This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Econometric Models of Cyclical Behavior, Vols. 1 and 2
Volume Author/Editor: Bert G. Hickman, ed.
Volume Publisher: UMI
Volume ISBN: 0-870-14232-1
Volume URL: http://www.nber.org/books/hick72-1
Publication Date: 1972

Chapter Title: Appendix To Part 1: Equations And Definitions Of Variables For The FRB-MIT-Penn Econometric Model, November, 1969

Chapter Author: Albert Ando, Franco Modigliani, Robert Rasche
Chapter URL: http://www.nber.org/chapters/c2785
Chapter pages in book: (p. 543-598)

APPENDIX TO PART ONE: EQUATIONS AND DEFINITIONS OF VARIABLES FOR THE FRB-MITPENN ECONOMETRIC MODEL, NOVEMBER, 1969

ALBERT ANDO • University of Pennsylvania FRANCO MODIGLIANI . Massachusetts Institute of Technology
ROBERT RASCHE • University of Pennsylvania

Abstract

in what follows, we define the variables and list the equations for a version of the FRB-MIT-Penn Model that was used to generate the simulation results for the analysis by the National Bureau team headed by Professor Victor Zarnowitz. This is also the version of the model used for the analysis reported by Ando and Modigliani in "Econometric Analysis of Stabilization Policies," Papers and Proceedings of the American Economic Association, May, 1969.

A substantial revision and reestimation of the model was recently undertaken, the version of the model given below being replaced in the spring of 1970 .

The equations are listed as they appear in the coding for computer simulation of the model. The variable on the left of the equality sign is the one for which the equation was normalized. The variables on the right of the equality sign are separated into two groups. The terms between the equality sign and the line of three dots, under the heading "Solve," are the ones that must be solved simultaneously for the model in the current period. The terms to the right of the dotted line under the heading "Constant" contain only exogenous and lagged endogenous variables and constants, and therefore can be taken as given in solving the model for the current period. It should be noted that the form of coding for simulation is not necessarily the form in which the behavior represented by the equation was originally conceptualized and estimated. Thus, for instance, in equation (4), CON is listed as the depend-
ent variable, although the theory and estimation were carried out with $C O N / N$ as dependent (the alphabetical list of definitions begins on page 556). The demand equation for money, equation (87), is expressed with $R T B$ as the dependent variable, although the original formulation was with $M D \$ / X O B E \$$ as dependent. These alterations for simulation coding will become fairly obvious as the reader becomes familiar with the listing, and he is requested to make the necessary readjustment in order to understand the behavioral hypotheses embodied in each of the equations.

The a 's with subscripts represent fixed numerical coefficients. Most of these are estimated from the time series data through a variety of methods, but some of them are fixed a priori in accordance with welldefined theories. The subscripts refer to positions in the coefficient matrix in the simulation program; the numerical values of these coefficients are given at the end of each sector.
R refers to the estimation error of the previous period for the equation in which it appears; and, therefore, the coefficient a attached to R is the autocorrelation coefficient of the error for the equation.

The variables are listed first in their numerical order in the system and then in the alphabetical order of their names. Endogenous variables are given plain numbers, and the number given to a variable corresponds to the number given to the equation explaining that variable. Exogenous variables are given a number preceded by either E or AC. The latter are those policy variables which are most commonly used for stabilization, though not all policy variables in the system are given numbers preceded by AC. The special dummy variables are unnumbered. They are mostly associated with strikes that are in the system but not explicitly carried in our data matrix.

Variables that can be measured in monetary units are either in billions of current dollars (denoted by a dollar sign after the name symbol) or in billions of 1958 dollars (without the dollar sign), except for revenues and transfer payments of governments, which are measured in billions of current dollars but have no dollar sign.

All flow variables are expressed at an annual rate. All ratio variables, such as interest rates and the rate of unemployment, are expressed as percentages.

NUMERICAL LIS MODEL

1	X
2	$X O$
3	$X B$
4	$C O N$
5	$Y H$
6	$E C$
7	$W C$
8	$K C$
9	$Y C$
10	$D-I$
11	
12	
13	$R H$

14
15 EHS
16
17 OPD
18 KPS
19 EPS
20 EPD
21 SME
22 OME
23 OUME
24 RPD
25 RTPD
$26 \quad X B C$
27
28
$R P S$ RTPS

[^0]re carried out with finitions begins on n (87), is expressed original formulation tions for simulation zomes familiar with ary readjustment in lodied in each of the
nerical coefficients. ta through a variety cordance with wellIn the coefficient maof these coefficients
period for the equafient a attached to R he equation. 1 order in the system ndogenous variables to a variable correlaining that variable. d by either E or $A C$. nost commonly used the system are given variables are unnumhat are in the system
units are either in bilfter the name symbol) sign), except for revhich are measured in n. al rate. All ratio varnemployment, are ex-

