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Abstract

Networks can have an important effect on economic outcomes. Given the complex-

ity of many of these networks, agents will generally not know their structure. We study

the sensitivity of game-theoretical predictions to the specification of players’ (common)

prior on the network in a setting where players play a fixed game with their neighbors

and only have local information on the network structure. We show that two priors

are close in a strategic sense if and only if (1) the priors assign similar probabilities

to all events that involve a player and his neighbors, and (2) with high probability,

a player believes, given his type, that his neighbors’ conditional beliefs are similar,

and that his neighbors believe, given their type, that. . . the conditional beliefs of their

neighbors are similar, for any number of iterations. Also, we show that the common

but unrealistic assumptions that the size of the network is common knowledge or that

the types of players are independent are far from innocuous: if these assumptions are

violated, small probability events can have a large effect on outcomes through players’

conditional beliefs.
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1 Introduction

In many contexts, an agent’s well being primarily depends on his own action and on

the actions of those with whom he shares a direct relationship, rather than on the actions

of all agents in the population. Also, an agent’s connections provide access to various

resources such as information, knowledge and capital.1 Hence, in a variety of settings,

the networks formed by agents’ relations are important in determining economic outcomes.

These networks are generally large and complex, and evolve rapidly over time.2 This suggests

that agents often will not know the exact structure of the network they belong to.3 At the

same time, it is unclear what beliefs agents have about their networks.4 We consider a setting

where agents interact strategically with their neighbors in the network and are uncertain

about the network structure. We study the sensitivity of game-theoretical predictions in

such games to the specification of players’ belief on the network.

More specifically, suppose that players are located on a network and play a fixed game

with their neighbors. Payoffs only depend on a player’s own action and characteristics and

on the actions and characteristics of his neighbors. Players have a common prior over the

network, and, in addition, they have some local information: they know the number of

neighbors they have in the network, i.e., a player’s type is connectivity. We say that two

priors are close in a strategic sense if for any game with bounded payoff functions in which

players hold one of these priors, for any equilibrium in that game, there is an approximate

equilibrium in the associated game with the other prior such that ex ante expected payoffs

are close under both equilibria. If that is the case, players can obtain approximately the

same payoffs under both priors. We thus study lower hemicontinuity of the correspondence

of (interim) approximate equilibria in network games.

1For instance, key success factors for a firm in a high tech sector such as the biotechnology industry are its
position in a network of R&D partnerships (Powell et al., 1996) and the collaboration with its R&D partners
(Littler et al., 1995). Other empirical studies that highlight the role of networks of relations include Coleman
et al. (1966) and Conley and Udry (2005) on the diffusion of new technologies in medicine and agriculture,
respectively, Granovetter (1974) on job search, Tucker (2005) on adoption decisions, and Fafchamps and
Lund (2003) on informal insurance networks in developing countries.

2For instance, several empirical emphasize the flexibility of R&D collaborations, with firms having many
short term projects with many different partners (e.g. Hagedoorn, 2002; Powell et al., 2005).

3Indeed, Krackhardt and Hanson (1993) report that informal networks are mostly unobservable to senior
executives. Also, Powell et al. (1996, p.120) observe that in R&D collaborations in biotechnology, “beneath
most formal ties [. . . ] lies a sea of informal relations”.

4Evidence suggests that agents use simple heuristics (Janicik and Larrick, 2005), and that their perception
of the network is biased (e.g. Kumbasar et al., 1994), even in an environment with strong incentives (Johnson
and Orbach, 2002).
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Our main result (Theorem 5.2) shows that two priors are close in a strategic sense if and

only if (1) the priors assign similar probabilities to all local events, i.e., events that involve a

player and his neighbors, and (2) with high probability, a player believes, given his type, that

his neighbors’ conditional beliefs are similar under the two priors, and that his neighbors

believe, given their type, that. . . the conditional beliefs of their neighbors are similar, and

so on, for any number of iterations. This latter condition can also be stated in terms of

the correlation among types: an equivalent formulation is that the set of types for which

conditional beliefs are similar has to have high probability, and is sufficiently cohesive in the

sense that with high conditional probability, a type in that set interacts only with types in

that set that, with high conditional probability, only interact with types in that set, and so

on.

This result can be interpreted as follows. On the one hand, we can analyze a network

game as a set of overlapping “local games” as far as ex ante beliefs are concerned: priors

only need to assign similar probabilities to local events. On the other hand, these local

games are interlaced through players’ conditional beliefs: players need to form beliefs on

the beliefs of his neighbors about the beliefs of their neighbors, and so on. This means

that events that have small probability ex ante can have a large effect on outcomes through

players’ conditional beliefs: even if with high probability, each player has a type such that

his conditional beliefs are similar under the two priors, it may be the case that with high

probability, a player thinks it is likely, given his type, that his neighbors think it is likely,

given their type,. . . the conditional beliefs of their neighbors are very different. Players’ higher

order beliefs can thus have a large impact on outcomes if condition (2) is not satisfied.

To establish our results, we introduce a new class of games, the class of network games

of incomplete information. This class of games allows for uncertainty over the network size

and for arbitrary correlations among player types. So far, strategic interactions on a network

have been modeled as a Bayesian game.5 In particular, it is assumed that the size of the

network is commonly known. Moreover, it is often assumed in this literature that players’

types are (asymptotically) independent. We refer to the games studied in this literature

as Bayesian network games, to distinguish this class from the class of network games of

incomplete information that we introduce.

Network games of incomplete information are not Bayesian games, as they allow for

5Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2006) provide a general framework for analyzing
strategic interactions on networks under complete and incomplete information about the network structure.
Papers that study specific games include Jackson and Yariv (2007) and Sundararajan (2005). For a survey,
see Ioannides (2004) or Jackson (2006).
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uncertainty over the player set, and nor does the class of network games of incomplete

information contain the class of Bayesian network games. The reason is that uncertainty

about the player set forces us to treat players symmetrically in network games of incomplete

information (cf. Myerson, 1998). When the player set is not commonly known, players’

perceptions about each others’ strategic behavior cannot be formulated in terms of a strategy

profile which assigns a distinct strategy to each individual in the game. Players are aware,

though, of the possible types in the game, so that they can form perceptions about how

the strategic behavior of players depend on their types. Strategies can thus only depend on

players’ types, not on their identity.6

Allowing for uncertainty over the network size is a natural step. The observation of

Myerson (1998) that in some contexts, it is natural to assume that players are uncertain

about the number of other players in the game holds a fortiori for network games, as in

these games, players only interact with a small subset of players. Games with “population

uncertainty” in which players interact globally have been studied by a number of authors (e.g.

Kalai, 2004; McAfee and McMillan, 1987; Milchtaich, 2004; Myerson, 1998), but population

uncertainty has not been studied in settings where players interact locally, as in the current

paper. Population uncertainty plays a distinctly different role here than in games with global

interactions: unlike in games with population uncertainty with global interactions, a player

knows precisely the number of players he interacts with. However, a player does not know

the number of players his neighbors interact with.

Introducing population uncertainty in network games and allowing for arbitrary corre-

lations among types may seem to be innocuous extensions. However, we show that these

assumptions can have large ramifications. When the number of players is fixed (or, more

generally, when it is bounded), there is a precise bound on the number of players each player

can interact with: when the number of players is n, the maximum connectivity is n− 1. By

contrast, when the number of players is potentially unbounded (i.e., exceeding each integer

n with positive probability), the type set is infinite. In that case, a prior can be sensitive to

small probability events : an event that has small prior probability can have a large effect on

outcomes through players’ conditional beliefs: a player may think it is likely, given his type,

that his neighbors think it is likely, given their types. . . that the small probability event is

true. When the type set is finite, this is ruled out. In that case, closeness of the two priors

in terms of prior probabilities (condition (1)) implies that there is a sufficiently large set of

6However, in Appendix A we show that the set of equilibria is invariant to payoff-irrelevant type-splitting :
when we allow for payoff-irrelevant subdivisions of types, the set of equilibria remains essentially unchanged.
In that sense, there is no loss of generality in assuming that players only base their behavior on their type.
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players whose conditional beliefs are close. A similar argument holds for the assumption of

independent types. Hence, to explore the full range of strategic outcomes, one needs to go

beyond network games with a fixed number of players and independent types. The class of

network games of incomplete information provides a flexible framework to analyze the effects

of different assumptions on players’ priors.

The current paper builds on a literature relating higher order beliefs to the equilibria of

incomplete information games, in particular Monderer and Samet (1989) and Kajii and

Morris (1998), and we use extensively concepts and techniques from this literature. Kajii

and Morris (1998) study lower hemicontinuity of the approximate equilibrium correspondence

in Bayesian games with a (fixed) finite player set and a countably infinite state space.7

They show that two priors over this state space are strategically close if and only if the

prior probabilities of events are similar under the two priors and with high probability, it is

approximate common knowledge that all players attach similar conditional probabilities to

all events, i.e., with high probability, each player believes with high conditional probability

that the conditional beliefs of all players are similar under the two priors and that all players

believe with high conditional probability that the conditional beliefs of all players are similar,

and that all players believe with high conditional probability that all players believe with

high conditional probability. . . that the conditional beliefs of all players are similar under the

two priors (for any number of iterations). Our result can thus be seen as a “spatial” analogue

of this result: rather than requiring that all players believe that all players believe. . . that

the conditional beliefs of all players are similar, we require that a player believes that his

neighbors believe that their neighbors believe. . . that the conditional beliefs of their neighbors

are similar.

Although we study the same issues as Kajii and Morris (1998), and follow their line of

argument in our proofs,8 conceptually, there are marked differences. To establish our results,

we introduce the local p-belief operator. The local p-belief operator associates with each set

of types a set of types that with conditional probability at least p interact exclusively with

types in that set. It thus provides a measure of the “cohesiveness” of a set of types. We

show that this operator also quantifies players’ higher order beliefs regarding local events

7Monderer and Samet (1996) study the related question under what conditions two information partitions
are close in a strategic sense. That is, they fix the probability distribution over the states and vary players’
information partitions. Milgrom and Weber (1985) study upper hemicontinuity of the Bayesian equilibrium
correspondence. Kets (2007b) applies the ideas of Kajii and Morris (1998) to the context of Bayesian network
games.

8Also see Rothschild (2005).

5



in network games, i.e., a player’s beliefs about his neighbors’ beliefs about their neighbors’

beliefs, and so on.

The local p-belief operator is thus closely related to the p-belief operator of Monderer and

Samet (1989), which quantifies players’ higher order beliefs in Bayesian games. The p-belief

operator of Monderer and Samet associates with each event E the event in which all players

believe E with conditional probability at least p. In the current context, an event would be

a set of networks. The p-belief operator is thus defined at a global level, and characterizes

players’ beliefs about global events. Indeed it can be shown that the local p-belief operator

and the p-belief operator of Monderer and Samet (extended to the context of network games

of incomplete information) are complementary in this respect (see Kets, 2007a). While the

p-belief operator of Monderer and Samet can be used to characterize players’ higher order

beliefs over the global structure of the network, the local p-belief operator is well suited to

characterize players’ higher order beliefs over local events.

The local p-belief operator is also related to the neighborhood operator of Morris (1997,

2000). Morris introduces the neighborhood operator in the context of games on a fixed

network. For a given network, the neighborhood operator assigns to each subset of players

the set of players in that subset for whom at least proportion p of their interactions is only

with players in that subset. That is, the neighborhood operator relates to the cohesiveness

of a group of players, just like the local p-belief operator relates to the cohesiveness of a set

of types.

Hence, the local p-belief operator shares features of both the p-belief operator of Monderer

and Samet (1989) and the neighborhood operator of Morris (1997, 2000). Like the p-belief

operator, the local p-belief operator pertains to players’ (higher order) beliefs in incomplete

information games. Like the neighborhood operator, the local p-belief operator refers to the

local interactions of players.

The current paper is thus at the interface of the literature on higher order beliefs and

on network games. A notable paper that is also at this interface is Morris (2000). Morris

considers a coordination game on a fixed network with infinitely many players. He studies

the conditions under which an action that is initially played by a finite set of players will

eventually spread to the whole population through myopic best reply dynamics. If that is

the case, an action spreads contagiously. A necessary and sufficient condition for there to

be no contagion starting from some finite group of players X is that the network of players

outside that group contains a large group of players Y that is sufficiently cohesive, in the

sense that players from Y interact mostly with other players from Y , who in turn interact

mostly with other players from Y , and so on. This result is directly related to our main
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result. The second condition we identify for priors to be close in a strategic sense states that

there should be a set of types of considerable measure that is sufficiently cohesive. Hence, our

result can be seen as a stochastic analogue of this result. This underlines the formal relation

between network games and incomplete information games first highlighted by Mailath et al.

(1997) and Morris (1997) and exploited in Morris (2000).

The outline of this paper is as follows. Preliminaries are discussed in Section 2. In

Section 3, we introduce the class of network games of incomplete information. The local p-

belief operator and players’ higher order beliefs in network games are discussed in Section 4.

Section 5 contains our main result and a discussion of its implications. Section 6 concludes.

2 Preliminaries

In our framework, players are located on a network. A network g = (V, E) consists of

a finite, nonempty set of vertices V and a finite, nonempty set of edges E, with an edge

an unordered pair of two distinct vertices. Players are identified with vertices, with edges

representing the relations between players. If {i, j} ∈ E, where i, j ∈ V, i 6= j, then i and j

are neighbors.

We consider a setting where the network is drawn from a class of networks according to

some probability distribution. Let n ∈ N, and let V (n) := {1, . . . , n}. Let G(n) be the set of

all networks with vertex set V (n) and let

G :=
⋃
n∈N

G(n)

be the countable set of all networks with a finite vertex set. Let F be the σ-algebra generated

by the set of singletons of G. Let M denote the set of all probability measures on (G, F ),

and let µ ∈M. We refer to the probability space (G, F , µ) as a network belief system.

