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Abstract:

The research that studies the interaction between sequencing situations and cooperative games,
that started with the paper of Curiel et al. (1989), has become an established line of research.

This paper introduces a new model in this field: partitioning sequencing situations and games.
The characteristic of partitioning sequencing situations is that the jobs arrive in batches, and those
jobs that arrive in earlier batches have some privileges over jobs in later arrived batches. For par-
titioning sequencing situations we introduce and characterise the partitioning equal gain splitting
rule. Next, we define cooperative games that arise from these partitioning sequencing situations.
It is shown that these games are convex. Moreover, we present a game independent expression for
the Shapley value. Finally, it is shown that the partitioning equal gain splitting rule can be used
to generate a core allocation and can be viewed as the average of two specific marginal vectors.
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1 Introduction

In one-machine partitioning sequencing situations a number of jobs need to be processed on a single
machine. It is assumed that each job is assigned to a different agent (player), who has a specific cost
function depending on the completion time of his job. An initial order of the jobs is assumed before
the processing of the machine starts. Moreover, the jobs in the initial order are partitioned into
connected sets. The jobs from each set have initial rights, which are represented by the maximum
number of positions they can shift backwards, a so called disruption level. The objective is to find
a processing order of the jobs that minimises the aggregated costs function of all agents, taking
into account the disruption levels.

In practice partitioning sequencing situations are faced constantly by manufacturing compa-
nies, especially those producing custom products to order rather than standard products to stock.
Customers call in over time to place orders. It is for these companies necessary to develop a pro-
duction schedule a priory, to provide coordination for necessary activities, i.e., shipping. However
it often happens that another customer calls, and additional orders arrive. These additional orders
must then be integrated into the schedule, such that, for example, the costs are optimised and the
disruption of the old schedule is also controlled.

The paper of Curiel et al. (1989) started a new line of research that investigates the interaction
between sequencing situations and cooperative games. In their paper one-machine sequencing
situations and associated games were investigated. The main focus was on allocation rules (e.g.
equal gain splitting rule, Shapley value (Shapley (1953)) and compromise value (Tijs (1981)), and
game theoretical properties (e.g. balancedness, convexity). In this paper we take a similar approach
as in Curiel et al. (1989) on the class of partitioning sequencing situations. First, we focus on
the allocation of the cost savings in partitioning sequencing situations that can be obtained by
rearranging the jobs from its initial order to an optimal order. We introduce the partitioning equal
gain splitting rule (PEGS-rule). This rule is inspired on the algorithm of Hall and Potts (2004),
that finds an optimal order for partitioning sequencing situations. Moreover, the PEGS-rule is
characterised using efficiency, symmetry and consistency. Especially the consistency property is
attractive, which has been applied in several OR-situations, like assignment situations (cf. Owen
(1992)), flow-situations (cf. Reijnierse et al. (1996)) and minimum cost spanning tree situations
(cf. Feltkamp et al. (1994)). For a survey on consistency we refer to Thomson (1990). Second,
we define a cooperative game that corresponds to a partitioning sequencing situation. It is shown
that partitioning sequencing games are convex by decomposing them into a non-negative linear
combination of unanimity games. The latter makes it possible to provide a game independent
expression for the Shapley value. Finally, it is shown that the PEGS-rule can be viewed as the
average of two specific marginal vectors.

Indeed the research in the field of sequencing situations and related games is quite extensive.
Hamers et al. (1995), Borm et al. (2002), Hamers et al. (2005) and Van Velzen (2006) considered
sequencing situations in which the jobs have ready times, due dates, precedence relations and
controllable processing times, respectively. All these papers focus on convexity of the corresponding
games. Others investigated games that arise from sequencing situations with multiple machines.
Hamers et al. (1999), Calleja et al. (2006) and Slikker (2005) focus on balancedness for these games.
Finally, Van Velzen and Hamers (2003) and Slikker (2006) considered a relaxation of sequencing
games and proved that these games have a non-empty core.

This paper is organised as follows. In Section 2 we describe the partitioning sequencing sit-
uations with two connected sets and introduce and characterise the PEGS-rule. In Section 3
partitioning sequencing games are introduced. It is shown that these games are convex. More-
over, an explicit expression for the Shapley value is provided and it is shown that the PEGS-rule
provides a core element. Section 4 shows that the results with respect to the allocation rule and
the partitioning sequencing games can be extended to partitioning sequencing situations in which
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there are more than two connected sets. Finally, Section 5 concludes.

2 Partitioning sequencing situations

In this section we introduce the class of partitioning sequencing situations with two connected sets.
Moreover, we introduce and characterise the partitioning equal gain splitting (PEGS-) rule, an
allocation rule that divides the profit that can be obtained by rearranging the jobs from its initial
order into an optimal order.

In an one-machine partitioning sequencing situation there is a queue of agents, each with one
job, before a machine. Each agent has to process his job on this machine. The finite set of agents
is denoted by N = {1, ..., n}. By a bijection σ : N → {1, ..., n} we can describe the position of the
agents (jobs) in the queue. Specifically, σ(i) = j means that agent i is in position j. We assume
that there is an initial order σ0 : N → {1, ..., n} on the agents before the processing of the machine
starts. Without loss of generality we assume in the remaining of this paper that σ0(i) = i for all
i ∈ N . Moreover, we assume that N is partitioned into two sets J1 and J2, in such a way that
J1 = {1, · · · , n1} and J2 = {n1 + 1, ..., n}. One can view the initial order as being determined by
two separate arrivals of a set of jobs (corresponding to the agents). In the remaining of the paper
we will only refer to the job (or, agent) and not referring to its corresponding agent (or, job).

