b), Berglund
and Brännäs (2001), Brännäs and Hellström (2001), Rudholm (2001), Böckenholt (2003),
Brännäs and Shahiduzzaman (2004), Freeland and McCabe (2004), Gourieroux and Jasiak
(2004), and McCabe and Martin (2005); and Pickands III and Stine (1997) and Ahn et al.
(2000) considered queueing applications.

The statistical literature on INAR processes has concentrated on parametric models, i.e.,
G is assumed to belong to a parametric class of distributions, say (Gα|α ∈ A ⊂ R

q). For
p = 1 and Gα = Poisson(α) Franke and Seligmann (1993) analyzed maximum likelihood es-
timation. Du and Li (1991) and Freeland and McCabe (2005) derived the limit-distribution
of the OLS-estimator of θ. Brännäs and Hellström (2001) considered GMM estimation,
Silva and Oliveira (2005) proposed a frequency domain based estimator of θ, Silva and Silva
(2006) considered a Yule-Walker estimator, Drost et al. (2006b) provided a computationally
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attractive, asymptotically efficient estimator of (θ, α), and Jung et al. (2005) analyzed, by
a Monte Carlo study, the finite sample behavior of several estimators for the INAR(1) case.

We consider a semiparametric model, where hardly any assumptions are made on G, and
consider efficient estimation of (θ,G) from observations X−p, . . . , Xn. As far as we know,
even inefficient estimation of G has not been addressed before. A possible explanation for
this is that, even if θ1, . . . , θp are known, observing Xt−p, . . . , Xt does not imply observing
εt. Consequently, estimation of G cannot be based on residuals (as is the case for AR(p)
processes). In fact, estimation of G can be viewed upon as a kind of deconvolution problem.
However, estimation of the innovation distribution is, just as for standard AR models, an
important topic. For INAR(p) processes this is even more important, since in some appli-
cations G has a clear physical interpretation. For example, Pickands III and Stine (1997)
were interested in how often a physician prescribes a particular drug to new patients. The
data are collected at the time of purchase, and so it is not possible to distinguish between
new patient prescriptions and those of patients who have been using this medication. As a
result, only the total prescriptions for a given drug for each doctor is observed. This can
be modelled by an INAR(1) process, where the ε represent the number of new patients. In
such examples, the parameter G is even the main parameter of interest.

Throughout the paper the number of lags, p ∈ N, is fixed and known. To simplify the pre-
sentation, we gather all conditions needed for our results below in Assumption 1. Weaker
conditions suffice for specific results, see for example Remark 2.2 concerning the consistency
result of Theorem 2.1.

Assumption 1 Let G̃ denote the set of all probability measures on Z+. We assume that

G = L (εt) ∈ G =
{

G ∈ G̃ : 0 < G(0) < 1; EGεp+4
t < ∞

}

. Furthermore we assume θ ∈
Θ = {ϑ ∈ (0, 1)p :

∑p
i=1 ϑi < 1}.

Remark 1.1 The assumption θ ∈ (0, 1)p with
∑p

i=1 θi < 1 is, see Lemma A.1, a sufficient
condition for stationarity. For p = 1, inference in the nonstationary INAR(p) model, that
is θ1 ≈ 1, has been discussed in Ispány et al. (2003a, 2003b, 2005) and Drost et al. (2006a).
The assumption 0 < G{0} < 1 ensures the possibility of X becoming zero and not being
always equal to 0, which is reasonable for virtually all applications. Finally, the (p + 4)-th
moment of G is needed in establishing weak convergence of certain empirical processes: the
“size” of the class of functions involved increases with p, which explains the need for a more
stringent condition for larger values of p.

The following notations are used. The Binomial distribution with parameters θ ∈ [0, 1]
and n ∈ Z+ is denoted by Binn,θ (Bin0,θ is the Dirac-measure concentrated in 0) and bn,θ

denotes the corresponding point mass function. For G ∈ G, µG denotes the mean of G,
σ2

G denotes its variance, and g its pdf. As usual, Eν,θ,G (·) is shorthand for
∫

(·) dPν,θ,G.
For (probability) measures F and G, F ∗ G denotes the convolution of F and G. Finally,
F = (Ft)t≥−p is the natural filtration generated by X, i.e. Ft = σ (X−p, . . . , Xt). Once
more, note that in contrast to classical AR(p) processes, Ft 6= σ (X−p, . . . , X−1, ε0, . . . , εt).

Before we discuss the contributions of this paper we recall some elementary properties
of INAR processes, that will be used throughout. It immediately follows from (2) that, for
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t ∈ Z+, the first two conditional moments are given by

Eθ,G [Xt | Ft−1] = Eθ,G [Xt | Xt−1, . . . , Xt−p] = µG +

p
∑

i=1

θiXt−i ∈ [0,∞],

varθ,G [Xt | Ft−1] = varθ,G [Xt | Xt−1, . . . , Xt−p] = σ2
G +

p
∑

i=1

θi(1 − θi)Xt−i ∈ [0,∞].

Hence an INAR(p) process has the same autoregression function as an AR(p) process.
However, an INAR(p) process has conditional heteroskedasticity of autoregressive form,
whereas the conditional variance is constant for AR(p) processes. Next we determine the
conditional distribution of Xt given Ft−1. From (2) it follows, for t ∈ Z+,

Pθ,G {Xt = xt | Ft−1} = Pθ,G {Xt = xt | Xt−1, . . . , Xt−p} = P θ,G
(Xt−1,...,Xt−p),xt

,

where, for xt−p, . . . , xt ∈ Z+, the transition-probability P θ,G
(xt−1,...,xt−p),xt

is given by

P θ,G
(xt−1,...,xt−p),xt

= Pθ,G

{

p
∑

i=1

θi ◦ Xt−i + εt = xt | Xt−1 = xt−1, . . . , Xt−p = xt−p

}

=
(

Binxt−1,θ1
∗ · · · ∗ Binxt−p,θp

∗G
)

{xt}.

Note that X = (Xt)t≥−p is a p-th order Markov chain. Lemma A.1 gathers some auxil-
iary probabilistic results on the INAR(p) process. In particular, the lemma establishes, for
(θ,G) ∈ Θ × G, the existence of a stationary solution νθ,G and absolutely regular mixing
with (at least) geometrically decreasing coefficients. Finally, Lemma A.1 proves a suitable
Donsker type result for the empirical process of (Xt).

Next we discuss the contributions of our paper. Formally, we are interested in the ex-
periments

E(n) =
(

Z
n+1+p
+ , 2Z

n+1+p
+ ,

(

P
(n)
νθ,G,θ,G | θ ∈ Θ, G ∈ G

))

, n ∈ Z+,

where P
(n)
νθ,G,θ,G denotes the law of (X−p, . . . , Xn), under Pνθ,G,θ,G, on the measurable space

(Zn+1+p
+ , 2Z

n+1+p
+ ), with νθ,G the stationary initial distribution (see Lemma A.1A).

Remark 1.2 Notice that the stationary distribution is taken as initial distribution. This
enables us to use results from empirical processes theory for stationary time series. On the
other hand, it complicates the semiparametric analysis: to obtain the LAN property we
have to prove statistical negligibility of the initial value.

Compared to parametric models, the semiparametric model E(n) is more general. However
this comes at a cost: estimation in a semiparametric model is “at least as difficult” as in
any parametric submodel. Although the OLS-estimator still yields an asymptotically normal
estimator of θ in the semiparametric model (see Du and Li (1991)), it is not an efficient esti-
mator of θ. This paper contributes a semiparametric efficient estimator of (θ, G). We stress
that even inefficient estimation of G has not been considered before. Our estimator might be
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viewed upon as a nonparametric maximum likelihood estimator (NPMLE). The monographs
Bickel et al. (1998) and Van der Vaart (2000) (Chapter 25) are fairly complete accounts on
the state of the art in semiparametric efficient estimation for i.i.d. models. Semiparametric
efficiency considerations in time series originated by Kreiss (1987) for ARMA-type models,
Drost et al. (1997) considered group models covering nonlinear location-scale time series,
and Wefelmeyer (1996) considered models with general Markov type transitions. However,
the semiparametric INAR(p) model cannot be analyzed by either of these approaches. This
since it seems to be impossible to derive closed form formulas for the efficient influence
operator. Nevertheless we are able to prove efficiency along the following lines. First we
show that the NPMLE can be viewed upon as a solution to an infinite number of moment-
conditions, i.e., as an infinite-dimensional Z-estimator. Following Van der Vaart (1995), who
provides, for i.i.d. models, high-level conditions to prove efficiency of infinite-dimensional
Z-estimators without having to calculate the efficient influence operator, we show that the
NPMLE can be viewed upon as a Hadamard differentiable mapping of another estima-
tor which is efficient for a certain artificial parameter. Since efficiency is retained under
Hadamard differentiable maps (Van der Vaart (1991)) this can be exploited to obtain an
efficiency proof. The main steps are proving Fréchet differentiability of the limiting estimat-
ing equation, and continuously invertibility of this derivative. These proofs are facilitated by
“information-loss” representations of the transition-scores that were established by Drost
et al. (2006b). Another important aspect is that the empirical estimating equation weakly
converges, in an appropriate function space, to a Gaussian process. Since we are dealing
with a Markovian structure, we rely on empirical processes for dependent data. Another
crucial ingredient is that parametric submodels of the semiparametric model enjoy the local
asymptotic normality (LAN) property.

The setup of the present paper is as follows. Section 2 introduces the NPMLE and dis-
cusses its consistency. In Section 3 we show that the NPMLE is a Z-estimator, i.e., it can
be viewed upon as a solution to an infinite system of moment-conditions, and exploit this
to derive the limiting distribution of the NPMLE. Section 4 proves that the NPMLE is ef-
ficient. Here we first show that parametric submodels have the LAN-property and that the
NPMLE is regular. Next, the efficiency of the NPMLE follows from the regularity and the
special representation of the limiting distribution. Finally, Section 5 discusses a small Monte
Carlo simulation study and empirical application to analyze the finite sample behavior of
the proposed estimator. Some auxiliary results are gathered in Appendix A. Some proofs
have been organized, because of their length and technicality, separately in a Technical
Appendix that is available online.

2. The estimator and consistency

In general, maximum likelihood is not directly applicable in semiparametric models. For the
INAR model, due to the discreteness of G, nonparametric maximum likelihood estimation is
feasible. We call an estimator ((θ̂n, Ĝn))n∈Z+

of (θ, G) a nonparametric maximum likelihood

estimator (NPMLE) of (θ, G) if (θ̂n, Ĝn) maximizes the conditional likelihood, i.e.,

∀n ∈ Z+ : (θ̂n, Ĝn) ∈ argmax
(θ,G)∈[0,1]p×G̃

n
∏

t=0

P θ,G
(Xt−1,...,Xt−p),Xt

. (3)
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Remark 2.1 The conditional likelihood is used, since closed-form formulas for νθ,G are
only known for a few specific immigration distributions. Ignoring the information in the
initial values has no consequences for the (asymptotic) efficiency of the NPMLE.

To guarantee the existence of a maximum likelihood estimator, we allow (θ̂n, Ĝn) to take
values outside Θ×G. It is easy to see that Ĝn assigns all its mass to a subset of {u−, . . . , u+},
where

u− = 0 ∨ min
t=0,...,n

(

Xt −
p

∑

i=1

Xt−i

)

, and u+ = max
t=0,...,n

Xt.

Now (θ̂n, Ĝn) maximizes the likelihood if and only if the following holds: (i) ĝn(k) = 0

for k < u− and k > u+, and (ii) (θ̂n,1, . . . , θ̂n,p, ĝn(u−), . . . , ĝn(u+)) is a solution to the
(constrained) polynomial optimization problem:

max
x1,...,xp

zu−
,...,zu+

n
∏

t=0

Xt
∑

e=0∨(Xt−
∑ p

i=1
Xt−i)

ze

∑

0≤k`≤Xt−`, `=1,...,p
k1+···+kp=Xt−e

p
∏

`=1

(

Xt−`

k`

)

xk`

` (1 − x`)
Xt−`−k`

s.t. 0 ≤ xk ≤ 1 for k = 1, . . . , p;
zj ≥ 0 for j = u−, . . . , u+;
zu−

+ · · · + zu+
= 1.

(4)

We stress that we nowhere (will) impose that such a maximum location is unique.

The next proposition, which follows by standard arguments, states that any maximum
likelihood estimator is consistent. The proof is organized in the technical appendix.

Theorem 2.1 For all (θ0, G0) ∈ Θ × G and all initial probability measures ν0 on Z
p
+, any

NPMLE (θ̂n, Ĝn) = (θ̂n, ĝn(0), ĝn(1), . . . ), of (θ, G) is consistent in the following sense:

θ̂n
p−→ θ0 and

∞
∑

k=0

|ĝn(k) − g0(k)| p−→ 0, under Pν0,θ0,G0
. (5)

Proof (outline): Let (θ̂n, Ĝn) be a maximum likelihood estimator of (θ,G). To prove (5),

it is well-known that it suffices to establish θ̂n
p−→ θ0 and ĝn(k)

p−→ g0(k) for all k ∈ Z+. We
prove this by compactifying the parameter space and subsequently following the arguments
of Wald’s consistency theorem (see, for example, the proof of Theorem 5.14 in Van der Vaart
(2000)). See the technical appendix for details. 2

Remark 2.2 Inspection of the proof of Theorem 2.1 shows that Assumption 1 is actually
stronger than needed to establish (5). It suffices to assume that the innovation distribution
G has finite mean µG and G(0) = P{εt = 0} < 1.
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3. Limit distribution

In this section we derive the limiting distribution of the NPMLE. First we show, in Sec-
tion 3.1, that our NPMLE is actually a Z-estimator. To show this, we consider certain (ar-
tificial) submodels of the semiparametric model and exploit the fact that the NPMLE also
maximizes the likelihood in these submodels. These submodels are such that the maximum
is taken in a stationary point, which yields a score equation. Subsequently, this Z-estimator
representation is used in Section 3.2 to derive the limiting distribution for (θ̂n, Ĝn), which
is represented as a transformation of a Gaussian process.

3.1. Likelihood equations

This section shows that (θ̂n, Ĝn) can be viewed upon as an infinite-dimensional Z-estimator,

i.e., (θ̂n, Ĝn) solves an infinite number of moment conditions.