NUMERICAL LISTING OF VARIABLES: FRB-MIT-PENN MODEL

1	X	Gross output
2	$X O B E$	GNP, OBE definition
3	$X B$	Gross private domestic business product
4	CON	Consumption
5	YH	Household product
6	EC	Consumer expenditures on durable goods
7	WC	Depreciation of consumer durable goods
8	KC	Stock of consumer durables, end of period
9	YC	Net imputed rent on consumer durables
10	$D-I$	Nonfarm inventory investment (1958 dollars)
11		
12		
13	RH	Rent index for residential structures (taken exogenously)
14		
15	EH\$	Expenditure on residential construction
16		
17	$O P D$	New orders for producers' durables
18	KPS	Net stock of producers' structures, end of period
19	EPS	Expenditures on producers' structures
20	EPD	Expenditures on producers' durables
21	SME	Shipment of machinery and equipment
22	OME	Net new orders for machinery and equipment
23	OUME	Unfilled orders for machinery and equipment, end of period
24	RPD	Cost of capital for producers' durables
25	RTPD	Current dollar rent per unit of new producers' durables
26	$X B C$	Production capacity of producers' durables
27	RPS	Cost of capital for producers' structures
28	RTPS	Current dollar rent per unit of new producers' structures

[^1]

R			Quations and definitions of variables - 547
deduction for pro-	54	YL\$	Labor income, nonfarm business sector
	55	YNIS	National income, OBE definition
ables. end of period deduction for pro-	56	YPG\$	Total profit after depreciation and before income taxes, nonfarm business sector
	57	YPC\$	Net profits before income taxes of corporations
ers' durables to out-	58	TCIS	Corporate income tax liability, state and local government
rs' structures to out-	59	TCIF	Corporate income tax liability, federal government
in producers' dura-	60	YPCT\$	Net corporate profits after taxes
	61	YPCC\$	Cash flow of corporations after taxes
in producers' struc-	62	YDVS	Corporate dividends
	63	QTXF	Natural log of federal excise taxes (TXF, 64)
by state and local	64	TXF	Federal excise taxes
	65	TIBF	Federal indirect business taxes
ds and services by	66	TIBS	State and local government indirect business taxes
state and local gov-	67	Qto	Natural log of OASI contributions ($T O, 68$)
	68	TO	OASI contributions
inventory multiplied	69	QTU	Natural log of unemployment insurance contribution (TU, 70)
ct and product of	70	TU	Unemployment insurance contribution
	71	$Q G B$	Natural log of unemployment insurance benefits ($G B, 72$)
M, 43)	72	GB	Unemployment insurance benefits
enditures	73	$G S P$	State and local government transfer payments to persons
ent expenditure on	74	YP\$	Personal income
siness product	75	QYTFS	Natural log of taxable income for federal personal income taxes $(1-Y T F \$ / Y P \$)(76,74)$
seholds	76	YTFS	Taxable income for federal personal income taxes
s^{\prime} durables	77	TPF	Federal personal income tax liability
s' structures penditures	78	TPS	State and local government personal income tax and nontax payments
n durables	79	YDS	Disposable personal income
1ct and products of	80	YS\$	Gross national product net of federal taxes and transfers

136	PHC	Construction cost index	162	GDSS
137			163	WCCAS
138	VCNS	Net worth of households	164	
139	LMHT	Man-hours private domestic nonfarm business sector, including proprietors	165 166	$\begin{aligned} & \text { YNNPS } \\ & \text { YRTS } \end{aligned}$
140	D-18	Nonfarm inventory investment	167	YIIS
141	PPS	Implicit price deflator for EPS (19)	168	PI
142	LH	Total hours per man in nonfarm private domestic business and household sectors	$\begin{aligned} & 169 \\ & 170 \end{aligned}$	WCOS
143	$L F+L A$	Labor force, including armed forces	171	$U P C$
144			172	UPCON
145	QLMHT	Natural log of man-hours private domestic nonfarm business sector, including proprietors (LMHT, 139)	$\begin{aligned} & 173 \\ & 174 \\ & 175 \end{aligned}$	$U P P D$ UPPS UPS
146	QLH	Natural log of total hours per man in nonfarm private domestic business and household sectors (LH, 142)	$\begin{aligned} & 176 \\ & 177 \\ & 178 \end{aligned}$	UPHC UPRS UPI
147	LEBT	Employment, private domestic nonfarm business sector, including proprietors	$\begin{aligned} & 179 \\ & 180 \end{aligned}$	
$\begin{aligned} & 148 \\ & 149 \end{aligned}$	LE	Total civilian employment	181	QHSIS
150	ULU	Unemployment rate	182	HS1\$
151 152			183	QHS38
152	PL	Employee compensation rate in nonfarm private domestic business	184	HS3\$
153	QYPC\$	Natural log of net profits before income taxes of corporations (YPC\$, 57)	185	$D-D S L$
154	$Q P X{ }^{*}$	Natural log of price deflator for nonfarm business product (P XB*, 189)	186 187	$\begin{aligned} & \mathrm{KHI} \\ & \mathrm{KH} 3 \end{aligned}$
155	TSS	Current surplus of state and local government enterprises	188	PHCA PXB*
156	PXBNF	Implicit deflator for $X B N F$ (40)	E1	EEX
157	MTPS	Passbook savings at member banks	E2	$E G F$
158	PCO	Implicit price deflator for ECO (44)		
159	IVA\$	Inventory valuation adjustment	E3	YRW
160			E4	EGFLS
161	GDSF	Net deficit of federal goverrment	E5	N