Further, it is assumed that the jobs of set J1 have disruption level k, with k being a positive in-
teger. The disruption level indicates the number of jobs of J2 that can take a position in {1, · · · , n1}
if the jobs are reordered from its initial order. In other words, an order σ is feasible if and only if
σ(i) ≤ n1 + k, for all i ∈ J1. The set of all feasible orders is denoted by F . The processing time pi

of the job of agent i is the time the machine takes to handle this job. The completion time of agent
i, with respect to an order σ is defined by C(i, σ) =

∑

σ(j)≤σ(i) pj . For each agent i ∈ N the costs
of the time spent in the system is described by the linear cost function ci : [0,∞) → IR defined by
ci(t) = t. Hence, the costs of an agent only depend on its completion time.

A partitioning sequencing situation is denoted as Γ(N) = (N,J1, J2, σ0, p, k), where N is the
set of agents, J1, J2 is a connected partition of N , σ0 is the initial order, p = (pi)i∈N ∈ IRN

+ the
processing times and k the disruption level of the jobs in J1. In the remainder we denote with
PSEQ the class of all partitioning sequencing situations.

The objective is to minimise the total completion time of the jobs, i.e., minσ∈F
∑n

j=1 C(j, σ).
Observe that if k ≥ n2, where n2 = |J2|, then a partitioning sequencing situation is equal to
the classical one-machine sequencing situation as discussed in Curiel et al. (1989). Hence in the
remainder of the paper we assume that k < n2.

The following algorithm, introduced by Hall and Potts (2004), establishes an optimal order of a
partitioning sequencing situation. The algorithm is based on the Shortest Processing Time (SPT)
rule. The SPT rule schedules the jobs in non-decreasing order of their processing times.

Algorithm Hall and Potts

Let Γ(N) = (N,J1, J2, σ0, p, k) be a partitioning sequencing situation. In the first step of the al-
gorithm, the SPT rule is applied to both partitioned sets J1 and J2, separately, resulting in a new
order σ1. In the second step the order σ2 is obtained by applying the SPT rule on the jobs that
are in position 1, · · · , n1 + k of the order σ1.

Hall and Potts prove that the order σ2 is optimal. The following example illustrates the algo-
rithm.

Example 1 Let N = {1, 2, · · · , 8}, J1 = {1, 2, 3, 4}, J2 = {5, 6, 7, 8}, σ0 = (1, 2, · · · , 8), p =
(2, 9, 8, 4, 3, 7, 10, 1) and k = 2. The initial order of jobs has a total completion time of 201. We
reduce these costs using the described algorithm. First we rearrange the jobs of J1 and J2, respec-
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tively, by applying the SPT rule. This results in the orders: (1, 4, 3, 2) and (8, 5, 6, 7), respectively.
Hence, the new order after the first step is σ1 = (1, 4, 3, 2, 8, 5, 6, 7). Because n1 + k = 6 we apply
in the second step the SPT-rule on the jobs in position 1, · · · , 6 , which are (1, 4, 3, 2, 8, 5). We
get σ2 = (8, 1, 5, 4, 3, 2, 6, 7) as an optimal order with a total completion time of 143. Hence, the
total cost savings, obtained by rearranging the jobs from its initial order into the optimal order,
are 201 − 143 = 58. The steps of the algorithm are displayed in Figure 1.

1 2 3 4 5 6 7 8 σ0

1 4 3 2 8 5 6 7 σ1

8 1 5 4 3 2 6 7 σ2

Figure 1: The consecutive steps in the Hall and Potts algorithm.

⊳

Example 1 illustrates that agents standing in front of a machine, before the machine starts process-
ing, can save money by rearranging their positions. In the remaining part of this section we intro-
duce and characterise the PEGS-rule, an allocation rule for partitioning sequencing situations. The
PEGS-rule arises from a non-aggregated solution concept, which is inspired by the algorithm of Hall
and Potts (2004). A non-aggregated solution concept provides a specification of the reward each
agent can obtain by cooperating with any other agent. Suijs et al. (1997) gave a non-aggregated
solution for sequencing situations as studied in Curiel et al. (1989). Formally, a non-aggregated
solution f is a map assigning to each partitioning sequencing situation Γ(N) ∈ PSEQ a matrix
W ∈ IRN×N

+ , where an element wij of W represents the non-negative gain assigned to agent i for
cooperation with agent j. The aggregated allocation corresponding to a solution W can be found
by multiplying W with the unit vector eN = (1 · · · 1)T ∈ IRN .

Before we define the non-aggregated solution we need some notation. We define gij = (pi−pj)+
as the possible gains which can be obtained by a neighbour switch of i and j, if i is in front of j.
The set of i and his predecessors with respect to σ is denoted by P (σ, i) = {t|σ(t) ≤ σ(i)}. Next,
define recursively the set Bj for j = n1 + k, · · · , n in the following way.

Bj =

{

P (σ0, j) ∩ J2 if j = n1 + k

(Bj−1 ∪ {j})\{cj} if j = n1 + k + 1, · · · , n
(1)

where

cj = argmin{t|t ∈ Bj−1 ∪ {j}, pt ≥ pm for all m ∈ Bj−1 ∪ {j}} (2)
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is the first agent with the largest processing time of the set Bj−1∪{j}. Observe that the set Bn1+k

is the set with the first k jobs of J2. In every step, one job is added to the set and the job with
the highest processing time is removed from the set. It may happen that the job that is added
and removed in the same step. Note that Bj is the set of k jobs of {n1 + 1, · · · , j} with smallest
processing times. Hence, Bn is the set of k jobs of J2 with the smallest processing times.