Fix the “truth” (θ0, G0) ∈ Θ × G. If θ̂n ∈ Θ we obtain, since (θ̂n, Ĝn) maximizes the
likelihood and Θ is open,

1

n

n
∑

t=0

˙̀
θ(Xt−p, . . . , Xt; θ̂n, Ĝn) = 0,

where, for xt−p, . . . , xt ∈ Z+,

˙̀
θ(xt−p, . . . , xt; θ,G) =

∂

∂θ
log

(

P θ,G
(xt−1,...,xt−p),xt

)

,

with the convention that ˙̀
θ(xt−p, . . . , xt; θ, G) = 0 if P θ,G

(xt−1,...,xt−p) = 0. Drost et al.

(2006b) derived, motivated by an “information-loss” interpretation of the model, that this
θ-transition-score can be represented as,

˙̀
θ(xt−p, . . . , xt; θ, G) =







Eθ,G

[

ṡXt−1,θ1
(θ1 ◦ Xt−1) | Xt = xt, . . . , Xt−p = xt−p

]

...
Eθ,G

[

ṡXt−p,θp
(θp ◦ Xt−p) | Xt = xt, . . . , Xt−p = xt−p

]






,

where ṡn,θ(·) is the score of a Binomial(n, θ) distribution, i.e.

ṡn,θ(k) =
k − nθ

θ(1 − θ)
, k ∈ {0, . . . , n}, n ∈ Z+.

This conditional expectation representation of the transition-score is heavily used later on.

Obtaining score-equations for the (infinite-dimensional) G-direction is more difficult. Con-
struct (artificial) probability distributions on Z+, in direction h : Z+ → R bounded, by

gs(k) = gs(k, h) =

[

1 + s

(

h(k) −
∫

h dĜn

)]

ĝn(k), k ∈ Z+.

Note that g0 = ĝn and Gs ∈ G̃ for all |s| < (2‖h‖∞)
−1

. By construction (θ̂n, Gs) satisfies,
for all s, the constraints of the optimization problem (4). Since s = 0 corresponds to the
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NPMLE (θ̂n, Ĝn), we obtain

0 =
1

n

n
∑

t=0

∂

∂s
log P θ̂n,Gs

(Xt−1,...,Xt−p),Xt

∣

∣

∣

∣

s=0

.

To obtain a useful representation of this derivative, we note

∂

∂s
log P θ,Gs

(xt−1,...,xt−p),xt

∣

∣

∣

∣

s=0

= Aθ,Ĝn
h(xt−p, . . . , xt) −

∫

hdĜn,

where

Aθ,Gh(xt−p, . . . , xt) = Eθ,G [h(εt) | Xt = xt, . . . , Xt−p = xt−p] , xt−p, . . . , xt ∈ Z+.

Hence, we obtain a moment condition for every bounded function h : Z+ → R:

0 =
1

n

n
∑

t=0

(

Aθ̂n,Ĝn
h(Xt−p, . . . , Xt) −

∫

h dĜn

)

.

Let H1 be the unit ball of `∞(Z+), i.e., all functions h : Z+ → R with supe∈Z+
|h(e)| ≤ 1.

We will only use the moment conditions arising from h ∈ H1. We summarize these in an
estimating equation Ψn = (Ψn1, Ψn2) : (0, 1)p × G̃ → R

p × `∞(H1) defined by

Ψn1(θ, G) =
1

n

n
∑

t=0

˙̀
θ(Xt−p, . . . , Xt; θ, G), (6)

Ψn2(θ, G)h =
1

n

n
∑

t=0

(

Aθ,Gh(Xt−p, . . . , Xt) −
∫

h dG

)

, h ∈ H1. (7)

Note that Ψn2(θ, G) is indeed a random element of `∞(H1), the set of bounded real-valued
linear functionals on H1, since suph∈H1

|Ψn2(θ, G)h| ≤ 2. From the discussion above we

know that any NPMLE satisfies Ψn2(θ̂n, Ĝn) = 0, and Pνθ0,G0
,θ0,G0

{Ψn1(θ̂n, Ĝn) = 0} → 1
by the consistency result of Theorem 2.1.

For (θ0, G0) ∈ Θ×G we introduce the “limit” of the estimating equation: Ψθ0,G0 : (0, 1)p ×
G → R

p × `∞(H1) by,

Ψθ0,G0

1 (θ, G) = Eνθ0,G0
,θ0,G0

˙̀
θ(X−p, . . . , X0; θ,G), (8)

Ψθ0,G0

2 (θ, G)h = Eνθ0,G0
,θ0,G0

(

Aθ,Gh(X−p, . . . , X0) −
∫

h dG

)

, h ∈ H1. (9)

It is easy to see that

Eνθ0,G0
,θ0,G0

Ψθ0,G0

1 (θ0, G0) = 0, and, for all h ∈ H1, Eνθ0,G0
,θ0,G0

Ψθ0,G0

2 (θ0, G0)h = 0,

which is the usual result that, under the true probability measure, scores have expectation
zero.
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3.2. Asymptotic normality

In this section we exploit that the NPMLE can be seen as a solution to the estimating equa-
tion Ψn in (6)–(7) in order to derive its limiting distribution. Essentially we follow Huber’s
classical theorem on asymptotic normality of M-estimators. Compared to finite-dimensional
parameters, we now have to deal with functional calculus instead of Euclidean calculus, and
with empirical processes instead of weak convergence in Euclidean spaces.

First, we specify the chosen topology. Identify G ∈ G with its point mass function Z+ 3
k 7→ g(k) = G{k} and view the point mass functions as elements of the Banach space `1 =
`1(Z+), i.e. the space of real-valued sequences (ak)k∈Z+

for which ‖a‖1 =
∑

k∈Z+
|ak| < ∞.

In the following, linG and its subsets are always regarded as subsets of `1(Z+). If no con-
fusion can arise G will denote G = (g(k))k∈Z+

, and we write ‖G‖1 = ‖g‖1. Θ is equipped
by the Euclidean topology, and we equip the product space R

p × `1(Z+) with the product
topology, which can be metrized by the sum-norm ‖(θ, G)‖ = |θ| + ‖G‖1. Our parameter
space, Θ × G, is viewed upon as a subset of this Banach space R

p × `1(Z+). In this section

we determine the limiting distribution of
√

n((θ̂n, Ĝn) − (θ,G)), viewed upon as a random
element in R

p × `1(Z+).

Lemma A.2 shows that the conditions to an infinite-dimensional version of Huber’s theorem
are satisfied. Part (L1) of Lemma A.2 shows that, for (θ0, G0) ∈ Θ×G, the limiting moment
equations (8)–(9) are Fréchet-differentiable with derivative Ψ̇0 = Ψ̇θ0,G0 : lin ([0, 1]p × G) →
R

p × `∞(H1) given by

Ψ̇0(θ − θ0, G − G0) =
(

Ψ̇0
11(θ − θ0) + Ψ̇0

12(G − G0), Ψ̇
0
21(θ − θ0) + Ψ̇0

22(G − G0)
)

, (10)

where Ψ̇0
11 : R

p → R
p, Ψ̇0

12 : linG → R
p, Ψ̇0

21 : R
p → `∞(H1), and Ψ̇0

22 : linG → `∞(H1) are
defined by

Ψ̇0
11(θ − θ0) = −

(

Eν0,θ0,G0
˙̀
θ
˙̀T
θ (X−p, . . . , X0; θ0, G0)

)

(θ − θ0), (11)

Ψ̇0
12(G − G0) = −

∫

Eν0,θ0

[

˙̀
θ(X−p, . . . , X0; θ0, G0) | ε0 = e

]

d(G − G0)(e), (12)

and for h ∈ H1,

Ψ̇0
21(θ − θ0)h = −(θ − θ0)

T
Eν0,θ0,G0

[

˙̀
θ(X−p, . . . , X0; θ0, G0)Aθ0,G0

h(X−p, . . . , X0)
]

,

(13)

Ψ̇0
22(G − G0)h = −

∫

Eν0,θ0
[Aθ0,G0

h(X−p, . . . , X0) | ε0 = e] d(G − G0)(e), (14)

with ν0 = νθ0,G0
and where we use the following version of conditional probabilities, for

G ∈ G̃ and x−p, . . . , x0, e ∈ Z+,

Pν0,θ0,G {X−p = x−p, . . . , X0 = x0 | ε0 = e} = Pν0,θ0
{X−p = x−p, . . . , X0 = x0 | ε0 = e}

= ν0{(x−1, . . . , x−p)}
(

Binx−p,θp
∗ · · · ∗ Binx−1,θ1

)

{x0 − e}.

Part (L2) of Lemma A.2 shows that the derivative Ψ̇θ0,G0 is continuously invertible, which
means that θ and g are locally identified. Subsequently, (L3) establishes weak convergence
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of the moment conditions (6)–(7) to the limits (8)–(9), i.e.,

S
θ0,G0

n =
√

n(Ψn(θ0, G0) − Ψθ0,G0(θ0, G0)) Ã S
θ0,G0 in R

p × `∞(H1), under Pν0,θ0,G0
,

(15)

where S
θ0,G0 is a tight, Borel measurable, Gaussian process. Finally (L4) of Lemma A.2

gives a convenient negligibility result. A combination of Theorem 2.1 and Lemma A.2 with
an infinite-dimensional version of Huber’s theorem yields the following theorem.

Theorem 3.1 For (θ0, G0) ∈ Θ × G, any NPMLE (θ̂n, Ĝn) satisfies

√
n

(

(θ̂n, Ĝn) − (θ0, G0)
)

= −Ψ̇−1
θ0,G0

S
θ0,G0

n + o(1; Pνθ0,G0
,θ0,G0

) Ã −Ψ̇−1
θ0,G0

S
θ0,G0 , (16)

under Pνθ0,G0
,θ0,G0

in R
p × `1(Z+).

Proof: Theorem 2.1 and Lemma A.2 show that all conditions to Theorem 3.3.1 in
Van der Vaart and Wellner (1993) are satisfied, which yields the result. 2

4. Efficiency

In this section we prove efficiency of (θ̂n, Ĝn). As mentioned in the introduction, our proof
is nonstandard as it does not seem to be possible to obtain explicit expressions for the effi-
cient influence operator. Fortunately, the special representation of the limiting distribution
(Theorem 3.1) can be exploited to demonstrate efficiency. Basically, the argument is that
the “score-process” S

θ,G
n (see (15)) can be seen as an efficient estimator of a certain artificial

parameter, and that efficiency is retained under Hadamard differentiable mappings.

4.1. Tangent space, regularity and the convolution theorem

It is well-known that the local structure of a model needs to be considered to obtain lower-
bounds to the asymptotic precision of consistent estimators. Tangent spaces are the math-
ematical tool for this. The tangent set contains all scores that can be obtained from one-
dimensional parametric submodels in the semiparametric model. Lemma A.3 shows that
for the INAR(p) model, the tangent set, at Pνθ,G,θ,G, is given by

T 0
θ,G =

{

aT ˙̀
θ(X−p, . . . , X0; θ, G) + Aθ,Gh(X−p, . . . , X0) −

∫

hdG | a ∈ R
p, h ∈ `∞(Z+)

}

,

with Aθ,G as defined in Section 3.1. The tangent space is the L2(νθ,G ⊗ P θ,G)-closure of

T 0
θ,G: Tθ,G = T 0

θ,G.

Any result on (asymptotic) precision of estimators is restricted to a certain class of es-
timators. We follow the literature by considering “asymptotically unbiased” estimators.
This concept, known under the name “regularity”, is recalled first. An estimator Tn of
(θ,G) is regular at Pνθ,G,θ,G if there exists a tight Borel measurable random element L in
R

p × `1(Z+) such that for all a ∈ R
p, h ∈ `∞(Z+), we have,

√
n (Tn − (θn, Gn)) Ã L under Pνn,θn,Gn

, (17)



Efficient estimation for semiparametric INAR(p) models 11

where θn = θ + a/
√

n, gn = g(1 + (h −
∫

h dG)/
√

n), and νn = νθn,Gn
. An interpretation

of (17) is that the limiting-distribution of Tn is not disturbed by vanishing perturbations
in direction (a, h). An estimator Tn of (θ, G) is regular if it is regular at all Pνθ,G,θ,G,
(θ, G) ∈ Θ × G.

Since Lemma A.3 establishes the LAN-property along parametric submodels of our semi-
parametric experiment E(n), and it is straightforward to check pathwise differentiability, the
following theorem is an immediate consequence of an infinite-dimensional analogue of the
famous Hájek-Le Cam convolution theorem (see, for example, Bickel et al. (1998), Theo-
rem 5.2.1, or Van der Vaart (1991), Theorem 2.1).

Theorem 4.1 Let (θ, G) ∈ Θ × G and let Tn be an estimator of (θ, G) which is regular at
Pνθ,G,θ,G. In particular,

L
(√

n (Tn − (θ, G)) | Pνθ,G,θ,G

) w−→ Z = Zθ,G,(Tn)n∈N
.

Then there exist independent random elements Lθ,G, which is a centered Gaussian process
only depending on the model, and Nθ,G,(Tn)n∈N

, which generally depends on both the model
and the estimator, such that

Zθ,G,(Tn)n∈N
= L(Lθ,G + Nθ,G,(Tn)n∈N

).

So the scaled estimation error
√

n(Tn − (θ, G)) can, in the limit, be represented by the con-
volution of the process Lθ,G and Nθ,G,(Tn)n∈N

. Since Lθ,G only depends on the model and
not on the estimator itself, it represents inevitable noise. Therefore an estimator is called
efficient at Pνθ,G,θ,G if it is regular with limiting distribution Lθ,G. An estimator is efficient
if it is efficient at all Pνθ,G,θ,G, (θ, G) ∈ Θ × G.

To claim efficiency of our NPMLE, we need this NPMLE to be a regular estimator itself.
This is easily established.

Proposition 4.1 Let (θ, G) ∈ Θ × G. Any NPMLE ((θ̂n, Ĝn))n∈Z+
is a regular estimator

of (θ,G) at Pνθ,G,θ,G.