A network belief system can be induced by a random network.9 A random network is

a network formed in a random construction procedure and is thus a measurable mapping

from some measurable (sample) space to the measurable (outcome) space (G, F ). For in-

stance, in the Erdős-Rényi or binomial random network (Erdős and Rényi, 1959) an edge

is created between two distinct vertices from a fixed vertex set with probability p ∈ [0, 1],

independently of the other edges. The probability measure on the sample space induces

a probability distribution µ on the outcome space (G, F ). In the current paper, we only

9See Jackson (2006) or Vega-Redondo (2007) for a discussion of random networks and their applications
in economics.
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consider the outcome space (G, F ) and the probability distribution µ, and we do not specify

the “experiment” that induces the probability space (G, F , µ). Example 2.1 gives a simple

example of a random network with a random number of vertices; for a particularly elegant

model of a random network with a random number of vertices, see Bollobás et al. (2007).

Example 2.1. Suppose that a population evolves in (discrete) generations, indexed by

m ∈ {0, 1, . . .}. Each member of the mth-generation gives birth to a family (possibly empty)

of members of the (m + 1)th generation. The number of offspring that each individual

produces is a random variable. We assume that the number of offspring of each individual

in the population is independent of the number of offspring of all other individuals, and

that the probability distribution (pk)k∈N∪{0} of the number of offspring is the same for each

individual. This is a simple branching process (e.g. Grimmett and Stirzaker, 1992). If we

associate a vertex with each individual and if we interpret ancestry relations as (undirected)

edges, this random process gives rise to a network with a random number of vertices. /

Given a network belief system (G, F , µ), the vertex set and the edge set are random

variables. Let Q be the countable set of all finite subsets of N, and let V : G → Q be the

function that assigns to each network g ∈ G its vertex set V (g). That is, if g ∈ G(n) for some

n ∈ N, then V (g) = V (n). Let Q(2) ⊂ Q be the set of all subsets of N with two elements, and

let P(2) be the countable set of all finite subsets of Q(2). Define the function E : G → P(2),

which assigns to each network g ∈ G its edge set E(g).

We are interested in the local environment of vertices. Let i ∈ N, and define the function

Ni : G → Q as follows. For g ∈ G,

Ni(g) :=

{
{j ∈ V (g) | {i, j} ∈ E(g)}, if i ∈ V (g);

∅, otherwise,

is the set of neighbors of vertex i in network g. We refer to the random variable Ni as

the neighborhood of i, and to Ni(g), g ∈ G, as the neighborhood of i in g. Also, define the

function Di : G → N ∪ {0} by

Di(g) := |Ni(g)|

for g ∈ G. That is, Di(g) is the number of neighbors of vertex i in network g. We refer to

Di(g) as the connectivity of i in g, and to the random variable Di as the connectivity of i.

Note that the connectivity of i in g can be 0 for two distinct reasons. It could be that i is a

vertex in the network, but does not have any neighbors, or i is not a vertex of the network.

We will also consider the number of neighbors the neighbors of a given vertex have.

Loosely speaking, the neighbor connectivity profile of a vertex in a given network is a list of
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Figure 2.1: (a) The network g of Example 2.2; (b) A network isomorphic to g. To see

that this network is isomorphic to g, note that there are two permutations of the vertex

set V (4) = {1, 2, 3, 4} that renders g into this network: π(i) = 5 − i for each i ∈ V (4), or

π′(1) = 4, π′(2) = 3, π′(3) = 1, π′(4) = 2.

the connectivities of the neighbors of the vertex, in a nonincreasing order. For t ∈ N, let

Ωt
K := {(k1, . . . , kt) ∈ Nt | k1 ≥ k2 ≥ . . . ≥ kt−1 ≥ kt}.

For t = 0, let Ωt
K = {0}, and define ΩK :=

⋃
t∈N∪{0} Ωt

K . Let FK be the σ-field generated

by the set of all singletons of ΩK . For g ∈ G and i ∈ V (g) such that Di(g) = 0, we set

Ki(g) := 0. Otherwise, define

N1 := Ni(g),

j(1) := max{j ∈ N1 | Dj(g) ≥ Dk(g) for all k ∈ N1},

Ki,1(g) := Dj(1)(g),

and for ` = 2, . . . , Di(g):

N` := N`−1 \ {j(`− 1)},

j(`) := max{j ∈ N` | Dj(g) ≥ Dk(g) for all k ∈ N`},

Ki,`(g) := Dj(`)(g).

Then, Ki(g) := (Ki,1(g), . . . , Ki,Di(g)(g)) is the neighbor connectivity profile of i in g.

Example 2.2. Suppose we draw network g in Figure 2.1(a) from the set G. Its vertex set is

V (g) = {1, 2, 3, 4}, and its edge set is E(g) = {{1, 2}, {1, 3}, {1, 4}, {3, 4}}. The connectivity

of vertex 1 in g is D1(g) = 3, the neighborhood of vertex 1 is N1(g) = {2, 3, 4} and the

neighbor connectivity profile of vertex 1 in g is K1(g) = (D4(g), D3(g), D2(g)) = (2, 2, 1). /

The following definition will be useful when specifying players’ beliefs in the next section.

Let n ∈ N. Two networks g, g′ ∈ G(n) are isomorphic if there is a permutation π of V (n)

such that {i, j} ∈ E(g) if and only if {π(i), π(j)} ∈ E(g′). This defines an equivalence

relation; hence, the set of all networks with n vertices G(n) can be partitioned into a finite
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number of isomorphism classes, i.e., sets of isomorphic networks. Let C (n) be the collection

of isomorphism classes of G(n), and let C :=
⋃

n∈N C (n) be the collection of isomorphism

classes of G. Figure 2.1(a) and (b) depict two networks that are isomorphic.

Throughout this paper, we make the following two assumptions on network belief systems:

Assumption 1. (Finite expected number of vertices)

The network belief system (G, F , µ) is such that the expected number of vertices is finite,

i.e., ∑
n∈N

nµ
(
G(n)

)
< ∞.

/

Assumption 2. (No isolated vertices)

The network belief system (G, F , µ) is such that with probability 1, each vertex has at least

one neighbor. That is,

µ({g ∈ G | Di(g) > 0 for all i ∈ V (g)}) = 1.

/

Assumption 2 is for notational convenience only and can easily be relaxed.

3 Network games of incomplete information

A network game of incomplete information is a game on a network, in which players are

associated with a vertex in the network, and each player’s payoff depends on the types and

actions of himself and his neighbors. Players have incomplete information on the network:

they have a common prior over the class G of all finite networks, and they know the number of

neighbors they have, i.e., their connectivity. In particular, they may not know the number

of players in the network. Here we introduce the class of network games of incomplete

information.

3.1 Game

Let (G, F , µ) be a network belief system satisfying Assumptions 1 and 2. A network

g ∈ G is drawn according to (G, F , µ). Each vertex in the set V (g) represents a player, and

10



we refer to a player by his vertex label. Players do not know their vertex label, however.10

Each player i ∈ V (g) knows the number of neighbors he has in the network: his type is his

connectivity. Hence, the type set is T = N ∪ {0}. Henceforth, we will speak of type and

neighbor type profile, rather than of connectivity and neighbor connectivity profile. Each

player is endowed with a finite, nonempty set A of pure strategies or actions. For each

t ∈ T , the payoffs of a player of type t are given by a function vt. For t > 0, the payoffs of a

player of type t are given by a function vt : A×At×T t → R that is symmetric in At and T t,

i.e., for all permutations π1, π2 on {1, . . . , t}, for all a ∈ A, (a1, . . . , at) ∈ At, (θ1, . . . , θt) ∈ T t,

vt

(
a, (a1, . . . , at), (θ1, . . . , θt)

)
= vt

(
a, (aπ1(1), . . . , aπ1(t)), (θπ2(1), . . . , θπ2(t)

)
,

with vt

(
a, (a1, . . . , at

)
,
(
θ1, . . . , θt)

)
the payoffs to a player of type t with neighbor type profile

(θ1, . . . , θt) when he chooses action a ∈ A, and his neighbors play according to the action

profile (a1, . . . , at). The payoffs to a player of type t = 0 are given by a function v0 : A → R,

i.e., the payoffs to an isolated player only depend on his own action.

Definition 3.1. A network game of incomplete information is a tuple

〈T,A, (G, F , µ), (vt)t∈T 〉

with its elements defined as above. /

We fix the action set A. A network game of incomplete information is then fully characterized

by its probability measure on (G, F ) and its profile of payoff functions. We henceforth denote

a network game of incomplete information 〈T,A, (G, F , µ), (vt)t∈T 〉 by the pair (µ, v), where

v := (vt)t∈T .

Let B ∈ R. A profile v of payoff functions is bounded by B if for all t ∈ T, t 6= 0, θ ∈ Ωt
K

and for all a, a′ ∈ At+1,

max
{
|vt(a, θ)− vt(a

′, θ)|, |vt(a, θ)|
}
≤ B.

If there exists B ∈ R such that the profile v is bounded by B, we say that it is bounded.

As in games with population uncertainty and random-player games, the player set is not

commonly known, so that players are not aware of the particular identities of the other

players in the game. Hence, we cannot assign a separate strategy to each individual player.

10The vertex labeling is introduced merely to be able to define random variables such as the connectivity
of vertices. However, this labeling carries no meaning.
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(a) (b)

Figure 3.1: The networks of Example 3.1. (a) The network g(3); (b) The network g(300).

Rather, a strategy can only depend on a player’s type (cf. Myerson, 1998; Milchtaich, 2004).

Hence, for each type t ∈ T , let σt be a real function defined on A which satisfies

σt(a) ≥ 0

for all a ∈ A, and ∑
a∈A

σt(a) = 1,

with σt(a) the probability that a player of type t chooses action a. The set of all probability

distributions on A is denoted by Σ. An element σ = (σ0, σ1, σ2, . . .) ∈ ΣT is referred to as a

strategy function.

3.2 Beliefs

To calculate expected payoffs, we need to specify players’ beliefs. There are two issues

that should be noted. Firstly, as in games with population uncertainty and random-player

games, players condition on their type, as well as on the fact that they are selected to

play. That is, from a player’s perspective, even if all networks in the support of µ have

the same probability ex ante, he is more likely to belong to a network with many players:

there are simply more vertices to be associated with in large networks. This is illustrated

by Example 3.1.

Example 3.1. Suppose that the network belief system assigns probability 1
2

to the network

g(3) consisting of a triangle of three players, and probability 1
2

to the network g(300) consisting

of 300 players, connected in a cycle (see Figure 3.1. Though the prior probability of the two

networks is 1
2
, from the perspective of a player, it is much more likely that network g(300) is

realized, as to each “player position” in g(3), there are 100 player positions in g(300). Using

Bayes’ rule, a player’s belief that g(300) is realized is

300 · 1
2

3 · 1
2

+ 300 · 1
2

=
300

303
.

/
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Secondly, a player cannot distinguish between networks in a given isomorphism class,

as he does not know his vertex label or the vertex labels of his opponents. Hence, to

calculate players’ beliefs that they have a given neighbor type profile, we need to consider

the probability distribution over isomorphism classes induced by µ, and for each isomorphism

class, we need to take into account the number of vertices with that neighbor type profile in

the isomorphism class.

Formally, recall that C is the collection of isomorphism classes of G, and that FK is the

σ-field associated with the set of all neighbor type profiles ΩK . For each C ∈ C , and each

F ∈ FK , let nC(F ) be the number of vertices in a network in C with their neighbor type

profile in F . Note that nC(F ) is well defined: for any two networks g, g′ ∈ C, the number of

vertices with their neighbor type profile in F is identical. Let

n̄ :=
∑
n∈N

nµ
(
G(n)

)
be the expected number of players in the network belief system. By Assumption 1, n̄ is

finite. Consider a player who is called upon to play, but who does not know his type yet.

The probability that the neighbor type profile of such a player lies in the set F is

qµ(F ) =
1

n̄

∑
C∈C

µ(C)nC(F ),

where we recall that µ(C) is the prior probability that a network from the isomorphism class

C is realized. In words, qµ(F ) is equal to the expected fraction of players with a neighbor

type profile in F . We refer to qµ(F ) as the prior probability that a player’s neighbor type

profile is in F . In particular, for each t ∈ T ,

qµ(t) := qµ(Ωt
K)

denotes the prior probability that a player’s type is t.

Remark 3.1. Tacitly we have assumed that there is some pool of candidate players from

which (actual) players are drawn. We have not specified this pool, nor have we specified the

method by which players are selected. There is no need to specify this, however, as we are

solely interested in players’ beliefs given that they have been selected to play. Hence, the

probability measure qµ gives the probability that an arbitrary player has a certain neighbor

type profile. Also see Myerson (1998, p.382-384) on this point. /

It can be readily checked from the definitions that qµ is indeed a probability measure on

the measurable space (ΩK , FK) of neighbor type profiles:

13
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Figure 3.2: The networks representing the isomorphism classes of Example 3.2 that have

positive probability.

(a) qµ(∅) = 0, and qµ(ΩK) = 1;

(b) qµ satisfies σ-additivity: for A1, A2, . . . a collection of disjoint members of FK ,

qµ

(⋃
k∈N

Ak

)
=
∑
k∈N

qµ(Ak).