In the following we describe a procedure that determines the PEGS-rule. In the first step the
gains between the agents in J1 (J2) are divided in the following way. In the algorithm all agents of
J1 (J2) are ordered in SPT order. This order can be obtained by neighbour switches that all have
non-negative gains. The gain obtained in such a neighbour switch is divided equally among both
agents involved. Hence, if i, j ∈ J1 or i, j ∈ J2 then 1

2gij is assigned to both players i and j.
Next, we divide the possible gains between the agents of J1 and the first k agents of J2. Because

the disruption level is k, any pair (i, j) with i ∈ J1 and j ∈ Bn1+k can switch and can obtain a gain
of gij . To both agents half of this possible gain is assigned, i.e., each agent receives 1

2gij .
In the following consecutive steps we take j = n1 + k + 1, ..., n, in which j is increased with one

unit after each step. We distinguish two cases. If cj = j then agent j will remain in position and
receives no gains in this step. If cj 6= j, then pj ≤ pcj

, and agent cj and j will switch position.
This means that agent cj cannot switch anymore with jobs of J1 due to the disruption level, but
their gains are already allocated. The gain agent j and agent i ∈ J1 can obtain is gij , but the gain
gicj

is already divided. Hence, the net profit agent j can obtain with agent i is gij − gicj
. This net

profit is divided equally between agent i and j, which is 1
2(gij − gicj

).
Next, the (non-)aggregated PEGS-rule is formally introduced. Let Γ(N) be a partitioning

sequencing situation. Define the symmetric matrix W , where i, j ∈ {1, ..., n}, i ≤ j as follows:

wij =

{

1
2gij for (i, j ∈ J1) or (i, j ∈ J2) or (i ∈ J1 and j ∈ Bn1+k)
1
2(gij − gicj

) for i ∈ J1 and j ∈ J2\Bn1+k
(3)

where Bn1+k and cj are defined as in (1) and (2). Then the non-aggregated PEGS-rule is defined
by PEGS(Γ(N)) = W . The aggregated PEGS-rule is defined as WeN . Example 2 will illustrate
the (non-)aggregated PEGS-rule.

Example 2 Consider the partitioning sequencing situation of Example 1. Recall that the total
cost savings are equal to 58 . The non-aggregated PEGS-rule is equal to the matrix W , as defined
in (3), which is

W =

























0 0 0 0 0 0 0 0.5
0 0 0.5 2.5 3 1 0 3
0 0.5 0 2 2.5 0.5 0 3
0 2.5 2 0 0.5 0 0 1.5
0 3 2.5 0.5 0 0 0 1
0 1 0.5 0 0 0 0 3
0 0 0 0 0 0 0 4.5

0.5 3 3 0.5 1 3 4.5 0

























Observe that in the (1-4)x(1-4) block and (5-8)x(5-8) of the matrix W represents the equal
divisions of gains of neighbour switches within the set J1 and J2, respectively. The gains within
those blocks are equally divided. For example, player 2 and 3 gain g23 = 1 in their neighbour
switch. Hence, each player receives according to this switch w23 = w32 = 1

2g23 = 0.5.
The other entries of the matrix are obtained by using the steps described in (1) and (2) recursively.
First, we obtain B6 = {1, 2, 3, 4, 5, 6} ∩ {5, 6, 7, 8} = {5, 6}. Next, because c7 = 7 we get that
B7 = {5, 6} ∪ {7}\{7} = {5, 6}. Finally, because c8 = 6 we get B8 = {5, 8}.

Now, we can divide the gains between the jobs of J1 and the jobs of J2, using (3).
For job i ∈ J1 and job j ∈ {5, 6} the gains are equally divided. For example, w25 = 1

2g25 = 3.
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For job i ∈ J1 and job 7 we get wi7 = 1
2 (gi7 − gi7) = 0 for all i ∈ J1.

At last, the gains job i ∈ J1 and job 8 can obtain is equal to wi8 = 1
2 (gi8 − gi6). Which gives for

example w18 = 1
2(g18 − g16) = 0.5.

The aggregated PEGS-rule assigns to this partitioning sequencing situation the vector WeN = (0.5,
10, 8.5, 6.5, 7, 4.5, 4.5, 16.5), which reflects the total profit for each player. ⊳

In the final part of this section, we characterise the non-aggregated PEGS-rule. Therefore we need
the notions of connected coalitions and reduced partitioning sequencing situations. A set of agents
is called connected with respect to σ if for all i, j ∈ S and all k ∈ N with σ0(i) < σ0(k) < σ0(j)
it holds that k ∈ S. The set of all non-empty connected coalitions with respect to the initial
order σ0 is denoted with con(σ0). A partitioning sequencing situation reduced to a connected
coalition S, is the sequencing situation remaining when all agents outside of coalition S are left
out of consideration. A reduced partitioning sequencing situation with respect to S is described
by Γ(N |S) = (S, J1 ∩ S, J2 ∩ S, σS

0 , pS , k), with pS = (pi)i∈S and for all i, j ∈ S it holds that
σS

0 (i) < σS
0 (j) if and only if σ0(i) < σ0(j).