Proof: Using Le Cam’s third lemma and Lemma A.3 it is easy to see (see also the proof

of Theorem 2 in Van der Vaart (1995)) that (θ̂n, Ĝn) is regular at Pνθ,G,θ,G if and only if the

Fréchet derivative of the estimating equation, Ψ̇θ,G satisfies, for all a ∈ R
p and h∗ ∈ `∞(Z+)

with EGh∗(ε1) = 0,

Ψ̇θ,G
1 (a, (k 7→ h∗(k)g(k))) (18)

= −Eνθ,G,θ,G

(

aT ˙̀
θ(X−p, . . . , X0; θ, G)a + Aθ,Gh∗(X−p, . . . , X0)

)

˙̀
θ(X−p, . . . , X0; θ, G),

and, for all h ∈ H1,

Ψ̇θ,G
2 (a, (k 7→ h∗(k)g(k)))h (19)

= −Eνθ,G,θ,G

(

aT ˙̀
θ(X−p, . . . , X0; θ, G) + Aθ,Gh∗(X−p, . . . , X0)

)

Aθ,Gh(X−p, . . . , X0).

Plugging in the definitions of Ψ̇θ,G
1 and Ψ̇θ,G

2 , these displays are easily checked. 2
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Remark 4.1 The displays (18)–(19) can be interpreted as the infinite-dimensional analogue
of the information-matrix equality, i.e., the expectation of the outer-product of scores often
equals minus the expectation of the Hessian of the log-likelihood.

4.2. Efficiency of the NPMLE

To prove efficiency we first recall the following characterization of efficiency. Fix (θ0, G0) ∈
Θ×G and denote ν0 = νθ0,G0

. Since (θ̂n, Ĝn) is a regular estimator of (θ,G), we can conclude

(see, for example, Bickel et al. (1998), Corollary 5.2.1) that (θ̂n, Ĝn) is efficient at Pν0,θ0,G0
,

once we show that each component of (θ̂n, Ĝn) is asymptotically linear at Pν0,θ0,G0
with an

influence function contained in the tangent space Tθ0,G0
. More precise: there should exist

f1, . . . , fp ∈ Tθ0,G0
and hk, k ∈ Z+ from Tθ0,G0

such that

√
n(θ̂n − θ) =

1√
n

n
∑

t=0







f1(Xt−p, . . . , Xt)
...

fp(Xt−p, . . . , Xt)






+ o(1; Pν0,θ0,G0

), (20)

and for all k ∈ Z+,

√
n(ĝn(k) − g(k)) =

1√
n

n
∑

t=0

hk(Xt−p, . . . , Xt) + o(1; Pν0,θ0,G0
). (21)

Since we have no explicit formulas for Ψ̇−1
θ0,G0

we cannot check directly whether this is the
case. However, we will exploit the representation (see Theorem 3.1)

√
n

(

θ̂n − θ0

(ĝn(k) − g0(k))k∈Z+

)

= −Ψ̇−1
θ0,G0

S
θ0,G0

n + o(1; Pν0,θ0,G0
), (22)

to demonstrate efficiency by an indirect argument. Recall that the finite-dimensional part
of S

θ0,G0
n is given by

S
θ0,G0

n1 =
1√
n

n
∑

t=0

˙̀
θ(Xt−p, . . . , Xt; θ0, G0), (23)

and the infinite-dimensional part by,

S
θ0,G0

n2 h =
1√
n

n
∑

t=0

(

Aθ0,G0
h(Xt−p, . . . , Xt) −

∫

h dG0

)

, h ∈ H1. (24)

So S
θ0,G0
n is a process of certain elements of the tangent space. To prove efficiency we

show that S
θ0,G0
n can, at Pν0,θ0,G0

, be seen as an efficient estimator of a certain artificial
parameter and then exploit the representation (22) and that efficiency is retained under
smooth mappings.

Theorem 4.2 Any NPMLE ((θ̂n, Ĝn))n∈Z+
is an efficient estimator of (θ,G) within the

experiments E(n), n ∈ Z+. So we have (see Theorem 4.1), for all (θ0, G0) ∈ Θ × G,

L(Lθ0,G0
) = L(−Ψ̇−1

θ0,G0
S

θ0,G0).
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Proof: Introduce the artificial parameters (notice that we use ν0 instead of νθ,G)

Θ × G 3 (θ, g) 7→ νθ0,G0

1 (θ, g) = Eν0,θ,G
˙̀
θ(X−p, . . . , X0; θ0, G0),

and, for h ∈ H1,

Θ × G 3 (θ, g) 7→ νθ0,G0

h (θ, g) = Eν0,θ,GAθ0,G0
h(X−p, . . . , X0) −

∫

h dG0.

Hence νθ0,G0

1 (θ0, g0) = νθ0,G0

h (θ0, g0) = 0. From (23) we conclude that, at Pν0,θ0,G0
, S

θ0,G0

n1

is an asymptotically linear estimator of νθ0,G0

1 (θ, g) with influence function contained in

Tθ0,G0
. Similarly, from (24) we obtain that, at Pν0,θ0,G0

and for h ∈ H1, S
θ0,G0

n2 h is an

asymptotically linear estimator of νθ0,G0

h (θ, g), with influence function contained in Tθ0,G0
.

Consequently, these estimators are efficient at Pν0,θ0,G0
once we show that they are regular

at Pν0,θ0,G0
. Using Le Cam’s third lemma and Lemma A.3 this regularity follows once we

show that, for all a ∈ R
p and f ∈ `∞(Z+) with EG0

f(ε1) = 0,

lim
t→0

νθ0,G0

1 (θ + ta, g0(1 + t(f −
∫

f dG0))) − νθ0,G0

1 (θ0, g0)

t
=

Eν0,θ0,G0

(

aT ˙̀
θ(X−p, . . . , X0; θ0, G0) + Aθ0,G0

f(X−p, . . . , X0)
)

˙̀
θ(X−p, . . . , X0),

and, for h ∈ H1,

lim
t→0

νθ0,G0

h (θ + ta, g0(1 + t(f −
∫

f dG0))) − νθ0,G0

h (θ0, g0)

t
=

Eν0,θ0,G0

(

aT ˙̀
θ(Z0; θ0, G0) + Aθ0,G0

f(Z0)
)

(

Aθ0,G0
h(Z0) −

∫

h dG0

)

.

These relations are quite straightforward to check (see also the proof of Lemma A.3).

Hence we conclude that, at Pν0,θ0,G0
, S

θ0,G0

n1 is an efficient estimator of the parameter

(θ, g) 7→ νθ0,G0

1 (θ, g), and, for h ∈ H1, S
θ0,G0

n2 h is, at Pν0,θ0,G0
, an efficient estimator of

the parameter (θ, g) 7→ νθ0,G0

h (θ, g). Since we already established tightness of S
θ0,G0
n (see

Lemma A.2L3), and since marginal efficiency plus tightness is equivalent to efficiency,
we conclude that S

θ0,G0
n is, at Pν0,θ0,G0

, an efficient estimator of the parameter (θ, g) 7→
(νθ0,G0

1 (θ, g), (νθ0,G0

h (θ, g))h∈H1
). From (22) we obtain that, at Pν0,θ0,G0

,
√

n(θ̂n−θ0, (ĝn(k)−
g0(k))k∈Z+

) is a continuous, linear transformation of the efficient estimator S
θ0,G0
n . Since ef-

ficiency is retained under Hadamard differentiable mappings we conclude that, at Pν0,θ0,G0
,√

n(θ̂n − θ0, (ĝn(k)− g0(k))k∈Z+
) is an efficient estimator of a certain parameter (for details

we refer to the proof of Theorem 3 in Van der Vaart (1995)). Hence, still at Pν0,θ0,G0
, the

influence functions of the components of
√

n(θ̂n − θ0, (ĝn(k)− g0(k))k∈Z+
) are contained in

the tangent space Tθ0,G0
, which yields (20) and (21). Since we already proved regularity this

proves efficiency of the NPMLE at Pν0,θ0,G0
. 2

5. Simulation experiment and empirical example

To enhance the interpretation and to investigate the validity of our theoretical results a
small Monte Carlo study and empirical application is presented.
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In the Monte Carlo study the finite sample behavior of the NPMLE is investigated. All simu-
lations were carried out in Matlab 6.5 and the NPMLE is computed using the optimization
routine fmincon. As starting values for the optimization routine we use the OLS-estimator
for θ and as starting value for G we use the uniform distribution on {0, . . . ,maxt=1,...,n Xt}.
Due to the form of the likelihood the computational effort in the simulations is substantial.
Therefore, the number of replications is limited to 2500, we only consider p = 1, and we
only consider relatively small values of µG/(1 − θ1). Four innovation distributions G are
considered. Two of these choices are inspired by the estimates in the empirical application
(see Table 3): Poisson(0.5) and Geometric(exp(−0.5)). We also consider the Poisson(1) and
the Geometric(exp(−1)) distribution as innovation distributions. For each choice of the in-
novation distribution we consider three θ-values and two sample sizes: θ = 0.25, 0.5, 0.75,
and n = 500, 2000. Notice that the Poisson(µ) distribution assigns the same mass to 0
as the Geometric(exp(−µ)) distribution, which explains the choice of parameters for the
Geometric distributions. For the Poisson distribution it is well-known, and easy to check,
that νθ,G = Poisson(µG/(1− θ)). Hence for Poisson innovations we use “exact” simulations
for the initial value. For the Geometric innovation structures we let the chain start in the
stationary mean (rounded to obtain an integer) and let it “run” for 250 periods. As first
observation in our studies we use the value of the process at time 251.

Table 1 presents the results for n = 500, and Table 2 presents the results for n = 2000.
To conserve space we only report the results for ĝn(k) for k = 0, . . . , 5. Comparing the
entries in Table 1 with the corresponding entries in Table 2, we confirm the theoretical
results developed before. First, even for the smaller sample, the NPMLE for θ is always
more precise than the OLS estimator. The efficiency gain seems to be increasing in θ and
runs up to 400%. This corroborates the result of Drost et al. (2006a) that shows that near
unity the least-squares estimator does not even attain the optimal rate of convergence.
Since estimation of G has not been considered before in the literature, the behavior of ĝn

is perhaps more interesting. We see that also for the smaller sample the probability esti-
mates are unbiased. It appears that the standard errors of ĝn tend to increase with θ. A
possible explanation for this is the following. If the INAR(1) process drives to state 0, the
next observation yields a direct observation on ε. The NPMLE exploits both these direct
observations as well as the other observations for which we observe a (true) convolution of
εt with θ1 ◦Xt−1. Asymptotically, we have nνθ,G{0} direct observations on ε. Since νθ,G{0}
decreases as θ increases, we obtain less direct observations on ε as θ increases. So we have to
deconvolute even more observations, which yields increasing standard errors. Comparing the
Geometric distributions with their Poisson counterpart it seems that estimation of (θ, G) for
Poisson innovations is more difficult than for Geometric innovations. Furthermore, the effi-
ciency gain of θ̂n with respect to the OLS-estimator of θ is less large for Poisson innovations.

To demonstrate that the NPMLE is applicable in practice, we conclude this section with a
simple empirical example based on ultra-high frequency data. We consider the IBM stock
traded at the NYSE. We use quote data from the TAQ dataset for February 2005. In this
month there were 19 trading days (on Monday February 21 the NYSE was closed because of
Washington’s Birthday). We remove all quotes that took place outside the opening hours;
i.e. before 9.30 AM and after 4.00 PM. The variable of interest is the number of quotes per
second, where we start the measurement at the first quote of the day and end at the last
quote of the day. For the trading days in February 2005, the maximum number of quotes
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Table 1. Simulation results for n = 500 (based on 2500 replications)

Parameter Value Estimator Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

θ = 0.25 θ = 0.5 θ = 0.75

G = Geometric(exp(−0.5))

θOLS
n

0.2457 0.0482 0.4934 0.0441 0.7436 0.0317

θ̂n 0.2463 0.0391 0.4970 0.0315 0.7489 0.0178
g(0) 0.6065 ĝn(0) 0.6041 0.0290 0.6047 0.0311 0.6046 0.0339
g(1) 0.2387 ĝn(1) 0.2405 0.0259 0.2395 0.0291 0.2402 0.0336
g(2) 0.0939 ĝn(2) 0.0943 0.0165 0.0946 0.0187 0.0942 0.0209
g(3) 0.0369 ĝn(3) 0.0369 0.0105 0.0372 0.0117 0.0370 0.0132
g(4) 0.0145 ĝn(4) 0.0148 0.0068 0.0147 0.0078 0.0145 0.0084
g(5) 0.0057 ĝn(5) 0.0056 0.0043 0.0056 0.0049 0.0059 0.0051

G = Poisson(0.5)

θOLS
n

0.2474 0.0494 0.4944 0.0447 0.7436 0.0335

θ̂n 0.2478 0.0470 0.4964 0.0364 0.7484 0.0210
g(0) 0.6065 ĝn(0) 0.6061 0.0297 0.6048 0.0318 0.6036 0.0347
g(1) 0.3033 ĝn(1) 0.3035 0.0276 0.3048 0.0304 0.3056 0.0342
g(2) 0.0758 ĝn(2) 0.0759 0.0149 0.0759 0.0161 0.0765 0.0167
g(3) 0.0126 ĝn(3) 0.0127 0.0062 0.0126 0.0064 0.0126 0.0069
g(4) 0.0016 ĝn(4) 0.0015 0.0022 0.0016 0.0024 0.0016 0.0024
g(5) 0.0002 ĝn(5) 0.0002 0.0007 0.0002 0.0008 0.0001 0.0006

G = Geometric(exp(−1))

θOLS
n

0.2475 0.0461 0.4960 0.0411 0.7419 0.0308

θ̂n 0.2466 0.0342 0.4971 0.0288 0.7478 0.0189
g(0) 0.3679 ĝn(0) 0.3660 0.0363 0.3643 0.0462 0.3598 0.0739
g(1) 0.2325 ĝn(1) 0.2327 0.0321 0.2347 0.0463 0.2377 0.0861
g(2) 0.1470 ĝn(2) 0.1478 0.0252 0.1474 0.0379 0.1478 0.0670
g(3) 0.0929 ĝn(3) 0.0927 0.0204 0.0929 0.0314 0.0934 0.0531
g(4) 0.0587 ĝn(4) 0.0588 0.0165 0.0590 0.0259 0.0591 0.0389
g(5) 0.0371 ĝn(5) 0.0378 0.0133 0.0371 0.0209 0.0376 0.0282