Example 3.2. Suppose that a network belief system assigns positive probability only to the

networks g1, g2, . . . , g5 in Figure 3.2 or to networks isomorphic to them. Suppose that all

isomorphism classes associated with the networks in Figure 3.2 have equal probability, i.e.,

for each isomorphism class C ∈ C of G, µ(C) = 1
5

if there is a network g ∈ {g1, g2, . . . , g5}
such that g ∈ C, and µ(C) = 0 otherwise. To calculate a player’s prior belief that his

neighbor type profile is in some set F ∈ FK , we now simply need to count the number of

vertices in g1, . . . , g5 with their neighbor type profile in F , and compare this to the total

number of vertices in g1, . . . , g5. For instance, a player’s prior belief that his neighbor type

profile is θ = (2, 2) is given by

qµ(θ) =
1
5
· 5 + 1

5
· 3

4 · 1
5
· 5 + 1

5
· 4

=
8

24
,

and a player’s prior belief that his type is t = 2 is qµ(t) = 9
24

. This is intuitive: from a player’s

perspective, he is equally likely to be associated with each of the vertices in g1, . . . , g5. /

Conditional probabilities can be calculated in the usual way. Let t ∈ T be such that

qµ(t) > 0. A player’s belief that his neighbor type profile is in the set F ∈ FK given that

his type is t is given by

qµ(F |t) :=
qµ(F ∩ Ωt

K)

qµ(Ωt
K)

,

=

∑
C∈C µ(C)nC(F ∩ Ωt

K)∑
C∈C µ(C)nC(Ωt

K)
.

With minor abuse of notation, we write qµ(θ|t) to denote qµ({θ}|t) for θ ∈ ΩK . We refer to

qµ(F |t) as the conditional belief of (a player of) type t that his neighbor type profile is in F .

14



Example 3.2 (continued) To calculate a player’s conditional belief that his neighbor type

profile is in some set F ∈ FK given that his type is t ∈ T , we need to count the number

of vertices in g1, . . . , g5 with type t and neighbor type profile in F , and compare this to the

total number of vertices in g1, . . . , g5 with type t. For instance, a player’s conditional belief

that his neighbor type profile is θ = (2, 2) given that his type is t = 2 is

qµ(θ|t) =
1
5
· 5 + 1

5
· 3

1
5
· 5 + 1

5
· 3 + 1

5
· 1

=
8

9
.

Indeed, eight out of the nine vertices in g1, . . . , g5 with type t = 2 have neighbor type profile

θ = (2, 2). /

3.3 Payoffs and equilibrium

We now define expected payoffs. Let t ∈ T, t 6= 0, θ = (θ1, . . . , θt) ∈ Ωt
K , and define

σ(θ) := (σθ1 , . . . , σθt) ∈ Σt. Let

vt(a, σ(θ)) :=
∑

a(t)∈At

(
t∏

`=1

σθ`

(
a

(t)
`

))
vt

(
a, a(t), θ

)
.

For each type t ∈ T such that qµ(t) > 0, the expected payoffs to a player of type t of an

action a ∈ A when the other players play according to the strategy function σ ∈ ΣT are

ϕt(a, σ; µ) :=
∑

θ∈Ωt
K

qµ(θ|t)vt(a, σ(θ), θ). (3.1)

For t ∈ T such that qµ(t) = 0, set ϕt(a, σ; µ) := 0 for all a ∈ A and σ ∈ ΣT . Also, for each

t ∈ T and σ ∈ ΣT , let

ϕt(σ; µ) :=
∑
a∈A

σt(a)ϕt(a, σ; µ). (3.2)

The type-averaged (expected) payoffs of strategy function σ ∈ ΣT are

Φ(σ; µ) :=
∑
t∈T

qµ(t)ϕt(σ; µ). (3.3)

The type-averaged payoff of a strategy function σ ∈ ΣT is the weighted average of the

expected payoffs of the different types under the strategy function σ, and gives the expected

payoff of a player who is called upon to play the game, but does not know his type yet.

Hence, the expected payoffs of a type correspond to the interim expected payoffs of a player

in standard Bayesian games, while the type-averaged payoffs correspond to the ex ante

expected payoffs in Bayesian games.
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Definition 3.2. Let ε ≥ 0. An ε-equilibrium is a strategy function σ ∈ ΣT such that for

each t ∈ T such that qµ(t) > 0, for each action a ∈ A such that σt(a) > 0,

ϕt(a, σ; µ) ≥ ϕt(b, σ; µ)− ε

for all b ∈ A. We refer to a 0-equilibrium as an equilibrium. /

Proposition 3.1. Let (µ, v) be a network game of incomplete information. If the profile of

payoff functions v is bounded, the game has an equilibrium.

Proof. See Appendix B. �

Let (µ, v) be a network game of incomplete information. Then, N ε(µ, v) denotes the set of

ε-equilibria of (µ, v). In particular, N 0(µ, v) denotes the set of equilibria of (µ, v).

In network games of incomplete information and other games with some form of population

uncertainty, all players of the same type must be predicted to behave similarly in equilib-

rium, as players have no behaviorally relevant characteristics other than their type that

are recognized by other players in the game. This raises the question how equilibria might

change if we allow players to base their behavior on characteristics other than their type. As

shown in Appendix A, the set of equilibria remains essentially unchanged when we allow for

such payoff-irrelevant subdivisions of types, as long as the payoff-irrelevant characteristics of

players do not provide them with additional information about their neighbors, given their

type.

4 The local p-belief operator and higher order beliefs

Let µ ∈ M, and let p ∈ [0, 1]. The local p-belief operator Bp
µ associates with each set

of types the subset of types that with conditional probability at least p interact exclusively

with types in that set (whenever they have positive probability). Formally, let S ⊆ T . Then,

Bp
µ(S) := {t ∈ S | qµ(t) > 0 ⇒ qµ(St|t) ≥ p}. (4.1)

Note that Bp
µ(S) includes the types in S that have zero probability. By definition, Bp

µ(S) ⊆ S.

If also

Bp
µ(S) ⊇ S, (4.2)
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we say that the set of types S is p-closed (under µ).11 If a set of types is p-closed, then each

type in the set interacts with high conditional probability only with types in that set, who

in turn interact with high conditional probability only with types in that set, and so on.

The local p-belief operator can be iterated any finite number of times. For instance,

Bp
µ

(
Bp

µ(S)
)

is the set of types t ∈ Bp
µ(S) such that with conditional probability at least p,

they interact exclusively with types in Bp
µ(S), that is, with types in S that with conditional

probability at least p interact exclusively with types in S. Define
[
Bp

µ

]1
(S) := Bp

µ(S) and,

for each ` ∈ N, let
[
Bp

µ

]`+1
= Bp

µ ◦
[
Bp

µ

]`
. Let

Cp
µ(S) :=

⋂
`∈N

[
Bp

µ

]`
(S)

be the set of types that with conditional probability at least p interact exclusively with types

that with conditional probability at least p. . . interact exclusively with types in S, for any

number of iterations.

Example 3.2 (continued) Let S := {1, 2, 3}. It is easy to check that the conditional

belief of a player with type t = 1 or t = 2 that he interacts exclusively with players with

types in S is qµ(St|t) = 1, while the conditional belief of a player with type t = 3 that he

interacts exclusively with players with types in S is qµ

(
S3|3

)
= 1

3
. Hence, for p ∈ [0, 1

3
],

we have Bp
µ(S) = S, while for p ∈ (1

3
, 1], it holds that Bp

µ(S) = {1, 2}. Now consider the

conditional beliefs of players with types in the set Bp
µ(S) that they only interact with players

with a type in Bp
µ(S). For instance, for p ∈ (1

3
, 1], it is easy to check that qµ

(
Bp

µ(S)|1
)

= 2
3
,

while qµ

(
(Bp

µ(S))2|2
)

= 1. Hence, for p ∈ (1
3
, 2

3
), it holds that Bp

µ(Bp
µ(S)) = {1, 2}, while for

p ∈ (2
3
, 1], we have Bp

µ(Bp
µ(S)) = {2}. /

The local p-belief operator satisfies the following desirable properties:12

Monotonicity: For any T ′, T ′′ ⊆ T , if T ′ ⊆ T ′′, then Bp
µ(T ′) ⊆ Bp

µ(T ′′).

Continuity: Let S ⊆ T , and for k ∈ N, let Tk ⊆ T . If Tk ↓ S, i.e., if (Tk)k∈N is a (weakly)

decreasing sequence and
⋂

k∈N Tk = S, then Bp
µ(Tk) ↓ Bp

µ(S).

Continuity in p: If pk ↑ p, then, for any S ⊆ T , Bpk
µ (S) ↓ Bp

µ(S).

For proofs, see Appendix B.

11We follow the convention in the literature on higher order beliefs of making the one-sided implications
explicit, as it is the one-sided implication in (4.2) that captures the nature of a set being p-closed.

12See Monderer and Samet (1989, 1996) for a discussion. Note that the axiom of monotonicity implies the
axiom of subpotency in the current context: for all S ⊆ T , Bp

µ

(
Bp

µ(S)
)
⊆ Bp

µ(S).
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The following two results, which we will use later on, have well known counterparts in

the literature on higher order beliefs (Monderer and Samet, 1989, Prop. 3).

Lemma 4.1. Let S ⊆ T , and let p ∈ [0, 1]. The set of types Cp
µ(S) is p-closed, i.e.,

Bp
µ

(
Cp

µ(S)
)

= Cp
µ(S).

Lemma 4.2. Let p ∈ [0, 1]. Let t ∈ T , and let R ⊆ T . We have that t ∈ Cp
µ(R) if and only

if there exists a subset of types S ⊆ T that is p-closed such that t ∈ S and S ⊆ Bp
µ(R).

The proofs of Lemmas 4.1 and 4.2 can be found in Appendix B.

Though at first sight the local p-belief operator seems to refer primarily to the “cohesiveness”

of a set of types, we can use the local p-belief operator to characterize players’ higher order

beliefs, i.e., the beliefs players have over the beliefs of other players over the beliefs of other

players, and so on. For instance, consider the set Bp
µ(S) of types for some S ⊆ T . We

have said that with conditional probability at least p, a player with type t ∈ Bp
µ(S) interacts

exclusively with players whose types lie in S. An alternative formulation is that a player with

a type t ∈ Bp
µ(S) believes, given his type, that with probability at least p, all his neighbors

have their types in the set S. That is, the local p-belief operator is a belief operator restricted

to events of the form “the types of all neighbors of an arbitrary player are in a given set”.

When the local p-belief operator is iterated, we obtain statements about players’ higher

order beliefs. When t ∈ Bp
µ(Bp

µ(S)), a player with type t believes (with high conditional

probability) that his neighbors believe that their neighbors’ types are in S, i.e., the set

Bp
µ(Bp

µ(S)) characterizes a player’s beliefs about his neighbors’ beliefs about their neighbors

(see Figure 4.1(a)). Similarly, when t ∈ Bp
µ(Bp

µ(Bp
µ(S))), a player believes that his neigh-

bors believe that their neighbors believe that their neighbors’ types are in S. That is, the

set Bp
µ(Bp

µ(Bp
µ(S))) characterizes a player’s beliefs about his neighbors’ beliefs about their

neighbors’ beliefs about their neighbors (see Figure 4.1(b)).

The local p-belief operator also allows us to characterize a player’s beliefs over others’

beliefs about himself and his beliefs. Indeed, a player is a neighbor of his neighbors, so that

when a player believes (with high conditional probability) that his neighbors believe that

their neighbors’ types are in S (i.e., a player’s type is in Bp
µ(Bp

µ(S))), then he believes that

the players he interacts with believe that his type is in S. Similarly, if a player believes that

his neighbors believe that their neighbors believe that their neighbors’ types are in S (i.e.,

a player’s type is in Bp
µ(Bp

µ(Bp
µ(S)))), then he believes that his neighbors believe that he

believes that their types are in S.
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i i i

Player i believes that his neighbors believe that their neighbors’ types lie in S.

i i i i

Player i believes that his neighbors believe that their neighbors believe that their neighbors’ types are in S.

(a)

(b)

Figure 4.1: Higher order beliefs in a network. (a) Suppose player i has a type in Bp
µ

(
Bp

µ(S)
)
.

Then, with conditional probability at least p, he believes that his neighbors have a type in S,

and that with conditional probability at least p, they believe that their neighbors’ types lie in

S. (b) Suppose player i has a type in Bp
µ

(
Bp

µ

(
Bp

µ(S)
))

. Then, with conditional probability at

least p, he believes that his neighbors have a type in S, and that with conditional probability

at least p, they believe that their neighbors have a type in S, and that with conditional

probability at least p, they believe that their neighbors’ types lie in S.
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We will use the local p-belief operator extensively in the next section to analyze players’

beliefs in network games of incomplete information.

5 Strategic convergence

5.1 Main result

Our objective is to define a “measure” of similarity of network belief systems such that if

two network belief systems are similar according to this measure, then, for each network game

of incomplete information, for each equilibrium of the game in which beliefs are given by one

of these network belief systems, there exists an approximate equilibrium of the game with

beliefs given by the other network belief system, such that type-averaged payoffs are close in

both equilibria. If that is the case, then, for each possible payoff function, each player who is

called upon to play can obtain approximately the same payoffs (in an ex ante sense) under

both network belief systems: from a players’ (ex ante) perspective, the two network belief

systems are similar. At the same time, we do not want to make the conditions on network

belief systems to be similar too strict – when we say that two network belief systems are

similar if and only if they are identical, the above holds trivially. Hence, we want to define

a measure that guarantees that the above holds, but that is no stricter than necessary.

Formally, let µ, µ′ ∈M, and let v := (vt)t∈T be a profile of payoff functions. For each ε ≥ 0,

define

χ(µ, µ′; v, ε) := sup
σ∈N 0(µ,v)

inf
σ′∈N ε(µ′,v)

|Φ(σ; µ)− Φ(σ′; µ′)|,

where Φ is the type-averaged payoff given profile v of payoff functions. Hence, χ(µ, µ′; v, ε)

is a measure of the difference in outcomes under µ and µ′ in terms of type-averaged payoffs.