Let f be a non-aggregated solution concept, that assigns to each partitioning sequencing situa-
tion Γ(N) a matrix f(Γ(N)) ∈ IRN×N and let σ∗ denote an optimal order for Γ(N). We introduce
the following three properties.

• Efficiency: f is efficient if for all Γ(N) it holds that:

∑

i,j∈N

f(Γ(N))ij =
∑

i∈N

C(σ0, i) −
∑

i∈N

C(σ∗, i)

• Symmetry: f is called symmetric if for all Γ(N) it holds that f(Γ(N))ij = f(Γ(N))ji for all
i, j ∈ N .

• Consistency: f is called consistent if for all S ∈ con(σ0) different from N it holds that
f(Γ(N))|S = f(Γ(N |S)), where f(Γ(N))|S is the matrix with all columns and rows of members
outside S deleted.

Efficiency means that exactly the total cost savings are allocated to the agents. Symmetry tells
us that the (extra) gain two agents can obtain is equally divided by the two agents. Consistency
means that connected sub-coalitions obtain the same division if they renegotiate the (sub)solution
on basis of the same solution concept to an intuitively appealing reduced situation.

Lemma 1 shows that the PEGS-rule is efficient. Before we formulate the Lemma, we define the
vector eS as

eS
i =

{

1 if i ∈ S

0 otherwise
(4)

Moreover, in spite of slight abuse of notation, we denote the transpose of eS also by eS .

Lemma 1 Let Γ(N) = (N,J1, J2, σ0, p, k) be a partitioning sequencing situation, let S be a con-
nected set and let σ∗

S present the optimal order of S, then

eSWeS =
∑

i∈S

C(σ0, i) −
∑

i∈S

C(σ∗
S , i)
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Proof. First we calculate eSWeS . Observe that for S connected (WeS)j =
∑

i∈S wji =
∑

i∈S wij =
∑

i∈S,i<j wij +
∑

i∈S,i>j wji, for all j ∈ S. Using (3) we obtain

(WeS)j =



































∑

i∈S,i<j
1
2gij +

∑

i∈J1∩S,i>j
1
2gji +

∑

i∈Bn1+k∩S
1
2gji +

∑

i∈(J2\Bn1+k)∩S
1
2(gji − gjci

)

if j ∈ J1 ∩ S
∑

i∈J1∩S
1
2gij +

∑

i∈J2∩S,i<j
1
2gij +

∑

i∈S,i>j
1
2gji

if j ∈ Bn1+k ∩ S
∑

i∈J2∩S,i<j
1
2gij +

∑

i∈S,i>j
1
2gji +

∑

i∈J1∩S
1
2(gij − gicj

)

if j ∈ (J2\Bn1+k) ∩ S

(5)

Let S = {t, t+1, ..., r−1, r}, and define Br = ∅ if r ≤ n1 and Br = {n1+1, ...r} if n1+1 ≤ r < n1+k.
Recall, that Br is already defined by (1) if r ≥ n1 + k. Then

eSWeS =
∑

j∈S

(WeS)j

=
∑

i,j∈J1∩S

gij +
∑

i,j∈J2∩S

gij +
∑

i∈J1∩S,j∈Bn1+k∩S

gij +
∑

i∈J1∩S,j∈(J2\Bn1+k)∩S

(gij − gicj
)

=
∑

i,j∈J1∩S

gij +
∑

i,j∈J2∩S

gij +
∑

i∈J1∩S,j∈J2∩S

gij −
∑

i∈J1∩S,j∈(J2\Bn1+k)∩S

gicj

=
∑

i,j∈J1∩S

gij +
∑

i,j∈J2∩S

gij +
∑

i∈J1∩S,j∈Br

gij

=
∑

i∈S

C(σ0, i) −
∑

i∈S

C(σ∗
S , i)

whereby the second equation is obtained by reorganizing the terms of (5). The third equation
is obtained by rewriting the previous expression. The fourth equation is obtained by the definition
of Br. The last equation follows from the algorithm of Hall and Potts (2004) applied to S. �

Theorem 1 The non-aggregated PEGS-rule is the unique non-aggregated rule satisfying efficiency,
symmetry and consistency.

Proof. First it is shown that the PEGS-rule satisfies efficiency, symmetry and consistency. Effi-
ciency follows by Lemma 1 by taking S = N . Symmetry is a consequence of the definition of W

and consistency follows from the definition of W and Γ(N |S).
Let f be a non-empty solution concept satisfying symmetry, efficiency and consistency. With

induction on the number of agents we show that f(Γ(N)) = PEGS(Γ(N)). If n = 1 efficiency
yields f(Γ(N)) = [0] = PEGS(Γ(N)) for all Γ(N). Now, assume that f(Γ(N)) = PEGS(Γ(N)) for
all n < m. Take n = m and let Γ(N,J1, J2, σ0, p, k). Now, reduce Γ(N) to Γ(N|S) with S = N\{1}
and S = N\{n}, respectively. Applying consistency and using the induction hypothesis yields

f(Γ(N))ij = f(Γ(N |S))ij = PEGS(Γ(N |S))ij = PEGS(Γ(N))ij

for all pairs (i, j) 6= (1, n) and (i, j) 6= (n, 1). Efficiency and symmetry gives then

f(Γ(N))1n = f(Γ(N))n1 = PEGS(Γ(N))n1 = PEGS(Γ(N))1n.

Hence f(Γ(N)) = PEGS(Γ(N)). �

6



3 Partitioning sequencing games

In this section we define partitioning sequencing games, a class of cooperative games that arises
from partitioning sequencing situations. We show that these games are convex. Further, a game
independent expression for the Shapley value is given. Moreover, we show that the aggregated
PEGS-rule provides a core element.