G = Poisson(1)

θOLS
n

0.2460 0.0466 0.4947 0.0419 0.7427 0.0430

θ̂n 0.2443 0.0463 0.4956 0.0372 0.7450 0.0381
g(0) 0.3679 ĝn(0) 0.3657 0.0352 0.3626 0.0461 0.3586 0.0671
g(1) 0.3679 ĝn(1) 0.3676 0.0313 0.3709 0.0440 0.3740 0.0653
g(2) 0.1839 ĝn(2) 0.1851 0.0275 0.1849 0.0352 0.1841 0.0406
g(3) 0.0613 ĝn(3) 0.0624 0.0166 0.0625 0.0210 0.0619 0.0242
g(4) 0.0153 ĝn(4) 0.0153 0.0087 0.0154 0.0104 0.0161 0.0110
g(5) 0.0031 ĝn(5) 0.0030 0.0037 0.0030 0.0042 0.0031 0.0042



16 Drost, van den Akker & Werker

Table 2. Simulation results for n = 2000 (based on 2500 replications)

Parameter Value Estimator Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

θ = 0.25 θ = 0.5 θ = 0.75

G = Geometric(exp(−0.5))

θOLS
n

0.2488 0.0247 0.4989 0.0228 0.7489 0.0164

θ̂n 0.2488 0.0194 0.4998 0.0157 0.7499 0.0088
g(0) 0.6065 ĝn(0) 0.6059 0.0145 0.6062 0.0160 0.6066 0.0165
g(1) 0.2387 ĝn(1) 0.2392 0.0129 0.2386 0.0148 0.2387 0.0165
g(2) 0.0939 ĝn(2) 0.0939 0.0084 0.0943 0.0097 0.0940 0.0102
g(3) 0.0369 ĝn(3) 0.0370 0.0052 0.0370 0.0059 0.0367 0.0067
g(4) 0.0145 ĝn(4) 0.0146 0.0033 0.0145 0.0038 0.0146 0.0042
g(5) 0.0057 ĝn(5) 0.0058 0.0021 0.0058 0.0024 0.0057 0.0026

G = Poisson(0.5)

θOLS
n

0.2494 0.0245 0.4991 0.0248 0.7486 0.0222

θ̂n 0.2497 0.0231 0.4991 0.0206 0.7497 0.0180
g(0) 0.6065 ĝn(0) 0.6066 0.0148 0.6059 0.0199 0.6063 0.0205
g(1) 0.3033 ĝn(1) 0.3033 0.0135 0.3037 0.0162 0.3030 0.0177
g(2) 0.0758 ĝn(2) 0.0756 0.0074 0.0757 0.0082 0.0759 0.0085
g(3) 0.0126 ĝn(3) 0.0127 0.0031 0.0126 0.0033 0.0126 0.0033
g(4) 0.0016 ĝn(4) 0.0015 0.0011 0.0015 0.0012 0.0016 0.0012
g(5) 0.0002 ĝn(5) 0.0002 0.0003 0.0002 0.0004 0.0001 0.0003

G = Geometric(exp(−1))

θOLS
n

0.2493 0.0232 0.4990 0.0211 0.7484 0.0158

θ̂n 0.2490 0.0165 0.4995 0.0140 0.7494 0.0087
g(0) 0.3679 ĝn(0) 0.3678 0.0178 0.3672 0.0234 0.3655 0.0334
g(1) 0.2325 ĝn(1) 0.2327 0.0156 0.2333 0.0233 0.2341 0.0388
g(2) 0.1470 ĝn(2) 0.1470 0.0127 0.1467 0.0185 0.1474 0.0307
g(3) 0.0929 ĝn(3) 0.0925 0.0102 0.0930 0.0154 0.0933 0.0255
g(4) 0.0587 ĝn(4) 0.0594 0.0083 0.0588 0.0126 0.0587 0.0203
g(5) 0.0371 ĝn(5) 0.0369 0.0064 0.0370 0.0101 0.0371 0.0163

G = Poisson(1)

θOLS
n

0.2492 0.0238 0.4972 0.0287 0.7486 0.0157

θ̂n 0.2490 0.0228 0.4977 0.0268 0.7491 0.0109
g(0) 0.3679 ĝn(0) 0.3676 0.0180 0.3663 0.0269 0.3661 0.0292
g(1) 0.3679 ĝn(1) 0.3675 0.0155 0.3678 0.0263 0.3688 0.0296
g(2) 0.1839 ĝn(2) 0.1844 0.0137 0.1838 0.0184 0.1844 0.0191
g(3) 0.0613 ĝn(3) 0.0616 0.0084 0.0613 0.0103 0.0615 0.0111
g(4) 0.0153 ĝn(4) 0.0153 0.0042 0.0156 0.0051 0.0155 0.0053
g(5) 0.0031 ĝn(5) 0.0030 0.0020 0.0030 0.0022 0.0031 0.0023
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Table 3. Estimation results IBM

Avg. Estimate Std. Error

θOLS
n

0.2552 0.0159

θ̂n 0.2307 0.0116
ĝn(0) 0.6385 0.0260
ĝn(1) 0.2440 0.0129
ĝn(2) 0.0844 0.0099
ĝn(3) 0.0239 0.0043
ĝn(4) 0.0066 0.0014
ĝn(5) 0.0018 0.0006

per second was on average 9.8, and the average number of quotes per second during the
trading days was 0.68. For each trading day we estimate an INAR(1) model. In Table 3
we present the average of the parameter estimates and the standard errors of these esti-
mates. To conserve space we only report the results for ĝn(k) for k = 0, . . . , 5. From the
standard errors we see that the estimates for the different days are quite close. So, at least
for February 2005, there seems to be some common structure in the arrival of quotes. The
OLS estimates and the NPMLE estimates of θ are not too far away from each other, so this
provides “no evidence” against the model. We have the following estimated autoregression
E[Xt | Xt−1] = θXt−1 + µG ≈ 0.23Xt−1 + 0.52, and the following estimated conditional
variance var[Xt | Xt−1] = θ(1−θ)+σ2

G ≈ 0.18Xt−1 +0.70. Interpreting the INAR(1) model
as a branching process with immigration, we can “decompose” the number of quotes per
second into two parts. The first part, consists of quotes which are “offspring” of quotes in
the previous second, and so models the predictable part. The estimated value for θ, which
is about 0.23, means that a quote arriving at time t “generates” a new quote at period t+1
with probability 0.23. The estimates ĝn(k) give the probability on k “new unpredictable”
quotes. These estimates θ are confirmed by the autoregression results above as θ ≈ 0.23 and
θ(1 − θ) ≈ 0.18. On the other hand, a Poisson innovation distribution seems to be rejected
as µ̂G 6= σ̂2

G. Also the estimated probabilities ĝ(0), ĝ(1), . . . do not follow a Poisson distri-
bution. A geometric distribution possibly copes better with the IBM data. Of course, we do
not advocate to impose a priori a Geometric distribution: G is a nuisance parameter and
should be treated as such. Our proposed NPMLE is then optimal both for θ, in particular
improving over OLS, and for G.

A. Some auxiliary results

To exploit the p-th order Markovian structure of the INAR(p) process (2), we introduce
Z = (Zt)t∈Z+

defined by Zt = (Xt, Xt−1, . . . , Xt−p)
T . Under Pν,θ,G the process Z is a

first-order Markov chain in Z
p+1
+ . It is easy to see that, in case θ ∈ Θ and G ∈ G, Z is irre-

ducible and aperiodic. For notational convenience we also introduce Y = (Yt)t∈Z+
defined

by Yt = (Xt−1, . . . , Xt−p)
T .

The next lemma contains some auxiliary results. We briefly indicate their use in this paper.
Part (A) establishes the existence of a stationary distribution for the INAR(p) process.
Part (B) shows that the β-mixing numbers of Z are geometrically decreasing. This together
with results from Doukhan et al. (1995) yields part (C). We will use Part (C) to demon-
strate weak convergence of the infinite-dimensional part of the “score-process”. Since it is
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only in very special cases possible to derive closed form formulas for νθ,G, it is nontrivial to
verify “negligibility of the initial value”, which we need to prove that parametric submodels
of the semiparametric model enjoy the LAN-property. Part (D) will allow us to prove this
negligibility. The proof of the lemma is organized in the technical appendix.

Lemma A.1 Let θ ∈ Θ and G ∈ G. The following results hold.

(A) There exists a probability measure νθ,G on Z
p
+ such that X is a (strictly) stationary

process under Pνθ,G,θ,G. Furthermore, the first moment of Xt, under Pνθ,G,θ,G, is finite.

If, for k ∈ N, EGεk
1 < ∞, then Eνθ,G,θ,GXk

t < ∞.

(B) Under Pνθ,G,θ,G the β-mixing (also called: absolute regularity mixing) coefficients (for
the definition see, for example, Doukhan (1994) page 3 and pages 87-88) of Z satisfy

β(n) ≤ Cρn, for all n ∈ N,

for some constant C > 0 and 0 < ρ < 1.

(C) Let Zn denote the empirical process of Z, i.e.

Znf =
1√
n

n
∑

t=0

(

f(Zt) − Eνθ,G,θ,Gf(Z0)
)

, for f : Z
p+1
+ → R : Eνθ,G,θ,Gf2(Z0) < ∞.

Let F be a collection of real-valued functions on Z
p+1
+ with supf∈F |f(x−p, . . . , x0)| ≤

C(1 + x−p + · · · + x0) for some C > 0, and such that its bracketing numbers with
respect to the L2(νθ,G ⊗ P θ,G)-norm, denoted by N[ ](δ,F), δ > 0, satisfy

∫ 1

0

x−a
(

log N[ ](x,F)
)1/2

dx < ∞,

for some a > 0. Then the process {Znf | f ∈ F} weakly converges, under Pνθ,G,θ,G, in
`∞(F) to a tight Gaussian process.

(D) Define V : Z
p
+ → [1,∞) by V (x−1, . . . , x−p) = 1+

∑p
i=1 aix−i, where ai = θi + · · ·+θp

for i = 1, . . . , p. Let (θn, Gn) be a sequence in Θ × G. Write δy for the Dirac measure
on y ∈ R

p. Then

lim
n→∞

sup
y∈Z

p
+

supf : |f |≤V

∣

∣Eδy,θn,Gn
f(Y1) − Eδy,θ,Gf(Y1)

∣

∣

V (y)
= 0

implies

lim
n→∞

sup
f : |f |≤V

∣

∣

∣

∣

∫

f dνθ,G −
∫

f dνθn,Gn

∣

∣

∣

∣

= 0.

Remark A.1 Stationarity in Part (A) can be established without the condition that g(0) >
0. In that case, the support of the stationary distribution νθ,G is given by {α, α + 1, . . . }p,
where α = min{k ∈ Z+ | g(k) > 0}. Furthermore, only the first moment of G needs to be
finite.
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Remark A.2 Let us recall the definition of the bracketing numbers used in (C). A bracket
is a pair of elements [f, g] of L2(νθ,G ⊗ P θ,G) such that f ≤ g. For δ > 0 the bracketing
number N[ ](δ,F) is the smallest cardinality of collections S(δ) of brackets such that for all

f ∈ F there exists [g, h] ∈ S(δ) such that g ≤ f ≤ h and
∫

(h − g)2 d(νθ,G ⊗ P θ,G) ≤ δ2.

The following lemma is key to the derivation of the limiting distribution of the NPMLE
in Section 3.2. As its proof is fairly technical and involved, we provide it in the Technical
Appendix.

Lemma A.2 Let (θ0, G0) ∈ Θ×G. Denote ν0 = νθ0,G0
. Then the following properties hold.

(L1) The map Ψθ0,G0 : (0, 1)p × G → R
p × `∞(H1) is Fréchet-differentiable at (θ0, G0), i.e.

‖Ψθ0,G0(θ,G) − Ψθ0,G0(θ0, G0) − Ψ̇θ0,G0(θ − θ0, G − G0)‖ = o(‖(θ, G) − (θ0, G0)‖)
(25)

as (θ, G) → (θ0, G0) within Θ×G where Ψ̇0 = Ψ̇θ0,G0 : lin ([0, 1]p × G) → R
p×`∞(H1),

defined by (10)-(14), is a continuous, linear mapping.
(L2) The inverse Ψ̇−1

θ0,G0
: Range(Ψ̇θ0,G0) → lin (Θ × G) exists and is continuous. (Ψ̇−1

θ0,G0

has a unique continuous extension to the closure of Range(Ψ̇θ0,G0), which we also
denote by Ψ̇−1

θ0,G0
, and this operator is the inverse of the unique extension of Ψ̇θ0,G0

to the closure of lin ([0, 1]p × G)).
(L3) We have, for S

θ0,G0
n defined by (15), S

θ0,G0
n Ã S

θ0,G0 in R
p×`∞(H1), under Pν0,θ0,G0

,
where S

θ0,G0 is a tight, Borel measurable, Gaussian process.
(L4) Let (θ̂n, Ĝn), n ∈ Z+, be a NPMLE. We have

√
n

(

Ψn − Ψθ0,G0
)

(θ̂n, Ĝn) −
√

n
(

Ψn − Ψθ0,G0
)

(θ0, G0) = o(1; Pν0,θ0,G0
).

Proof (outline): Let us briefly comment on some elements of the proof of this lemma.
(L1) The proof of (L1) is facilitated by the conditional expectation representations in the

estimating equation Ψθ0,G0 . In particular, we heavily exploit that, due to the chosen versions
of conditional probabilities with respect to εt,

Eνθ0,G0
,θ0,G [f(Xt−p, Xt−p, . . . , Xt) | εt] = Eνθ0,G0

,θ0,G0
[f(Xt−p, Xt−p, . . . , Xt) | εt] ,

Pν0,θ0,G0
-a.s. for all G ∈ G.

(L2) The proof of (L2) is decomposed in the following steps.