That is, for a given ε ≥ 0, for each equilibrium under µ, we first find an ε-equilibrium under µ′

which minimizes the (absolute) difference in type-averaged payoffs under both equilibria, and

we then look for the equilibrium under µ which maximizes this difference. This formalizes

the idea that for each equilibrium of the network game of incomplete information with one

network belief system, there exists some approximate equilibrium of the network game of

incomplete information with the other network belief system, such that type-averaged payoffs

are similar under both equilibria. However, the function χ(µ, µ′; v, ε) is not symmetric in µ

and µ′, as we would want. To obtain a symmetric function of µ and µ′, let

χ∗(µ, µ′; v, ε) := max {χ(µ, µ′; v, ε), χ(µ′, µ; v, ε)} .
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Note that when ε increases, the set of approximate equilibria weakly increases, as more and

more strategies will satisfy the equilibrium criterion, and the (absolute) difference in type-

averaged expected payoffs will decrease weakly. Hence, the interesting case is when ε comes

arbitrarily close to 0. This leads us to the following definition (cf. Kajii and Morris, 1998):

Definition 5.1. Take any µ ∈ M, and consider a sequence (µk)k∈N in M. The sequence

(µk)k∈N converges strategically to µ if for each profile v of payoff functions that is bounded,

for each ε > 0, we have that

lim
k→∞

χ∗(µ, µk; v, ε) = 0.

/

A natural requirement for strategic convergence is that priors attach similar probabilities to

the event that a player has a neighbor type profile in a certain set, i.e., that priors converge

in the weak topology on ΩK . Hence, define

d0(µ, µ′) := sup
F∈FK

|qµ(F )− qµ′(F )|. (5.1)

We also need to consider players’ conditional beliefs, i.e., the beliefs they have over their

neighbors’ types and beliefs, given their own type. For δ ∈ [0, 1], let

T δ
µ,µ′ :=

{
t ∈ T |

qµ(t) > 0

qµ′(t) > 0

}
⇒ sup

F∈FK

|qµ(F |t)− qµ′(F |t)| ≤ δ

}
(5.2)

be the set of types such that players’ conditional beliefs on their neighbors’ types are within

δ, whenever the type has positive probability under µ and µ′. If δ is small, the conditional

beliefs of a player with a type t ∈ T δ
µ,µ′ over the types of his neighbors are close under µ

and µ′. If a player has a type t 6∈ T δ
µ,µ′ , then his optimal actions under µ and µ′ may differ

substantially, as he believes that his local environment is very different under µ and µ′.

However, even if with high (prior) probability, a player has a type such that his conditional

beliefs on his neighbors’ types are similar under µ and µ′ (i.e., t ∈ T δ
µ,µ′), outcomes can be very

different under the two priors. The reason is that a player may believe with high conditional

probability that the conditional beliefs of some of his neighbors on their neighbors’ types

are very different under µ and µ′ (i.e., t 6∈ Bp
µ(T δ

µ,µ′) for some p ∈ [0, 1]), or that some of his

neighbors believe with high conditional probability that the conditional beliefs of some of

their neighbors are very different under µ and µ′ (i.e., t 6∈ Bp
µ

(
Bp

µ(T δ
µ,µ′)

)
), and so on. Hence,

we need to require that with high probability, a player has a type in the set Cp
µ(T δ

µ,µ′), for some

large p ∈ [0, 1]. In that case, a player’s conditional beliefs are similar under µ and µ′, and,
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he believes with high conditional probability that the conditional beliefs of his neighbors are

similar under the two priors and that his neighbors believe with high conditional probability

that the conditional beliefs of their neighbors are similar under the two priors, and so on.

This makes that the actions that are optimal for a player of type t ∈ Cp
µ(T δ

µ,µ′) under µ

will be (almost) optimal under µ′, as he expects his neighbors to behave similarly under µ

and µ′ (as his neighbors expect their neighbors to behave similarly, as the neighbors of his

neighbors expect their neighbors. . . ).

However, requiring that with high prior probability, a player has a type in Cp
µ(T δ

µ,µ′) may

still not be sufficient. Even if a player believes, given his type, that with high probability

his neighbors will choose the same actions under µ and µ′ (allowing for ε-best responses),

they may not do so if in fact their type is not in Cp
µ(T δ

µ,µ′)! That is, if with high probability,

some of the neighbors of a player have a type t 6∈ Cp
µ(T δ

µ,µ′), the payoff to a player with

type t ∈ Cp
µ(T δ

µ,µ′) can be very different under µ and µ′. However, Lemma 5.1 shows that,

if the probability is high that a player has a type in the set Cp
µ(T δ

µ,µ′), then in fact also the

probability that his neighbors have a type in Cp
µ(T δ

µ,µ′) will be high:

Lemma 5.1. Let µ ∈ M, and fix α, p ∈ [0, 1]. For each S ⊆ T , if the probability that a

player has a type in the set Cp
µ(S) is at least α, i.e., if

qµ

( ⋃
t∈Cp

µ(S)

Ωt
K

)
≥ α,

then the probability that this player and his neighbors have their types in Cp
µ(S) is at least

αp:

qµ

( ⋃
t∈Cp

µ(S)

(
Cp

µ(S)
)t) ≥ αp.

Proof. See Appendix B. �

Hence, by Lemma 5.1, it is sufficient to require that with high probability, a player has a

type in Cp
µ(T δ

µ,µ′). Formally, for each S ⊆ T , let

Θ(S) :=
⋃
t∈S

Ωt
K

be the set of neighbor type profiles in which the type of the “central” player belongs to the

set S. Then, define

d1(µ, µ′) := inf
{
δ ∈ [0, 1] | qµ

(
Θ(C1−δ

µ (T δ
µ,µ′))

)
≥ 1− δ

}
. (5.3)
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If d1(µ, µ′) is small, then, with high prior probability (under µ), a player has a type such

that his conditional beliefs are similar under µ and µ′, and with high conditional probability,

he interacts exclusively with players whose conditional beliefs are close, and who, with high

conditional probability, interact exclusively with players whose conditional beliefs are close,

and so on.

We can combine (5.1) and (5.3) to obtain

d∗(µ, µ′) := max {d0(µ, µ′), d1(µ, µ′), d1(µ
′, µ)} . (5.4)

It is immediate that d∗ is nonnegative and symmetric. Moreover, d∗(µ, µ′) = 0 if and only

if µ = µ′. However, d∗ need not satisfy the triangle inequality, so that it is not a metric.

However, d∗ generates a topology on the setM of probability measures on (G, F ): a sequence

(µk)k∈N converges to µ if and only if for any ε > 0, there exists Kε ∈ N such that d∗(µk, µ) ≤ ε

for all k > Kε.

We are now ready to state our main result.

Theorem 5.2. Let µ ∈ M and let (µk)k∈N be a sequence in M. Then, (µk)k∈N converges

strategically to µ if and only if

lim
k→∞

d∗(µ, µk) = 0.

Theorem 5.2 follows from Proposition 5.4 - 5.6. Proposition 5.4 uses Lemma 5.3.

Lemma 5.3. Let µ, µ′ ∈ M, and let δ ∈ [0, 1]. Let v be a profile of payoff functions. If

σ ∈ ΣT is an equilibrium of the game (µ, v) and if v is bounded by B, then there exists a

5δB-equilibrium σ′ of the game (µ′, v), with σ′t = σt for all t ∈ C1−δ
µ′ (T δ

µ,µ′).

Proof. For ease of notation, define Q := C1−δ
µ′ (T δ

µ,µ′). For each t ∈ Q, set σ′t = σt. For t 6∈ Q

such that qµ′(t) > 0, let σ′t be such that (σ′t)t∈T is an equilibrium of the reduced game where

each player with a type t ∈ Q is required to play σ′t = σt. Such an equilibrium exists by

Proposition 3.1. By construction, σ′t is a best response to σ′ for t 6∈ Q. Hence, it remains to

show that σ′t is a 5δB-best response for a type t ∈ Q. Hence, let t ∈ Q such that qµ(t) > 0

and qµ′(t) > 0. By Lemma 4.1,

qµ′
(
Qt
∣∣t) ≥ 1− δ. (5.5)

Furthermore, by the definition of Q = C1−δ
µ′ (T δ

µ,µ′), for each F ∈ FK ,

|qµ(F |t)− qµ′(F |t)| ≤ δ. (5.6)
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Let a ∈ A such that σt(a) > 0, and let b ∈ A. Then,

|ϕt(a, σ′; µ′)− ϕt(b, σ
′; µ′)| ≤

∑
θ∈Ωt

K\Qt

qµ′(θ|t)
∣∣vt(a, σ′(θ))− vt(b, σ

′
(θ))
∣∣+

∑
θ∈Qt

qµ′(θ|t)
∣∣vt(a, σ′(θ))− vt(b, σ

′
(θ))
∣∣. (5.7)

The first sum in (5.7) can be evaluated directly. Using (5.5) and that v is bounded by B,∑
θ∈Ωt

K\Qt

qµ′(θ|t)
∣∣vt(a, σ′(θ))− vt(b, σ

′
(θ))
∣∣ < δB. (5.8)

To evaluate the second sum in (5.7), first note that for θ ∈ Qt, all neighbors play according

to σ. As σ is an equilibrium of (µ, v),∑
θ∈Qt

qµ(θ|t)
∣∣vt(a, σ(θ))− vt(b, σ(θ))

∣∣ ≤ ∑
θ∈Ωt

K\Qt

qµ(θ|t)
∣∣vt(a, σ(θ))− vt(b, σ(θ))

∣∣ (5.9)

Also, by (5.5) and (5.6), we have that

qµ

(
Ωt

K \Qt
∣∣t) ≤ 2δ. (5.10)

Combining (5.9) and (5.10), we obtain∑
θ∈Qt

qµ(θ|t)
∣∣vt(a, σ(θ))− vt(b, σ(θ))

∣∣ ≤ 2δB. (5.11)

Let P t := {θ ∈ Qt | qµ′(θ|t)− qµ(θ|t) ≥ 0} be the set of neighbor type profiles θ in Qt such

that the conditional probability of θ under µ′ is at least as high as under µ. Then, by (5.6),∑
θ∈Qt

∣∣(qµ′(θ|t)− qµ(θ|t)
)(

vt(a, σ(θ))− vt(b, σ(θ))
)∣∣ =

∑
θ∈P t

(
qµ′(θ|t)− qµ(θ|t)

)∣∣vt(a, σ(θ))− vt(b, σ(θ))
∣∣+∑

θ∈Qt\P t

(
qµ(θ|t)− qµ′(θ|t)

)∣∣vt(a, σ(θ))− vt(b, σ(θ))
∣∣ ≤ 2δB. (5.12)

Combining (5.11) and (5.12), we obtain∑
θ∈Qt

qµ′(θ|t)
∣∣vt(a, σ(θ))− vt(b, σ(θ))

∣∣ ≤
∑
θ∈Qt

qµ(θ|t)
∣∣vt(a, σ(θ))− vt(b, σ(θ))

∣∣+
∑
θ∈Qt

∣∣qµ′(θ|t)− qµ(θ|t)
∣∣∣∣vt(a, σ(θ))− vt(b, σ(θ))

∣∣ ≤ 4δB. (5.13)
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Combining (5.7), (5.8) and (5.13) gives

|ϕt(a, σ′; µ′)− ϕt(b, σ
′; µ′)| ≤ 5δB.

�

Proposition 5.4 establishes the sufficiency of the condition in Theorem 5.2.

Proposition 5.4. Let µ, µ′ ∈ M, and let δ ∈ [0, 1]. Let v be a profile of payoff functions.

Suppose that d∗(µ, µ′) ≤ δ. Then, if σ is an equilibrium of the game (µ, v) and v is bounded

by B, then there exists a 5δB-equilibrium σ′ of the game (µ′, v) such that

|Φ(σ; µ)− Φ(σ′; µ′)| ≤
(
4− δ

)
δB.

Proof. For ease of notation, define Q := C1−δ
µ′ (T δ

µ,µ′). As d∗(µ, µ′) ≤ δ,

|qµ(F )− qµ′(F )| ≤ δ (5.14)

for all F ∈ FK , and

qµ′
(
Θ(Q)

)
≥ 1− δ. (5.15)

Let σ ∈ ΣT be an equilibrium of (µ, v). By Lemma 5.3, there exists a 5δB-equilibrium

σ′ ∈ ΣT of (µ′, v) such that σ′t = σt for all t ∈ Q. Hence, using (5.15) and Lemma 5.1 (with

α = p = 1− δ),∣∣Φ(σ′; µ′)− Φ(σ; µ′)
∣∣ ≤ ∑

t∈Q:
qµ′ (T )>0

qµ′(t)
∑
θ∈Qt

qµ′(θ|t)
∑
a∈A

|σ′t(a)vt(a, σ′(θ))− σt(a)vt(a, σ′(θ))|+

∑
t∈Q:

qµ′ (T )>0

qµ′(t)
∑

θ∈Ωt
K\Qt

qµ′(θ|t)
∑
a∈A

|σ′t(a)vt(a, σ′(θ))− σt(a)vt(a, σ′(θ))|+

∑
t∈T\Q:

qµ′ (T )>0

qµ′(t)
∑

θ∈Ωt
K

qµ′(θ|t)
∑
a∈A

|σ′t(a)vt(a, σ′(θ))− σt(a)vt(a, σ′(θ))|,

< 0 +
(
1− (1− δ)2

)
B,

=
(
2− δ

)
δB.