Let Γ(N) = (N,J1, J2, σ0, p, k) and let σ∗ be an optimal order of N . Then the maximal
cost savings of coalition N is equal to

∑

i∈N [C(σ0, i) − C(σ∗, i)]. Now, we want to determine
the maximum cost savings of a coalition S ⊂ N . For this, we introduce the admissible set of
rearrangements. A feasible order σ : N → {1, . . . , n} is called admissible for S with respect to σ0 if
P (σ0, i) ∩ (N\S) = P (σ, i) ∩ (N\S) for all i ∈ N . Hence players (agents) of S are not allowed to
jump over players outside coalition S. The set of admissible rearrangements of a coalition S with
respect to σ0 is denoted by A(S). Observe, since an admissible order is feasible, the disruption
level is not violated.

The value of a coalition is defined as the maximal cost savings of the coalition which can be
achieved by admissible rearrangements. Formally, the partitioning sequencing game (N, v) corre-
sponding to a partitioning sequencing situation Γ(N) is defined by:

v(S) = maxσ∈A(S){
∑

i∈S

[C(σ0, i) − C(σ, i)]} (6)

for all S ∈ 2N , and v(∅) = 0.
Observe that the admissibility definition implies that the value of each disconnected coalition

can be written as the sum of the value of its maximally connected components, i.e.,

v(T ) =
∑

S∈T\σ0

v(S) (7)

where S is maximally connected in T if S is connected and S ∪ {i} is not connected for every
i ∈ T\S and T\σ0 denotes the set of maximally connected components of T .

The following proposition shows that a partitioning sequencing game can be written as a non-
negative linear combination of unanimity games. The unanimity game (N,uS) for S ⊂ N is defined
by uS(T ) = 1 if S ⊂ T and uS(T ) = 0 otherwise.

Proposition 1 Let Γ(N) = (N,J1, J2, σ0, p, k) be a partitioning sequencing situation and let (N, v)
be the corresponding partitioning sequencing game. Then

v =
∑

i,j∈J1

giju[i,j] +
∑

i,j∈J2

giju[i,j] +
∑

i∈J1,
j∈Bn1+k

giju[i,j] +
∑

i∈J1,
j∈J2\Bn1+k

(gij − gicj
)u[i,j] (8)

where [i, j] = {i, i + 1, ..., j − 1, j} and Bn1+k and cj as defined in (1) and (2) respectively.

Proof. Because of (7), it is sufficient to prove the statement for connected coalitions. Let S be
connected set and let σ∗

S be an optimal order of S. Then

v(S) =
∑

i∈S

C(σ0, i) −
∑

i∈S

C(σ∗
S , i)

= eSWeS

=
∑

i,j∈J1∩S

gij +
∑

i,j∈J2∩S

gij +
∑

i∈J1∩S
j∈Bn1+k∩S

gij +
∑

i∈J1∩S
j∈(J2\Bn1+k)∩S

(gij − gicj
)

=
∑

i,j∈J1

giju[i,j](S) +
∑

i,j∈J2

giju[i,j](S) +
∑

i∈J1,
j∈Bn1+k

giju[i,j](S) +
∑

i∈J1,
j∈J2\Bn1+k

(gij − gicj
)u[i,j](S)
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whereby the first equation is by (6) and the second equation by Lemma 1. The third equation
follows from (5) and the last equation is obtained using the definition of unanimity games. �

Because unanimity games are convex games and partitioning sequencing games are a non-
negative combination of convex games, we obtain the following theorem.

Theorem 2 Partitioning sequencing games are convex games.

In fact Proposition 1 shows that partitioning sequencing games are σ0-pairing games. Curiel
et al. (1994) call a game a σ0-pairing game if v is an element of the non-negative cone generated
by the games {u[ij]σ0

|σ0(i) < σ0(j)}, and they showed that the class of σ0-pairing games contains
also the class of sequencing games introduced in Curiel et al. (1989). Shapley (1953) introduced
the Shapley value, defined as

Φi(v) =
∑

S:i/∈S

|S|!(n − 1 − |S|)!

n!
(v(S ∪ {i}) − v(S)).

The next theorem provides a game independent expression for the Shapley value.

Theorem 3 Let Γ(N) = (N,J1, J2, σ0, p, k) be a partitioning sequencing situation and let (N, v)
be the corresponding partitioning sequencing game. Then for all m ∈ N it holds

Φm(v) =
∑

i,j∈J1,
i≤m≤j

gij

j − i + 1
+

∑

i,j∈J2,
i≤m≤j

gij

j − i + 1

+
∑

i∈J1,j∈Bn1+k,
i≤m≤j

gij

j − i + 1
+

∑

i∈J1,j∈J2\Bn1+k,
i≤m≤j

(gij − gicj
)

j − i + 1

with Bn1+k and cj as defined in (1) and (2), respectively.

Proof. Let hij , with i, j ∈ {1, · · · , n} and i < j, be defined as

hij =

{

gij if (i, j ∈ J1) or (i, j ∈ J2) or (i ∈ J1, j ∈ Bn1+k)
gij − gicj

if i ∈ J1, j ∈ J2\Bn1+k
(9)

Then according to Proposition 1 we have v =
∑

i<j hiju[ij]. Curiel et al. (1994) showed that the
Shapley value of such a game is equal to

Φm(v) =
∑

i≤ m≤j
i6=j

hij

j − i + 1
,

which completes the proof. �

Note that the Shapley value for partitioning sequencing games divides the (extra) gain of two
players i and j equally between all players involved, (i, i + 1, · · · , j).