(1) In this step we show that we can rewrite some parts of the derivative Ψ̇θ0,G0 as follows,

Ψ̇θ0,G0

12 (G − G0) = −
∫

A∗
θ0,G0

˙̀
θ(e) d(G − G0)(e),

Ψ̇θ0,G0

22 (G − G0)h = −
∫

A∗
θ0,G0

Aθ0,G0
h(e) d(G − G0)(e), h ∈ H1,

where A∗
θ0,G0

is the L2-adjoint of Aθ0,G0
. This representation allows us to invoke results

from Hilbert space theory.
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(2) This step shows that to prove that Ψ̇θ0,G0 has a continuous inverse, it suffices to prove
that a certain operator from `∞(Z+) into itself is onto and continuously invertible.

(3) This step shows that the operator from Step 2 is indeed onto and continuously invert-
ible.

An important step in the proof of (3) is to exploit that

0 = Eθ0,G0
[h(ε0) | X0 = e,X−1 = 0, . . . , X−p = 0] = h(e) ∀e ∈ Z+,

which shows that ‘local deviations in the immigration distributions’ are identifiable from the
scores. Unfortunately, it seems to be impossible to obtain an explicit formula for Ψ̇−1

θ0,G0
. This

is related to the problem that it seems to be impossible to determine explicit expressions
for the efficient influence operator.
(L3)-(L4) (L3) and (L4) are proved by an application of Lemma A.1C. In these proofs we
need the existence of the (p + 4)-th moment of G. 2

The next lemma yields a tangent space: it shows that certain parametric submodels of the
semiparametric INAR(p) model enjoy the LAN-property.

Lemma A.3 Let (θ, G) ∈ Θ × G. Let a ∈ R
p, and h : Z+ → R bounded. Introduce

probability measures Gτ by

gτ (k) = g(k)

[

1 + τ

(

h(k) −
∫

h dG

)]

, k ∈ Z+, |τ | < ε̃ = (2‖h‖∞)−1.

Note that, for |τ | < ε̃, Gτ ∈ G. Let 0 < ε ≤ ε̃ be such that θ + τa ∈ Θ for |τ | ≤ ε, and
denote ντ = νθ+τa,Gτ

. Then the sequence of experiments

Eθ,G
n (a, h) =

(

Z
n+1+p
+ , 2Z

n+1+p
+ ,

(

P
(n)
ντ ,θ+τa,Gτ

| τ ∈ (−ε, ε)
))

, n ∈ Z+,

has the LAN-property at τ = 0 (recall that Zt = (Xt, . . . , Xt−p)
T ):

log
dP

(n)
νn,θn,Gn

dP
(n)
νθ,G,θ,G

=
1√
n

n
∑

t=0

(

aT 1
)

(

˙̀
θ(Zt; θ, G)

Aθ,Gh(Zt) −
∫

h dG

)

− 1

2

(

aT 1
)

Jθ,G,h

(

a
1

)

+ o(1; Pνθ,G,θ,G),

where θn = θ + a/
√

n, Gn = G1/
√

n, and νn = ν1/
√

n, and

Jθ,G,h = Eνθ,G,θ,G

(

˙̀
θ
˙̀T
θ (Z0; θ,G) ˙̀

θ(Z0; θ, G)
(

Aθ,Gh(Z0) −
∫

h dG
)

˙̀T
θ (Z0; θ, G)

(

Aθ,Gh(Z0) −
∫

h dG
) (

Aθ,Gh(Z0) −
∫

h dG
)2

)

.

In this way we obtain a tangent set (which is already a linear space)

T 0
θ,G =

{

aT ˙̀
θ(X−p, . . . , X0; θ, G) + Aθ,Gh(X−p, . . . , X0) −

∫

hdG | a ∈ R
p, h ∈ `∞(Z+)

}

,

and the corresponding tangent space is the L2(νθ,G ⊗ P θ,G)-closure of T 0
θ,G: Tθ,G = T 0

θ,G.
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Proof (outline): By an application of the main theorem of Drost et al. (2006b) the

lemma is proved once we prove that νn{X−p, . . . , X−1}− νθ,G{X−p, . . . , X−1}
p−→ 0, under

Pνθ,G,θ,G. By Lemma A.1D this follows if we show (recall that Yt = (Xt−1, . . . , Xt−p)
T )

lim
n→∞

sup
y∈Z

p
+

supf : |f |≤V

∣

∣Eδy,θn,Gn
f(Y1) − Eδy,θ,Gf(Y1)

∣

∣

V (y)
= 0.

where V (y) = 1 +
∑p

i=1 ciyi, ci = θi + . . . , θp for i = 1, . . . , p. This is established by direct
calculations; see the technical appendix for details. 2
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Ispány, M., G. Pap, and M. van Zuijlen (2003b). Asymptotic behavior of estimators of the
parameters of nearly unstable INAR(1) models. In: Foundations of statistical inference,
eds. Y. Haitovsky, H. Lerche, and Y. Ritov, Physica, Heidelberg, pp. 193–204.
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B. Technical appendix to “Efficient estimation of autoregression parameters and

innovation distributions for semiparametric integer-valued AR(p) models”

This technical appendix contains the proofs of the results in “Efficient estimation of autore-
gression parameters and innovation distributions for semiparametric integer-valued AR(p)
models”. Proofs for the following results are gathered in this note: Lemma A.1, Theorem 2.1,
Lemma A.2, and Lemma A.3. Let us briefly comment on these results and their proofs.
Lemma A.1 contains auxiliary results, which are needed to prove the other results. Some
parts are already known from the literature; the new parts are established by exploiting
the V -uniform-ergodicity of an INAR process. Theorem 2.1 shows that the NPMLE is con-
sistent. After a compactification of the parameter space, this consistency follows by Wald’s
method. Lemma A.2 is essential in establishing the limiting distribution of the NPMLE.
The proof of this lemma is rather complicated and long. Finally, Lemma A.3 contains a
LAN-result for parametric submodels of the semiparametric INAR(p) model. Apart from
negligibility of the initial value, this result follows from the main theorem in Drost et al.
(2006b). The negligibility is proved using Lemma A.1.D.

For notational convenience, δx denotes the Dirac measure concentrated in x. Also recall
the notation Zt = (Xt, Xt−1, . . . , Xt−p)

T and Yt = (Xt−1, . . . , Xt−p)
T .

B.1. Proof of Lemma A.1

Proof of (A): For the existence of the stationary distribution see Dion et al. (1995), Latour
(1998), or Drost et al. (2007). The existence of moments follows from Drost et al. (2007).
Proof of (B): Notice first that νθ,G ⊗ P θ,G is the stationary distribution of Z, and that Z

is an irreducible, aperiodic Markov chain on Z = support(νθ,G ⊗ P θ,G). Let Qn denote
the n-step transition-operator of Z (we drop the superscript θ, G). From well-known results
on mixing-numbers for Markov chains (see, for example, Doukhan (1994) pages 87-89) it
follows that it is sufficient to prove that there exists a function A : Z

p+1
+ → (0,∞) such that

∫

A d(νθ,G ⊗ P θ,G) < ∞ and

‖Qn(z, ·) − νθ,G ⊗ P θ,G‖TV ≤ A(z)ρn, z ∈ Z, (26)

for some 0 < ρ < 1, where ‖ · ‖TV denotes the total variational norm of a signed measure.
Recall (Meyn and Tweedie (1994) Chapter 16) that for Markov transition-probabilities P1

and P2 and a function 1 ≤ V < ∞ the V -norm distance between P1 and P2 is defined
by |||P1 − P2|||V = supz∈Z ‖P1(z, ·) − P2(z, ·)‖V /V (z), where, for a signed measured µ,

‖µ‖V = supf : |f |≤V |
∫

f dµ|. Introduce V : Z
p+1
+ → [1,∞) by V (z) = 1 +

∑p
i=1 aizi with

ai = θi + · · · + θp. Then it is straightforward to check (see also Drost et al. (2007)) that
the following drift condition holds. There exists a constant β > 0 such that for all z ∈ Z,
except for some finite set, we have Eθ,G [V (Zt) | Zt−1 = z] − V (z) ≤ −βV (z). We conclude

from Meyn and Tweedie (1994) Theorem 16.01 that there exist constants ρ < 1 and C̃ < ∞
such that for all n ∈ Z+ |||Qn − νθ,G ⊗ P θ,G|||V ≤ C̃ρn, i.e. Z is V -uniformly ergodic.
Since Eνθ,G,θ,GV (Z0) < ∞ (by Lemma A.1A) and V ≥ 1 (26) immediately follows, which
concludes the proof of (A).
Proof of (C): this follows from Doukhan et al. (1995) Theorem 1 and Application 4. Take

r = 3/2, notice that, using Markov’s inequality and Eνθ,G,θ,GX3
0 < ∞ (by Lemma A.1A),

the envelope belongs to Λ3(P ) = Λx
√

x(P ). Next, take b > 3/2 such that b ≥ 3/a, and note
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that there exists C > 0 such that n−b ≥ Cρn for all n ≥ 1.
Proof of (D): Notice first that νθ,G is the stationary distribution of Y , and that Y is an

irreducible, aperiodic Markov chain on Z
p
+. Let Qθ,G denote the transition-probabilities of

Y and Qn denotes the n-step transition-operator of Y (we drop the superscripts θ, G for the
n step operator, since we only consider this operator at (θ,G)). Following the proof of (B) it
follows that the Markov chain Y on Z

p
+ is V -uniformly ergodic for V (Yt) = 1+

∑p
i=1 aiXt−i,

ai = θi + · · ·+θp, i.e. there exist constants C > 0 and 0 < ρ < 1 such that |||Qn−νθ,G|||V ≤
Cρn for all n ∈ Z+. Since Y is uniformly ergodic in the norm ||| · |||V , an application of
Kartashov (1985) Theorem B (it is easy to see that |||·|||V satisfies the conditions) yields that
Y is strongly stable in this norm: each transition-probability Q′ in some neighborhood of Q
has a unique stationary measure ν(Q′) and |||Q′

n −Q|||V → 0 implies ‖ν(Q′
n)−νθ,G‖V → 0.

This yields (D). 2

B.2. Proof of consistency Theorem 2.1

Let (θ̂n, Ĝn) be a nonparametric maximum likelihood estimator of (θ, G). It suffices to prove

θ̂n
p−→ θ0 and ĝn(k)

p−→ g0(k) for all k ∈ Z+. We prove this pointwise convergence by an
application of Wald’s consistency proof. To that end, we first compactify the parameter
space, starting with G.

Introduce Ḡ: the class of all probability distributions on Z+ ∪ {∞}. Identify each G ∈ Ḡ
with the sequence (g(k))k∈Z+

. Notice that this correspondence is 1-to-1, since g(∞) =
1 − ∑∞

k=0 g(k). As a result, Ḡ is a subset of [0, 1]Z+ equipped with the norm ‖a‖ =
∑∞

k=0 2−k|a(k)|, that is, we endow [0, 1]Z+ with the product topology. Notice that a se-
quence in [0, 1]Z+ converges if and only if all coordinates, which are sequences in [0, 1],
converge. Using Helly’s lemma (see, for example, Van der Vaart (2000) Lemma 1.5) it
is an easy exercise to show that Ḡ is a compact subset of [0, 1]Z+ . For G ∈ Ḡ define

P θ,G
x,∞ = 1 −

∑

j∈Z+
P θ,G

x,j = g(∞) for x ∈ Z
p
+ and P θ,G

x,∞ = 1 if maxp
i=1 xi = ∞.

Now, consider the parameter θ as well. Define Ē = [0, 1]p × Ḡ, and equip Ē with the
“sum-distance” d((θ, G), (θ′, G′)) = |θ − θ′| + ‖(g(k))k∈Z+

− (g′(k))k∈Z+
‖. Ē is the product

of two compact spaces and, hence, itself compact.

Define

mθ,G(x−p, . . . , x0) = log P θ,G
(x−1,...,x−p),x0

,

and the (random) function Mn : Ē → [−∞,∞) by

Mn(θ, G) =
1

n

n
∑

t=0

mθ,G(Xt−p, . . . , Xt).

From an appropriate law of large number for Markov chains, we find that Mn converges in
probability to a (nonrandom) function M : Ē → [−∞,∞) defined by

M(θ, G) = Eνθ0,G0
,θ0,G0

mθ,G(X−p, . . . , X0).

Note that, by Lemma A.1A, the stationary distribution νθ0,G0
indeed exists.

The following holds.
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(A) For fixed x−p, . . . , x0 ∈ Z+, the map Ē 3 (θ, G) 7→ mθ,G(x−p, . . . , x0) is continuous.

This is easy to see, since there appear only a finite number of g(j)’s in P θ,G
(x−1,...,x−p),x0

.

(B) For all x−p, . . . , x0 ∈ Z+ we have mθ,G(x−p, . . . , x0) ≤ log(1) = 0.
(C) The map Ē 3 (θ,G) 7→ M(θ, G) has a unique maximum at (θ0, G0). Since we have

the identification P θ,G
(X−1,...,X−p),X0

= P θ0,G0

(X−1,...,X−p),X0
Pνθ0,G0

,θ0,G0
-a.s. =⇒ (θ, G) =

(θ0, G0), this easily follows using the following well-known argument (use log x ≤
2(
√

x − 1) for x ≥ 0):

M(θ,G) − M(θ0, G0) ≤ 2Eνθ0,G0
,θ0,G0





√

√

√

√

P θ,G
(X−1,...,X−p),X0

P θ0,G0

(X−1,...,X−p),X0

− 1





= 2
∑

y∈Z
p
+

νθ0,G0
{y}

∞
∑

x0=0

√

P θ,G
y,x0

P θ0,G0
y,x0

− 2

≤ −
∑

y∈Z
p
+

νθ0,G0
{y}

∞
∑

x0=0

(
√

P θ,G
y,x0

−
√

P θ0,G0
y,x0

)2

≤ 0.

(D) Mn(θ̂n, Ĝn) ≥ Mn(θ0, G0), since (θ̂n, Ĝn) maximizes the likelihood.

Hence all conditions to Wald’s consistency theorem hold (see, for example, the proof of
Theorem 5.14 in Van der Vaart (2000), where the law of large numbers for the i.i.d. case

has to be replaced by the result above. thus we obtain d((θ̂n, Ĝn), (θ0, G0))
p−→ 0, which

immediately yields θ̂n
p−→ θ0 and, for all k ∈ Z+, ĝn(k)

p−→ g0(k). 2

B.3. Proof of Lemma A.2

Throughout ν0 is shorthand for νθ0,G0
. If no confusion can arise, sub- and superscripts are

sometimes dropped for notational convenience.

