

No. 2009–05

A FORMAL FRAMEWORK FOR MULTI-PARTY BUSINESS

PROTOCOLS

By Michele Mancioppi

January 2009

This is a revised version of CentER Discussion Paper
No. 2008-79

September 2008

ISSN 0924-7815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6908854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Formal Framework for Multi-Party Business
Protocols∗

Michele Mancioppi1

INFOLAB, Dept. of Information Systems and Management, Tilburg University, The
Netherlands

m.mancioppi@uvt.nl

Abstract. Enterprise-class information systems based on the principles
of Service Oriented Architecture comprise large numbers of long-running,
highly dynamic complex end-to-end service interactions, called conver-
sations, based on message exchanges that typically transcend several
organizations and span several geographical locations. Conversations in
service-based systems can be described using business protocols that are
formal notations specifying the timed message exchanges among partic-
ipants in a conversation from a local point of view (orchestrations) or
global (choreographies). In this work we introduce a formal framework
based on Deterministic Finite Automata enriched with temporal con-
straints to describe multi-party business protocols. We also explore the
notion of multi-party business protocol soundness and show how it is
possible to execute a multi-party protocol consistently in a completely
distributed manner and at the same time ensure the progression of the
execution (i.e. no “deadlocks”).

Keywords: service oriented architecture, message exchange patterns
business protocols, orchestrations, choreographies, soundness

JEL Classification: Y90

This is a revised version of the CentER Discussion Paper 2008-79

1 Introduction

The Service Oriented Architecture (SOA) is the approach to the design and
implementation of information systems based on building applications out of
software services. [1] Services are self-contained modules that provide function-
alities to other services, applications or humans. [2] Services are provided (made
accessible) over networks, where they can be discovered (located) and accessed.

Services communicate by exchanging messages according to complex patterns
called conversations. Each service taking part in a conversation plays a role. The
role defines how a particular service will generate and consume messages in the

∗The research leading to these results has received funding from the European
Community’s Seventh Framework Programme under the Network of Excellence S-Cube
- Grant Agreement n◦ 215483.

Fig. 1. Extracting Orchestrations from a
Choreography

Fig. 2. Composing Orchestrations in a
Choreography

context of the conversation. In SOA, conversations and roles can be respectively
modeled as choreographies and orchestrations. Choreographies define the time-
wise ordering of message exchanges occurring among all participants from a
global perspective. Orchestrations restrict the overall choreographies to the local
perspective of single participants.

As shown in Figure 1 and Figure 21, the global and local perspective pro-
vided by choreographies and orchestrations are deeply related. On the one hand,
since orchestrations define a local perspective, they can be seen as projections of
the global choreographies from the perspective of a given participant (Figure 1).
That is, they represent the point of view of the participant on the overall conver-
sation. On the other hand, choreographies can be interpreted as the composition
of the orchestrations that define the local point of view of the participants (Fig-
ure 2).

The ability to describe conversations among services is instrumental to SOA.
Web services are the current most relevant realization of SOA in enterprise-
class information systems. Web services technologies realize services and SOA
building on XML and open standards such as the Simple Object Access Protocol
(SOAP) and the Web Service Description Language (WSDL). Over time, several
languages for describing orchestrations and choreographies have been proposed
in the ambit of web service technologies. Examples of such languages are Web
Services Business Process Execution Language (WS-BPEL) [3], BPELlight [4],
BPEL4Chor [5], Yet Another Workflow Language (YAWL) [6] and Let’s Dance [7].

1The pictures are in reverent homage to Sir Arthur Conan Doyle and his wonderful
“The Adventure of the Dancing Men”.

Other proposals build on more formal approaches like π-calculus [8], Timed Au-
tomata [9, 10], Deterministic Finite Automata (DFA) [11, 12] and Petri-Nets [13,
14].

The languages currently available to describe orchestrations and choreogra-
phies can be grouped in business protocol and business process languages. Busi-
ness protocol languages (e.g., Let’s Dance) describe the interactions among web
services by modeling the structure of the messages and the ordering of the mes-
sage exchanges taking place among the participants of a conversation. Business
process languages describe the way a service interacts with other services by
providing an abstraction of its internal logic, usually with a workflow, where the
generation and consumption of messages are just another type of task that the
participant performs. Examples of business process languages are WS-BPEL and
all its derivatives and YAWL. In a sense, business protocols have a black-box
approach, whereas business processes have a white-box approach.

It is still unclear if either of the business protocol and business process ap-
proaches have clear advantages on the other, or whether they just apply to
different SOA scenarios. On the one hand, business process languages such as
BPELlight intuitively seem to fit better web services realized through executable
business process languages such as BPEL. To extract the orchestration imple-
mented by the service, it would suffice to remove the activities in the workflows
that do not affect the conversation. On the other hand, the black box approach
of business protocol languages seem to better fit the loosely coupling and tech-
nology independence that characterize the Web service landscape, where it gen-
erally does not matter how a service it is implemented, but only how it appears
to behave.

However, one thing appears certain: the tight relation between choreographies
and orchestrations (i.e. compositions versus projections) suggest that there is
much to gain from a comprehensive framework that covers both global and
local perspectives, and that allows to move seamlessly from one to the other,
and vice-versa. Except for a few cases such as [14], the approaches to business
protocols proposed so far focus either on orchestrations or on choreographies.
The present work aims at providing the foundation of a DFA-based business
protocol framework embracing both global and local perspectives. We modified
the DFA-based timed business protocols proposed by [10] to allow the description
of both orchestrations and choreographies involving any number of participants.

The remainder is organized as follows. Section 2 introduces a taxonomy of
the different kinds of business protocols we aim at supporting, the meta-model
of the framework, and illustrates the semantics of executing business proto-
cols. Section 3 illustrates a mapping from business protocol models to timed
automata, which provides the foundation for model checking on business proto-
cols. Section 4 models the awareness of the participants during the execution
of a business protocol, i.e., what they know in terms of message exchanges, the
state of the execution, etc. The awareness of the participants is instrumental to
Section 5, which studies the soundness property in choreography-based business
protocols. Sound choreography-based business protocols can be executed in a

completely distributed way without incurring in deadlocks. Finally, Section 6
presents a summary of the work proposed, and our conclusions.

2 Business Protocols for Service Networks

The current section introduces our DFA-based meta-model for business proto-
cols, which can describe both orchestration- and choreography- business proto-
cols involving two or more participants. Our framework is a fundamental rework-
ing and extension of the work presented in [10] to embrace multi-party business
protocols and allow to describe choreographies as well as the already supported
orchestrations.

Section 2.1 introduces a taxonomy of the business protocols that can be
described with the meta-model. Section 2.2 presents the meta-model using Set
Theory formalism, while Section 2.3 describes how to execute instances of the
business protocol instances of models defined with our meta-model.

2.1 Taxonomy of Business Protocols

In our framework, business protocols are classified according to two dimensions:

– Number of participants involved in the conversations:
two-party: two participants, or
multi-party: (finitely) more than two participants

– The perspective adopted to describe the structure of the conversation:
orchestration: the conversation describes the point of view of a particular

participant, or
choreography: the conversation describes all the possible interactions oc-

curring among the participants from a neutral point of view.

The classification is based on on the combinations of the two parameters, as
presented in Figure 3. The division between orchestration- and choreography-
business protocols has already been introduced. Business protocols are also clas-
sified according to the number of their participants (i.e, two or more than two)
because two-participant business protocols have particular properties (which are
outside the scope of the present work).

This classification here proposed will be recurring in the remainder of the
present work, as different classes of business protocols have different properties.
For instance, business protocol soundness (see Section 5) is defined only for
choreography business protocols.

-

Participants

6

P
er

sp
ec

ti
ve

two-party orchestration

two-party choreography

multi-party orchestration

multi-party choreography

Fig. 3. A taxonomy of the different types of business protocols.

2.2 Modeling Business Protocols

Business protocol models are DFA-based constructions structured as presented
in Definition 21.

Definition 21 A business protocol model B is defined as the tuple:

B := (S, s0, SF , P, M, L, Tid, C, E, A)

such that:

S 6= ∅
s0 ∈ S

∅ 6= SF ⊆ S

C ⊆ C(Tid

E ⊆ Tid × S × S ×M × L× C

A ⊆ Tid × S × S × C

S is the (not empty) set of the states of the business protocol B. Every business
protocol has a unique x state s0 and a non-empty set of final states SF . Final
states are absorbing (no outgoing transitions). The set P represents the partici-
pants involved in the business protocol. Different types of business protocols in
the taxonomy (e.g., two-party orchestration business protocols) may define P
differently. For instance, in the case of two-party orchestration models that need
to describe the interaction between only two participants from the point of view
of one of these, define “P := {me,other}” (see Section 2.2), while business pro-
tocols involving an arbitrary number of participants would go for a more general
approach like “P := {pi, i ∈ [1, n]}” (see, for instance, multi-party choreography
models in Section 2.2).

The framework comprises two different types of transitions: message-based
and automatic, respectively represented by the sets E and A. A transition is a
directed connection from a source to a target state, and it is uniquely iden-
tified by a transition identifier in Tid. The message-based transition “e :=
(tid, si, sj ,m, l, c)” is identified by tid and connects the source state si with the
target state sj . It represents the delivery of the message m (comprised in the set
M of the messages defined over the business protocol) among participants de-
scribed by the label l. L is the set of labels defined by the various message-based
transitions in the business protocol. Labels denote among whom the message is
exchanged on the associated message-based transition. They make the frame-
work general enough to describe all the types of business protocols listed in the
taxonomy in Section 2.1: in fact, different types of business protocols need to
structure labels differently (see Sections 2.2, 2.2, 2.2 and 2.2 for the details).
Labels define a single sender, who sends the message, and a number of recipients
that receive the message dispatched by the sender.