	162	GDSS	Net deficit of state and local government
	163	WCCA\$	Capital consumption allowance, total
	164		
nonfarm business	165	YNNP\$	Net national product
	166	YRT\$	Rental income of persons
ent	167	YII\$	Interest income
PS (19)	168	PI	Price deflator for stock of inventories
bnfarm private do-	169	WCO\$	Corporate capital consumption allowances
old sectors	170		
d forces	171	$U P C$	Exogenous
	172	UPCON	Exogenous
ivate domestic non-	173	UPPD	Exogenous
luding proprietors	174	UPPS	Exogenous
	175	$U P S$	Exogenous
ber man in nonfarm	176	UPHC	Exogenous
is and household	177	UPRS	Exogenous
	178	UPI	Exogenous
estic nonfarm busi-	179		
fietors	180		
	181	QHSIS	$\begin{aligned} & \operatorname{Ln}(H S / \$ /((N-N 20) *(N S / N A) * P H C A)) \text {, In } \\ & (182 /(E 5-E 17) *(E 88) *(188)) \end{aligned}$
	182	HSIS	Housing starts, single dwelling units
te in nonfarm private	183	QHS3\$	$\begin{aligned} & \operatorname{Ln}\left(H S 3 \$^{\prime}((N-N 20) *(1-N S / N A) * P H C A)\right) \\ & =\ln (184 /(E 5-E 17) *(1-E 88) *(188)) \end{aligned}$
	184	HS3\$	Housing starts, multifamily dwelling units
before income taxes	185	D-DSL	Flow of funds into savings and loan associa-
or for nonfarm busi-	186	KHI	Stock of single family houses
	187	KH3	Stock of multifamily houses
ad local government	188	PHCA	Construction cost adjusted
	189	PXB*	Price deflator for nonfarm business product
F (40)	E1	EEX	Exports
ber banks	E2	EGF	Federal government expenditures on goods and
ECO (44)			services
ment	E3	YRW	Income originating in the rest of the world
	E4	EGFLS	Compensation of federal government employees
rrment	E5	N	Population

552° - ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

E6			E34	GFI
E7			E35	$G F P$
E8 U Or				
E9	UWPS	Rate of depreciation of producers' structures		
E10	TIME	Time, I in 1947-1	E36	$G F G$
E11	$U D C$	Desired proportion of debt in corporate capital		
E12	$U W P D$	Depreciation rate for producers' durable equipment	E37	TUIB
E13	ZLNG	Dummy variable for long amendment on depreciation basis	E38 E39	GSI
E14	$D-I F$	Farm inventory investment	E40	JS3
E15	WAPD	Proportion of new equipment depreciated using accelerated depreciation method	E41	JS4
E16	WAPS	Proportion of new structures depreciated using accelerated depreciation method	E43	$J M S A$ MGFs
E17	N20/N	Ratio of population under 20 to total population		
E18	GFS	Federal grants-in-aid to state and local governments	E45 E46	JCLS
E19	$E G P D+$	Federal government defense procurement expenditures, led one period	E47	
E20	NDI	Number of man-hours idle (>10 million) due to major strikes	E48	
E21	WPIF	Wholesale price index for rest of world	E50	$J C D S$
E22	$J C A A$	Dummy variable for Canadian auto agreement		
E23	YRW\$	Income originating in rest of the world	E51	
E24	$T C D F$	Federal customs duties	E52	
E25	$J O A$	Dummy variable for OASI coverage change	E53	
E26	$J O B$	Dummy variable for OASI coverage change	E54	$J M T$
E27	$J O C$	Dummy variable for OASI coverage change		
E28	$J O D$	Dummy variable for OASI coverage change	E55	$P G E$
E29	TUIC	Ratio of covered to total labor force		
E30	L26U	Percentage of unemployed who are unemployed twenty-six weeks or less	$\begin{aligned} & \text { E56 } \\ & \text { E57 } \end{aligned}$	PYH LA
E31			E58	N/6
E32	TEGF	Federal estate and gift taxes	E59	JRI
E33	GBFC	Unemployment benefits beyond twenty-six	E60	JR2
			E61	JR3

lucers' structures
In corporate capital ers' durable equip-
amendment on de-

It depreciated using thod
fs depreciated using thod
p to total population e and local govern-
se procurement ex-
(>10 million) due
rest of world
dian auto agreement
of the world
coverage change
coverage change coverage change coverage change
bor force
who are unemployed
es
beyond twenty-six
ernment 1958-1961

E34 GFI
E35 GFP

E36 GFG
E37 TUIB

E38 GSI
E39 JS2
E40 JS3
E41 JS4
E42 JCD
E43 JMSA
E44 MGF\$
E45
E46 JCLS

E47
E48
E49
E50
E51
E52
E53
E54 JMT
E55 PGE
E56 PYH
E57 LA
E58 N16
E59 JRI
E60 JR2
E61 JR3

Federal government interest payments
Federal government transfer payment to persons other than unemployment insurance benefits
Federal government subsidies less surpluses of government enterprises
Maximum weekly benefits payable under unemployment insurance system
State and local government interest payments Seasonal dummy variable for the second quarter Seasonal dummy variable for the third quarter Seasonal dummy variable for the fourth quarter Dummy variable for the development of CD's Seasonal adjustment factor for MD\$
U.S. government deposits at all commercial banks