B.3.1. Proof of (L1)
To enhance readability the proof is decomposed in three steps. In the first step we show
that Ψ̇ is indeed linear and continuous. And in the second and third step we prove the
Fréchet-differentiability of Ψ1 and Ψ2 respectively.

Step 1:

The linearity of Ψ̇ is obvious. For the continuity, note that it suffices to prove that both Ψ̇1

and Ψ̇2 are continuous. We consider Ψ̇1 which is the sum of Ψ̇11 and Ψ̇12; the continuity
of Ψ̇2 proceeds in the same way. Of course, Ψ̇11 is continuous. So the only thing left is to
show that Ψ̇12 is continuous. It is easy to see that, here ˙̀

θ,i refers to the ith coordinate of

the p-vector ˙̀
θ,

∣

∣

∣

˙̀
θ,i(x−p, . . . , x0; θ, G)

∣

∣

∣
≤ x−i

θi(1 − θi)
, (27)

which yields, using that ε0 and X−i are independent,
∣

∣

∣
Eν0,θ0

[

˙̀
θ,i(X−p, . . . , X0; θ,G) | ε0

]∣

∣

∣
≤ Eν0

X−i

θi(1 − θi)
.
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Thus the map

Z+ 3 e 7→
∣

∣

∣
Eν0,θ0

[

˙̀
θ(x−p, . . . , x0; θ, G) | ε0 = e

]∣

∣

∣

is bounded, say by C. This yields, for H,G ∈ linG,

|Ψ̇12(G − H)| =

∣

∣

∣

∣

∫

Eν0,θ0

[

˙̀
θ(X−p, . . . , X0; θ0, G0) | ε0 = e

]

d(H − G)(e)

∣

∣

∣

∣

≤ C
∞
∑

e=0

|h(e) − g(e)| = C‖H − G‖1,

which yields the continuity of Ψ̇12.

Step 2:
Rewrite,

Ψ1(θ, G) − Ψ1(θ0, G0)−Ψ̇11(θ − θ0) − Ψ̇12(G − G0) = Ψ1(θ, G) − Ψ1(θ0, G) − Ψ̇11(θ − θ0)

+ Ψ1(θ0, G) − Ψ1(θ0, G0) − Ψ̇12(G − G0).

Let θn be a sequence in [0, 1]p converging to θ0 and Gn a sequence in G converging to G0.
In Step 2a we show that

∣

∣

∣
Ψ1(θn, Gn) − Ψ1(θ0, Gn) − Ψ̇11(θn − θ0)

∣

∣

∣

|θn − θ0| + ‖Gn − G0‖1
→ 0, (28)

and in Step 2b we show that
∣

∣

∣
Ψ1(θ0, Gn) − Ψ1(θ0, G0) − Ψ̇12(Gn − G0)

∣

∣

∣

|θn − θ0| + ‖Gn − G0‖1
→ 0, (29)

which will conclude the proof of Step 2.
Step 2a:
First we recall from Drost et al. (2006b) that the usual information-identity holds, i.e.

Iθ(θ0, G0) = Eν0,θ0,G0
˙̀
θ
˙̀T
θ (X−p, . . . , X0; θ0, G0) = −Eν0,θ0,G0

∂

∂θT
˙̀
θ(X−p, . . . , X0; θ0, G0).

From the mean-value theorem we obtain, for i = 1, . . . , p,

˙̀
θ,i(X−p, . . . , X0; θ,G) − ˙̀

θ,i(X−p, . . . , X0; θ0, G)

=
∂

∂θT
˙̀
θ,i(X−p, . . . , X0; θ̃i(θ, G), G)(θ − θ0),

where θ̃i(θ,G) = θ̃i(X−p, . . . , X0; θ, G, θ0) is a point on the line segment between θ and θ0.
Let J(X−p, . . . , X0; θ, G) be the p × p random matrix given by

J(X−p, . . . , X0; θ, G) =







∂
∂θT

˙̀
θ,1(X−p, . . . , X0; θ̃1(θ, G), G)

...
∂

∂θT
˙̀
θ,p(X−p, . . . , X0; θ̃p(θ,G), G)






.
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It is easy to see, since we only have to deal with a finite number of g(k)’s, that we have
for fixed x−p, . . . , x0, J(x−p, . . . , x0; θn, Gn) → (∂/∂θT ) ˙̀

θ(X−p, . . . , X0; θ0, G0). From Drost
et al. (2006b) we have,

∣

∣

∣

∣

∂

∂θj

˙̀
θ,i(x−p, . . . , x0; θ, G)

∣

∣

∣

∣

≤ 3

2θi(1 − θi)θj(1 − θj)
(X2

−i + X2
−j),

which is Pν0,θ0,G0
-integrable. Thus, using dominated convergence, we obtain

∣

∣

∣Ψ1(θn, Gn) − Ψ1(θ0, Gn) − Ψ̇11(θn − θ0)
∣

∣

∣

|θn − θ0|

≤ Eν0,θ0,G0
|(Iθ(θ0, G0) + J(Z0; θn, Gn)) (θn − θ0)|

|θn − θ0|
→ 0,

which yields (28).
Step 2b:

We have, using that Eν0,θ0,G [· | ε0] does not depend on G,

Ψ1(θ0, G) − Ψ1(θ0, G0) − Ψ̇12(G − G0)

= Eν0,θ0,G0
˙̀
θ(X−p, . . . , X0; θ0, G) + EGEν0,θ0

[

˙̀
θ(X−p, . . . , X0; θ0, G0) | ε0

]

= Eν0,θ0,G0
˙̀
θ(X−p, . . . , X0; θ0, G) + Eν0,θ0,G

˙̀
θ(X−p, . . . , X0; θ0, G0)

= Eν0
f(X−p, . . . , X−1;G),

where (using that Eν0,θ0,H

[

˙̀
θ(X−p, . . . , X0; θ0;H) | X−1, . . . , X−p

]

= 0 for H ∈ G)

f(X−p, . . . , X−1;G)

=

∞
∑

x0=0

(

P θ0,G
Y0,x0

− P θ0,G0

Y0,x0

)(

˙̀
θ(Y0, x0; θ0, G0) − ˙̀

θ(Y0, x0; θ0, G)
)

=
∞
∑

x0=0

∞
∑

k=0

(g(k) − g0(k))
(

∗p
i=1 BinX−i,θ0,i

)

{x0 − k}
(

˙̀
θ(Y0, x0; θ0, G0) − ˙̀

θ(Y0, x0; θ0, G)
)

=

∞
∑

k=0

(g(k) − g0(k))

∞
∑

x0=0

(

∗p
i=1 BinX−i,θ0,i

)

{x0 − k}
(

˙̀
θ(Y0, x0; θ0, G0) − ˙̀

θ(Y0, x0; θ0, G)
)

.

From this we obtain the bound,

|f(X−1, . . . , X−p;G)| ≤ ‖G − G0‖1

X−1+···+X−p
∑

x0=0

∣

∣

∣

˙̀
θ(Y0, x0; θ0, G0) − ˙̀

θ(Y0, x0; θ0, G)
∣

∣

∣ .

Since Gn is a sequence in G converging to G0, we obtain, for fixed x−p, . . . , x−1,

x−1+···+x−p
∑

x0=0

∣

∣

∣

˙̀
θ(x−p, . . . , x−1, x0; θ0, G0) − ˙̀

θ(x−p, . . . , x−1, x0; θ0, Gn)
∣

∣

∣
→ 0.
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Furthermore, using (27),

x−1+···+x−p
∑

x0=0

∣

∣

∣

˙̀
θ(X−p, . . . , X−1, x0; θ0, G0) − ˙̀

θ(X−p, . . . , X−1, x0; θ0, Gn)
∣

∣

∣

≤ 2

p
∑

j=1

X−j

θ0,j(1 − θ0,j)
.

Thus f(X−p, . . . , X−1; Gn)/‖Gn − G0‖1 converges Pν0
-a.s. to 0, and is dominated by a

Pν0
-integrable function. An application of the dominated convergence theorem yields (29).

Step 3:
Rewrite,

Ψ2(θ, G) − Ψ2(θ0, G0)−Ψ̇21(θ − θ0) − Ψ̇22(G − G0) = Ψ2(θ, G) − Ψ2(θ0, G) − Ψ̇21(θ − θ0)

+ Ψ2(θ0, G) − Ψ2(θ0, G0) − Ψ̇22(G − G0).

Let θn be a sequence in [0, 1]p converging to θ0 and Gn a sequence in G converging to G0.
We will verify that

suph∈H1

∣

∣

∣Ψ2(θn, Gn)h − Ψ2(θ0, Gn)h − Ψ̇21(θn − θ0)h
∣

∣

∣

|θn − θ0| + ‖Gn − G0‖1
→ 0, (30)

and,

suph∈H1

∣

∣

∣
Ψ2(θ0, Gn)h − Ψ2(θ0, G0)h − Ψ̇22(Gn − G0)h

∣

∣

∣

|θn − θ0| + ‖Gn − G0‖1
→ 0, (31)

which will conclude the proof.
Step 3a:
First note that

Ψ2(θn, Gn)h − Ψ2(θ0, Gn)h − Ψ̇21(θn − θ0)h

= Eν0,θ0,G0

(

Aθn,Gn
h(Z0) − Aθ0,Gn

h(Z0) + Aθ0,G0
h(Z0) ˙̀T

θ (Z0; θ0, G0)(θn − θ0)
)

.

It is straightforward to check that, for i = 1, . . . , p,

∂

∂θi
Aθ,Gh(X−p, . . . , X0) = Eθ,G

[

h(ε0)ṡX−i,θi
(θi ◦ X−i) | X0, . . . , X−p

]

− Aθ,Gh(X−p, . . . , X0) ˙̀
θ,i(X−p, . . . , X0; θ, G),

and for i, j = 1, . . . , p,

∂2

∂θj∂θi
Aθ,Gh(X−p, . . . , X0) = Eθ,G

[

h(ε0)ṡX−i,θi
(θi ◦ X−i)ṡX−j ,θj

(θj ◦ X−j)|X0, . . . , X−p

]

− Eθ,G

[

h(ε0)ṡX−i,θi
(θi ◦ X−i)|X0, . . . , X−p

]

˙̀
θ,j(X−p, . . . , X0; θ,G)

6



− Aθ,Gh(X−p, . . . , X0)῭θ,ij(X−p, . . . , X0; θ, G)

− ˙̀
θ,i(X−p, . . . , X0; θ, G)

∂

∂θj
Aθ,Gh(X−p, . . . , X0)

+ 1{i = j}Eθ,G

[

h(ε0)s̈X−i,θi
(θi ◦ X−i) | X0, . . . , X−p

]

,

where s̈n,α(k) = (∂/∂α)ṡn,α(k). Now it is easy, but a bit tedious, to see that there exists a
constant Cθ > 0, which is bounded in θ in a neighborhood of θ0 and not depending on h,
such that, for i, j = 1, . . . , p,

∣

∣

∣

∣

∂

∂θi
Aθ,Gh(X−p, . . . , X0)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2

∂θj∂θi
Aθ,Gh(X−p, . . . , X0)

∣

∣

∣

∣

≤ Cθ(X
2
−i + X2

−j). (32)

A second order Taylor expansion in θ yields

Aθn,Gn
h(Z0) − Aθ0,Gn

h(Z0) + Aθ0,Gn
h(Z0) ˙̀T

θ (Z0; θ0, Gn)(θn − θ0)

=

p
∑

i=1

(θn,i − θ0,i)Eθ0,Gn

[

h(ε0)ṡX−i,θ0,i
(θi ◦ X−i) | X0, . . . , X−p

]

+
1

2
(θn − θ0)

T ∂2

∂θ∂θT
Aθ̃n,Gn

h(X−p, . . . , X0)(θn − θ0),

where θ̃n is a random point on the line segment between θ0 and θn (also depending on h,
Z0, and Gn). Using (32) it easily follows, using dominated convergence, that

sup
h∈H1

∣

∣

∣
Eν0,θ0,G0

(θn − θ0)
T ∂2

∂θ∂θT Aθ̃n,Gn
h(X−p, . . . , X0)(θn − θ0)

∣

∣

∣

|θn − θ0| + ‖Gn − G0‖1
→ 0.

Hence we obtain (30) once we show that

sup
h∈H1

∣

∣

∑p
i=1(θn,i − θ0,i)Eν0,θ0,G0

Eθ0,Gn

[

h(ε0)ṡX−i,θ0,i
(θi ◦ X−i) | X0, . . . , X−p

]∣

∣

|θn − θ0| + ‖Gn − G0‖1

→ 0, (33)

and,

sup
h∈H1

∣

∣

∣
Eν0,θ0,G0

(

Aθ0,Gn
h(Z0) ˙̀T

θ (Z0; θ0, Gn)(θn − θ0) − Aθ0,G0
h(Z0) ˙̀T

θ (Z0; θ0, G0)(θn − θ0)
)∣

∣

∣

|θn − θ0| + ‖Gn − G0‖1

→ 0 (34)

both hold. It is easy to see that we have, for i = 1, . . . , p,

∣

∣Eθ0,Gn

[

h(ε0)ṡX−i,θ0,i
(θi ◦ X−i) | Z0

]

− Eθ0,G0

[

h(ε0)ṡX−i,θ0,i
(θi ◦ X−i) | Z0

]∣

∣

≤
∣

∣

∣

∣

∣

P θ0,G0

(X−1,...,X−p),X0

P θ0,Gn

(X−1,...,X−p),X0

− 1

∣

∣

∣

∣

∣

X−i

θ0,i(1 − θ0,i)

+

∑X0

e=0

∑X−i

k=0 |gn(e) − g0(e)|
(

∗j 6=i BinX−j ,θ0,j

)

{X0 − k − e}ṡX−i,θ0,i
(k) bX−i,θ0,i

(k)

P θ0,Gn

(X−1,...,X−p),X0

,
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which for fixed X−p, . . . , X0 converges to 0. Note that the left-hand-side of this display is
bounded by the ν0-integrable variable 2X−i/(θ0,i(1− θ0,i)). Since Eν0,θ0,G0

h(ε0)ṡX−i,θi
(θi ◦

X−i) = 0, by independence of ε0 and θi ◦ X−i − θ0,iX−i, Display (33) easily follows using
dominated convergence. In a similar fashion we obtain (34).
Step 3b:
Note first that we have

Ψ2(θ0, Gn)h − Ψ2(θ0, G0)h − Ψ̇22(Gn − G0)h

= Eν0,θ0,G0
Aθ0,Gn

h(Z0) −
∫

h dGn + Eν0,θ0,Gn
Aθ0,G0

h(Z0) −
∫

h dG0.