Each message in M is associated with exactly one message-based transition in
the protocol. The messages defined in the business protocol model are actually

message-types, such as XSD complex type, simple type or element definitions.
All the message-types specified in a protocol B must be disjoint, meaning that,
given an instance of a message exchanged during an execution of B, it can be
univocally mapped to exactly one message-type in M . Message-based transitions
are associated with time constraints (such as c in our previous example) that
restrain when the transition can be traversed during executions of the business
protocol. The structure of time constraints is illustrated later on in the Section.

The automatic transition “a := (tid, si, sj , c)” is identified by the transition
identifier tid, and it connects the source state si with the target state sj . Auto-
matic transitions are traversed as soon as the business protocol execution is in
their source state and their associated time constraint (c in the example above)
is verified.

Time constraints in C are boolean formulas that relate time durations and
instants with the most recent time of execution of previously-traversed transi-
tions. The transitions are represented in the time constraints by their transition
identifiers. The time conditions that are actually specified on a particular model
B are a subset of all the (generally infinitely many) time conditions that may be
specified on B (hence the notation C ⊆ C(Tid) in Definition 21). The structure
of time expressions in C(Tid) is presented in Definition 22.

Definition 22 Time Constraints
The time conditions C(Tid) (the set of all the possible time constraints that can
defined in the business protocol B as in Definition 21) are defined by the follow-
ing Backus–Naur form notation:

C := ¬ C | (C ∨ C) | (C ∧ C) | true
| ti ∈ Tid OP TIME

OP := = | 6= | < | ≤ | > | ≥

TIME := DURATION | INSTANT

Time conditions are made of atomic statements that are composed by the propo-
sitional logic operators “∨” and “∧”. The atomic statements are in the shape of
either “true”, or “ti ∈ Tid OP TIME” that compare the last time of the execu-
tion of a transition (identified by its transition identifier ti) and a time. Times
in atomic statements are either durations or instants, which are respectively
represented by the non-terminal symbols DURATION and INSTANT.

The evaluation of composite time conditions follow the usual rules for propo-
sitional logics. The atomic condition “true” is a tautology. The evaluation of
atomic time conditions in the form “ti ∈ Tid OP” is examined in Section 2.3.

Two-Party Orchestration Business Protocols

Definition 23 Two-Party Orchestration Models
A two-party orchestration business protocol B is defined as per Definition 21

with P and L being re-defined as follows:

P := {me,other}

L ⊆ {p ∈ P} × (P \ {p})

There are actually only two possible labels for two-party orchestration business
protocols, namely:

(me,other)

(other,me)

Figure 4 presents a simple example of two-party orchestration business protocol
model.

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;76540123sf

t1,m1,(me,other),true //

t2,m2,(other,me),t1<5

))

t3,t1≥5

55U X \ _ b f i

Fig. 4. An example of two-party orchestration business protocol.

Labels for two-party orchestration business protocols may alternatively be
defined using the concept of polarity [12, 15]. The polarity of a message exchange
denotes the messages generated by the subject of the business protocol with +,
and the messages consumed by the subject with −. That is, the polarity allows
to render implicit participants’ identifiers, which are no longer explicitly used to
define senders and recipients of the messages.

The mapping between the labels and polarity is the following:

(me,other) ≡ (+)

(other,me) ≡ (−)

Figure 5 shows the business protocol in Figure 4 changed to use polarity instead
of the labels.

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;76540123sf

t1,m1,+,true //

t2,m2,−,t1<5

))

t3,t1≥5

55U X \ _ b f i

Fig. 5. The example in Figure 4 reworked using the polarity.

Two-Party Choreography Business Protocols

Definition 24 Two-Party Choreography Models
A two-party choreography business protocol B is defined as per Definition 21 with
P and L are re-defined as follows:

P with | P | = 2

L ⊆ {p ∈ P} × (P \ {p})

Figure 6 presents the business protocol of Figure 4 expressed as a choreog-
raphy instead of an orchestration, assigning the identifier p1 to the subject, and
p2 to the other participant.

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;76540123sf

t1,m1,(p1,p2),true //

t2,m2,(p2,p1),t1<5

��
t3,t1≥5 //_________

Fig. 6. An example of two-party choreography business protocol.

Multi-Party Orchestration Business Protocols

Definition 25 Multi-Party Orchestration Models
A multi-party orchestration business protocol B with n participants is defined as
per Definition 21 with P and L are re-defined as follows:

P := {me} ∪ P ′ with | P ′ | = n− 1 ∧me /∈ P ′

L ⊆ (p ∈ P)× (P \ {p})

Figure 7 presents an example of multi-party orchestration business protocol
with three participants: p2 and p3, and the subject. In this case P ′ := {p2, p3}.

_
� �

L
�
L_ �
s0

?>=<89:;s1

?>=<89:;s2

GFED@ABC?>=<89:;sf1

GFED@ABC?>=<89:;sf2

t1,m1,(me,{p2,p3}),true ..

t3,m2,(p2,{p3}),true
00

t2,m3,(p3,{me}),t1<4 //

t5,t1≥6

���
�
�

t4,m4,(p2,{me}),t3>3
//

Fig. 7. An example of multi-party orchestration business protocol.

Multi-Party Choreography Business Protocols

Definition 26 Multi-Party Choreography Models
A multi-party orchestration business protocol B with n participants is defined as
per Definition 21 with P and L are re-defined as follows:

P with | P | = n

L ⊆ (p ∈ P)× (P \ {p})

Figure 8 presents an example of multi-party choreography business protocol
with three participants: p1, p2 and p3.

_
� �

L
�
L_ �
s0

?>=<89:;s1

?>=<89:;s2

GFED@ABC?>=<89:;sf1

GFED@ABC?>=<89:;sf2

t1,m1,(p1,{p2,p3}),true --

t3,m2,(p2,{p1}),true
11

t2,m3,(p3,{p1,p2}),t1>5 --

t4,t3≥3

;;

e g j m
p

s
v

t5,m5,(p2,{p1,p3}),t3<3

11

Fig. 8. An example of multi-party choreography business protocol.

2.3 Executing Business Protocols

The proposed business protocol framework is based on DFA and assumes a
discrete time model. The execution of its models follows the usual rules for
deterministic discrete finite automata [16, 17], plus the following additional rules
due to the time constraints associated with the transitions:

– Message-based transitions can take place only when the associated time ex-
pression evaluates to true

– The execution of an automatic transition originating from the current state
occurs as soon as its associated time expression evaluates to true. If a state
has multiple automatic transitions, it might be the case that more than one
of them becomes verified at the same time, and thus should be traversed.
Only one racing transition can be traversed though. In such situation, the
automatic transitions are said to be racing. To ensure determinism in the
execution of the business protocol, the racing automatic transition traversed
is always the one with the least transition identifier.

Consider the model presented in Figure 9. In this case, if an instance enters
the state s1 and p2 does not generate the message m2 within 5 units of time,
then the automatic transitions t3 and t4 are racing, and t3 is traversed because
it has the least transition identifier.

_
� �

L
�
L_ �
s0 ?>=<89:;s1

GFED@ABC?>=<89:;sf1

GFED@ABC?>=<89:;sf2

t1,m1,(p1,p2),true //

t2,m2,(p2,p1),t1<5 ,,

t3,t1≥5

77
Z] a d h k

o

t4,t1≥5
22

O
S V Z] a d

Fig. 9. An example of business protocol model with racing automatic transitions.

Execution Paths The execution of an instance evolves by traversing tran-
sitions. The order in which the transitions can be traversed depends from the
structure of the model. The first transition traversed always originates in the ini-
tial state and must have the associated time condition “true”. Every transition
except the first must originate in the state that was the target of the previous
traversed transition. The execution is over when a final state is reached, because
the final states are required to be absorbing, and thus there is outgoing transition
for the execution to traverse.

The execution instances of the same model can possibly traverse different
sequences of transitions. For instance, consider the model presented in Figure 8.
According to the messages that are generated by the participants, instances of
this model can traverse three different sequences of transitions:

< t1 → t2 >

< t3 → t4 >

< t3 → t5 >

The notation t1 → t2 stands for “the transition t1 is executed, followed by
transition t2”. Each of these possible ways of traversing the transitions of a
model is an execution path. Each execution path starts with a message-based
transition that originates in the initial states, and ends with a transition that
has a final state as target.

Execution paths of length n (i.e., made of the traversal of n transitions)
defined on a generic business protocol B as per Definition 21 have the following
general structure:

(Tid)n

That is, execution paths are tuples made of n transitions identifiers that represent
the transitions traversed. We represent the generic execution path exn

B of length
n defined on the business protocol B as:

exn
B := t1id → . . . → tnid

using the → instead of commas (as it would usually apply for tuples) to better
represent the idea of sequencing. The function σ(exn

B , i) returns the i-th tran-
sition identifier mentioned in the execution path exn

B (see Section A for the
definition of the function σ).

The set EXi
B contains all the execution paths of length i ∈ N+ defined on

the business protocol B. The set EXB of all the possible execution paths of any

length defined on the business protocol B is defined as:

EXB :=
⋃

i∈N+

Ri
B

Because of the DFA-based semantics of the business protocols, each execution
path exn

B in EXB satisfies the following constraints:

source(σ(exn
B , 1)) = s0 (1)

∀ 1 < i ≤ n ∈ N . target(σ(exn
B , i− 1)) = source(σ(exn

B , i)) (2)

n ∈ N+∞→ target(σ(exn
B , n)) ∈ SF (3)

The function source(tid) returns the source state of the transition identified by
tid, and target(tid) returns the target state (see Section A for the definition of
the functions source and target).

Condition 1 requires that the first transition traversed in the execution path
originates in the initial state s0. Condition 2 expresses that, given two subse-
quently traversed transitions in an execution path, the target state of the former
is also the source state of the latter. Condition 3 requires that that last transition
traversed in an execution path is a final state.

Since business protocol models expressed with our framework are ultimately
DFA with a particular syntax for the labels and additional rules for the execution,
Theorem 21 holds.

Theorem 21 Finite Execution Paths in Loop-less Models
A business protocol model B has a finite number of execution paths if and only
if B does not have loops.