Seasonal adjustment factor for commercial loans

JCDS Seasonal adjustment factor for nonpassbook time deposits at all member banks

Blowup factor to convert time deposits at all member banks to those at all commercial banks Implicit deflator for compensation of government employees
Implicit deflator for $Y H$
Armed forces
Total noninstitutional population over 16
Productivity time trend for man-hours equation
Productivity time trend for man-hours equation Productivity time trend for man-hours equation

E62			$\begin{array}{ll} \mathrm{E} 93 & P F M \\ \mathrm{E} 94 \end{array}$		
E63	TT60	Decreasing time trend, 59 in 1947-I, 1 in			
		1961-II, 0 thereafter	ACl	1 UTC	
E64	LEO	Employment not otherwise classified	AC2	TCPD	
E65	XBF\$	Farm business output			
E66	$X B F$	Farm business output	AC3	3 UTXF	
E67	$J T P S$	Seasonal adjustment factor for passbook savings deposits at member banks	AC4	4 UTO	
			AC5	UTU	
E68	LPRI	Number of males employed ages 25-65,	AC6	UTPF	
		millions	AC7	ZRD	
E69	JIC	Dummy variable for 1964 automobile strike			
E70	JSTK	Dummy variable for 1962 stock market crash			
E71	YRC\$	Interest paid by consumers	AC8	ZRT	
E72	YFT\$	Personal transfer payment to foreigners			
E73	YCRW\$	Corporate profits originating in the rest of the world	AC9	ZDRA	
			AC10	ZMS	
E74					
E75	PEGF	Price deflator for federal purchases of goods and services	ACl1	$Z D R$	
E76	TOSI	Contribution to social insurance other than	AC12	$J L$	
		OASI and unemployment insurance	AC13	TEX	
E77	YSD\$	Statistical discrepancy			
E78	$G F R$	Government transfers to rest of world	AC14	ZCT	
E79	YBT\$	Business transfer payments	AC15	RCDC	
E80	YPFS	Proprietors' income in agriculture			
E81			AC16		
E82	YLAG\$	Compensation of employees, agriculture	AC17		
E83	JT1	Strike dummy, man-hours equation	AC18	SLPD	
E84	JT2	Strike dummy, man-hours equation			
E85	JT3	Strike dummy, man-hours equation	AC19 SLPS		
	JT4	Strike dummy, man-hours equation			
$\begin{aligned} & \text { E87 } \\ & \text { E88 } \end{aligned}$	$\begin{aligned} & U T P \\ & N S / N A \end{aligned}$	Property tax rate used in housing equation	AC20		
		Proportion of persons expected to live in singlefamily houses			
E89	RFVA	Average FHA-VA ceilings on mortgage rate		following vari	
E90	EHF\$	Expenditure on residential houses, farm	yet been	assigned a po	
E91					
	PWM	Raw materials price, imports		JIA	

in 1947-1, 1 in
classified
for passbook sav-
hks
byed ages 25-65,

E93	PFM	Raw materials price, farm
E94		
ACl	$U T C$	Marginal rate of corporate income tax
AC2	$T C P D$	Effective rate of tax credit on investment in producers' durables
AC3	UTXF	Index of federal excise-tax rate
AC4	UTO	OASI contribution rate, total
AC5	UTU	Unemployment insurance contribution rate
AC6	UTPF	Effective rate of federal personal income tax
AC7	ZRD	Implicit reserve requirement against net demand deposits at all member banks on call date
AC8	ZRT	Implicit reserve requirement against time deposits at member banks
AC9	ZDRA	Federal Reserve discount rate
AC10	ZMS	Unborrowed reserves at member banks plus currency outside of banks
AC11	$Z D R$	Federal Reserve discount rate for the first fifteen days of the quarter
AC12	$J L$	Legal reserve change dummy variable
AC13	TEX	Per capita exemption for federal personal income tax
AC14	ZCT	Ceiling rate on passbook saving deposits
AC15	RCDC	Ceiling rate on single maturity time deposits of one hundred thousand dollars or more
AC16		
AC17		
AC18	$S L P D$	Service life of producers' durable equipment for tax purposes
AC19	$S L P S$	Service life of producers' structures for tax purposes
AC20		

The following variables appear in the coding sheets but have not yet been assigned a position in the data matrix:

$C(I)$	Denotes a residual used to satisfy an identity
$J I A$	Dummy variable for 1959 steel strike