It now follows that we have

Ψ2(θ0, Gn)h − Ψ2(θ0, G0)h − Ψ̇22(Gn − G0)h = Eν0
fh(X−p, . . . , X−1; Gn),

where

fh(X−p, . . . , X−1;Gn) =
∞
∑

x0=0

(

P θ0,Gn

Y0,x0
− P θ0,G0

Y0,x0

)

(Aθ0,G0
h(Y0, x0) − Aθ0,Gn

h(Y0, x0)) .

Proceeding as in Step 2b we obtain the bound

|fh(X−p, . . . , X−1; Gn)| ≤ ‖Gn − G0‖1

X−p+···+X−1
∑

x0=0

|Aθ0,G0
h(Y0, x0) − Aθ0,Gn

h(Y0, x0)| .

Using that, for x0 ∈ {0, . . . , X−p + · · · + X−1},

sup
h∈H1

|Aθ0,Gn
h(X−p, . . . , X−1, x0) − Aθ0,G0

h(X−p, . . . , X−1, x0)|

≤
∣

∣

∣

∣

∣

P θ0,G0

(X−p,...,X−1),x0

P θ0,Gn

(X−p,...,X−1),x0

− 1

∣

∣

∣

∣

∣

|Aθ0,G0
h(X−p, . . . , X−1, x0)|

+

∑x0

e=0 |gn(e) − g0(e)|
(

∗p
i=1 BinX−i,θ0,i

)

{x0 − e}
P θ0,Gn

(X−p,...,X−1),x0

,

we see that for fixed (X−p, . . . , X−1) suph∈H1
|fh(X−p, . . . , X−1; Gn)|/‖Gn − G0‖1 → 0.

Since 2(X−p+· · ·+X−1) is an ν0-integrable envelope for suph∈H1
|fh(X−p, . . . , X−1; Gn)|/‖Gn−

G0‖1, an application of dominated convergence yields (31).

B.3.2. Proof of (L2)
First we prove (L2) for the case support(G0) = Z+. To enhance readability we decompose
the proof into the following steps.

(1) In this step we show that we can rewrite some parts of the derivative Ψ̇ as follows,

Ψ̇12(G − G0) = −
∫

A∗
0
˙̀
θ(e) d(G − G0)(e), (35)
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Ψ̇22(G − G0)h = −
∫

A∗
0A0h(e) d(G − G0)(e), h ∈ H1, (36)

where A∗
0 is the L2-adjoint of A0 = Aθ0,G0

. This representation allows us to invoke
results from Hilbert space theory.

(2) This step shows that to prove that Ψ̇ has a continuous inverse, it suffices to prove that
a certain operator from `∞(Z+) into itself is onto and continuously invertible.

(3) This step shows that the operator from Step 2 is indeed onto and continuously invert-
ible.

Step 1:

Let [ε] denote {f(ε0) | f : Z+ → R, EG0
f2(ε0) < ∞} equipped with the L2(G0) norm and let

[X] denote {f(X−p, . . . , X0) | f : Z
p+1
+ → R, Eν0,θ0,G0

f2(X−p, . . . , X0) < ∞} equipped with
the L2(ν0 ⊗ P θ0,G0) norm. It is not hard to see that both these spaces are, in fact, Hilbert
spaces (that these spaces are already in their “a.s.-equivalence class form”, follows from
support(G0) = Z+). We view upon A0 as an operator from [ε] into [X]. From the definition
it is easy to see that A0 is linear and continuous. Since A0 is a continuous linear map between
two Hilbert spaces, it has an adjoint map A∗

0 : [X] → [ε] (which is a continuous linear map
that satisfies and is uniquely determined by the equations < A∗

0h2, h1 >[ε]=< h2, A0h1 >[X]

for h1 ∈ [ε], h2 ∈ [X]) given by

A∗
0f = A∗

0f(ε0) = Eν0,θ0
[f(X−p, . . . , X0) | ε0].

Now, invoking the definitions of Ψ̇12 and Ψ̇22, (35) and (36) are immediate.

Step 2:

To prove that Ψ̇ is continuously invertible, it suffices to prove that Ψ̇11 : R
p → R

p and
V̇ = Ψ̇22 − Ψ̇21Ψ̇

−1
11 Ψ̇12 : linG → `∞(H1) are both continuously invertible. The invertibility

of Ψ̇11 is immediate, since the p×p Fisher information-matrix Iθ0
= Eν0,θ0,G0

˙̀
θ
˙̀T
θ (Z0; θ0, G0)

is invertible (see Drost et al. (2006b)). To prove that V̇ is continuously invertible is much
harder. In this step, we will give an easier sufficient condition which is proved to hold true
in Step 3. Introduce the operator C : H1 → [ε] by

Ch(e) = −
[

Eν0,θ0,G0
A0h(X−p, . . . , X0) ˙̀T

θ (X−p, . . . , X0; θ0, G0)
]

I−1
θ0

(A∗
0(

˙̀
θ(·; θ0, G0)))(e),

for e ∈ Z+, where A∗
0(

˙̀
θ(·; θ0, G0)) = (A∗

0(
˙̀
θ,1(·; θ0, G0)), . . . , A

∗
0(

˙̀
θ,p(·; θ0, G0)))

T ∈ [ε]p.

Then V̇ can be rewritten as

V̇ (G − G0)h = −
∫

(A∗
0A0h + Ch) (e) d(G − G0)(e), h ∈ H1.

The mapping V̇ : linG → `∞(H1) has a continuous inverse on its range if and only if there
exists ε > 0 such that

‖V̇ (G − G0)‖ = sup
h∈H1

|V̇ (G − G0)h| ≥ ε‖G − G0‖1, for all G ∈ linG.

Notice that we have, since (e 7→ sgn(g(e) − g0(e))) ∈ H1,

‖G − G0‖1 =

∞
∑

e=0

|g(e) − g0(e)| ≤ sup
h∈H1

∣

∣

∣

∣

∫

h d(G − G0)

∣

∣

∣

∣

.
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Hence it suffices to prove that there exists ε > 0 such that, for all G ∈ linG,

‖V̇ (G − G0)‖ = sup
h∈H1

|V̇ (G − G0)h| = sup
h∈H1

∣

∣

∣

∣

∫

(A∗
0A + C)h d(G − G0)

∣

∣

∣

∣

≥ ε sup
h∈H1

|
∫

hd(G − G0)|.

Of course, a sufficient condition for this is given by εH1 ⊂ {(A∗
0A0 + C)h | h ∈ H1}, which

in turn holds if B = A∗
0A0 + C : `∞(Z+) → `∞(Z+) is onto and continuously invertible.

To see this, first note that εH1 ⊂ {(A∗
0A0 + C)h | h ∈ H1} is equivalent to εB−1H1 ⊂ H1.

Since H1 is the unit-ball of `∞(Z+) it thus suffices to show that there exists ε > 0 such
that ‖B−1h‖∞ ≤ ε−1 for all h ∈ H1. Since B−1 is continuous, there exists ε > 0 such that
‖Bf‖∞ ≥ ε‖f‖∞ for all f ∈ `∞(Z+). Taking h ∈ H1 and f = B−1h (which is possible,
because B is onto), we indeed arrive at ‖B−1h‖∞ = ‖f‖∞ ≤ ε−1‖Bf‖∞ = ε−1‖h‖∞ ≤ ε−1.
Thus Ψ̇ is continuously invertible if we prove that A∗

0A0 + C : `∞(Z+) → `∞(Z+) is onto
and continuously invertible. This concludes Step 2.

Step 3:
In this step we prove that B = A∗

0A0 + C : `∞(Z+) → `∞(Z+) is onto and continuously
invertible, which will conclude the proof of (L2). Notice that C : `∞(Z+) → `∞(Z+) is a
compact operator, since it has finite dimensional range. From functional analysis (see, for
example, Van der Vaart (2000) Lemma 25.93), it is known that (all operators are defined
on and take values in a common Banach space) the sum of a compact operator and a con-
tinuous operator, which is onto and has a continuous inverse, is continuously invertible and
onto if the sum operator is 1-to-1. Thus it suffices to prove that A∗

0A0 : `∞(Z+) → `∞(Z+)
is continuous, onto, and has a continuous inverse (Step 3a), and that B is one-to-one (Step
3b).
Step 3a:
The continuity of A∗

0A0 is immediate,

sup
e∈Z+

|A∗
0A0h(e) − A∗

0A0h
′(e)| = sup

e∈Z+

|Eν0,θ0
[Eθ0,G0

[h(ε0) − h′(ε0) | X0, . . . , X−p] | ε0 = e]|

≤ sup
e∈Z+

|h(e) − h′(e)|.

Next we show that to prove that A∗
0A0 : `∞(Z+) → `∞(Z+) is onto and continuously

invertible, it suffices to prove that A∗
0A0 : [ε] → [ε] is onto and continuously invertible. If

we already know that A∗
0A0 : [ε] → [ε] is invertible, then A∗

0A0 : `∞(Z+) → `∞(Z+) is also
invertible (since there are no “a.s.-problems” if support(G0) = Z+). If h ∈ `∞(Z+) it is
clear that A∗

0A0h ∈ `∞(Z+) Suppose next that A∗
0A0h ∈ `∞(Z+). Since

A∗
0A0h(e) =

∑

y∈Z
p
+

∞
∑

x0=0

ν0{y}
(

∗p
i=1 Binyi,θ0,i

)

{x0 − e}Eθ0,G0
[h(ε0) | Y0 = y]

≥ ν0{0, . . . , 0}h(e),

this implies h ∈ `∞(Z+). Thus, since A∗
0A0 : [ε] → [ε] is onto and `∞(Z+) ⊂ [ε], A∗

0A0 :
`∞(Z+) → `∞(Z+) is indeed onto. Thus A∗

0A0 : `∞(Z+) → `∞(Z+) is a linear continuous
operator, whose range is a Banach space, we conclude, from Banach’s theorem, that A∗

0A0 :
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`∞(Z+) → `∞(Z+) is continuously invertible. Hence, the proof of Step 3a is complete
once we show that A∗

0A0 : [ε] → [ε] is onto and continuously invertible. First we show
that A0 : [ε] → R2(A0) ⊂ L2(ν0 ⊗ P θ0,G0) (R2(A0) is the range of A0, where we use the
“subscript 2” to stress that we working in L2) is one-to-one, i.e. that the null space of A0

is trivial. Let h : Z+ → R such that EG0
h2(ε0) < ∞ and

0 = Eθ0,G0
[h(ε0) | X0, . . . , X−p] Pν0,θ0,G0

− a.s.

Since support(G0) = Z+, we can drop the “a.s.” and we obtain

0 = Eθ0,G0
[h(ε0) | X0 = e,X−1 = 0, . . . , X−p = 0] = h(e) ∀e ∈ Z+

We see that h(ε0) = 0 and hence A0 is invertible, with inverse

(A−1
0 f)(ε0) = f(0, . . . , 0, ε0).

Of course this is a linear operator. Moreover it is continuous since (remember that P θ0,G0

(0,...,0),x0
=

g0(x0))

EG0

(

A−1
0 f(ε0) − A−1

0 f ′(ε0)
)2

= EG0
(f(0, . . . , 0, ε0) − f ′(0, . . . , 0, ε0))

2

≤ 1

ν0{0, . . . , 0}Eν0,θ0,G0
(f(X−p, . . . , X0) − f ′(X−p, . . . , X0))

2
.

Since A0 : [ε] → R2(A0) is linear, continuous, one-to-one, and has a continuous inverse, we
conclude from Banach’s theorem that R2(A0) is a closed subspace of L2(ν0 ⊗P θ0,G0). Since
A0 is one-to-one, and R2(A0) is closed we conclude that the operator A∗

0A0 : [ε] → [ε] is
one-to-one, onto and has a continuous inverse (fact from Hilbert-space theory). This con-
cludes Step 3a.
Step 3b:
In this step we show that B : `∞(Z+) → `∞(Z+) is one-to-one. This essentially fol-
lows from the proof of Lemma 25.92 in Van der Vaart (2000). For completeness we re-
peat the arguments, where we circumvent the need to consider the efficient information
matrix for θ. Let h ∈ `∞(Z+), with Bh = 0. We have to prove that h = 0. Introduce
R

p 3 a = −I−1
θ0

Eν0,θ0,G0
A0h(Z0) ˙̀

θ(Z0; θ0, G0), and notice that Ch = aT A∗
0
˙̀
θ(·; θ0, G0).

Let S = aT ˙̀
θ(Z0; θ0, G0) + A0h(Z0) −

∫

hdG0. First we show that for a 6= 0 we have
Eν0,θ0,G0

S2 > 0. Suppose that S = 0 Pν0,θ0,G0
-a.s. Then conditioning on X−p = · · · =

X−1 = 0 yields h(e) −
∫

h dG0 = 0 for all e. And we obtain, since Iθ0
is positive definite

(Drost et al. (2006b) Theorem 3.1), Eν0,θ0,G0
S2 = aT Iθ0

a > 0 for a 6= 0, which contradicts
Eν0,θ0,G0

S2 = 0. Conclude that we have, for a 6= 0,

0 < Eν0,θ0,G0
S2 = Eν0,θ0,G0

(

A0h(Z0) −
∫

h dG0

)2

− aT Iθ0
a.

On the other hand Bh = 0, yields

0 = Eν0,θ0,G0
h(ε0)Bh(ε0) = Eν0,θ0,G0

(A0h(Z0))
2 + aT

Eν0,θ0,G0
A0h(Z0) ˙̀

θ(Z0; θ0, G0)

≥ Eν0,θ0,G0

(

A0h(Z0) −
∫

h dG0

)2

− aT Iθ0
a.
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From the previous two displays we conclude a = 0, which by definition of a and C yields
Ch = 0. Hence A∗

0A0h = 0, which, by Step 3a, yields h = 0. This concludes the proof.