Proof. Directly from the fact that a business protocol model is structured as a
DFA. The execution paths are simply the possible ways of traversing the DFA.
It is well known that a DFA without loops has only a finite number of distinct
paths in it.

The following Lemma 22 is an immediate result from Theorem 21.

Lemma 22 Infinitely Many Execution Paths in Models with Loops
If a business protocol model B has loops in it, there are infinitely many execution
paths defined on B.

Proof. By negation of the hypothesis and result of Theorem 21.

Well-formed Business Protocol Models The meta-model resulting from
Definitions 21 and 22 allow to build models that, taking into account the DFA-
like intended semantics of the business protocol instances, are not acceptable.
For instance, the meta-model does not formally constraint final states to be
absorbing. Definition 27 sets the additional constraints that well-formed business
protocol models must satisfy.

Definition 27 Well-Formed Models
The business protocol model B as per Definition 21 is well-formed if and only if
it satisfies all the following propositions:

¬ ∃ sf ∈ SF . ∃ (tid, sf , s, m, l, c) ∈ E ∨ ∃ (tid, sf , s, c) ∈ A (4)
∃ (tid, s0, si,m, l, c) ∈ E ∧ c = true (5)
∀s ∈ S ∃ exn

B ∈ EXB , i ∈ [1, n] . s = σ(exn
B , i) (6)

Condition 4 prevents well-formed models from having transitions originating
in a final state (i.e., final states must be absorbing). Condition 5 requires well-
formed business protocol models to have at least one message-based transitions
outgoing the initial state with the time-condition “true” (i.e., a tautology). This
is needed to have the guaranteed that there is always a viable transition to begin
an instance with. Finally, condition 6 requires that each state is “touched” by
at least one execution path, that is the state is either target or source (or both)
to at least one transition in the execution path. The rationale of condition 6 is
to exclude from the well-formed models the ones with non reachable states. Non
reachable states, while syntactically correct in DFA, are for all practical purposes
useless for business protocols, and are thus disallowed. For instance, the model
presented in Figure 10 is non well-formed because there is no execution path
that touches the state s3, thus contradicting condition 6. Similarly, the model in
Figure 11 is not well-formed because it violates condition 6. In fact, there is no
execution path touching the (final) state s2 because the model has no execution
paths at all, since the final state s2 can never been reached from the initial state
s0.

_
� �

L
�
L_ �
s0 ?>=<89:;76540123s2

?>=<89:;s3

t1,m1,l,true

**

Fig. 10. A non-well formed model: the
state s3 is non-reachable.

_
� �

L
�
L_ �
s0 ?>=<89:;76540123s2

?>=<89:;s3t1,m1,l,true ..

Fig. 11. A non-well formed model: the fi-
nal state s2 is non-reachable.

In the remainder we will take into account only well-formed models. Thus,
unless contrary specified, whenever referring to a model, it will actually mean
“well-formed model”.

Runs and the Accepted Language of Business Protocol Models The
execution paths on a model define in which order instances can traverse the
transitions. However, the execution paths alone do not suffice for describing how
instances behave over their executions because they do not capture when the
transitions are traversed: that is, the time dimension of the execution.

The time-wise trace of the execution of a business protocol instance is called
run. A run rB on the business protocol B can be intuitively represented as:

rn
B :=< (t1id, τ

1) → . . . → (tiid, τ
i) → . . . → (tnid, τ

n) >

A run is a sequence of steps (tiid, τ
i). Each step couples the identifier of a transi-

tion with the time that transition is traversed. The notation “(tiid, τ
i) → (tjid, τ

j)”
represents the traversing of the transition tiid at time τ i, followed by the travers-
ing of the transition tjid at time τ j . The same transition identifier may appear in
multiple steps of the run, in case of loops in the execution path followed by the
instance. The formalization of the structure of runs is presented in Definition 28.

Definition 28 A run rn
B of n steps on the model B as in Definition 21 is defined

as:
rn
B ∈ {(tid ∈ Tid, τ ∈ T)}n, n ∈ N+

The times in the run’s steps are reported as relative to the instant of traversing
of the first transition in the run. Therefore, T in Definition 28 represents relative
(discrete) times.

In the remainder of the work it will need to extract information from runs.
The operator σ(rn, i) returns the i-th step of the run rn (if 1 ≤ i ≤ n, ⊥
otherwise). The operator θ(rn, i) returns the i-th state entered during the run
rn if 1 ≤ i ≤ n + 1. The 0-th state traversed by a run is always the initial state.
The symbol ⊥ is returned by θ(rn, i) if i ≤ n + 1. Both the σ and θ operators
are formally defined in Section A.

_
� �

L
�
L_ �
s0

?>=<89:;s3 ?>=<89:;s3

?>=<89:;76540123s2

t1,m1,l,true **
t2,m2,l,t1<0

// t3,true

AA

k
t

�

t4,m3,l,true //

Fig. 12. A model with no accepting runs for some of its execution paths.

While intuitive, Definition 28 allows for runs that can never take place on a
model. For instance, consider runs whose first step does not regard a transition
originating from the initial state, or a run whose last step does not lead to a
final state.

In a sense, the runs that can actually take place on a model are instances of
the execution paths available on that model. The run rn

B is an instance of the
execution path exm

B , and we write exm
B � rn

B if and only if:

m = n (7)
∀i ∈ [i, n] . σ(rn

B , i) = (tid, τ) → σ(exn
B , i) = tid (8)

That is, a run is an instance of an execution path on a given model if and only
if the run and the execution path have the same length (Condition 7), and the

steps in the run regard transition identifiers mentioned in the same order as in
the execution path (Condition 8).

A run rB on the model B is said to be well-formed if and only if it is an
instance of some execution path exB . Well-formed runs restrict the runs on a
model to the ones that “make sense” from the point of view of traversing the
business protocol model as a DFA. However, the definition of well-formed run
does not consider the additional semantics of business protocols due to the time
conditions associated with the transitions. For instance, consider the following
well-formed run r on the model in Figure 12:

r :=< (t1, 0) → (t2, 5) → (t3, 10) >

The run r can never result from the execution of the model in Figure 12 because
the second step, (t2, 5), violates the time condition “t1 < 0” associated with t2.

An accepting run on a model is a well-formed run which can result from the
execution of that model. For instance, consider the model presented in Figure 12.
The model has two execution paths:

< t1 → t2 → t3 >

< t4 >

The execution path < t4 > has only one accepting run as instance, namely:

< (t4, 0) >

Instead, the execution path < t1 → t2 → t3 > has no accepting runs
associated with it, because the time condition t1 < 0 on the transition t2 can
never be satisfied, since the time associated with a step in a run is always bigger
or equal than 0 (and it is always 0 in case of the first step).

The set Rn
B is defined as the set of all the accepting runs of length n on B.

Thus RB , the set of all the accepting runs on B, is defined as:

RB :=
⋃

i∈N+

Ri
B

Borrowing a terminology from automata theory, RB is also called the accepted
language of B. In case B is not a trivial model, RB has an infinite cardinality
(i.e., it contains infinitely many elements)2. Thus, it makes little sense to devise
algorithms to enumerate all the accepting runs on a given model. No matter
the complexity of the algorithm, on the general case it would never terminate.
Instead, it is crucial to be able to calculate the inclusion of languages of business
protocol models: that is, given two models, check if the accepting runs supported
by one are a sub-set, super-set or the same set of the other, or if the two sets of

2Actually, the cardinality of RB , with B a non trivial model, is generally more than
numerable (i.e., strictly more than the natural numbers). This result can be trivially
obtained with Cantor’s diagonal method, mapping natural numbers to the times in the
runs’ steps.

accepting runs are disjoint or only partially overlap. Another interesting problem
connected to the accepted language is the acceptance of a run on a model: i.e.,
to verify whether a certain run is accepted by a certain model.

Both the problems of acceptance and inclusion of languages are well known in
the literature covering DFA, and they are proven to be tractable [18]. However,
the business protocols are not normal DFA because of the additional semantics
contributed by the time conditions. Actually, they are much more similar to
timed automata than to DFA. The problem of inclusion of languages for timed
automata is proven to be intractable in the general case, but tractable for deter-
ministic discrete timed automata, as it is tractable the acceptance problem (i.e.
if a timed word is accepted by a given automaton). Section 3 presents a mapping
from business protocol models to deterministic discrete timed automata that en-
ables to study the acceptance and inclusion of languages problems for business
protocols.

Actual Languages of Business Protocol Models The language RB of a
model B is build on the alphabet:

Σ := Tid × T

That is, the alphabet of business protocol model is made of couples of the tran-
sition identifiers of the transitions that are traversed and the time (relative to
the traversing of the first run) at which the traversing occurs. This formulation
of the language of a model is very intuitive, and will simplify later on the for-
mulation of a mapping from business protocol models to timed automata (see
Section 3). However, it does not immediately deliver the information of which
messages are exchange when and among which participants.

This inconvenience is immediately solved by defining the concepts of actual
run and actual language of a model B. An actual run on a model B is an
accepting run of B where the transition identifiers are substituted by message
and label or the ε symbol in case of automatic transitions. Formally, the actual
run r̃n corresponding to the accepting run rn on the model B is such that:

∀i ∈ [1, n] . σ(r̃n
B , i) =

{
(m, l) if σ(rn

B , i) = (tid, τ) ∧ ∃ (tid, s, s′,m, l, c) ∈ E

ε otherwise

The actual language R̃B of a model B is the set of the actual runs defined on it.
R̃B is defined as:

R̃B := {r̃n
B | rn

B ∈ RB}

Notice that the mapping between accepted and actual runs it is not bijective,
because all the automatic transitions are represented by the same symbol ε.

The applications of the actual language of a model, such as to replaceability
and compatibility analyses, are beyond the scope of this work.

Representing Business Protocol Instances The meta-model proposed in
Section 2.2 provides the syntax for modeling conversations. A model is an instan-
tiation of the meta-model describing one particular conversations (i.e., complex
pattern of message exchanges). A conversation described by a model is carried
out by executing an instance of the model. The same conversation can be ex-
ecuted multiple times by having different instances on the same model. Each
instance is associated with a run, that describes how the model is traversed by
that particular instance. Different instances may traverse the model exactly in
the same (i.e., they have the same run).