	J / B	Dummy variable for dock strike	20	EPD
	$J I D$	Time trend variable	50	EPS\$
			19	$E P S$
ALP	ABETICAL	LISTING OF VARIABLES: FRB-MIT-PENN	E33	$G B F C$
MOD			72	$G B$
	$C(I)$	Denotes a residual used to satisfy an identity	161	GDSF
4	CON	Consumption	162	GDSS
93	DCLS	Commercial and industrial loans at all commercial banks	E36	$G F G$
185	$D-D S L$	Flow of funds into savings and loan associations and MSB	$\begin{aligned} & \text { E34 } \\ & \text { E35 } \end{aligned}$	$\begin{aligned} & G F I \\ & G F P \end{aligned}$
E14	$D-I F$	Farm inventory investment		
140	$D-1 \$$	Nonfarm inventory investment		
10	D-I	Nonfarm inventory investment (1958 dollars)	E78	GFR
51	ECO\$	Personal consumption expenditures	E18	$G F S$
44	ECO	Personal consumption expenditures		
52	EC\$	Consumer expenditures on durables	E38	GSI
6	$E C$	Consumer expenditures on durables	73	GSP
EI	EEX	Exports		
E4	EGFL\$	Compensation of federal government employees	182	HS1\$
E2	$E G F$	Federal government expenditures on goods and services	184 159	$\begin{aligned} & H S 3 \$ \\ & I V A \$ \end{aligned}$
E19	$E G P D+$	Federal government defense procurement expenditures, led one period	39	I
36	EGSC\$	Construction expenditures by state and local government	$\begin{aligned} & \text { E22 } \\ & \text { E50 } \end{aligned}$	$\begin{aligned} & J C A A \\ & J C D S \end{aligned}$
38	EGSLS	Employee compensation by state and local government	E42	$J C D$
82	EGSN\$	Net state and local government expenditures	E46	$J C L S$
37	EGSO\$	Other expenditures on goods and services by state and local government	E69	JIC
45	EGS\$	State and local government expenditure on goods and services	$\begin{aligned} & \mathrm{AC} 12 \\ & \mathrm{E} 43 \end{aligned}$	JL JMSA
E90	EHF\$	Expenditure on residential houses. farm	99	$J M S B$
15	EH\$	Expenditure on residential construction		
43	EIM	Imports		
49	EPD\$	Expenditures on producers' durables	E54	$J M T$

$\left.\begin{array}{llll} & & & \text { EQUATIONS AND DEFINITIONS of vaRIABLES }\end{array}\right] 557$

		member banks to those at all commercial banks	E68	LPRI
E25	$J O A$	Dummy variable for OASI coverage change	124	LU
E26	$J O B$	Dummy variable for OASI coverage change	E30	L26U
E27	$J O C$	Dummy variable for OASI coverage change		
E28	$J O D$	Dummy variable for OASI coverage change	112	MCDAS
E59	JRI	Productivity time trend for man-hours equation		
E60	$J R 2$	Productivity time trend for man-hours equation	113	MCD $\$$
E61	JR3	Productivity time trend for man-hours equation		
E70	JSTK	Dummy variable for 1962 stock market crash	84	MC\$
E39	JS 2	Seasonal dummy variable for the second quarter	86	MD\$
E40	JS3	Seasonal dummy variable for the third quarter	89	MDS\$
E41	JS4	Seasonal dummy variable for the fourth quarter		
E67	JTPS	Seasonal adjustment factor for passbook savings deposits at member banks	$\begin{aligned} & 115 \\ & \text { E44 } \end{aligned}$	MFRS MGF\$
E83	JTI	Strike dummy, man-hours equation		
E84	JT2	Strike dummy, man-hours equation	121	MIS \$
E85	JT3	Strike dummy, man-hours equation	119	MMS\$
E86	JT4	Strike dummy, man-hours equation	90	MRU\$
8	KC	Stock of consumer durables, end of period	117	MSL§
186	KHI	Stock of single-family houses	114	MTMS
187	KH3	Stock of multifamily houses	111	MTPAS
30	$K P D$	Net stock of producers' durables, end of period		
18	KPS	Net stock of producers' structures, end of period	157	MTP\$
102	$K S L$	Stock of capital owned by state and local government	$\begin{aligned} & 122 \\ & \mathrm{E} 20 \end{aligned}$	$\begin{aligned} & M T \$ \\ & N D I \end{aligned}$
E57	$L A$	Armed forces		
147	LEBT	Employment, private domestic nonfarm business sector, including proprietors	E88	$N S / N A$
125	$L E+L A$	Total employment including armed forces,	E5	N
E64	LEO	Employment not otherwise classified	E58	N16
148	LE	Total civilian employment	E17	N20/N
143	$L F+L A$	Labor force, including armed forces	22	OME
142	LH	Total hours per man in nonfarm private domestic business and household sectors	$\begin{aligned} & 17 \\ & 23 \end{aligned}$	$\begin{aligned} & O P D \\ & O U M E \end{aligned}$
139	LMHT	Man-hours private domestic nonfarm business sector, including proprietors	131	PC