So we have proved (L2) for the case support(G0) = Z+. The proof for the general case
uses exactly the same arguments, if we replace in the arguments where “a.s.” plays a role
Z+ by support(G0). Recall that we always have, by assumption, g0(0) > 0.

B.3.3. Proof of (L3)

The weak-convergence of
√

n
(

Ψn1 − Ψθ0,G0

1

)

(θ0, G0) follows from Lemma A.1C, since we

are dealing with a finite function class and | ˙̀θ,i(Z0; θ0, G0)| ≤ X−i(θ0,i(1 − θ0,i))
−1, i =

1, . . . , p. Hence, due to the form of
√

n
(

Ψn − Ψθ0,G0

)

(θ0, G0), it suffices to prove that
√

n
(

Ψn2 − Ψθ0,G0

2

)

(θ0, G0) weakly converges, under Pν0,θ0,G0
, in `∞(H1) to a tight Gaus-

sian process. This can be reexpressed as the weak convergence of the empirical process
{Znf | f ∈ F}, where F = {Zp+1

+ 3 (x−p, . . . , x0) 7→ A0h(x−p, . . . , x0) | h ∈ H1}. We use

Lemma A.1B to verify this. Let δ > 0. Take Mδ = d(8(p+1)Eν0,θ0,G0
Xp+2

0 )1/(p+2)δ−2/(p+2)e.
By Markov’s inequality we have

Pν0,θ0,G0
{ max

i=0,...,p
X−i ≥ Mδ} ≤ δ2

8
.

Next, form a grid of cubes with sides of length εδ = δ/2
√

2 over [−1, 1]{0,...,Mδ−1}p+1

. This

yields Nδ ≤ d2/εδeMp+1

δ points. Each point yields a mapping f : {0, . . . ,Mδ − 1}p+1 →
[−1, 1]. We label these as f1, . . . , fNδ

. Since for h ∈ H1 we have |A0h| ≤ 1, there exists
i ∈ {1, . . . , Nδ} such that fi(x−p, . . . , x0) − δ/2

√
2 ≤ A0h(x−p, . . . , x0) ≤ fi(x−p, . . . , x0) +

δ/2
√

2 for x−p, . . . , x0 ≤ Mδ − 1. Next we introduce mappings fL
i , fU

i , i = 1, . . . , Nδ, from

Z
p+1
+ into [−1, 1] by fL

i = −1 ∨ (fi − δ/2
√

2) if max{x−p, . . . , x0} ≤ Mδ − 1, fL
i = −1 for

max{x−p, . . . , x0} ≥ Mδ, and fU
i = 1 ∧ (fi + δ/2

√
2) if max{x−p, . . . , x0} ≤ Mδ − 1 and

fU
i = 1 if max{x−p, . . . , x0} ≥ Mδ. Conclude that for h ∈ H1 there exists i ∈ {1, . . . , Nδ}

such that fL
i ≤ A0h ≤ fU

i . So the brackets
[

fL
i , fU

i

]

, i = 1, . . . , Nδ, cover F and satisfy

Eν0,θ0,G0
(fU

i − fL
i )2 ≤

(

δ√
2

)2

+ 4Pν0,θ0,G0
{ max

i=0,...,p
X−i ≥ Mδ} ≤ δ2.

Conclude that N[ ](δ,F) ≤ Nδ. Using log(x) ≤ m(x1/m−1) for x > 0, m ∈ N, it easily follows

that we can find a > 0 such that
∫ 1

0
x−a

(

log N[ ](x,F)
)1/2

dx < ∞. Since the envelope of
F is bounded by 2, an application of Lemma A.1C concludes the proof.

B.3.4. Proof of (L4)
In step A we prove

√
n

(

Ψn2 − Ψθ0,G0

2

)

(θ̂n, Ĝn) −
√

n
(

Ψn2 − Ψθ0,G0

2

)

(θ0, G0) = o(1; Pν0,θ0,G0
), (37)

and in step B we prove

√
n

(

Ψn1 − Ψθ0,G0

1

)

(θ̂n, Ĝn) −
√

n
(

Ψn1 − Ψθ0,G0

1

)

(θ0, G0) = o(1; Pν0,θ0,G0
), (38)
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which will conclude the proof. Introduce for δ > 0 B0(δ) = {(θ, G) ∈ Θ×G | |θ− θ0|+‖G−
G0‖1 ≤ δ}.

Step A: If we prove that there exists δ > 0 such that

lim
n→∞

sup
h∈H1

Eν0,θ0,G0
(Aθn,Gn

h(X−p, . . . , X0) − Aθ0,G0
h(X−p, . . . , X0))

2
= 0,

for all sequences (θn, Gn) in Θ × G converging to (θ0, G0), and that the empirical process
{Znf | f ∈ Fδ} with Fδ given by

Fδ = {(x−p, . . . , x0) 7→ Aθ,Gh(x−p, . . . , x0) − Aθ0,G0
h(x−p, . . . , x0) | h ∈ H1, (θ, G) ∈ B0(δ)} ,

weakly converges to a tight Gaussian process, then (37) follows from (the proof of) Lemma 3.3.5
in Van der Vaart and Wellner (1993). Since

sup
h∈H1

|Aθn,Gn
h(X−p, . . . , X0) − Aθ0,G0

h(X−p, . . . , X0)| ≤ 2,

and since, for fixed X−p, . . . , X0,

sup
h∈H1

|Aθn,Gn
h(X−p, . . . , X0) − Aθ0,G0

h(X−p, . . . , X0)| ≤
∣

∣

∣

∣

∣

P θ0,G0

Y0,X0

P θn,Gn

Y0,X0

− 1

∣

∣

∣

∣

∣

+
‖Gn − G0‖1

P θn,Gn

Y0,X0

→ 0,

the first condition easily follows by an application of the dominated convergence theorem.
That the process {Znf | f ∈ Fδ} weakly converges to a tight Gaussian process follows by
the same arguments as in the proof of (L3).

Step B : We consider the first coordinate. The others proceed in exactly the same way.
If we prove that there exists δ > 0 such that

lim
n→∞

Eν0,θ0,G0

(

˙̀
θ,1(X−p, . . . , X0; θn, Gn) − ˙̀

θ,1(X−p, . . . , X0; θ0, G0)
)2

= 0,

for all sequences (θn, Gn) in Θ × G converging to (θ0, G0), and that the empirical process
{Znf | f ∈ Fδ} with Fδ given by

Fδ =
{

(x−p, . . . , x0) 7→ ˙̀
θ,1(x−p, . . . , x0; θ,G) − ˙̀

θ,1(x−p, . . . , x0; θ0, G0) | (θ,G) ∈ B0(δ)
}

,

converges weakly to a tight Gaussian process, then (38) follows from Lemma 3.3.5 in
Van der Vaart and Wellner (1993). Choose δ > 0 such that for all θ in the ball we have
(θi(1 − θi))

−1 ≤ C for certain C > 0 and all i = 1, . . . , p. The first condition easily follows
using dominated convergence (use 4CX2

−1 as dominating function). We use Lemma A.1C to

verify the second condition. Let η > 0. Take Mη = dα1/(p+4)η−2/(p+2)e, where the constant

α is given by α = (p + 1)
(

8C2
Eν0,θ0,G0

Xp+4
0

)(p+4)/(p+2)

. By Markov’s inequality we have

Pν0,θ0,G0
{ max

i=0,...,p
X−i ≥ Mη} ≤ Eν0,θ0,G0

Xp+4
0

(

8C2Eν0,θ0,G0
Xp+4

0

)(p+4)/(p+2)
η2 p+4

p+2 ,
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and using Hölder’s inequality we now obtain

Eν0,θ0,G0
X2

−11{ max
i=0,...,p

X−i ≥ Mη}

≤
(

Eν0,θ0,G0
Xp+4

−1

)2/(p+4)
(

Pν0,θ0,G0
{ max

i=0,...,p
X−i ≥ Mη}

)(p+2)/(p+4)

≤ η2

8C2
. (39)

Notice that for all (θ,G) ∈ B0(δ) we have

| ˙̀θ,1(x−p, . . . , x0; θ, G) − ˙̀
θ,1(x−p, . . . , x0; θ0, G0)| ≤ 2Cx−1.

Next, form a grid of cubes with sides of length εη = η/2
√

2 over [−2CMη, 2CMη]{0,...,Mη−1}p+1

.

This yields Nη ≤ d4CMη/εηeMp+1
η points. Each point yields a mapping f : {0, . . . , Mη −

1}p+1 → [−2CMη, 2CMη]. We label these as f1, . . . , fNη
. So, for (θ, G) ∈ B0(δ), there exists

i ∈ {1, . . . , Nη} such that, for x−p, . . . , x0 ≤ Mη − 1,

fi(x−p, . . . , x0) −
η

2
√

2
≤ ˙̀

θ,1(x−p, . . . , x0; θ, G) − ˙̀
θ,1(x−p, . . . , x0; θ0, G0)

≤ fi(x−p, . . . , x0) +
η

2
√

2
.

Next we introduce mappings fL
i , fU

i , i = 1, . . . , Nη, from Z
p+1
+ into R by fL

i = −2CMη ∨
(fi − η/2

√
2) if max{x−p, . . . , x0} ≤ Mη − 1 and fL

i = −2Cx−1 if max{x−p, . . . , x0} ≥ Mη,
and fU

i = 2CMη ∧ (fi + η/2
√

2) if max{x−p, . . . , x0} ≤ Mη − 1 and fU
i = 2Cx−1 if

max{x−p, . . . , x0} ≥ Mη. Conclude that for (θ, G) ∈ B0(δ) there exists i ∈ {1, . . . , Nη} such

that fL
i ≤ ˙̀

θ,1(θ, G) − ˙̀
θ,1(θ0, G0) ≤ fU

i . So the brackets
[

fL
i , fU

i

]

, i = 1, . . . , Nη, cover Fδ

and satisfy, by (39),

Eν0,θ0,G0
(fU

i − fL
i )2 ≤

(

η√
2

)2

+ 4C2
Eν0,θ0,G0

X2
−11{ max

i=0,...,p
X−i ≥ Mη} ≤ η2.

Conclude that N[ ](η,Fδ) ≤ Nη. Using log(x) ≤ m(x1/m − 1) for x > 0, m ∈ N, it easily

follows that we can find a > 0 such that
∫ 1

0
x−a

(

log N[ ](x,Fδ)
)1/2

dx < ∞. Since the

envelope of Fδ is bounded by the integrable variable 2CX−1, an application of Lemma A.1C
concludes the proof. 2

B.4. Proof of LAN Theorem A.3

By an application of the main theorem of Drost et al. (2006b) the lemma is proved once we

prove that νn{X−p, . . . , X−1}−νθ,G{X−p, . . . , X−1}
p−→ 0, under Pνθ,G,θ,G. By Lemma A.1D

this follows if we show (recall that Yt = (Xt−1, . . . , Xt−p)
T )

lim
n→∞

sup
y∈Z

p
+

supf : |f |≤V

∣

∣Eδy,θn,Gn
f(Y1) − Eδy,θ,Gf(Y1)

∣

∣

V (y)
= 0, (40)

where V (y) = 1+
∑p

i=1 ciyi, ci = θi + . . . , θp for i = 1, . . . , p. Straightforward computations
yield

Eδy,θn,Gn
f(Y1) − Eδy,θ,Gf(Y1) =

1√
n

Eδy,θn,G(h(ε0) − EGh(ε0))f(Y1)
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+

∫ 1
√

n

0

p
∑

i=1

aiEδy,θ+τa,Gf(Y1)ṡX−i,θi+τai
(θi ◦ X−i) dτ.

We have, for a constant C > 0, the bound

sup
f : |f |≤V

∣

∣Eδy,θn,G(h(ε0) − EGh(ε0))f(Y1)
∣

∣ ≤ 2‖h‖∞
(

1 +

p
∑

i=2

ciyi−1 + µG +

(

θ +
a√
n

)T

y

)

≤ CV (y).

Next let i ∈ {1, . . . , p}. Of course the supremum in

sup
f : |f |≤V

∣

∣Eδy,θ+τa,Gf(Y1)ṡX−i,θi+τai
(θi ◦ X−i)

∣

∣

is taken for f = V 1A − V 1Ac , where A = {ṡX−i,θi
(θ ◦ X−i) > 0}. Consequently, in the first

equality we exploit Eδy,θ+τa,GṡX−i,θi+τai
(θi ◦ X−i) = 0,

sup
f : |f |≤V

∣

∣Eδy,θ+τa,Gf(Y1)ṡX−i,θi+τai
(θi ◦ X−i)

∣

∣

= sup
f : |f |≤V

∣

∣Eδy,θ+τa,G(f(Y1) − Eδy,θ+τa,Gf(Y1))ṡX−i,θi+τai
(θi ◦ X−i)

∣

∣

= Eδy,θ+τa,G1A(V (Y1) − Eδy,θ+τa,GV (Y1))ṡX−i,θi+τai
(θi ◦ X−i)

− Eδy,θ+τa,G1Ac(V (Y1) − Eδy,θ+τa,GV (Y1))ṡX−i,θi+τai
(θi ◦ X−i)

(fill in V and use Eδy,θ+τa,GṡX−i,θi+τai
(θi ◦ X−i) = 0)

= c1Eδy,θ+τa,G1A(X0 − Eδy,θ+τa,GX0)ṡX−i,θi+τai
(θi ◦ X−i)

− c1Eδy,θ+τa,G1Ac(X0 − Eδy,θ+τa,GX0)ṡX−i,θi+τai
(θi ◦ X−i)

≤ c1

√

Eδy,θ+τa,G(X0 − Eδy,θ+τa,GX0)2
√

Eδy,θ+τa,Gṡ2
X−i,θi+τai

(θi ◦ X−i)

= c1

√

√

√

√σ2
G +

p
∑

j=1

(θj + taj)yj

√

θi(1 − θi)yi

≤ CV (y),

for a constant C > 0. A combination of the previous four displays easily yields (40). 2
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