However, the run of an instance does not suffice to describe entirely how the
messages where exchanged by that instance. In the run, the time associated with
the traversing of the transitions is relative to the moment the run began (in fact,
the first step has always associated with the time 0). Therefore, to completely
describe a particular instance it is necessary to report also the absolute time
(e.g., 2008-08-20 10:00:21Z).

Formally, an instance iB can be described as:

iB := (B, rn
B , τ ∈ Tabs)

where B is the model from which i was instantiated, rn
B is the run that iB

has executed, and τ is the absolute time (from the domain Tabs) the run has
commenced. Having the model B as component of the representation of iB is
meant to simplify the formalization of adaptation and migration strategies of
instances (which is outside the scope of the present work).

Notice that this formalization assumes that the time of instantiation coin-
cides with the time of the starting of the run. The time of the completion of the
instance coincides with the time of the traversing of the last transition in the
run rn

B . The absolute time the traversing of the i-th step in rn
B can be straight-

forwardly retrieved by combining τ and the relative time in σ(rn
B , i) (the relative

time of the traversing i-th step in rn
B).

Evaluating Atomic Time Conditions The execution of an instance requires
the evaluation of the time conditions associated with the transitions. As ex-
plained in Section 2.2, the evaluation of composite time conditions follow the
usual rules for propositional logics for combining the evaluation of the nested
atomic time conditions, such as “t4 ≤ 2 hours”. The atomic time conditions are
in the form ti ∈ Tid OP (see Definition 22), and it is based on the data collected
in the run up to the moment of the evaluation.

The evaluation of “t4 ≤ 2 hours” returns true if and only if the last traversing
of transition t4 has occurred within the past two hours. The last time of travers-
ing of t4 can be found by looking up the run backwards for the most recent step
involving that transition. If t4 is not found in the run (i.e., the transition has
not yet been traversed), “t4 ≤ 2 hours” evaluates to false.

Logical Characterization of the Time Windows Associated to Transi-
tions and States The time conditions associated with the transitions restrict

when those transitions can be traversed during the execution of the model into
time-windows. That is, a time-window is in a sense the “collection” of (relative)
times at which one transition can be traversed in a model. Time-windows can
be formally characterized as follows:

WB(tid) := {(exn
B , {τ | ∃ rn

B ∈ RB . exn
B � rn

B ∧ ∃ i ∈ [1, n] .

. σ(rn
B , i) = (tid, τ)})}

That is, the time-window Wtid
on the model B is the set of all the couples

(exn
B , T ime ⊆ T), where exn

B is an execution path of length n on B, and Time
is a set of possible (relative) instants at which tid can be traversed in some run
instance of exn

B .
Similarly for the case of the transitions, we can characterize the time-windows

associated to the states that represent when an execution of the model can be
in that state. The characterization differs in case the state is initial, final, or
neither of the previous. In case the state s is neither initial nor final:

WB(s) := {(exn
B ∈ EXB , {τ | ∃ rn

B ∈ RB . exn
B � rn

B ∧ ∃ i ∈ [1, n] .

. θ(rn
B , i) = s ∧ τ ∈ [πτ (σ(rn

B , i− 1)), πτ (σ(rn
B , i))]}}

where πτ (tid, τ ′) = τ ′ (that is, a simple projection operator to extract the time
from a step of a run). That is, the time-window for a state is the collection
of relative time instants (grouped by execution path) belonging to intervals in
which a run is in that state. Similarly, we can define the time window for the
initial state s0:

WB(s0) := {(exn
B ∈ EXB , {0} ∪ {τ | ∃ rn

B ∈ RB . exn
B � rn

B ∧ ∃ i ∈ [1, n] .

. θ(rn
B , i) = s ∧ τ ∈ [πτ (σ(rn

B , i− 1)), πτ (σ(rn
B , i))]}}

The time window for the initial state it is calculated in the same way for the
one for any non-initial and non-final state, except that it always comprises the
time 0 (for obvious reasons). Finally, we can define the time window for a state
sf ∈ SF as follows:

WB(sf) := {(exn
B ∈ EXB , {τ | ∃ rn

B ∈ RB . exn
B � rn

B ∧ τ ≥ πτ (σ(rn
B , n))}

Simply put, the time-window of a final state spans from the least instant you
can reach that final state on (because once a final state is reached, it is never
left).

3 Mapping Business Protocols to Discrete Timed
Automata

The present section provides a mapping from business models to timed automata
defined on a discrete time model, and explores some of the potential in terms of
model checking capabilities that the mapping unlocks.

Definition 31 Equivalent Timed Automaton
The business protocol B as in Definition 21, maps to the Equivalent Timed Au-
tomaton (ETA) TB := (ST , s0

T , Sf
T , XT , ET) on the alphabet ΣB := Tid defined

as:

ST := S (9)
{s0} := s0

T (10)

SF := Sf
T (11)

XT := Tid (12)
ET := {(si, sj , (tid,m, l), {tid}, c) | ∃ (tid, si, sj ,m, l, c) ∈ E} ∪

∪ {(si, sj , tid, {tid}, c ∧
∧

{c′ | ∃ (t′id,si,s,c′)∈A∧t′id<tid}

¬c′) |

| ∃ (tid, si, sj , c) ∈ A} (13)

The Clause 9 of Definition 31 means that the states of the equivalent timed
automaton are the same as the states of the business protocol model. Similarly,
Clause 10 and 11 say that the states that are initial or final in the business
protocol model are the same in the ETA. Clause 12 defines a clock in ETA for
each transition identifier in the business protocol model, which is needed because
since we need to keep track of the last occurrence of every transition in order
to evaluate the time conditions. Finally, Clause 13 defines the transitions in the
ETA, which come from message-based and automatic transitions in the model.
Clause 13 can be split in two parts:

{(si, sj , tid, {tid}, c) | ∃ (tid, si, sj ,m, l, c) ∈ E} (14)

{(si, sj , tid, {tid}, c ∧
∧

{c′ | ∃ (tid,si,s,c′)∈A∧t′id<tid}

¬c′) |

| ∃(t′id, si, sj , c) ∈ A} (15)

Clause 14 creates a transition in the ETA per each message-based transition
in the model. The transition in the ETA resets the clock corresponding to the
message-based transition, and it consumes the transition identifier as symbol.
The time condition associated with the transition in the ETA is the same as the
one associated to the message-based transition in the model. Clause 15, similarly
to Clause 14, creates a transition in the ETA for every automatic transition in
the model. Likewise the case for message-based transitions, the transition in the
ETA resets the clock corresponding to the automatic transition in the model, and
consumes as symbol the automatic transition’s identifier. However, the definition
of the time condition for the transition in the ETA corresponding to an automatic
transition in the model is more complicated, because it must encode a part of
the semantics of the business protocols that has no immediate correspondence in
timed automata: if the time conditions of multiple automatic transitions become
verified at the same time, the transition with the least transition identifier is

traversed. To represent this execution rule in the ETA, it is necessary to rework
the time conditions of transitions corresponding to automatic transitions in the
model as the conjunction of the time condition c on the automatic transition and
the negation of all the time conditions associated to other automatic transitions
in the model that originate in the same state, and whose transition identifier is
smaller, which are contained in the set:

{c′ | ∃ (t′id, si, s, c
′) ∈ A ∧ t′id < tid}

Consider the business protocol model and its ETA presented respectively in
Figure 13 and Figure 14. The model in Figure 13 is generic (i.e., as defined in
Definition 21, and abstracting the content of the labels), from brevity and to un-
derline that the definition of ETAs is not restricted to any particular sub-type of
business protocol, such as two-party orchestration or multi-party choreography.
Notice that, in the ETA, the transition identifiers appearing a the beginning of
the labeling of the transitions it is not supposed to represent an identifier for
those transitions (as in the business protocol models), but instead it represents
the symbol that is consumed by the ETA upon the traversing of the transition.

_
� �

L
�
L_ �
s0

?>=<89:;s1 ?>=<89:;s2

?>=<89:;s3 ?>=<89:;76540123s4

t1,m1,l1,true

**

t2,m2,l2,true

// t3,m3,l3,true //

t4,t1>5

&&r o l j d _ Z T R O

t5,t2>4

''

T S S S R R R Q Q Q P P O

t6,m4,l4,t3>4

��
t7,m5,l5,true //

t8,t9≥2

��

�
�

%
t9,m6,l6,true

SS

t10,t7≥9 //____________

Fig. 13. A business protocol model.

_
� �

L
�
L_ �
s0

?>=<89:;s1 ?>=<89:;s2

?>=<89:;s3 ?>=<89:;76540123s4

t1,{t1},true

**

t2,{t2},true

// t3,{t3},true //

t4,{t4},t1>5

&&

t5,{t5},(t2>4)∧¬(t1>5)

''

t6,{t6},t3>4

��
t7,{t7},true //

t8,{t8},(t9≥2)∧¬(t2>4)∧¬(t1>5)

��

t9,{t9},true

SS

t10,{t10},t7≥9 //

Fig. 14. The ETA corresponding to the model in Figure 13.

Likewise with business protocol models, in the graphical representation of the
ETA the source and target states are omitted from the transitions, as they are
already graphically represented. The time condition associated with the transi-

tion that consumes the symbol t5 in the ETA is obtained by making the con-
junction with the time condition “t2 > 4” associated with t5 in the model with
“¬(t1 > 5)”, which is the negation of the time condition “t1 > 5” associated with
the automatic transition t4 in the model, which originates in the same state s1

as t5. Similarly, the time condition “(t9 ≥ 2) ∧ ¬(t2 > 4) ∧ ¬(t1 > 5)” on the
transition t9 in the ETA is obtained by making the conjunction of the condition
on t8 and the negation of the conditions on t4 and t5 in the model.