The next theorem provides an expression for the β-value. The β-value of a game is defined by
Curiel et al. (1994), as the average of two marginal vectors. i.e. β(v) = 1

2mσ0(v) + 1
2mσ−1

0 (v),
where σ−1

0 is the reverse order of σ0, hence σ−1
0 (i) = n − i + 1.

Theorem 4 Let Γ(N) = (N,J1, J2, σ0, p, k) be a partitioning sequencing situation and let (N, v)
be the corresponding partitioning sequencing game. Then

β(v) = WeN
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Proof. Let v =
∑

i<j hiju[ij] with hij defined as in (9). Then

βj(v) =
1

2
(
∑

i<j

hij +
∑

i>j

hji)

=
1

2
(

∑

i<j,i,j∈J1

i∈J1,j∈Bn1+k

i<j,i,j∈J2

gij +
∑

i∈J1,j∈J2\Bn1+k

(gij − gicj
) +

∑

j<i,j,i∈J1

j∈J1,i∈Bn1+k

j<i,j,i∈J2

gji +
∑

j∈J1,
i∈J2\Bn1+k

(gji − gjci
)

=



































1
2

∑

i<j gij + 1
2

∑

j<i,i∈J1
gji + 1

2

∑

i∈Bn1+k
gji + 1

2

∑

i∈J2\Bn1+k
(gji − gjci

)

if j ∈ J1
1
2

∑

i<j gij + 1
2

∑

i>j gji

if j ∈ Bn1+k
1
2

∑

i<j,i∈J2
gij + 1

2

∑

i∈J1
(gij − gicj

) + 1
2

∑

i>j gji

if j ∈ J2\Bn1+k

= (WeN )j ,

where the first equality is a result from Curiel et al. (1994). �

Corollary 1 Let Γ(N) = (N,J1, J2, σ0, p, k) be a partitioning sequencing situation and let (N, v) be
the corresponding partitioning sequencing game. Then the aggregated PEGS-rule of Γ(N) coincides
with the β(v).

Because partitioning sequencing games are convex games we get the following corollary.

Corollary 2 Let Γ(N) = (N,J1, J2, σ0, p, k) be a partitioning sequencing situation and let (N, v)
be the corresponding partitioning sequencing game. Then the aggregated PEGS-rule provides a core
element.

4 Partitioning sequencing situations with more than two sets

In this section we discuss partitioning sequencing situations in which the jobs are partitioned in
more than two connected sets. It is shown that the results obtained in the previous sections still
hold in this more general setting.

Let Γ(N,m) = (N,J1, J2, · · · , Jm, σ0, p, k1, k2, · · · , km−1) be an m-partitioning sequencing sit-
uation, i.e. a partitioning sequencing situation with m connected sets of jobs. Furthermore, let for
each set Js the last position be denoted by Ns =

∑

i≤s ni, where ni = |Ji|. Like we had before, a
certain disruption level is given for each set, i.e., the disruption level of the jobs from Js is ks, which
means that these jobs have to be scheduled within the first Ns + ks positions. Observe that it is
allowed to have a different disruption level for each set. Furthermore we assume that ks < ns+1

for all s = {1, · · · ,m − 1}, which means that the jobs of set Js cannot be disrupted by all jobs
of the set Js+1. Now we extend the algorithm of Hall and Potts (2004) straightforward to more sets.

Extended Hall and Potts Algorithm

Γ(N,m) = (N,J1, J2, · · · , Jm, σ0, p, k1, k2, · · · , km−1) be an m-partitioning sequencing situation. In
the first step of the algorithm, the SPT rule is applied to the partitioned sets J1, · · · , Jm separately,
which results in σ1. For r ∈ {2, ...,m}, the order σr is obtained by applying the SPT rule on the
jobs that are in position Nm−r + 1, ...., Nm−r+1 + km−r+1 of the order σr−1.
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Theorem 5 Let Γ(N) = (N,J1, · · · , Jm, σ0, p, k1, · · · , km−1) be a m-partitioning sequencing situ-
ation. Then the order σm obtained by the extended Hall and Potts Algorithm is an optimal order
of N .

Proof. The proof is by induction on the number of partitioning sets. For m = 2 the extended
algorithm is equal to the algorithm of Hall and Potts (2004), which provides an optimal order of N .
Now, assume for m = q that σq is optimal. Hence, we have to prove that the extended algorithm
provides an optimal order for m = q + 1. We will prove that σq+1 is an optimal order for N .

The first step of the algorithm results in σ1. Let J ′
q+1 = {σ−1

1 (Nq + kq + 1), · · · , σ−1
1 (n)}.

Observe that the jobs in J ′
q+1 are the jobs with the largest processing time in Jq+1. Hence, there

exists an optimal order σ∗ of N such that σ∗−1(i) = σ−1
1 (i) for all i ∈ {Nq + kq + 1, · · · , n}. Now,

consider Γ(N\J ′
q+1) = (N\J ′

q+1, J
′
1, · · · , J ′

q, σ1, p|N\J ′

q+1
, k1, · · · , kq−1) where J ′

i is the SPT order

of Ji, for i ∈ {1, · · · , q − 1}, and J ′
q is the SPT order of Jq ∪ {σ−1

1 (Nq + 1), · · · , σ−1
1 (Nq + kq)}.