br EqUATIONS AND DEFINITIONS OF Variables - 559			equations and definitions of variables - 559
at all commercial	E68	LPRI	Number of males employed ages 25-65, millions
	124	LU	Unemployment
Sl coverage change	E30	L26U	Percentage of unemployed who are unemployed
SI coverage change	11	MCDAS	
Sl coverage change			member banks, seasonally adjusted
man-hours equation man-hours equation	113	MCD\$	Nonpassbook savings deposits of public at member banks
stock market crash	84	MC\$	Currency outside banks
le for the second	86	MD\$	Demand deposits adjusted at all commercial banks
or the fourth quarter banks			Adjusted net demand deposit at all member banks
r for passbook sav-	115	MFR\$	Free reserves at all member banks
nks	E44	MGFS	U.S. government deposits at all commercial banks
equation	121	MIS\$	Life insurance reserves
equation	119	MMS\$	Mutual savings bank deposits
equation	90	MRU\$	Unborrowed reserves at all member banks
es, end of period	117	MSLS	Savings and loan association shares
ses	114	MTM	Total time deposits at member banks
rables, end of period	111	MTPA\$	Passbook savings at member banks, seasonally adjusted
uctures, end of period	157	MTP\$	Passbook savings at member banks
tate and local govern-	122	MTS	Time deposits at all commercial banks
	E20	NDI	Number of man-hours idle (>10 million) due to major strikes
hestic nonfarm busiprietors	E88	$N S / N A$	Proportion of persons expected to live in singlefamily houses
ng armed forces	E5	N	Population
e classified	E58	N16	Total noninstitutional population over 16
	E17	N201N	Ratio of population under 20 to total population
ned forces	22	OME	Net new orders for machinery and equipment
nfarm private domes-	17	OPD	New orders for producers' durables
d sectors	23	OUME	Unfilled orders for machinery and equipment, end of period
prs	131	PC	Implicit price deflator for $E C$ (16)

560 - ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

158	PCO	Implicit price deflator for ECO (44)	83	QMC
132	PCON	Implicit price deflator for CON (4)		
E75	PEGF	Price deflator for federal purchases of goods and services	120	QMIS\$
E93	PFM	Raw materials price, farm	118	QMMS\$
E55	$P G E$	Implicit deflator for compensation of government employees	110	QMPTAS
188	PHCA	Construction cost adjusted	116	QMSL\$
136	PHC	Construction cost index		
168	PI	Price deflator for stock of inventories	154	QPXB ${ }^{\text {* }}$
152	$P L$	Employee compensation rate in nonfarm private domestic business	67	QTO
130	POBE	Implicit deflator of $X O B E$ (2)	69	$Q T U$
133	$P P D$	Implicit price deflator for EPD (20)		
141	$P P S$	Implicit price deflator for EPS (19)	63	QTXF
134	PRS	Implicit price deflator for $E H \$$ (15)	153	QYPC\$
135	$P S$	Implicit price deflator for EGS (45)		
E92	$P W M$	Raw materials price, imports	75	QYTF\$
156	PXBNF	Implicit deflator for $X B N F$ (40)	91	$R C B$
189	$P X B *$	Price deflator for nonfarm business product	AC15	$R C D C$
129	$P X B$	Implicit price deflator for $X B$ (3)		
E56	$P Y H$	Implicit deflator for $Y H$ (5)	109	$R C D$
42	QEIM	Natural log of imports (EIM, 43)	127	RCHI
71	$Q G B$	Natural \log of unemployment insurance benefits ($G B, 72$)	128 92	$\begin{aligned} & \text { RCH3 } \\ & R C L \end{aligned}$
181	QHSIS	Ln $(H S 1 \$ /((N-N 20) *(N S / N A) * P H C A))$, \ln (182/(E5-E17)*(E88)*(188))	88 126	$\begin{aligned} & R C P \\ & R D P \end{aligned}$
183	QHS3\$	$\begin{aligned} & \operatorname{Ln}(H S 3 \$ /((N-N 20) *(1-N S / N A) * P H C A)) \\ & =\ln (184 /(E 5-E 17) *(1-E 88) *(188)) \end{aligned}$	E89 13	RFVA $R H$
98	$Q J M S B$	Natural \log of blowup factor to convert net adjusted demand deposits at member banks to those at all commercial banks (JMSB, 99)	108 104	$R M S$ $R M$
146	QLH	Natural \log of total hours per man in nonfarm private domestic business and household sectors (LH, 142)	$\begin{aligned} & 24 \\ & 27 \\ & 103 \end{aligned}$	RPD RPS RSLG
145	QLMHT	Natural \log of man-hours private domestic nonfarm business sector, including proprietors (LMHT, 139)	107 87	$R S L$ $R T B$

CO (44)
ON (4)
burchases of goods
ensation of goverin-
nventories e in nonfarm private
(2)

PD (20)
PPS (19)
H\$ (15)
:GS (45)
ts
(40)
business product
KB (3)
)
M, 43)
ent insurance bene-
$S(N A) * P H C A)$), \ln 88))
$-N S(N A) * P H C A))$ E88)*(188))
or to convert net adt member banks to hks (JMSB, 99)
per man in nonfarm and household sec-
rivate domestic nonacluding proprietors