The business protocol models are deterministic, and therefore the respective
ETA also are. Notice that the mapping from models to ETA is not invertible,
because it losses the information on the message-based transitions, as well as the
distinction of which transitions are message-based and which not.

The key result revolving around ETA is presented in Lemma 31.

Lemma 31 Correspondence of the Language of Models and ETAs
The accepted languages of the business protocol model B and its ETA TB are
exactly the same.

Proof. Straightforward by the construction of the ETA.

In practice, Lemma 31 guarantees us that if a (timed) property holds on
the accepted language of an ETA, it also holds on the accepted language of the
respective model, because they are exactly the same. Therefore, all the model-
checking techniques that have been devised for verifying timed properties on the
accepted languages of (deterministic discrete) timed automata are also applicable
to business protocol models through their ETA. The mapping here proposed
enables the use of ACTL* [17]. This allows, for instance, to verify whether all
the possible accepted runs of a model complete within a certain amount of time,
or whether a certain transition is never traversed before another.

The equivalence of the languages of a business protocol model and its ETA
allows to use Timed Regular Expressions[19, 20] or Data Languages[21] in con-
junction with business protocols, which may express in a compact way the ex-
pressiveness of business protocol models. However, the relation between business
protocols, Timed Regular Expressions and Data Languages is future work.

4 Participant Awareness in Choreography-Based
Business Protocols

Business protocols model the message-based interactions occurring among dis-
tributed participants. The participants are expected to generate and consume
messages only in particular time-windows defined by the time conditions associ-
ated with the message-based transitions. The generation of messages outside the
legitimate time-windows make the business protocol instances fail. Participants
can generate and consume messages at the right moment only if they are able to
keep track of the current state of the business protocol instances they participate
in. The capability of participants to follow the execution of the instance through
traversing of transitions and entering and leaving states is called awareness.

The awareness of participants is further split into state-awareness and transi-
tion-awareness. Intuitively, a participant is state-aware of a given state if, every
time that state is entered or left, the participant knows. Similarly, a participant
is aware of a given transition if every time that transition is traversed, the
participant knows. In the following text, the word “awareness” will be used
instead state-awareness or transition-awareness in case the context makes clear
which kind of awareness is taken into account.

Transition- and state-awareness are tightly related. On the one hand, in order
to be aware of a state, a participant needs to be aware of the transitions that lead
to and leave from that state. On the other hand, since automatic transitions are
not observable, i.e., participants do not get notification of their occurring, unlike
the message-based transitions where the notification is the message itself. Par-
ticipants have to infer that an automatic transition is traversed by excluding the
traversing of message-based or automatic transitions originating from the same
state. That is, in order to be aware of an automatic transition, the participant
must be aware of the transition’s source state.

4.1 Transition-Awareness

The intuition of transition awareness for message-based transitions is captured
formally in Definition 41.

Definition 41 Transition-Awareness: Message-Based Transitions
The participant p in the choreography model B is aware of the message-based
transition (tid, s, s′,m, (psend, Prec), c), and we write awarem(p, e), if and only
if:

awarem(p ∈ P, (tid, s, s′,m, (psend, Prec), c) ∈ E) ↔ p = psend ∨ p ∈ Prec

In effect, Definition 41 says that a participant is aware of a message-based transi-
tion if and only if it is either the sender or one of the recipients in that transition.

Definition 41 does not apply to automatic transitions. The notion of aware-
ness with respect to automatic transitions is more complicated to formulate.
Participants infer the occurrence of an automatic transition if the run has been
in the source state of that transition long enough the time condition associated
with that automatic transition. In order to do this, a participant has to:

– be able to observe all the message-based transitions outgoing the state (i.e.,
being transition aware of them);

– be able to evaluate the time conditions associated with all the automatic
transitions outgoing the state, so to be sure that the automatic transition
they infer is the first one to become satisfied.

Because of the second condition, the awareness with respect to an automatic
transition relies on being able to evaluate the time conditions associated with the
transitions. We do not have yet the instruments to formally define if a participant
can evaluate a particular time condition (we will see later on that this definition

is mutually recursively defined on the basis of awareness). But we can postulate
the existence of the function can eval(p ∈ P, c ∈ C) that returns true if and
only if the participant p can evaluate the time condition c, and build on top of it
the formalization of transition awareness with respect to automatic transitions,
which is presented in Definition 43.

Definition 42 (Temporary) Transition-Awareness: Automatic Transi-
tions
The participant p is aware of the automatic transition a in the multi-party chore-
ography model B, and we write awarea(p, a), if and only if:

awarea(p, a) ↔ source(a) = s ∧ (∀e ∈ (in(s) ∩ E) . awarem(p, e)) ∧
∧ (∀a ∈ (in(s) ∩A) . awarea(p, a)) ∧
∧ (∀e ∈ (out(s) ∩ E) . awarem(p, e)) ∧
∧ (∀a := (tid, s, s′, c) ∈ (out(s) ∩ E) . can eval(p, c)

Breaking down Definition 42 in four part, it says that a participant p is transition
aware of an automatic transition a with source state s if and only if:

1. ∀e ∈ (in(s) ∩ E) . awarem(p, e): p is aware of all the message-based transi-
tions incoming to the state s;

2. ∀a ∈ (in(s) ∩ A) . awarea(p, a): p is aware of all the automatic transitions
incoming to the state s;

3. ∀e ∈ (out(s) ∩ E) . awarem(p, e): p is aware of all the message-based tran-
sitions outgoing to the state s;

4. ∀a := (tid, s, s′, c) ∈ (out(s) ∩ E) . can eval(p, c): p can evaluate the time
constraints associated with all the automatic transitions outgoing s.

While capturing the intuition of transition awareness for automatic transitions,
Definition 42 has two technical defects (and this is why it is just a “temporary”
definition). First of all, it is circular in case of cycles in the model. For instance,
consider the model in Figure 15: to be aware of the automatic transition t3, the
participant p2 must be aware of all the automatic transitions incoming to the
state s1, i.e. t3 itself. A more complicated example of circularity is shown in
Figure 16, where p1 is transition-aware of t2 if it is also aware of t3, and vice-
versa. An even more complicated example of circularity is shown in Figure 17,
where p is aware of all t2, t3 and t4, or none.

The second defect of Definition 42 is that it does not take into account
message-based transitions looping on a state. For instance, consider the model
presented in Figure 18. Even if p1 is not aware of t2, intuitively p1 is able to
determine when the automatic transition t3 is traversed, because traversing t2
does not change the state of the execution.

The circularity of Definition 42 affects models that have cycles made of au-
tomatic transitions, which are called automatic cycles. Formally, an automatic
cycle φn of length n ∈ N+ on a multi-party choreography model B as in Defini-
tion 26 is defined as:

φn :=< a1, . . . , an > , ∀i ∈ [1, n] . ai ∈ A ∧ ∀i, j ∈ [1, n] . i 6= j → ai 6= aj

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;76540123s2

t1,m1,(p1,{p2}),true //

t2,m3,(p2,{p1}),true

��

t3,t2≥5

VV'
_ �

t4,t1>100 //_________

Fig. 15. A model in which the awareness of p1 with respect to t3 is affected by circu-
larity.

_
� �

L
�
L_ �
s0

?>=<89:;s1

?>=<89:;s2

?>=<89:;76540123s3

t1,m1,(p1,{p2}),true //

t2,t1≥2∧t3≥2

��

�
�

)
t3,t2≥2

VV

�

�

)

t4,m2,(p2,{p1}),true

88

Fig. 16. A model in which the awareness of p1 with respect to both t2 and t3 is affected
by circularity.

_
� �

L
�
L_ �
s0 ?>=<89:;s1

?>=<89:;s2

?>=<89:;s3

?>=<89:;76540123s4

t1,m1,(p1,{p2}),true
**

t2,t1≥2∨t4≥5 00

�
t

d

t3,t2≥2

��

,

�

�

t4,t3≥2

VV

Z
J

3

t5,m2,(p2,{p1}),true

&&

t6,m3,(p1,{p2}),true

44

Fig. 17. A model in which the awareness of p1 with respect to t2, t3 and t4 is affected
by circularity.

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;76540123s2

t1,m1,(p1,{p2,p3}),true //

t2,m2,(p2,{p3}),true

��
t3,t1≥20 //___________

Fig. 18. An example of looping message-based transition.

∀i ∈ [1, n− 1] . target(ai) = source(ai+1) ∧ target(an) = source(a1)

We write a ∈ φn :=< a1, . . . , an > if:

∃ i ∈ [1, n] . ai = a

Definition 43 is obtained by modifying Definition 42 to tackle the issues with
circularity and looping message-based transitions.

Definition 43 Transition-Awareness: Automatic Transitions
The participant p is aware of the automatic transition a with source state s in
the multi-party choreography model B, and we write awarea(p, a), if and only if:

awarea(p, a) := (∀e ∈ (in(s) ∩ E) . target(e) 6= s → awarem(p, e))∧
∧(∀a′ ∈ (in(s) ∩A) . (6 ∃ φ | a ∈ φ ∧ a′ ∈ φ) → awarea(p, a′))∧
∧(∀e ∈ (out(s) ∩ E) . source(e) 6= s → awarem(p, e))∧
∧(∀a′ := (tid, s, s′, c) ∈ (out(s) ∩ E) . can eval(p, c))

That is, the circularity is removed by excluding the automatic transitions that
lay on cycles from ones inbound to s the participant p has to be aware of.
The problem of looping message-based transitions is tackled by requiring the
transition awareness only of the non-looping ones.

Lemma 41 is an immediate result from Definition 43:

Lemma 41 A participant p is aware of an automatic transition a originating
from a state s if and only it is aware of all the automatic transitions originating
from s.

Proof. Straightforward when noticing that Definition 43 has no direct reference
to a other than to retrieve its source state s. After that, all the automatic
transitions originating from s, a comprised, are treated the same through the
universal quantification in:

. . .∀a′ := (tid, s, s′, c) ∈ (out(s) ∩ E) . can eval(p, c) . . .

Therefore, if p is aware of an automatic transition originating from a state, it is
also aware of all the other automatic transitions originating from the same state.