Let P := {θ ∈ ΩK | qµ′(t) − qµ(t) ≥ 0}, and define the function ζ : ΩK → T by ζ(θ) = t

whenever θ ∈ Ωt
K . That is, the function ζ gives the type of a player for each possible neighbor
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type profile he may have. Then,∣∣Φ(σ; µ′)− Φ(σ; µ)
∣∣ ≤∑

θ∈P

(
qµ′(t)− qµ(t)

)∑
a∈A

σζ(θ)|vζ(θ)(a, σ(θ))|+∑
θ∈ΩK\P

(
qµ(t)− qµ′(t)

)∑
a∈A

σζ(θ)|vζ(θ)(a, σ(θ))|,

≤ 2δB.

Combining (5.16) and (5.16) gives the desired result. �

We now establish necessity. Proposition 5.5 establishes that d0(µ, µ′) should be small for

strategic outcomes to be similar (in the sense defined above).

Proposition 5.5. Let δ ∈ [0, 1], and let µ, µ′ ∈M. If

d0(µ, µ′) > δ,

then there exists a profile v of payoff functions with bound B = 1 and an equilibrium σ of

the game (µ, v) such that for any δ-equilibrium σ′ of (µ′, v), it holds that

|Φ(σ; µ)− Φ(σ′; µ′)| > δ.

Proof. If d0(µ, µ′) > δ, there exists a set of neighbor type profiles F ∈ FK such that

|qµ(F )− qµ′(F )| > δ. For each t ∈ T , a ∈ A, a(t) ∈ At and θ ∈ Ωt
K , let

vt(a, a(t), θ) =

{
1, if θ ∈ F ;

0, otherwise.

It is easy to see that

|Φ(σ; µ)− Φ(σ′; µ′)| > δ

for any two strategy functions σ, σ′ ∈ ΣT . �

Proposition 5.6 establishes that strategic outcomes can be very different if d1(µ, µ′) is large.

Proposition 5.6. Let δ ∈ [0, 1], and let µ, µ′ ∈M. If

d1(µ, µ′) > δ,

then there exists a profile v of payoff functions with bound B = 3 and an equilibrium σ of

the game (µ, v) such that for any δ-equilibrium σ′ of the game (µ′v), it holds that

|Φ(σ; µ)− Φ(σ′; µ′)| > δ2.
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Proof. As d1(µ, µ′) > δ, we have

qµ

(
Θ(C1−δ

µ (T δ
µ,µ′))

)
> 1− δ

or

qµ′
(
Θ(C1−δ

µ′ (T δ
µ,µ′))

)
> 1− δ. (5.16)

Without loss of generality, assume that (5.16) holds. Recall that for each t 6∈ T δ
µ,µ′ , there

exists a set of neighbor type profiles Ft ∈ FK such that

qµ′(Ft|t)− qµ(Ft|t) > δ.

Write A = {b1, b2, . . . , bm}, where m ∈ N, and let payoffs be defined as follows.13 For each

t ∈ T , a(t) ∈ At and θ ∈ Ωt
K , let

vt(b
1, a(t), θ) := 0,

vt(b
2, a(t), θ) :=


2, if t ∈ T δ

µ,µ′ and a
(t)
j = b2 for some j ∈ {1, . . . , t};

−δ, if t ∈ T δ
µ,µ′ and a

(t)
j = b1 for all j ∈ {1, . . . , t};

1− qµ(Ft|t), if t 6∈ T δ
µ,µ′ and θ ∈ Ft;

−qµ(Ft|t), if t 6∈ T δ
µ,µ′ and θ 6∈ Ft;

and for ` ∈ {3, . . . ,m}, let

vt(b
`, a(t), θ) := −2.

Hence, action b1 always gives a payoff of 0, regardless of the actions and types of a player

and his neighbors. For players with type t ∈ T δ
µ,µ′ , action b2 is only profitable if there is at

least one neighbor who also takes action b2. By contrast, the payoffs of b2 to players with

type t 6∈ T δ
µ,µ′ only depends on their neighbor type profile θ: action b2 is profitable only if θ

belongs to Ft. All other actions than b1 and b2 are strictly dominated.

Consider the network game of incomplete information (µ, v). In this game, there is an

equilibrium σ ∈ ΣT in which all types t ∈ T choose action b1 with probability 1. For each

type t, expected payoffs are 0, so that type-averaged payoffs are 0. Now consider the game

(µ′, v). By definition, for each type t 6∈ T δ
µ,µ′ , qµ′(Ft|t)− qµ(Ft|t) > δ. The interim expected

payoffs of playing b2 are then

ϕt(b
2, σ; µ′) = qµ′(Ft|t)

(
1− qµ(Ft|t)

)
−
(
1− qµ′(Ft|t)

)
qµ(Ft|t) > δ

for any strategy function σ ∈ ΣT . Hence, in any δ-equilibrium, players with type t 6∈ T δ
µ,µ′

will play action b2. Let T̂ δ
µ,µ′ := {t ∈ T δ

µ,µ′ | qµ(t) > 0} be the set of types in T δ
µ,µ′ that have

13This game is based on the “infection game” of Kajii and Morris (1998).
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positive probability. Let t ∈ T̂ δ
µ,µ′ . If qµ

(
(T δ

µ,µ′)t|t
)

< 1−δ, then, with conditional probability

at least δ, a player with type t has at least one neighbor who plays b2. Hence, the interim

expected payoffs of b2 to such a type are at least

δ · 2− (1− δ) · δ > δ,

so that in any δ-equilibrium, players with type t ∈ T̂ δ
µ,µ′ such that qµ

(
(T δ

µ,µ′)t|t
)

< 1− δ will

play b2. By a similar argument, players with type t ∈ T̂ δ
µ,µ′ such that qµ

((
B1−δ

µ′ (T δ
µ,µ′)

)t|t) <

1−δ will play b2 in any δ-equilibrium. It is easy to see that this argument can be iterated any

finite number of times. Hence, all players with type t ∈ T̂ δ
µ,µ′ such that qµ

((
C1−δ

µ′ (T δ
µ,µ′)

)t|t) <

1− δ will play b2 in any δ-equilibrium.

By (5.16), the probability that a player has a type t 6∈ Cµ′(T δ
µ,µ′) is greater than δ. As

by Lemma 4.1 the set C1−δ
µ′ (T δ

µ,µ′) is (1− δ)-closed, the probability that a player has a type

t ∈ T̂ δ
µ,µ′ such that qµ

((
C1−δ

µ′ (T δ
µ,µ′)

)t|t) < 1−δ is greater than δ. Hence, in any δ-equilibrium

σ′ ∈ ΣT of (µ′, v), type-averaged expected payoffs are greater than δ2, so that

|Φ(σ; µ)− Φ(σ′; µ)| > δ2.

�

We can now prove Theorem 5.2.

Proof. (If) Let v be a profile of payoff functions. By Proposition 5.4, for v bounded by B,

and for k ∈ N such that 5Bd∗(µ, µk) ≤ ε,

χ∗(µ, µk; v, ε) ≤
(
4− d∗(µ, µk)

)
d∗(µ, µk)B.

Hence, for all profiles of payoff functions v that are bounded and for all ε > 0, if d∗(µ, µk) → 0,

then χ∗(µ, µk; v, ε) → 0.

(Only if) Let µ, µ′ ∈ M. For δ ∈ [0, 1), if d0(µ, µ′) > δ or d1(µ, µ′) > δ, then, by

Propositions 5.5 and 5.6, there exists a profile of payoff functions v bounded by B = 3

and an equilibrium σ ∈ ΣT of (µ, v) such that for any δ-equilibrium σ′ ∈ ΣT of (µ′, v),

|Φ(σ; µ)− Φ(σ′; µ′)| > δ2. �

Before we discuss the implications of this result in more detail, some discussion of our

assumptions is in order. Firstly, we assume that all players with the same payoff function

independently implement the same strategies, i.e., strategies do not depend on a player’s

identity in our framework. Our results do not depend on this assumption. Firstly, as shown

in Appendix A, the set of equilibria remains essentially unchanged when we allow for payoff-

irrelevant subdivisions of types. That is, allowing for payoff-irrelevant characteristics that
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may affect a player’s behavior does not substantively change the set of equilibria, as long as

these characteristics do not provide a player with additional information about his neighbors,

given his connectivity. This means that we could derive a result similar to Theorem 5.2 for

games in which we allow for such payoff-irrelevant subdivisions of types. Secondly, Kets

(2007b) shows that a counterpart of Theorem 5.2 holds for Bayesian network games (where

the player set is fixed and strategies may depend on a player’s identity) when one defines

strategic convergence in terms of symmetric Bayesian ε-equilibria.14 Noting that priors in

Bayesian network games are insensitive to small probability events (since the number of

players is fixed), a necessary and sufficient condition for a sequence of priors to converge

strategically to a prior in Bayesian network games is that the sequence converges uniformly

to the prior over events in FK .

Secondly, the assumption that a player’s payoffs only depend on the actions and types of

his direct neighbors is not crucial. Under some suitable modifications and some additional

technical assumptions, one could obtain similar results for games in which players’ payoffs

depend on the actions and types of players that are less than k steps away from them in the

network, for arbitrary k ∈ N.

Thirdly, our definition of strategic convergence requires that players choose approximate

best responses given their type. If, alternatively, we would only have required that they

choose approximate best responses before learning their type, i.e., if we would have considered

some ex ante or type-averaged notion of approximate equilibrium, then convergence in the

weak topology on ΩK (i.e., d0(µ, µk) → 0) is sufficient for strategic convergence. This directly

follows from a translation of the results of Engl (1995) to the current context.

We now proceed to discuss the implications of Theorem 5.2 in more detail.

5.2 Conditional beliefs and strategic convergence

Theorem 5.2 shows that it is not sufficient if two priors assign similar (prior) probabilities

to all events in the space of neighbor type profiles for them to be strategically close. In

addition, it needs to hold that with high probability, a player has a type such that his

conditional beliefs are similar under the two priors, and that he thinks it is likely, given his

type, the conditional beliefs of his neighbors are close, and that they think it is likely, given

their type, . . . that the conditional beliefs of their neighbors are similar, for any number of

14Of course, also the result of Kajii and Morris (1998) for general Bayesian games applies. However, the
conditions of Kajii and Morris are stricter than necessary for Bayesian network games, as it does not exploit
the symmetry and local nature of network games. Furthermore, Kajii and Morris (1998) do not discuss
symmetric Bayesian ε-equilibria, while the literature on network games focuses on these type of equilibria.
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iterations. When will this latter condition be binding?

To shed some light on this, we first investigate when this condition plays no role. We

adopt the following definition from Kajii and Morris (1998):

Definition 5.2. A prior µ ∈M is insensitive to small probability events if for each sequence

(µk)k∈N in M,

lim
k→∞

d0(µ, µk) = 0 ⇒ lim
k→∞

d∗(µ, µk) = 0.

/

In words, a prior µ ∈ M is insensitive to small probability events if a necessary and

sufficient condition for strategic convergence of any sequence (µk)k∈N in M to µ is that

d0(µ, µk) converges to zero when k goes to ∞. The next Proposition establishes that a

necessary and sufficient condition for a prior to be insensitive to small probability events is

that it can be approximated on a finite subset of T :

Proposition 5.7. A prior µ ∈M is insensitive to small probability events if and only if for

each ε > 0, there exists a finite set of types Sε ⊆ T that is (1− ε)-closed under µ such that

the probability that a player has a type in Sε is at least 1− ε, i.e.,

qµ

(
Θ(Sε)

)
≥ 1− ε.

The proof can be found in Appendix B.

It is easy to see that the following conditions are sufficient for a prior µ to be insensitive

to small probability events:

Finite support: The set of types that have positive probability under µ is finite, i.e.,

|{t ∈ T | qµ(t) > 0}| < ∞;

Independent types: Players’ types are independent, i.e., for all t ∈ T , all θ = (θ1, . . . , θt) ∈
Ωt

K , qµ(θ|t) = qµ({θ}).

Perfect correlation over types: Players only interact with players of their own type, i.e.,

for all t ∈ T such that qµ(t) > 0, qµ((t, . . . , t)|t) = 1, where (t, . . . , t) is a vector in T

of length t.

One case of interest in which a prior has finite support is when the number of players is fixed,

as in Bayesian network games. An example of a network belief system with an unbounded

number of players and independent types is given in Example 2.1. Finally, network belief

systems in which types are perfectly correlated are studied by e.g. Ellison (1993).
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T δ
µ,µ′

T

B1−δ
µ,µ′(T

δ
µ,µ′)

C1−δ
µ,µ′ (T

δ
µ,µ′)

Figure 5.1: Even if with high probability, a player has a type in T δ
µ,µ′ , the probability that

he has a type in C1−δ
µ (T δ

µ,µ′) may be small.

Proposition 5.7 also gives some insight into the question under which conditions a prior is

most sensitive to small probability events. Consider two priors µ, µ′ ∈M, and let δ ∈ [0, 1].

Suppose that with probability at least 1− δ, a player has a type t ∈ T δ
µ,µ′ , i.e., a type such

that his conditional beliefs under µ and µ′ are within δ. Let Θ0 ⊆ T δ
µ,µ′ be the (possibly

empty) set of types in T δ
µ,µ′ that with high conditional probability interact with types that

do not belong to T δ
µ,µ′ , and, for ` = 1, 2, . . ., let Θ` ⊆ (T δ

µ,µ′ \ Θ`−1) be the set of types in

T δ
µ,µ′ \ Θ`−1 that interact with high conditional probability with types that do not belong

to T δ
µ,µ′ \ Θ`−1. If a player has a type in one of the sets Θ`, his own conditional beliefs are

close under the two priors, but, with high conditional probability, he interacts with types

whose conditional beliefs are very different under µ and µ′, or who, with high conditionally

probability, interact with types whose conditional beliefs are very different under µ and µ′,

and so on. If the probability is high that a player has such a type, then even if it is a high

probability event that a player has a type in T δ
µ,µ′ , the probability that he has a type in

C1−δ
µ (T δ

µ,µ′) will be small, as illustrated in Figure 5.1.