Since Γ(N\J ′
q+1) is partitioned in q sets, we have that the order τq, obtained after applying the

extended Hall and Potts algorithm, is optimal for Γ(N\J ′
q+1). Now, define the order τ∗ on N by

τ∗(i) = τq(i) if i ∈ N\J ′
k+1 and τ∗(i) = σq+1(i) if i ∈ J ′

k+1. Obviously, τ∗ is optimal for N and
since τq(i) = σq+1(i) for all i ∈ N\J ′

k+1, the proof is complete. �

The following example illustrates the algorithm.

Example 3 Let N = {1, 2, · · · , 12}, J1 = {1, 2}, J2 = {3, 4, 5}, J3 = {6, 7, 8}, J4 = {9, 10, 11, 12},
σ0 = (1, 2, · · · , 12), p = (10, 12, 11, 9, 5, 6, 8, 7, 4, 3, 2, 1) and k1 = k2 = 2 and k3 = 3. By applying
the first step of the algorithm, rearranging each set in SPT order, we get σ1 = {1, 2, 5, 4, 3, 6, 8, 7, 12,
11, 10, 9}. Next, we rearrange the jobs on position N2+1, · · · , N3+k3, which are {σ1(6), · · · , σ1(11)} =
{6, 8, 7, 12, 11, 10}, resulting in the new order σ2 = {1, 2, 5, 4, 3, 12, 11, 10, 6, 8, 7, 9}. Then, we apply
the SPT rule to {5, 4, 3, 12, 11} which results in σ3 = {1, 2, 12, 11, 5, 4, 3, 10, 6, 8, 7, 9}. And last
we apply SPT to {1, 2, 12, 11} and get σ4 = {12, 11, 1, 2, 5, 4, 3, 10, 6, 8, 7, 9}. Total cost savings:
638 − 491 = 147. Figure 2 displays the steps of the extended algorithm of Hall and Pots. ⊳

1 2 3 4 5 6 7 8 9 10 1112 σ0

1 2 5 4 3 6 8 7 1211 10 9 σ1

1 2 5 4 3 1211 10 6 8 7 9 σ2

1 2 1211 5 4 3 10 6 8 7 9 σ3

12 11 1 2 5 4 3 10 6 8 7 9 σ4

Figure 2: The steps in the extended algorithm of Hall and Potts.
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Similar to the partitioning sequencing situation with two connected sets, we describe a non-
aggregated solution in which the gains are divided. For notational convenience, we assume k1 ≤
k2 ≤ · · · ≤ km−1. Indeed, if ki is not non-decreasing, then a similar approach can be followed, but
the expressions of the PEGS-rule become more complicated. Again we start with the recursive
construction of the sets Br

j for each r = 1, · · ·m − 1 and j = Nr + kr, · · · , n

Br
j =

{

P (σ0, j) ∩ Jr+1 if j = Nr + kr

(Br
j−1 ∪ {j})\{cr

j} if j = Nr + kr + 1, · · · , n
(10)

where

cr
j = argmin{t|t ∈ Br

j−1 ∪ {j}, pr ≥ pm for all m ∈ Br
j−1 ∪ {j}} (11)

is the agent with the largest processing time of the set Br
j−1 ∪{j}. Observe if m = 2, we are in the

situation of two partitioning sets.
The division of gains between two jobs is done similarly as before with equal division for jobs

from the same set and for jobs from set Js and the first ks jobs of the next set Bs
Ns+ks

. Furthermore,
the net gains (gij − gics

j
) from Js and jobs behind Ns + ks are equally divided.

Now we can denote the (non-)aggregated PEGS-rule for partitioning sequencing situations with
more than two connected sets formally. Let Γ(N) be a partitioning sequencing situation. Define
the symmetric matrix W , where i, j ∈ {1, ..., n} and i ≤ j, as follows:

wij =

{ 1
2gij for (i, j ∈ Jr) or (i ∈ Jr and j ∈ Br

Nr+kr
) and r ∈ {1, · · · ,m − 1}

1
2(gij − gicr

j
) for i ∈ Jr and j ∈ (

⋃m
i=r+1 Ji)\B

r
Nr+kr

and r ∈ {1, · · · ,m − 1}
(12)

where Br
Nr+kr

and cr
j are calculated using (10) and (11) respectively. Then the non-aggregated

PEGS-rule is defined by PEGS(Γ(N)) = W . The aggregated PEGS-rule is defined as WeN . Ex-
ample 4 illustrates the algorithm and the (non-)aggregated PEGS-rule.

Example 4 Consider the partitioning sequencing situation of Example 3. Recall that the total
cost savings are equal to 147 . We use (10) and (11) to calculate all Br

j and cr
j . We show the

construction of the recursive sets Br
j and cr

j for r = 1, 2 and 3. Observe that for r = 1 we have

N1 + k1 = 4 and consequently, B1
4 = {3, 4}. Similarly, for r = 2 we have N2 + k2 = 7 and for r = 3

we have N3 + k3 = 11 which result in B2
7 = {6, 7} and B3

11 = {9, 10, 11}, respectively.

r = 1 r = 2 r = 3
j = 4, B1

4 = {3, 4}
j = 5, c1

5 = 3 B1
5 = {4, 5}

j = 6, c1
6 = 4 B1

6 = {5, 6}
j = 7, c1

7 = 7 B1
7 = {5, 6} B2

7 = {6, 7}
j = 8, c1

8 = 8 B1
8 = {5, 6} c2

8 = 7 B2
8 = {6, 8}

j = 9, c1
9 = 6 B1

9 = {5, 9} c2
9 = 8 B2

9 = {6, 9}
j = 10, c1

10 = 5 B1
10 = {9, 10} c2

10 = 6 B2
10 = {9, 10}

j = 11, c1
11 = 9 B1

11 = {10, 11} c2
11 = 9 B2

11 = {10, 11} B3
11 = {9, 10, 11}

j = 12, c1
12 = 10 B1

12 = {11, 12} c2
12 = 10 B2

12 = {11, 12} c3
12 = 9 B3

12 = {10, 11, 12}
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Note that the steps in Br
j are straightforward. Using the calculations from the algorithm and

applying (12) gives us the following result for the non-aggregated PEGS-rule.