For simplicity, we can combine the definition of awareness for message-based and
automatic transitions as shown in Definition 44.

Definition 44 Transition-Awareness
The participant p is aware of the transition t in E ∪A in the multi-party chore-
ography model B, and we write awaret(p, t), if and only if:

awaret(p ∈ P, t ∈ E ∪A) :=

awarem(p, t) if t ∈ E

awarea(p, t) if t ∈ A

false otherwise

To complete the definition of transition-awareness, we need to provide a defini-
tion of the function can eval(p ∈ P, c ∈ C). Time conditions are combinations
through predicate logic of atomic time conditions based on the last occurrence
of a transition. Thus, a participant must be aware of all the transitions whose
identifiers are mentioned in a time condition to be able to evaluate it. The func-
tion extract returns the set of all the transition identifiers that appear nested
in the time condition c, and it is formally defined in Definition 45.

Definition 45 The function extract(c ∈ C) → 2Tid (where 2Tid is the power-
set of Tid) is defined on the structure of time conditions (see Definition 22) as
follows:

extract(c) :=

extract(c1) if c = ¬ c1

extract(c1) ∪ extract(c2) if c = (c1 ∨ c2)
extract(c1) ∪ extract(c2) if c = (c1 ∧ c2)
{tid} if c = tid OP k

∅ if c = true

Using the function extract, it is possible to define the function can eval as
shown in Definition 46.

Definition 46 The participant p ∈ P can evaluate the time condition c ∈ C if
and only if:

can eval(p, c) := (∀tid ∈ extract(c) . awaret(p,deref(tid)))

where the function deref(tid ∈ Tid) → (E ∪ A ∪ {⊥}) returns the transition
identified by tid and it is defined as:

deref(tid) :=

e if ∃ e := (tid, s, s′, (psend, Rrec), c) ∈ E

a if ∃ a := (tid, c) ∈ A

⊥ otherwise

The function can eval(p ∈ P, c ∈ C) returns true if the participant p can
evaluate the time condition c, and false otherwise.

4.2 State-Awareness

A participant is state-aware of a state if, every time the state is entered or left,
the participant knows it. That is, a participant is aware of a state is it is aware
of all the transitions incoming to and outgoing from that state. Formally:

Definition 47 State-Awareness
The participant p is aware of the state s in the multi-party choreography model
B, and we write awares(p, s), if and only if:

awares(p, s) := ∀t ∈ (in(s) ∪ out(s)) . source(t) 6= target(t) → awaret(p, t)

Definition 47 captures the intuition that, is a participant is aware of all the
transitions that can lead to and move away from a state, the participant will
always know if the execution is in that state. Notice that, likewise awareness
with respect to automatic transitions, transitions looping on the state are not
considered, because traversing looping transitions do not cause the current state
to change.

Definition 47 is very similar to Definition 43. They both require the partici-
pant to be aware of all the transitions incoming to a state, and aware of all the
transitions outgoing from it. Theorem 42 relates the awareness of a participant
with respect to an automatic transition originating from a certain state, and the
awareness of the same participant with respect to that state.

Theorem 42 If the participant p is aware of the automatic transition a in the
multi-party choreography business protocol model B, then p is aware of the source
state of a. Formally:

awarea(p, a) → awares(p, source(a))

Proof. By Lemma 41, if p is aware of a, then p is also aware of all the other
automatic transitions originating from the same state s := source(a). Due to
the definition of awareness for automatic transitions, p is also aware of all the
transitions incoming to s and the message-based transitions outgoing s. Since
p is state aware of all the transition incoming to s, and all message-based and
automatic transitions outgoing s, that is, all the transitions outgoing s, then p is
state-aware of s due to Definition 47. The opposite implication does not hold, as

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;s2 ?>=<89:;76540123s3

t1,m1,(p1,{p2}),true
**

t2,t1≥2 44U Y \ _ b e i

t3,t1=15

VV'
_ �

t4,m2,(p2,{p3}),true
**

Fig. 19. A counter-example for “awares(p, source(a))→ awarea(p, a)”.

shown in the counter-example in Figure 19. In this model, p1 is aware of s2, but
not of t3. The transition-awareness of t3 is not required for the state-awareness
of s2 because t3 loops on it.

4.3 Paths of Awareness

The definition of awareness with respect to an automatic transition is recursive.
In particular, in order for a participant to be aware of an automatic transition
originating from a state s, p must also be aware of all the automatic transi-
tions entering s. Moreover, state-awareness is defined on the basis of transition-
awareness. This creates a “chain” effect for awareness in execution paths. For
instance, consider the multi-party choreography model presented in Figure 20.
Table 1 reports which participants are aware of which transitions in the model
in Figure 20. Figure 21 represents the same model as Figure 20, omitting the
details of the transitions and highlighting with double lines the transitions that
p1 is aware of.

Consider the following execution path on the model in Figure 20:

ex1 :=< t1 → t3 → t6 → t7 → t6 → t8 → t10 >

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;s2

?>=<89:;s3 ?>=<89:;s4 ?>=<89:;s5

?>=<89:;76540123sfGFED@ABC?>=<89:;s′f

t1,m1,(p1,{p2}),true//
t2,m2,(p2,{p3}),t1<3

**

t3,m3,(p2,{p1,p3}),true

��

t4,t2>4

���
�
�
�
�

t5,t3>100

���
�
�
�

t6,m6,(p1,{p3}),t3≤100

++

t7,m7,(p1,{p3}),t3≤100

kk

t8,m8,(p3,{p2}),true

VV

t9,m9,(p3,{p1}),true

**

t10,t6≤15

44V Y \ _ b e h

t11,m11,(p3,{p1,p2}),true
pp

t12,m12,(p1,{p2}),true

ss

Fig. 20. A multi-party choreography model.

The participant p1 is aware of all the transitions in the ex1. Instead, consider
the following execution path:

ex2 :=< t1 → t2 → t4 → t7 → t6 → t9 → t10 → t4 → t7 → t6 → t8 → t11 >

In ex2, the participant p1 is aware of only some of the transitions. By hiding
with the symbol “?” the sub-sequences of transitions p1 is not aware of from the
execution path ex2, we have the following:

exp1
2 :=< t1 →? → t7 → t6 →? → t10 →? → t7 → t6 → t8 → t11 >

exp1
2 is the path of awareness of participant p1 regarding the execution path ex2.

A path of awareness represents which sub-sequences of an actual execution path
can the participant keep track of. In a sense, paths of awareness are abstractions
of execution paths on a model. The mapping between paths of awareness and
execution paths is not 1-to-1. In fact, different execution paths can appear to a
participant as the same path of awareness. For instance, consider the following
execution path:

< t1 → t2 → t4 → t8 → t7 → t6 → t8 → t9 → t10 → t4 → t7 → t6 → t8 → t11 >

It differs from ex2 because it traverses t8 twice. The path of awareness exp1
3 is

identical to exp1
2 , because p1 is not aware of t8.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

p1 3 3 3 3 3 3 3 3

p2 3 3 3 3 3 3 3

p3 3 3 3 3 3 3 3 3 3 3

Table 1. The transition-awareness of participants in the model presented in Figure 20.

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;s2

?>=<89:;s3 ?>=<89:;s4 ?>=<89:;s5

?>=<89:;76540123sfGFED@ABC?>=<89:;s′f

t1 +3
t2

**

t3

��

t4

���
�
�
�
�
�

t5

��
�
�
�
�

�
�
�
�

t6

'/

t7

go

t8

VV

t9

'/

t10

33X Z] _ b d f

t11

ks

t12

ks

Fig. 21. The same model in Figure 20 high-lighting with a double line the transitions
that p1 is aware of.

A shred is a sequence of maximum size of defined transition identifiers in a
path of awareness, such as “t7 → t6 → t8 → t11” in exp1

2 . For instance, t7 is not
a shred in exp1

2 , because “? → t7 →?” never appears exp1
2 .

Path of awareness and shreds are instrumental to define efficient algorithms
that calculate the state- and transition awareness of the participants on a model,
which can be engineered as a graph-colouring problem. However, this is left as
future work.

5 Soundness in Choreography Business Protocols

This section characterizes two classes class of choreography business protocols
models: participant-sound, that can be executed by their participants in a com-
pletely distributed way, and time-sound, that are guaranteed not to hang be-
cause of the discretionality of participants about actually generating messages.
Choreographic models that are both participant- and time- sound are said to be
sound. All the runs of sound models complete in finite time without occurring
in exception (e.g., because of generation of messages violating time conditions).

Time- and participant-soundness, likewise the state- and transition-aware-
ness on which are based, are defined only on well-formed choreography models.
Therefore in the remainder of the section, unless specified differently, every model
mentioned is meant to be a well-formed choreography one.

The current section is organized as follows: Section 5.1 defines time-sound-
ness, while Section 5.2 defines participant soundness. Finally, Section 5.3 intro-
duces the definitions of full-soundness and proves the main Theorem 51 associ-
ated with it.

5.1 Time Soundness

Message-based transitions and their associate time constraints define when a
participant may generate a message, namely the time-windows associated with
the message-exchange. However, the generation of messages is not compulsory.
This principle is called participant’s discretionality, and it has implications on
the execution of models.

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;76540123sf

t1,m1,(p1,{p2}),true // t2,m2,(p2,{p1}),true //

Fig. 22. A business protocol which may stall in state s1 in case the participant p2

decides not to generate the message m2.

For instance, consider the business protocol model presented in Figure 22.
An instance currently in state s1 would remain in that state forever in case
the participant p2 does not want to generate the message m2. Since the time
constraint associated with the transition t2 is “true”, the participant p2 has no
means to understand that the message m2 will never be delivered. The state s1

is not final, and it means that the execution will never complete.
The discretionality of participants does not affect final states, that are ab-

sorbing, and because entering a final state automatically completes the execution
of an instance.

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;76540123sf

t1,m1,(p1,{p2}),true //

t2,m2,(p2,{p1}),true

((

t3,t1>50sec
66

Fig. 23. A time-sound version of the business protocol presented in Figure 22.