This situation is ruled out under the following two conditions. The first condition is that

the set T δ
µ,µ′ is sufficiently cohesive, in the sense that all types in T δ

µ,µ′ interact (with high

conditional probability) only with types in T δ
µ,µ′ , who in turn interact only with types in

T δ
µ,µ′ , and so on. In that case, if it is a high probability event that a player has a type in

T δ
µ,µ′ , it will be a high probability event that a player has a type in C1−δ

µ (T δ
µ,µ′). The second

condition is that players’ types are independent. In that case, players’ conditional beliefs

play no role: if priors assign similar prior probabilities to all events, then players’ conditional
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beliefs will also be similar. Hence, when there is some correlation among types, but the set

T δ
µ,µ′ is not sufficiently cohesive, players’ conditional beliefs play an important role so that

small probability events can have a large effect on outcomes.

This means that one should be careful in defining the game. In particular, it is often

assumed in the literature on network games that the size of the network is fixed and that

types are independent. The current analysis shows that these assumptions are not innocuous.

If players believe that there is some correlation among types, or if there is uncertainty about

the size of the network, then priors may be very sensitive to small probability events, which

is not the case when the number of players is fixed or when types are independent. This

implies that small differences in the specification of players’ prior can have a large effect on

outcomes.

6 Conclusions

Given the complexity of many networks, it is important to study whether game-theoretical

predictions are robust to assumptions on players’ beliefs and information. We have studied

the robustness of game-theoretical predictions to assumptions on players’ (common) prior in

network games of incomplete information. We have asked under what conditions on two pri-

ors it holds that for any bounded network game of incomplete information in which players

hold one of these priors, for any equilibrium in that game, there is an approximate equilib-

rium in the game with the other prior such that ex ante expected payoffs are close. Our

main result (Theorem 5.2) shows that two priors are close in a strategic sense if and only if

they assign similar prior probabilities to all events involving a player and his neighbors, and,

in addition, the set of types for which conditional beliefs are similar has high probability,

and is sufficiently cohesive in the sense that with high conditional probability, a type in that

set interacts only with types in that set that, with high conditional probability, only interact

with types in that set, and so on. This latter condition can also be formulated in terms of

players’ higher order beliefs: with high probability, a player believes, given his type, that

his neighbors’ conditional beliefs are similar under the two priors, and that his neighbors

believe, given their type, that. . . the conditional beliefs of their neighbors are similar, for any

number of iterations.

To establish our results, we have used ideas and concepts from the literature on higher

order beliefs. There are other important questions in the setting of network games of in-

complete information that can be answered using ideas from this literature. One important

question is how sensitive game-theoretical predictions are to the assumptions on players’

32



information about the network structure. As in much of the literature on network games, we

have assumed that players only know their connectivity. Indeed, Friedkin (1983) finds that

the “observational horizon” of individuals is limited in communication networks in organi-

zations: individuals only know their local environment in the network. However, there is a

large variability among individuals. In addition, players can also represent entities like firms

or countries, whose horizon is likely to be larger. For these reasons, it is important to inves-

tigate the sensitivity of predictions to informational assumptions. Galeotti, Goyal, Jackson,

Vega-Redondo, and Yariv (2006) study the effect of gradually varying players’ information

about the network in a specific setting. Their results indicate that informational assumptions

can have an important effect on results. However, to date, there is no systematic investi-

gation how assumptions players’ information affects results. The link with the literature on

higher order beliefs may also be helpful here, as this literature contains numerous results

on the effect of perturbing information structures. The current results suggest that such

robustness questions are important to study in network games of incomplete information,

and they illustrate how one can utilize ideas from the literature on higher order beliefs to

answer such questions.

Appendix A Invariance under type-splitting

In this appendix, we show that the set of approximate equilibria is invariant under type-

splitting, i.e., payoff-irrelevant subdivisions of types do not substantively change the set of

ε-equilibria, for any ε ≥ 0 (cf. Myerson, 1998, Th. 4).

First we need some more notation. Let Λ be a nonempty, finite set with complete order �Λ.

Let g ∈ G be a network with vertex set V (g). An extended network associated with g (given

Λ) can be constructed by assigning to each vertex i ∈ V (g) a vertex state λ ∈ Λ. Let Ξ(g)

be the set of extended networks associated with g, and define

G̃(n) :=
⋃

g∈G(n)

Ξ(g),

and

G̃ :=
⋃
n∈N

G̃(n).

We refer to the members of G̃ as extended networks. Note that while there may be multiple

extended networks associated with a given network g ∈ G, there is a unique network g ∈ G
for each extended network g̃ ∈ G̃ such that g̃ is an extended network associated with g.
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λ1 λ1 λ2 λ2

λ1λ2λ1 λ2

g g̃1 g̃2 g̃4g̃3

Figure A.1: When Λ = {λ1, λ2}, the network g ∈ G corresponds to the extended networks

g̃1, . . . , g̃4, i.e., Ξ(g) = {g̃1, . . . , g̃4}, and η(g̃`) = g for ` = 1, . . . , 4.

Denote this network by η(g̃). For each g̃ ∈ G̃, for each i ∈ V (η(g̃)), let κ(i, g̃) ∈ Λ be the

vertex state of i in the extended network g̃. An illustration is provided in Figure A.1.

Let F̃ be the σ-field generated by the set of singletons of G̃, and let M̃ denote the set

of all probability measures on (G̃, F̃ ). For µ̃ ∈ M̃, the probability space (G̃, F̃ , µ̃) is an

extended network belief system.

Each vertex in an extended network is thus characterized by his connectivity and his

vertex state. Define

P̃ := {(t, λ) | t ∈ N ∪ {0}, λ ∈ Λ}

to be the set of all ordered pairs (t, λ). Since Λ is endowed with the complete order �Λ,

there exists a complete order on P̃ . We define a complete order � on P̃ by

∀(t, λ), (t′, λ′) ∈ P̃ : (t, λ) � (t′, λ′) ⇐⇒
(
t > t′

)
or
(
t = t′ and λ �Λ λ

)
.

For t > 0 and λ ∈ Λ, let

Ω̃
(t,λ)
K :=

{
(λ, (θ1, λ1), . . . , (θt, λt) ∈ Λ× P̃ t | (θ1, λ1) � . . . � (θt, λt)

}
.

For t = 0, define Ω̃
(t,λ)
K = {(0, λ)} for all λ ∈ Λ. Let

Ω̃t
K :=

⋃
λ∈Λ

Ω̃
(t,λ)
K ,

and

Ω̃K :=
⋃

t∈N∪{0}

Ω̃t
K .

Let F̃K be the σ-field generated by the set of singletons of Ω̃K .

We can now define the extended local profile of a vertex in an extended network, a

concept akin to the neighbor connectivity profile of a vertex in a network (see Section 2).
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For g̃ ∈ G̃ and i ∈ V (η(g̃)) such that Di(η(g̃)) = 0, define K̃i(g̃) := (0, κ(i, g̃)). Otherwise,

define

Ñ1 := Ni(η(g̃)),

j(1) := max{j ∈ Ñ1 | (Dj(η(g̃)), κ(j, g̃)) � (Dk(η(g̃)), κ(k, g̃)) for all k ∈ Ñ1},

K̃i,1(g̃) := (Dj(1)(η(g̃)), κ(j(1), g̃)),

and for ` = 2, . . . , Di(η(tg)):

Ñ` := Ñ`−1 \ {j(`− 1)},

j(`) := max{j ∈ N` | (Dj(η(g̃)), κ(j, g̃)) � (Dk(η(g̃)), κ(k, g̃)) for all k ∈ Ñ`},

K̃i,`(g̃) := (Dj(`)(η(g̃)), κ(j(`), g̃)).

Then, K̃i(g̃) := (K̃i,1(g̃), . . . , K̃i,Di(η(tg))(g̃)) is the extended local profile of i in g̃.

Let Γ = 〈T, A, (G, F , µ), (vt)t∈T 〉 be a network game of incomplete information. An extension

of Γ (given Λ) is a tuple

Γ̃ = 〈T̃ , A, (G̃, F̃ , µ̃), (ṽt)t∈T̃ 〉

defined as follows. First, a network g ∈ G is drawn according to (G, F , µ). An extended

network g̃ ∈ Ξ(g) is then created by assigning to each vertex i ∈ V (g) a vertex state λ ∈ Λ

with probability pµ̃(λ), independently of the other vertices, where pµ̃(λ) ≥ 0 for all λ ∈ Λ

and
∑

λ∈Λ pµ̃(λ) = 1. A player is associated with each vertex of the extended network. Each

player is endowed with the action set A and is informed of the number of neighbors he has

in the extended network and the vertex state of the vertex he is associated with. That is,

his extended type is a pair (t, λ) ∈ P̃ . Hence, the extended type set is T̃ = P̃ . For each

(t, λ) ∈ T̃ , the payoffs to a player with extended type (t, λ) are given by a function ṽ. For

each (t, λ) ∈ T̃ , t > 0, the function ṽ(t,λ) maps A × At × T̃ t to R in the following way. For

each a ∈ A, a(t) ∈ At, ((θ1, λ1), . . . , (θt, λt)) ∈ T̃ t,

ṽ(t,λ)

(
a, a(t), (θ1, λ1), . . . , (θt, λt))

)
:= vt

(
a, a(t), (θ1, . . . , θt))

)
are the payoffs to a player with extended type (t, λ) of action a when his neighbors have

extended types (θ1, λ1), . . . , (θt, λt) and play according to the action profile (a1, . . . , at). The

payoffs to a player with an extended type (t, λ) ∈ T̃ with t = 0 are given by ṽ(t,λ)(a) = v0(a)

for each a ∈ A. Hence, for each (t, λ) ∈ T̃ , each player with extended type (t, λ) in the

extension Γ̃ of Γ has the same payoff function as a player of type t in the original game Γ.

For each (t, λ) ∈ T̃ , let σ̃(t,λ) be a real function defined on A which satisfies

σ̃(t,λ)(a) ≥ 0
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for all a ∈ A, and ∑
a∈A

σ̃(t,λ)(a) = 1,

with σ̃(t,λ)(a) the probability that a player with extended type (t, λ) chooses action a. Recall

that the set of all probability distributions on A is denoted by Σ. Then, a profile of functions

σ̃ ∈ ΣT̃ is referred to as an extended strategy function.

The difference between the games Γ and Γ̃ is thus that the types in Γ have been “splitted”,

with the subdivisions of types being payoff-irrelevant. The interest in these “extended” games

lies in the fact that now players with the same connectivity may choose different probability

distributions over actions if they differ in their vertex state.15 We want to know whether

equilibria change substantively when we allow for such payoff-irrelevant subdivisions.

To analyze the equilibria of these extended games, we first need to specify players’ beliefs.

Players need to form beliefs about the extended type of their neighbors, given their own

extended type. Recall that C is the class of all isomorphism classes of G. Let t ∈ N, and let

θ̃ = (λ, (θ1, λ1), . . . , (θt, λt)) ∈ Ω̃t
K be an extended local profile of a player with connectivity

t. Let C ∈ C . The expected number of players with extended local profile θ̃ in an extended

network g̃ ∈
⋃

g∈C Ξ(g) derived from a network in C is given by

pµ̃(λ)pµ̃(λ1) · · · pµ̃(λt)nC

(
{(θ1, . . . , θt)}

)
,

where we recall that for F ∈ FK , nC(F ) is the number of players in a network g ∈ G with

neighbor type profile F . Then, the expected number of players with extended type (t, λ) ∈ T̃

in an extended network derived from a network in C is∑
λ1∈λ

pµ̃(λ1) . . .
∑
λt∈λ

pµ̃(λt)pµ̃(λ)nC

(
{(θ1, . . . , θt)}

)
= pµ̃(λ)nC

(
{(θ1, . . . , θt)}

)
.

For each (t, λ) ∈ T̃ , the conditional beliefs of a player with extended type (t, λ) such that

qµ(t) > 0 and pµ̃(λ) > 0 that his extended local profile is θ̃ ∈ Ω̃t
K are then

q̃µ̃(θ̃|(t, λ)) :=

∑
C∈C pµ̃(λ) · pµ̃(λ1) · . . . pµ̃(λt) · nC

(
{(θ1, . . . , θt)}

)∑
C∈C pµ̃(λ) · nC

(
Ωt

K

) ,

= pµ̃(λ1) · · · · · pµ̃(λt) · qµ(θ|t).

We can now define expected payoffs. The extended expected payoff to a player with extended

type (t, λ) ∈ T̃ such that qµ(t) > 0 and pµ̃(λ) > 0 of an action a ∈ A when other players

15Note that for each network game of incomplete information Γ, there is an extension of Γ that is essentially
equivalent to Γ: when there is a λ ∈ Λ such that pµ̃(λ) = 1, the extension of Γ is strategically equivalent to
Γ.
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play according to the extended strategy function σ̃ ∈ ΣT̃ is given by

ϕ̃(t,λ)(a, σ̃; µ̃) :=
∑

θ̃∈Ω̃t
K

q̃µ̃(θ̃|(t, λ))
∑

a(t)∈At

( t∏
`=1

σ̃(t`,λ`)

(
a

(t)
`

))
ṽ(t,λ)

(
a, a(t), θ̃

)
,

=
∑

λ(t)∈Λt

pµ̃

(
λ

(t)
1

)
· · · pµ̃

(
λ

(t)
t

) ∑
θ∈Ωt

K

qµ(θ|t)
∑

a(t)∈At

( t∏
`=1

σ̃(t`,λ`)

(
a

(t)
`

))
vt(a, a(t), θ).