83 QMC\$ Natural log of currency outside banks (MC\$, 84)

120 QMIS\$ Natural log of life insurance reserves (MIS\$, 121)

118 QMMS $\$ \quad$ Natural \log of mutual savings bank deposits (MMS\$, 119)
110 QMPTA\$ Ln (MPTA\$)
116 QMSL\$ Natural log of savings and loan association shares (MSL\$, 117)
$154 Q P X^{*} \quad$ Natural \log of price deflator for nonfarm business product ($P X B *$, 189)
$67 \quad$ QTO \quad Natural log of OASI contributions (TO, 68)
69 QTU Natural log of unemployment insurance contribution (TU, 70)
63 QTXF Natural \log of federal excise taxes (TXF, 64)
153 QYPC\$ Natural log of net profits before income taxes of corporations (YPC\$, 57)
75 QYTF $\quad \operatorname{Ln}(1-Y T F \$ / Y P \$)(76,74)$
$91 \quad R C B \quad$ Corporate bond rate
AC15 RCDC Ceiling rate on single maturity time deposits of one hundred thousand dollars or more
$109 \quad R C D \quad$ Rate on certificate of deposits
$127 \quad$ RCHI Cost of capital for single family dwellings
128 RCH3 Cost of capital for multifamily dwellings
$92 \quad$ Commercial loan rate
$88 \quad R C P \quad$ Commercial paper rate
126 RDP Dividend-price ratio
E89 RFVA Average FHA-VA ceilings on mortgage rate
$13 \quad$ RH Rent index for residential structures
108 EMS Effective rate on deposits at mutual savings banks
Mortgage rate
Cost of capital for producers' durables
Cost of capital for producers' structures
Municipal bond rate
Effective rate on savings and loan association
shares
Treasury bill rate

25	$R T P D$	Current dollar rent per unit of new producers'	E29	TUIC
		durables	70	TU
28	RTPS	Current dollar rent per unit of new producers'	64	TXF
		structures	EII	$U D C$
106	RTP	Effective rate on passbook savings deposits at	150	$U L U$
		commercial banks	172	UPCON
AC18	$S L P D$	Service life of producers' durable equipment for	171	$U P C$
		tax purposes	176	UPHC
AC19	SLPS	Service life of producers' structures for tax pur-	178	UPI
		poses	173	$U P P D$
21	SME	Shipment of machinery and equipment	174	UPPS
E24	TCDF	Federal customs duties	177	UPRS
59	TCIF	Corporate income tax liability, federal govern-	175	$U P S$
		ment	ACl	UTC
58	TCIS	Corporate income tax liability, state and local	AC4	UTO
		government	AC6	UTPF
AC2	$T C P D$	Effective rate of tax credit on investment in pro-	E87	UTP
		ducers' durables	AC5	UTU
E32	TEGF	Federal estate and gift taxes	AC3	UTXF
AC13	TEX	Per capita exemption for federal personal income tax	E12	$U W P D$
65	TIBF	Federal indirect business taxes	E9	UWPS
66	TIBS	State and local indirect business taxes	138	VCN\$
E10	TIME	Time, 1 in 1947-1	100	VG\$
E76	TOSI	Contribution to social insurance other than OASI and unemployment insurance	32	$V P D$
68	TO	OASI contributions	33	$V P S$
77	TPF	Federal personal income tax liability		
78	TPS	State and local government personal income tax and nontax payments	29	$V W P D$
81	TSC	State and local government contributions to social insurance	31	$V W P S$
155	TSS	Current surplus of state and local government enterprises	E15	$W A P D$
E63	TT60	Decreasing time trend, 59 in 1947-I, 1 in 1961II, 0 thereafter	E16	WAPS
E37	$T U / B$	Maximum weekly benefits payable under un-	163	WCCAS
		employment insurance system	169	WCO\$