The possibility of business protocol instance to get stuck forever in a non-
final state is a serious concern in a distributed multi-participant environment.
For a participant is far more desirable to conclude a conversation reaching a
final state representing a fault, than having to wait forever for a message that
may never come. Thus the need to characterize the class of models that are not
affected by such issues.

The choreography-based models that can not get stuck in non-final state be-
cause of participants’ discretionality are called time-sound. For instance, consider
the business protocol presented in Figure 23, which is obtained by adding the
automatic transition t3 to the model presented in Figure 22. If the message m2

is not generated within 50 secs since entering the state s1, the automatic tran-
sition t3 will be traversed. Because of t3, there is the guarantee that instances
of that model will not get stuck forever in s1.

The model in Figure 23 delivers the intuition behind time-sound models:
a model is time-sound if, in each state that may be affected by participants’
discretionality (i.e., non-final and with outgoing message-based transitions; ini-
tial states are a special case, as they are concerned only if they have incoming
transitions), there is an outgoing automatic transition that leads to a different
state and its time condition is fair3. A time condition is fair if, at any point in
time since the beginning of the execution of an instance, there is a future point
in time in which the condition is verified. The time condition “t1 > 50 sec” is
fair because it always evaluates to “true” after 50 sec since the traversing of
t1. Similarly, “true” is fair because, being a tautology, it always evaluates to
“true”.

In general, proving the fairness of a timed propositional formula is a hard
problem. In the case of timed constraints however, it is possible to prove the
fairness of a timed constraint by examining its structure. The function fair(c ∈
C) → {true, false} is defined in Definition 51 on the BNF structure of the time
conditions presented in Definition 22.

Definition 51 The function fair(c ∈ C) → {true, false} is defined as:

fair(c) :=

true if c = true
true if c = tid op TIME ∧

op ∈ {6=, >,≥}
false if c = tid op TIME ∧

op ∈ {<,≤}
¬fair(c1) if c = ¬c1

fair(c1) ∨ fair(c2) if c = c1 ∨ c2

fair(c1) ∧ fair(c2) if c = c1 ∧ c2

The function fair(c) returns true if c is fair, and false otherwise. The bases
cases are defined on the atomic statements “true” and “tid OP TIME” of
Definition 22. The base case “tid OP TIME” is split in two according to the
particular OP used.

Notice that the function fair(c) does not take into account the case in which
an atomic statement “tid OP TIME” evaluates to false because the transition
identified by tid has not been traversed yet. For instance, consider the model
presented in Figure 24.

In order to face this particular case, the function fair(c) has to take into
account the whole business protocol model instead of just a time condition in it.
In particular, assuming that the time condition c is associated to the transition
t′id, it would need to modify the case for “c = tid op TIME∧op ∈ {6=, >,≥}” to
require that tid is guaranteed to execute at least once before the first traversing
of t′id, i.e. that tid is a dominator of t′id. The definition of dominator is presented
in Definition 52.

3meaning that it has the property of fairness in the Model Checking meaning of
the word.

_
� �

L
�
L_ �
s0 ?>=<89:;s1 ?>=<89:;s1 ?>=<89:;76540123sf

t1,m1,(p1,{p2}),true

)) t2,t3>5sec //

t3,m2,(p2,{p1}),true
))

Fig. 24. The time condition “t3 > 5sec” associated with t2 it is not fair, because t3 is
never traversed before t2.

Definition 52 Transition Dominators
The transition identified by tid is a dominator of the transition identified by t′id
in the model B, and we write tid dom t′id, if and only if:

∀exn
B ∈ EXB . (∃ i ∈ [1, n] . σ(exn

B , i) = t′id) → (∃ j ∈ [1, i] . σ(exn
B , j) = tid)

That is, in every execution path defined over B, tid always appears at least once
before the first occurrence of t′id.

The condition specified in Definition 52 can be efficiently checked by adapting to
business protocol models one of the existing algorithms for dominance analysis
on Control Flow Graphs[22], moving the focus from analyzing dominance among
nodes to dominance among transitions.

Using the concept of dominator it is possible to re-define the function fair as
shown in Definition 53 to take into account the case of atomic statements like
“tid OP TIME” be evaluated to false because the transition identified by tid
has not been traversed yet.

Definition 53 Given the time condition c associated with the transition identi-
fied by tid, the function fair(tid ∈ TID, c ∈ C) → {true, false} is defined as:

fair(tid, c) :=

true if c = true
t′id dom tid if c = t′id op TIME ∧

∧ op ∈ {6=, >,≥}
false if c = t′id op TIME ∧

∧ op ∈ {<,≤}
¬fair(tid, c1) if c = ¬c1

fair(tid, c1) ∨ fair(tid, c2) if c = c1 ∨ c2

fair(tid, c1) ∧ fair(tid, c2) if c = c1 ∧ c2

Using Definition 53 it is finally possible to formally define the time-soundness of
a choreography-based business protocol model.

Definition 54 Time Sound Choreography Models
A choreography-based business protocol model B is time-sound, and we write
soundt B if and only if:

in(s0) 6= ∅ → ∃ (tid, s, s′, c) ∈ A .s 6= s′ ∧ fair(tid, c)) (16)
∀s ∈ ((S \ {s0}) \ SF) . (∃ (tid, s, s′,m, l, c) ∈ E ∧ s 6= s′) →

(∃ (tid, s, s′′, c) ∈ A . s 6= s′′ ∧ fair(tid, c)) (17)

Condition 16 concerns the initial state s0: if there is any transition inbound to
it (i.e., the set returned by the function in(s0) is not empty), that is there is a
possibility that the initial set will be entered after that the instance has started,
then there must be an automatic transition outgoing it whose time condition is
infinitely often verified. Similarly, Condition 17 requires that every non-initial
and non-final state that has at least one outgoing message-based transition end-
ing up in a different state, is also the origin of an automatic transition towards
a different state4 whose time condition is infinitely often verified.

5.2 Participant Soundness

During the execution of a business protocol instance, the generation of a message
outside the allowed time-window causes the instance to fail. In order to prevent
this, participants must be able to correctly evaluate the time-windows during
which messages can be generated. In turn, the ability to correctly evaluate the
time-window during a messages can be generated requires the participant to:

– know that the instance is in a state in which the message can be generated;
– evaluate the time constraint associated with the message-based transition

that carries that message.

Using the terminology introduced in Section 4, given the message-based transi-
tion “(tid, s, s′,m, (p, Prec), c)”, in order to never generate the message m causing
the fail of an instance, p must be state-aware of s (the state in which tid origi-
nates) and p can evaluate c. Formally:

p awares s ∧ p can eval c

Participant-sound business protocols are such that their participant never cause
instances to fail because of the generation of messages outside the allowed time-
windows. That is, every sender of a message-based transition is state aware of
the source state of the transition, and the sender can evaluate the time condition
associated with the transition.

There is also another issue that participant-sound models have to tackle. It
is desirable that participants know when instances that they have taken part
in are over. That is, all participants involved in a run must be aware of the
final state that ends that run. A participant is involved in a run if it appears
as sender or recipient of at least one of the message-based transitions that have
been traversed during the run.

The formal definition of participant-soundness is provided in Definition 55.

Definition 55 Participant Sound Choreography Models
The choreography model B is participant-sound, and we write soundp B if and
only if both the following conditions are satisfied:

∀(tid, s, s′,m, (psend, Prec), c) ∈ E . psend awares s ∧ psend can eval c (18)
∀exn

B . sf := θ(exn
B , n) ∧ ∀i ∈ [1, n] σ(exn

B , n) = (tid, s, s′,m, (ps, Prec), c) →
→ ∀p ∈ ({ps} ∪ Prec) . p awares sf (19)

4N.B.: possibly the same state as the target of the message-based transition.

5.3 Full Soundness

Participants of participant-soundness choreography business protocol models
that participants can not mistakenly cause instances of those models to fail
because of the generation of messages outside the allowed time-windows. Time-
sound choreography business protocol models do not get stuck forever in a
non-initial and non-final state because of the discretionality of the participants
with regard of the generation of the messages. A choreography business protocol
model is full-sound if and only if it is both participant- and time-sound.

Definition 56 Full-Sound Choreography Models
A choreography model B is full-sound, and we write soundf B, if and only if:

soundf B ↔ (soundt B ∧ soundp B)

Theorem 51 is a direct consequence of Definition 56.

Theorem 51 Progression of Fully Sound Models
If participants do not willingly violate time-windows for message generation,
every accepting run rn

B of finite length on a multi-party service network business
protocol B reaches a final state sf in finite time. Moreover, at no step in its
execution the protocol is broken because of the generation of messages outside
their respective time-windows.

Proof. Proven by induction on the construction of a well-formed run. There are
two basic cases, first and last step of the run, and an inductive one on the i-th
step of the run, with i ∈ (1, n).

– first step: since rn
B is accepting (and thus well-formed), the first step traverses

a message-based transition originating in the initial state. The time in the
execution does not start until the first transition is traversed. Consequently,
this case presents no problem. The time condition associated to a message-
based transition originating in the initial state must be “true” (because B is
well-formed), and thus the initiator participant can not possibly violate the
time-window for the generation of the first message.

– last step: since rn
B is accepting (and thus well-formed), the n-th (and final)

step ends in a final state of B, and the execution is completed. There are no
transitions outgoing final states, therefore no messages breaking the protocol
can be generated.

– inductive case: the step i − 1 ends in a state s. State s is a non-final state,
because rn

B is accepting (and thus well-formed). Since s is not final and the
model B is well-formed, s has at least one outgoing transition. The transition
to be traversed at the i-th step can be either automatic or message-based. If t
is automatic, then the time condition associated with t is infinitely often sat-
isfied due to the time-soudness property of B. The traversal of an automatic
transition does not generate any messages, therefore no time-window can be
violated. If t is a message-based transition, the sender p of t generates the
associated message m in a finite amount of time, and this happens before the

time condition of any automatic transition becomes verified. Otherwise, an
automatic transition is instead traversed. Due to the participant-soundness
of B, p can evaluate the time-window, and thus generate the message without
breaking the protocol.