Definition A.1. Let Γ̃ be an extension of some network game of incomplete information,

and let ε ≥ 0. An extended ε-equilibrium of Γ̃ is an extended strategy profile σ̃ ∈ ΣT̃ such

that for each (t, λ) ∈ T̃ such that qµ(t) > 0 and pµ̃(λ) > 0, for each action a ∈ A such that

σ̃(t,λ)(a) > 0,

ϕ̃(t,λ)(a, σ̃; µ̃) ≥ ϕ̃(t,λ)(b, σ̃; µ̃)− ε

for all b ∈ A. An extended 0-equilibrium is an extended equilibrium. /

By an argument similar to that used in the proof of Proposition 3.1, an extended equilibrium

exists in an extension of a network game of incomplete information with bounded payoffs.

The next two propositions establish that the set of approximate equilibria remains es-

sentially unchanged when we allow for payoff-irrelevant type-splitting.

Proposition A.1. Let ε ≥ 0. Let Γ be a network game of incomplete information, and let

Γ̃ be an extension of Γ. If the strategy function σ ∈ ΣT is an ε-equilibrium of Γ, then the

extended strategy function σ̃ ∈ ΣT̃ defined by

σ̃(t,λ)(a) = σt(a) for all (t, λ) ∈ T̃ , a ∈ A

is an extended ε-equilibrium of Γ̃.

Proof. The proof follows directly from the definitions. For each (t, λ) ∈ T̃ and each a ∈ A,

ϕ̃(t,λ)(a, σ̃; µ̃) =
∑

λ(t)∈Λt

pµ̃

(
λ

(t)
1

)
· · · pµ̃

(
λ

(t)
t

) ∑
θ∈Ωt

K

qµ(θ|t)
∑

a(t)∈At

( t∏
`=1

σ̃(t`,λ`)

(
a

(t)
`

))
vt(a, a(t), θ),

=
∑

θ∈Ωt
K

qµ(θ|t)
∑

a(t)∈At

( t∏
`=1

σθ`

(
a

(t)
`

))
vt

(
a, a(t), θ

)
,

= ϕt(a, σ; µ).

Hence, if σ is an ε-equilibrium of Γ, then σ̃ is an extended ε-equilibrium of Γ̃. �
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Proposition A.2. Let ε ≥ 0. Let Γ be a network game of incomplete information, and let Γ̃

be an extension of Γ. If the extended strategy function σ̃ ∈ ΣT̃ is an extended ε-equilibrium

of Γ̃, then the strategy function σ ∈ ΣT defined by

σt(a) =
∑
λ∈Λ

pµ̃(λ)σ̃(t,λ)(a) for all t ∈ T, a ∈ A

is an ε-equilibrium of Γ.

Proof. Again, the proof is a direct consequence of the definitions. For each t ∈ T and each

a ∈ A,

ϕt(a, σ; µ) =
∑

θ∈Ωt
K

qµ(θ|t)
∑

a(t)∈At

( t∏
`=1

σθ`

(
a

(t)
`

))
vt

(
a, a(t), θ

)
,

=
∑

θ∈Ωt
K

qµ(θ|t)
∑

a(t)∈At

( t∏
`=1

[∑
λ∈Λ

pµ̃(λ)σ̃(θ`,λ)

(
a

(t)
`

)])
vt

(
a, a(t), θ

)
.

Since

t∏
`=1

[∑
λ∈Λ

pµ̃(λ)σ̃(θ`,λ)

(
a

(t)
`

)]
=

∑
λ(t)∈Λt

t∏
`=1

pµ̃

(
λ

(t)
`

)
σ̃

(θ`,λ
(t)
` )

(
a

(t)
`

)
,

=
∑

λ(t)∈Λt

pµ̃

(
λ

(t)
1

)
· · · pµ̃

(
λ

(t)
t

) t∏
`=1

σ̃
(θ`,λ

(t)
` )

(
a

(t)
`

)
,

we have

ϕt(a, σ; µ) =
∑

λ(t)∈Λt

pµ̃

(
λ

(t)
1

)
· · · pµ̃

(
λ

(t)
t

) ∑
θ∈Ωt

K

qµ(θ|t)
∑

a(t)∈At

( t∏
`=1

σ̃
(θ`,λ

(t)
` )

(
a

(t)
`

))
vt

(
a, a(t), θ

)
,

= ϕ̃(t,λ)(a, σ̃; µ̃)

for any λ ∈ Λ. Hence, if σ̃ is an extended ε-equilibrium of Γ̃, then σ is an ε-equilibrium of

Γ. �

Since the equilibrium definitions in network games of incomplete information and their ex-

tensions differ, the set of equilibria in a network game of incomplete information does not

coincide with the set of equilibria in its extension. However, Proposition A.1 and A.2 es-

tablish the important result that allowing for payoff-irrelevant characteristics that might

affect players’ behavior does not substantively change the set of equilibria. The intuition

is that for each equilibrium in a network game of incomplete information, we can find an
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extended strategy function such that an extended type in the extension faces the same dis-

tribution over opponents’ actions as the corresponding type in the original game under the

equilibrium. Conversely, for each extended equilibrium in an extension of a network game

of incomplete information, we can find a strategy function in the original game such that

a type in that game faces the same distribution over opponents’ actions as a corresponding

extended type under the extended equilibrium. In that sense, there is essentially no loss of

generality in assuming that all players with the same payoff function independently imple-

ment the same strategy, as long as these payoff-irrelevant characteristics do not provide a

player with information about his opponents given his connectivity.

Appendix B Proofs

B.1 Proof of Proposition 3.1

Proposition 3.1 uses Lemma B.1.

Lemma B.1. Let (µ, v) be a network game of incomplete information such that the profile

v of payoff functions is bounded. For each t ∈ T , let the function ϕt(·; µ) on ΣT be defined

as in (3.2). Then, ϕt(·; µ) is continuous on the (topological) product space ΣT .

Proof. For each t ∈ T and n ∈ N, let

Ωt,n
K := {(k1, . . . , kt) ∈ {1, . . . , n}t | k1 ≥ k2 ≥ . . . ≥ kt−1 ≥ kt}

be the set of neighbor type profiles of a player of type t such that the type of each neighbor

is at most n. Clearly, Ωt,n
K is a finite subset of the countable set Ωt

K . For each t ∈ T and

σ ∈ ΣT , define

ϕ
(n)
t (σ; µ) :=

{ ∑
a∈A σt(a)

∑
θ∈Ωt,n

K
qµ(θ|t)vt

(
a, σ(θ), θ

)
, if qµ(t) > 0;

0, otherwise.

For t ∈ T such that qµ(t) = 0, it holds that ϕ
(n)
t (σ; µ) = ϕt(σ; µ) = 0 for all σ ∈ ΣT . Let

t ∈ T such that qµ(t) > 0. By the triangle inequality, for each σ ∈ ΣT ,∣∣ϕt

(
σ; µ

)
− ϕ

(n)
t

(
σ; µ

)∣∣ ≤ ∑
θ∈Ωt

K\Ω
t,n
K

qµ(θ|t)
∣∣vt

(
a, σ(θ), θ

)∣∣.
As v is bounded, there exists B ≥ 0 such that∑

θ∈Ωt
K\Ω

t,n
K

qµ(θ|t)
∣∣vt

(
a, σ(θ), θ

)∣∣ ≤ B
∑

θ∈Ωt
K\Ω

t,n
K

qµ(θ|t)
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for all σ ∈ ΣT . Moreover,

lim
n→∞

∑
θ∈Ωt

K\Ω
t,n
K

qµ(θ|t) = 0.

Hence, for each ε > 0, there exists Nε ∈ N such that for all σ ∈ ΣT ,∣∣ϕt

(
σ; µ

)
− ϕ

(n)
t

(
σ; µ

)∣∣ ≤ ε (B.1)

for all n > Nε. That is, for each t ∈ T , the sequence
(
ϕ

(n)
t (·; µ)

)
n∈N converges uniformly on

ΣT to ϕt(·; µ). As for each n ∈ N, the function ϕ
(n)
t (·; µ) is continuous on ΣT , the function

ϕt(·; µ) is continuous on ΣT . �

We are now ready to prove Proposition 3.1.

Proof.

Consider a network game of incomplete information (µ, v) such that v is bounded, and fix

some strategy function τ ∈ ΣT . Let n ∈ N, and let T (n) := {1, . . . , n}. Recall the definition

of the function ϕt(·; µ) on ΣT in (3.2).

Consider the strategic game G(n) = 〈T (n), Σ,
(
ϕ̃

(n)
t (·; µ)

)
t∈T (n)〉, where for each t ∈ T (n),

ϕ̃
(n)
t (·; µ) is a real-valued payoff function on Σn defined by

ϕ̃
(n)
t

(
σ(n); µ

)
= ϕt

(
σ

(n)
1 , . . . , σ(n)

n , τn+1, τn+2, . . . ; µ
)

for all σ(n) ∈ Σn. That is, the payoff of a player t ∈ T (n) in the game G(n) is the expected

payoff of a player of type t in the original game (µ, v), given that players with type t ∈ T \T (n)

play according to τ . The set Σ is a nonempty, convex, compact subset of a finite-dimensional

Euclidean space, and for each t ∈ T (n), ϕ̃
(n)
t (·; µ) is a continuous real-valued function on Σn

that is quasi-concave in σt on Σ. Hence, the best-response correspondence bt : Σn ⇒ Σn

of each player t ∈ T (n) is nonempty, convex-valued, and upper-hemicontinuous, so that by

Kakutani’s fixed point theorem, a Nash equilibrium
(
σ̄

(n)
1 , . . . , σ̄

(n)
n

)
∈ Σn exists for G(n).

For each n ∈ N, define

σ̄(n) :=
(
σ̄

(n)
1 , . . . , σ̄(n)

n , τn+1, τn+2, . . .
)
.

The set Σ is compact; hence, by the Cantor diagonal method (e.g. Ok, 2007, p. 197-

198), there exists a subsequence (σ̄(nj))j∈N of the sequence (σ̄(n))n∈N that converges to some

σ̄ = (σ̄1, σ̄2, . . .) ∈ ΣT . We claim that σ̄ is an equilibrium of the original game (µ, v). Suppose

not. Then there exists t ∈ T and σt ∈ Σ such that

ϕt(σ̄1, σ̄2, . . . , σ̄t−1, σ̄t, σ̄t+1, . . . ; µ) < ϕt(σ̄1, σ̄2, . . . , σ̄t−1, σt, σ̄t+1, . . . ; µ).
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By Lemma B.1, ϕt is continuous on the topological product space ΣT . Hence, there exists

j ∈ N such that nj ≥ t and

ϕt

(
σ̄

(nj)
1 , . . . , σ̄

(nj)
t , . . . , σ̄(nj)

nj
, τnj+1, τnj+2, . . . ; µ

)
<

ϕt

(
σ̄

(nj)
1 , . . . , σt, . . . , σ̄

(nj)
nj

, τnj+1, τnj+2, . . . ; µ
)
.

But this contradicts that
(
σ̄

(nj)
1 , . . . , σ̄

(nj)
nj

)
is a Nash equilibrium of the game G(nj). �

B.2 Properties of the local p-belief operator

In this section, we prove the properties of the local p-belief operator as listed in Section 4,

and we prove Lemma 4.1 and 4.2.

Lemma B.2. (Continuity)

Let S ⊆ T , and for k ∈ N, let Tk ⊆ T . If Tk ↓ S, i.e., if (Tk)k∈N is a decreasing sequence

and
⋂

k∈N Tk = S, then Bp
µ(Tk) ↓ Bp

µ(S).

Proof. First note that Bp
µ(Tk+1) ⊆ Bp

µ(Tk) for all k ∈ N, i.e., (Bp
µ(Tk))k∈N is a decreasing

sequence. It remains to show that⋂
k∈N

Bp
µ(Tk) = Bp

µ

(⋂
k∈N

Tk

)
.

First suppose t ∈
⋂

k∈N Bp
µ(Tk). Then, obviously, t ∈ Tk for all k ∈ N. We need to distinguish

two cases. First suppose that qµ(t) = 0. Then, by definition, t ∈ Bp
µ(
⋂

k∈N Tk). So suppose

qµ(t) > 0. Then, qµ(T t
k|t) ≥ p for all k ∈ N. Furthermore, (T t

k)k∈N is a decreasing sequence,

and
⋂

k∈N T t
k = St. Hence,

lim
k→∞

qµ(T t
k|t) = qµ

(⋂
k∈N

T t
k

∣∣t).
Combining these results gives

qµ

(⋂
k∈N

T t
k

∣∣t) ≥ p,

and hence t ∈ Bp
µ

(⋂
k∈N T t

k

)
.

Secondly, suppose that t ∈ Bp
µ

(⋂
k∈N Tk

)
. Then, obviously, t ∈ Tk for all k ∈ N. Again,

we need to consider two cases. If qµ(t) = 0, then it follows directly from the definition of Bp
µ

that t ∈ Bp
µ(Tk) for all k ∈ N, and therefore t ∈

⋂
k∈N Bp

µ(Tk). So suppose qµ(t) > 0. Then,

qµ(St|t) ≥ p implies that qµ(Tk|t) ≥ p for all k ∈ N. Hence, t ∈ Bp
µ(Tk) for all k ∈ N, and

t ∈
⋂

k∈N Bp
µ(Tk). �

41



Lemma B.3. (Monotonicity)

For any T ′, T ′′ ⊆ T , if T ′ ⊆ T ′′, then Bp
µ(T ′) ⊆ Bp

µ(T ′′).

Proof. If T ′ ⊆ T ′′, then T ′ ∩ T ′′ = T ′. Hence,

Bp
µ(T ′) = Bp

µ(T ′ ∩ T ′′) = Bp
µ(T ′) ∩Bp

µ(T ′′) ⊆ Bp
µ(T ′′).