W =











































0 0 0 0.5 2.5 1.5 0 0 1 1 1 1
0 0 0.5 1.5 3 1.5 0 0 1 1 1 1
0 0.5 0 1 3 2.5 1.5 0.5 1.5 1.5 1 1

0.5 1.5 1 0 2 1.5 0.5 0.5 1.5 1.5 1 1
2.5 3 3 2 0 0 0 0 0.5 1 1 1
1.5 1.5 2.5 1.5 0 0 0 0 1 1.5 2 1.5
0 0 1.5 0.5 0 0 0 0.5 2 2.5 3 1.5
0 0 0.5 0.5 0 0 0.5 0 1.5 2 2.5 1.5
1 1 1.5 1.5 0.5 1 2 1.5 0 0.5 1 1.5
1 1 1.5 1.5 1 1.5 2.5 2 0.5 0 0.5 1
1 1 1 1 1 2 3 2.5 1 0.5 0 0.5
1 1 1 1 1 1.5 1.5 1.5 1.5 1 0.5 0











































Finally, the aggregated PEGS-rule assigns to this partitioning sequencing situation the vector
WeN = (8.5, 10.5, 14, 12.5, 14, 13, 11.5 , 9, 13, 14, 14.5, 12.5). ⊳

It turns out that the results we obtained, for the partitioning sequencing situation with two
connected sets, in the previous sections, can easily be extended to a partitioning sequencing sit-
uation with more than two connected sets, because the set Br

n represents exactly the jobs which
can interchange with jobs from Jr without violating the disruption levels (like in the case with two
connected sets). Therefore the proofs are a straight forward generalisation of the previous proofs,
and therefore they are omitted.

Theorem 6 Let Γ(N,m) = (N,J1, J2, · · · , Jm, σ0, p, k1, k2, · · · , km−1) with k1 ≤ · · · ≤ km−1 be a
m-partitioning sequencing situation with m partitioned sets, and let (N, v) be the corresponding
partitioning sequencing game. Then the following statements hold:

(a) The generalised PEGS is the unique non-aggregated rule satisfying efficiency, symmetry and
consistency;

(b) The partitioning sequencing game (N, v) is convex;

(c) There is a game independent expression for the Shapley value of the game:

Φh(v) =
∑

i,j∈Js,
i≤h≤j,

s∈{1,··· ,m}

gij

j − i + 1
+

∑

i∈Js,j∈Bs
Ns+ks

,

i≤h≤j,
s∈{1,··· ,m}

gij

j − i + 1
+

∑

i∈Js,j≥Ns+ks,
i≤h≤j,

s∈{1,··· ,m}

(gij − gics
j
)

j − i + 1

(d) β(v) = WeN ;

(e) The generalised aggregated PEGS-rule generates a core element.

5 Final remarks

In the former sections we studied partitioning sequencing situations in which all jobs have an equal
weight and the processing times are chosen arbitrary. In this section we look at the general class of
partitioning sequencing problems in which the weights and processing times of the jobs are arbitrary
chosen.
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First we consider the class of partitioning sequencing situations in which the processing times
are all equal (p = 1) and the cost functions are linear, i.e., ci(t) = αit with the weight αi > 0 for all
i ∈ N . The objective is to minimise the total weighted completion time. In this class the Largest
Urgency (LU)-rule, i.e., the jobs are ordered in a non-decreasing order of their weight factor, takes
the role of the SPT-rule in the Hall and Potts (2004). Using the same arguments as before, we can
show that we can obtain the same results as stated in Theorem 6, using gij = (αj − αi)+.

The following Example shows that for partitioning sequencing games in which the processing times
and weights are arbitrary, the corresponding partitioning sequencing games need not be convex.

Example 5 Let (N,J1, J2, σ0, p, α, k) be a general partitioning sequencing situation with N =
{1, 2, 3, 4}, J1 = {1, 2}, J2 = {3, 4}, σ0 =1-2-3-4, p = (1, 50, 10, 1),α = (5, 4, 11, 10) and k = 1. The
game corresponding to this problem:
v({i}) = 0 for all i ∈ N , v({1, 2}) = v({1, 3}) = v({1, 4}) = v({2, 4}) = 0, v({2, 3}) = v({1, 2, 3}) =
510, v({3, 4}) = v({1, 3, 4}) = 89, v({1, 2, 4}) = 0, v({2, 3, 4}) = 585 and v({1, 2, 3, 4}) = 590.
Take S = {1, 3, 4}, T = {3} and i = 2. Then it is easily to see that the game is not convex:
v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ). ⊳

Nevertheless, it follows from (7) and LeBreton et al. (1991) that partitioning sequencing games
are balanced.

Acknowledgements: We wish to thank Marco Slikker for his useful comments on a preliminary
version.
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