Theorem 51 proves a fundamental result regarding fully sound business proto-
cols: runs in which participants adhere to the execution rules (i.e., do not gener-
ate messages outside the allowed time-windows) always complete in finite time.
Moreover, because of the participant-soundness of the protocol, participants can
execute the protocol in a completely distributed way. This result builds on the
following assumptions:

Reliability of communication channel: sent messages are always delivered
successfully;

Reliable time measurement: participants have consistent means of measur-
ing time, i.e., private clocks evolving at the same speed;

Time-efficiency of communication channel: sent messages are delivered to
all recipients instantaneously;

Reaction time of participants: participants take decisions and react with-
out delays, i.e., participants do not perform any noticeable computation on
states.

These assumptions are not unreasonable for current enterprise systems, which
offer run-time environments where fully sound business protocols can be exe-
cuted efficiently. Enterprise service buses offer reliable communication channels
(i.e., by implementing the WS-ReliableMessaging specification) and can rely on
protocols like Internet Network Time Protocol (NTP) to ensure that participants
measure the elapsing of time in a consistent way. The requirements on the time-
efficiency of the communication channel can be overcome by employing strategies
from communication networks such as Time Division Multiplexing (TDM), or
adopting a granularity in time measurements (e.g., milli-seconds, seconds, etc)
suitable to mask the delays in the delivery of messages.

6 Summary

The Service Oriented Architecture approach to the design and implementation
of information systems revolves around connecting and composing services that
provide functionalities to other services and service consumers.

Services communicate via message exchanges organized in complex patterns
called conversations. Each service in the conversation is a participant. A conver-
sation can be described from a global perspective with a choreography, or from
the local perspective of one of its participants using an orchestration.

Choreographies and orchestrations that describe the same conversation are
connected. Orchestrations can be seen as projections on choreographies of the
point of view of one single participant. Conversely, choreographies can be seen
as compositions of the orchestrations of the participants.

Modeling languages that describe orchestrations and choreographies can be
grouped in business protocol- and business process languages according to how
they model the structure of the conversation. On the one hand, business protocol
languages describe how participants produce and consume messages without
providing any detail concerning their internal logic. On the other hand business
process languages describe the order of the message exchanges by modeling an
abstraction of the internal logic of the participants (for instance with a workflow
containing activities like “Deliver Message” and “Receive Message”).

The ability to describe orchestrations and choreographies are critical for SOA.
In the literature there are frameworks for business protocols proposed that de-
scribe both in a coherent way, but they are based on notations hard to use for
web service designers (namely, colored Petri Nets). In this work we aimed at fill-
ing this gap by proposing a business protocol framework based on deterministic
finite automata that can describe both orchestrations and choreographies. We
have presented the meta-model (i.e., the syntax), the semantics of the execution
of business protocol models. A mapping from business protocol models to timed
automata provides model checking on business protocol models, as well as a
foundation to the study of the expressiveness of business protocols in terms of
formal languages, Timed Regular Expressions and Data Languages.

Through the concept of state- and transition-awareness we have studied the
knowledge that participants accumulate about the business protocol instances
they participant to. Further building on the definition of awareness, we have char-
acterized the classes of choreography business models that are time-, participant-
and full-sound. The instances of time-sound models do not get stuck during their
execution because of the discretionality of participants with regard of the gen-
eration of messages (message generation is not mandatory). Participant-sound
models are such that participants have enough information about the execution
so that they never cause the failure of instances because of violations of the
business protocol due to the generation of messages at the wrong moment. Full-
sound models are both time-sound and participant-sound, and their character-
istics make them suitable for execution in a completely distributed environment
where the only means of communication among the participants are the message
exchanges within the conversation.

References

1. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and di-
rections. In: WISE, IEEE Computer Society (2003) 3–12

2. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson Education
Limited (2008)

3. Web Services Business Process Execution Language (WSBPEL) TC, O.: Web Ser-
vices Business Process Execution Language Version 2.0. OASIS Standard, OASIS
(April 2007)

4. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In
Alonso, G., Dadam, P., Rosemann, M., eds.: BPM. Volume 4714 of Lecture Notes
in Computer Science., Springer (2007) 214–229

5. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL
for modeling choreographies. In: ICWS, IEEE Computer Society (2007) 296–303

6. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems 30(4) (2005) 245–275

7. Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A lan-
guage for service behavior modeling. In Meersman, R., Tari, Z., eds.: OTM Con-
ferences (1). Volume 4275 of Lecture Notes in Computer Science., Springer (2006)
145–162

8. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services.
In Nicola, R.D., ed.: ESOP. Volume 4421 of Lecture Notes in Computer Science.,
Springer (2007) 33–47

9. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of
web service protocols. In Belo, O., Eder, J., e Cunha, J.F., Pastor, O., eds.: CAiSE
Short Paper Proceedings. Volume 161 of CEUR Workshop Proceedings., CEUR-
WS.org (2005)

10. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and
replaceability analysis of timed web service protocols. In Parent, C., Schewe, K.D.,
Storey, V.C., Thalheim, B., eds.: ER. Volume 4801 of Lecture Notes in Computer
Science., Springer (2007) 599–614

11. Wombacher, A., Mahleko, B.: Finding trading partners to establish ad-hoc business
processes. In Meersman, R., Tari, Z., eds.: CoopIS/DOA/ODBASE. Volume 2519
of Lecture Notes in Computer Science., Springer (2002) 339–355

12. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web service
protocols. In Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.W., eds.: ER.
Volume 3288 of Lecture Notes in Computer Science., Springer (2004) 524–541

13. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state ser-
vices. In Kleijn, J., Yakovlev, A., eds.: ICATPN. Volume 4546 of Lecture Notes in
Computer Science., Springer (2007) 321–341

14. Deng, X., Lin, Z., Chen, W., Xiao, R., Fang, L., Li, L.: Modeling web service
choreography and orchestration with colored petri nets. In Feng, W., Gao, F.,
eds.: SNPD (2), IEEE Computer Society (2007) 838–843

15. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems 19(2) (1997) 292–333

16. Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using
dense and discrete time semantics. In Pierre, L., Kropf, T., eds.: CHARME. Volume
1703 of Lecture Notes in Computer Science., Springer (1999) 125–141

17. Wozna, B., Zbrzezny, A.: Checking actl* properties of discrete timed automata via
bounded model checking. In Larsen, K.G., Niebert, P., eds.: FORMATS. Volume
2791 of Lecture Notes in Computer Science., Springer (2003) 18–33

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (2nd Edition). Addison Wesley (November 2000)

19. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM
49(2) (2002) 172–206

20. Bouyer, P., Petit, A.: Decomposition and composition of timed automata. In
Wiedermann, J., van Emde Boas, P., Nielsen, M., eds.: ICALP. Volume 1644 of
Lecture Notes in Computer Science., Springer (1999) 210–219

21. Bouyer, P.: A logical characterization of data languages. Information Processing
Letters 84(2) (2002) 75–85

22. Sutter, B.D., Put, L.V., Bosschere, K.D.: A practical interprocedural dominance
algorithm. ACM Transactions on Programming Languages and Systems 29(4)
(2007)

A Auxiliary Definitions

Definition A1 Given the business protocol B as in Definition 21, the function
in(s ∈ S) → (E ∪A) is defined as:

in(s) := {(tid, si, s, m, l, c) ∈ E} ∪ {(tid, sj , s, c) ∈ A}

The function in(s) returns the transitions in B that have s as target state.

Definition A2 Given the business protocol B as in Definition 21, the function
out(s ∈ S) → (E ∪A) is defined as:

out(s) := {(tid, s, si,m, l, c) ∈ E} ∪ {(tid, s, sj , c) ∈ A}

The function out(s) returns the transitions in B that have s as source state.

Definition A3 Given the business protocol B as in Definition 21, the function
source(t ∈ Tid) → (S ∪ {ε}) is defined as:

source(tid) :=

si if ∃ (tid, si, sj ,m, l, c) ∈ E

si if ∃ (tid, si, sj , c) ∈ A

ε otherwise

The function source(tid) returns the source state of the transition identified by
tid, or ε in case there is no such transition.

Definition A4 Given the business protocol B as in Definition 21, the function
target(t ∈ Tid) → (S ∪ {ε}) is defined as:

target(tid) :=

sj if ∃ (tid, si, sj ,m, l, c) ∈ E

sj if ∃ (tid, si, sj , c) ∈ A

ε otherwise

The function target(tid) returns the target state of the transition identified by
tid, or ε in case there is no such transition.

Definition A5 Given the execution path exn
B of length n defined on the model

B as per Definition 21, the function σ(exn
B , i ∈ N+) → Tid is defined as:

σ(exn
B , i) :=

{
tiid if i ∈ [i, n]
⊥ otherwise

where tiid is the i-th transition identifier mentioned in the execution path exn
B.

The function σ(exn
B , i) returns the i-th transition identifier mentioned in the

execution path exn
B , or ⊥ otherwise.

Definition A6 Given the run rn
B of length n defined on the model B as per

Definition 21, the function σ(rn
B , i ∈ N+) → Tid × T is defined as:

σ(exn
B , i) :=

{
tiid if i ∈ [i, n]
⊥ otherwise

where tiid is the i-th transition identifier mentioned in the execution path exn
B.

The function σ(exn
B , i) returns the i-th transition identifier mentioned in the

execution path exn
B , or ⊥ otherwise.

Definition A7 Given the run rn
B of length n defined on the model B as per

Definition 21, the function θ(rn
B , i ∈ N+) → Tid is defined as:

θ(exn
B , i) :=

source(σ(exn

B , i)) if i ∈ [i, n]
target(σ(exn

B , n)) if i = n + 1
⊥ otherwise

The function θ(exn
B , i) returns the i-th transition identifier mentioned in the

execution path exn
B , or ⊥ otherwise.