�

Lemma B.4. (Continuity in p) If pk ↑ p, then, for any S ⊆ T , Bpk
µ (S) ↓ Bp

µ(S).

Proof. Let S ⊆ T . It follows directly from the definition of the local p-belief operator that(
Bpk

µ (S)
)

k∈N is a decreasing sequence. It remains to show that⋂
k∈N

Bpk
µ (S) = Bp

µ(S).

Suppose t ∈
⋂

k∈N Bpk
µ (S). If qµ(t) = 0, then it follows directly from the definition that

t ∈ Bp
µ(S). So suppose qµ(t) > 0. Then, qµ(St|t) ≥ pk for all k ∈ N, and therefore

qµ(St|t) ≥ p. Hence, t ∈ Bp
µ(S).

Conversely, suppose t ∈ Bp
µ(S). If qµ(t) = 0, then it follows directly that t ∈

⋂
k∈N Bpk

µ (S).

So suppose qµ(t) > 0. Then, qµ(St) ≥ p, and hence qµ(St) ≥ pk for all k ∈ N. We conclude

that t ∈ Bpk
µ (S) for all k, and hence t ∈

⋂
k∈N Bpk

µ (S). �

Finally, we present the proofs of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1:

By definition, Bp
µ

(
Cp

µ(S)
)
⊆ Cp

µ(S). It remains to show that Bp
µ

(
Cp

µ(S)
)
⊇ Cp

µ(S). Obviously,(
[Bp

µ]`(S)
)

k∈N is a weakly decreasing sequence, and, by definition,
⋂

`∈N
[
Bp

µ

]`
(S) = Cp

µ(S).

Hence, using that the local p-belief operator is continuous,

Cp
µ(S) =

⋂
`∈N

[
Bp

µ

]`
(S) ⊆

⋂
`∈N:k≥2

[
Bp

µ

]`
(S) = Bp

µ

(⋂
`∈N

[
Bp

µ

]`
(S)
)

= Bp
µ

(
Cp

µ(S)
)
.

�

Proof of Lemma 4.2:

Suppose t ∈ Cp
µ(R). By Lemma 4.1, the set Cp

µ(R) is p-closed. Also, by definition, Cp
µ(R) ⊆

Bp
µ(R). Hence, we can set S = Cp

µ(R), and the statement follows.
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Conversely, let S ⊆ T be such that t ∈ S, and

S ⊆ Bp
µ(S), (B.2)

S ⊆ Bp
µ(R). (B.3)

We show by induction on ` that S ⊆
[
Bp

µ

]`
(R) for all ` ∈ N, from which it follows that

t ∈ Cp
µ(R). By (B.3), S ⊆

[
Bp

µ

]1
(R). For each ` ∈ N, if S ⊆

[
Bp

µ

]`
(R), then by (B.2) and by

monotonicity of the local p-belief operator,

S ⊆ Bp
µ(S) ⊆ Bp

µ

([
Bp

µ

]`
(R)

)
=
[
Bp

µ

]`+1
(R).

�

B.3 Proof of Lemma 5.1

By Lemma 4.1, Cp
µ(S) is p-closed. Hence, for all t ∈ Cp

µ(S) such that qµ(t) > 0,

qµ

(
(Cp

µ(S))t
∣∣t) ≥ p. This yields

qµ

( ⋃
t∈Cp

µ(S)

(
Cp

µ(S)
)t)

=
∑

t′∈Cp
µ(S):

qµ(t′)>0

qµ

( ⋃
t∈Cp

µ(S)

(
Cp

µ(S)
)t∣∣t′)qµ(t′),

=
∑

t′∈Cp
µ(S):

qµ(t′)>0

qµ

(
(Cp

µ(S))t′
∣∣t′)qµ(t′),

≥ p
∑

t′∈Cp
µ(S)

qµ(t′),

≥ αp.

�

Remark B.1. Note that Lemma 5.1 can be generalized: we can replace Cp
µ(S) in the lemma

by any subset of T that is p-closed. We have presented it in its current form for expositional

reasons. /

B.4 Proof of Proposition 5.7

Proposition 5.7 uses Lemma B.5.
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Lemma B.5. Let µ ∈M, and let (µk)k∈N be a sequence in M. If

lim
k→∞

d0(µ, µk) = 0 and lim
k→∞

d1(µ, µk) = 0,

then

lim
k→∞

d1(µ
k, µ) = 0.

Proof. Let ε > 0. By assumption, there exists K ∈ N such that for all k > K,

sup
F∈FK

|qµ(F )− qµk(F )| ≤ ε

2
, (B.4)

and

inf
{

δ ∈ [0, 1] | qµ

(
Θ(C1−δ

µ (T δ
µ,µk))

)}
≤ ε

2
. (B.5)

Let k > K. Recall that for t ∈ T
ε/2

µ,µk such that qµ(t) > 0 and qµk(t) > 0,

sup
F∈FK

|qµ(F |t)− qµk(F |t)| ≤ ε

2
, (B.6)

and define

T̂
ε/2

µ,µk := {t ∈ T
ε/2

µ,µk | qµ(t) > 0}.

Note that, unlike T
ε/2

µ,µk , the set T̂
ε/2

µ,µk is not symmetric in µ and µk, i.e., T̂
ε/2

µk,µ
6= T̂

ε/2

µ,µk .

Using (B.6) and the fact that the local p-belief operator is monotonic, we obtain

B1−ε/2
µ

(
T̂

ε/2

µ,µk

)
⊆ B1−ε

µk

(
T̂

ε/2

µ,µk

)
⊆ B1−ε

µk

(
T̂ ε

µ,µk

)
.

Hence,

C1−ε/2
µ

(
T̂

ε/2

µ,µk

)
⊆ C1−ε

µk

(
T̂ ε

µ,µk

)
.

Using this and (B.5), we obtain

qµ

(
Θ(C1−ε

µk (T ε
µ,µk))

)
≥ qµ

(
Θ(C1−ε

µk (T̂ ε
µ,µk))

)
≥

qµ

(
Θ(C1−ε/2

µ (T̂
ε/2

µ,µk))
)

= qµ

(
Θ(C1−ε/2

µ (T
ε/2

µ,µk))
)
≥ 1− ε

2
,

so that by (B.4),

qµk

(
Θ(C1−ε

µk (T ε
µ,µk))

)
≥ 1− ε.

Combining these results gives

inf
{

δ ∈ [0, 1] | qµk

(
Θ(C1−δ

µk (T δ
µ,µk))

)
≥ 1− δ

}
≤ ε.
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�

Proof of Proposition 5.7

(If) Let ε > 0, and let (µk)k∈N be a sequence in M. Suppose that Sε ⊆ T is such that

|Sε| < ∞, (B.7)

Sε ⊆ B1−ε
µ (Sε), (B.8)

qµ

(
Θ(Sε)

)
≥ 1− ε. (B.9)

By Lemma B.5, if d0(µ, µk) → 0 and d1(µ, µk) → 0, then also d1(µ
k, µ) → 0. Hence, it is

sufficient to show that d1(µ, µk) → 0 whenever d0(µ, µk) → 0.

Let Ŝε := {t ∈ Sε | qµ(t) > 0} be the set of types in Sε that have positive probability

under µ. By (B.7), there exists c > 0 such that qµ(t) = qµ(Ωt
K) ≥ c for all t ∈ Ŝε. Then, for

all k ∈ N, for all t ∈ Ŝε,

sup
F∈FK

|qµ(F |t)− qµk(F |t)| = sup
F∈FK

∣∣∣∣∣qµ(F ∪ Ωt
K)

qµ(Ωt
K)

−
qµk(F ∪ Ωt

K)

qµ(Ωt
K)

+

qµk(F ∪ Ωt
K)

qµ(Ωt
K)

−
qµk(F ∪ Ωt

K)

qµk(Ωt
K)

∣∣∣∣∣,
≤ sup

F∈FK

1

qµ(t)

∣∣qµ(F ∪ Ωt
K)− qµk(F ∪ Ωt

K)
∣∣+

sup
F∈FK

qµk(F |t)
qµ(t)

∣∣qµ(Ωt
K)− qµk(Ωt

K)
∣∣,

≤
(

2

c

)
· sup

F∈FK

|qµ(F )− qµk(F )|. (B.10)

Suppose that limk→∞ d0(µ, µk) = 0. Then there exists K ∈ N such that for all k > K,

sup
F∈FK

|qµ(F )− qµk(F )| ≤
( c

2

)
· ε.

Let k > K. Then, by (B.10), for all t ∈ Ŝε such that qµk(t) > 0, it holds that

sup
F∈FK

|qµ(F |t)− qµk(F |t)| ≤ ε,

so that Sε ⊆ T ε
µ,µk . By monotonicity of the local p-belief operator and (B.8),

Sε = B1−ε
µ (Sε) ⊆ B1−ε

µ

(
T ε

µ,µk

)
.
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Using Lemma 4.2 and (B.8), we obtain

t ∈ Sε ⇒ t ∈ C1−ε
µ

(
T ε

µ,µk

)
,

so that (using (B.9))

qµ

(
Θ(C1−ε

µ (T ε
µ,µk))

)
≥ qµ

(
Θ(Sε))

)
≥ 1− ε.

Hence, d1(µ, µk) ≤ ε whenever d0(µ, µk) ≤
(

c
2

)
ε.

(Only if) Suppose that

lim
k→∞

d0(µ, µk) = 0 ⇒ lim
k→∞

d1(µ, µk).

First we show that there exists a sequence (νk)k∈N in M such that

(a) for each k ∈ N, the set of types {t ∈ T | qνk(t) > 0} that have positive probability

under νk is finite;

(b) (νk)k∈N converges to µ in the weak topology on ΩK :

lim
k→∞

sup
F∈FK

|qµ(F )− qνk(F )| = 0.

The sequence (νk)k∈N is easy to construct. If µ has finite support in T , i.e., if the set

{t ∈ T | qµ(t) > 0} is finite, then simply set νk = µ for all k ∈ N. Otherwise, we construct

(νk)k∈N as follows. For each k ∈ N, define

G(k) := {g ∈ G | ∀i ∈ V (g), Di(g) ≤ k}

to be the set of networks in which the maximum connectivity is k. Note that the sequence

(G(k))k∈N is increasing. For each g ∈ G, let

νk(g)

{
µ(g)

µ(G(k))
, if g ∈ G(k) and µ(G(k)) > 0;

0, otherwise.

It is easy to see that (a) is satisfied. To see that (b) is also satisfied, first recall that C (k) is
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the collection of isomorphism classes in G(k). For each k ∈ N such that µ(G(k)) > 0, we have

sup
F∈FK

|qµ(F )− qνk(F )| = sup
F∈FK

∣∣∣∣ ∑C∈C µ(C)nC(F )∑
C∈C µ(C)nC(ΩK)

−
∑

C∈C νk(C)nC(F )∑
C∈C νk(C)nC(ΩK)

∣∣∣∣,
= sup

F∈FK

∣∣∣∣ ∑C∈C µ(C)nC(F )∑
C∈C µ(C)nC(ΩK)

−
∑

C∈C (k) νk(C)nC(F )∑
C∈C (k) νk(C)nC(ΩK)

∣∣∣∣,
≤ 1

n̄
sup

F∈FK

|
∑
C∈C

µ(C)nC(F )−
∑

C∈C (k)

µ(C)nC(F )|+(
1

n̄
− 1∑

C∈C (k) µ(C)nC(ΩK)

)
sup

F∈FK

∑
C∈C (k)

µ(C)nC(F ),

≤ 1

n̄
sup

F∈FK

 ∑
C∈C \C (k)

µ(C)nC(F )

+ 1− n̄∑
C∈C (k) µ(C)nC(ΩK)

.

As for all F ∈ FK ,

lim
k→∞

∑
C∈C (k)

µ(C)nC(F ) =
∑
C∈C

µ(C)nC(F ),

it follows that (b) holds.

Since µ is insensitive to small probability events, we also have that d1(µ, νk) → 0. Hence,

for all ε > 0, there exists K ∈ N such that for all k > K,

sup
F∈FK

|qµ(F )− qνk(F )| ≤ ε

3
(B.11)

and

inf
{
δ ∈ [0, 1] | qµ

(
Θ(C1−δ

µ (T δ
µ,νk))

)
≥ 1− δ

}
≤ ε

3
. (B.12)

Let k > K, and define

T̂ ε
µ,νk := {t ∈ T ε

µ,νk | qνk(t) > 0}

to be the set of types in T ε
µ,νk that have positive probability under νk. By (B.12) and using

that the local p-belief operator is monotonic and continuous in p,

qµ

(
Θ(C1−ε

µ (T ε
µ,νk))

)
≥ qµ

(
Θ(C1−ε/3

µ (T ε
µ,νk))

)
≥ qµ

(
Θ(C1−ε/3

µ (T
ε/3

µ,νk))
)
≥ 1− ε

3
,

so that by (B.11),

qνk

(
Θ(C1−ε

µ (T̂ ε
µ,νk))

)
= qνk

(
Θ(C1−ε

µ (T ε
µ,νk))

)
≥ 1− 2ε

3
,

and hence (using (B.11) again),

qµ

(
Θ(C1−ε

µ (T̂ ε
µ,νk))

)
≥ 1− ε.
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By definition, T̂ ε
µ,νk , and hence C1−ε

µ

(
T̂ ε

µ,νk

)
, is finite. Moreover, by Lemma 4.1, C1−ε

µ

(
T̂ ε

µ,νk

)
is (1− ε)-closed. Hence, by setting

Sε = C1−ε
µ

(
T̂ ε

µ,νk

)
we obtain the desired result. �
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