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{[}

\hline \& *

\hline \multicolumn{2}{|l|}{OR}

\hline \multicolumn{2}{|l|}{it of new producers`}

\hline \& of new producers*

\hline \multicolumn{2}{|l|}{k savings deposits at}

\hline \multicolumn{2}{|l|}{lurable equipment for}

\hline \& ructures for tax pur-

\hline \multicolumn{2}{|l|}{d equipment}

\hline \multicolumn{2}{|l|}{pility, federal govern-}

\hline \& ility, state and local

\hline \& on investment in pro-

\hline \multicolumn{2}{|r|}{xes}

\hline \multicolumn{2}{|r|}{r federal personal in-}

\hline \& | taxes |
| :--- |
| usiness taxes |

\hline \multicolumn{2}{|l|}{insurance other than t insurance}

\hline \multicolumn{2}{|l|}{tax liability nt personal income tax}

\hline \multicolumn{2}{|r|}{nt contributions to so-}

\hline \multicolumn{2}{|r|}{and local government}

\hline \multicolumn{2}{|r|}{9 in 1947-1, 1 in 1961-}

\hline \& fits payable under unystem

\hline
\end{tabular}

E29	TUIC	Ratio of covered to total labor force
70	$T U$	Unemployment insurance contribution
64	TXF	Federal excise taxes
E11	$U D C$	Desired proportion of debt in corporate capital
150	ULU	Unemployment rate
172	UPCON	Exogenous
171	$U P C$	Exogenous
176	$U P H C$	Exogenous
178	UPI	Exogenous
173	$U P P D$	Exogenous
174	$U P P S$	Exogenous
177	UPRS	Exogenous
175	UPS	Exogenous
ACl	UTC	Marginal rate of corporate income tax
AC4	UTO	OASI contribution rate, total
AC6	UTPF	Effective rate of federal personal income tax
E87	$U T P$	Property tax rate used in housing equation
AC5	UTU	Unemployment insurance contribution rate
AC3	UTXF	Index of federal excise-tax rate
E12	$U W P D$	Depreciation rate for producers' durable equipment
E9	UWPS	The rate of depreciation of producers' structures
138	VCN\$	Net worth of households, trillions of dollars
100	$V G \$$	Residual in net worth identity, billions of dollars
32	$V P D$	Equilibrium ratio of producers' durables to output, multiplied by a constant
33	$V P S$	Equilibrium ratio of producers' structures to output, multiplied by a constant
29	$V W P D$	Present value of depreciation deduction for producers' durables
31	VWPS	Present value of depreciation deduction for producers' structures
E15	WAPD	Proportion of new equipment depreciated using accelerated depreciation method
E16	WAPS	Proportion of new structures depreciated using accelerated depreciation method
163	WCCA\$	Capital consumption allowance, total
169	WCO\$	Corporate capital consumption allowances

64 - ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

7	$W C$	Depreciation of consumer durable goods	E80	YPF\$
34	WPD\$	Bookkeeping depreciation in producers' durables	56	YPG\$
E21	WPIF	Wholesale price index for rest of world	74	YP\$
35	WPS\$	Bookkeeping depreciation in producers' struc-	E71	YRC\$
		tures	166	YRT\$
26	$X B C$	Production capacity of producers' durables	E23	YRW\$
E65	$X B F \$$	Farm business output	E3	$Y R W$
E66	$X B F$	Farm business output	E77	YSD\$
53	$X B N F \$$	Nonfarm business product and households' out-	101	YSG\$
		put	80	YS\$
40	$X B N F$	Nonfarm business product and product of households	76	YTF\$
46	$X B \$$	Gross private domestic business product		
3	$X B$	Gross private domestic business product	ACl4	ZCT
48	$X O B E \$$	GNP, OBE definition	AC9	ZDRA
2	$X O B E$	GNP, OBE definition	AC11	$Z D R$
1	X	Gross output		
E79	YBT\$	Business transfer payments	105	ZINT
41	YCR\$	Corporate retained profits		
E73	YCRW\$	Corporate profits originating in the rest of the world	E13	ZLNG
9	$Y C$	Net imputed rent on consumer durables	AC10	$Z M S$
79	YD\$	Disposable personal income		
62	YDV\$	Corporate dividends	AC7	ZRD
123	$Y D$	Disposable personal income		
E72	YFT\$	Personal transfer payment to foreigners	AC8	ZRT
47	YH\$	Income originating in households		
5	$Y H$	Household product		
167	YIIS	Interest income		followi
E82	YLAG\$	Compensation of employees, agriculture	yet bee	assigned
54	YL\$	Labor income, nonfarm business sector		
55	YNI\$	National income, OBE definition		C (I)
165	YNNP\$	Net national product		J / A
61	YPCC\$	Cash flow of corporations after taxes		JIB
57	YPC\$	Net profits before income taxes of corporations		J / D
60	YPCT\$	Net corporate profits after taxes		

durable goods
a in producers' dura-
rest of world
h in producers' struc-
oducers' durables
t and households' out-
luct and product of
business product
pusiness product
nts
ts
ating in the rest of the
nsumer durables
ome
ome
ent to foreigners
puseholds
yees, agriculture business sector
definition
ons after taxes
ne taxes of corporations fter taxes

E 80	$Y P F \$$
56	$Y P G \$$
74	$Y P \$$
E 71	$Y R C \$$
166	$Y R T \$$
E 23	$Y R W \$$
E 3	$Y R W$
E 77	$Y S D \$$
101	$Y S G \$$
80	$Y S \$$
76	$Y T F \$$
$\mathrm{AC14}$	$Z C T$
$\mathrm{AC9}$	$Z D R A$
AC 11	$Z D R$
105	$Z I N T$
E 13	$Z L N G$
AC 10	$Z M S$
$\mathrm{AC7}$	$Z R D$
AC 8	$Z R T$

The following variables appear in the coding sheets but have not yet been assigned a position in the data matrix:

$C(I)$	Denotes a residual used to satisfy an identity
JIA	Dummy variable for 1959 steel strike
JIB	Dummy variable for dock strike
JID	Time trend variable

$+a_{144}\left(1.0-U D C * A C_{1}\right)$

(30) $K P D \quad=.25 E P D$
$+K P D_{-I^{*}(1.0-U W P D / 4.0)}$
(01
$=.25 E P D$
$=((.01 * P X B)$
$=\left(\left(.01 * P X B /(0.1 * R T P D) * * a_{128}\right) * E X P\left(a_{129^{*}}(T I M E-46.5)\right)\right.$

$$
=\left(.01 * P P D * U W P D * K P D_{-1}\right) / 4.0
$$

adMA (6z)
adly (ऽz)
ady (七z)

(30)
(32)
$V P D D$

(34) WPDS 2. Plants

	Normalization Solve		Constant
(19)	EPS	$=$	$\begin{aligned} = & .01\left(a_{77} V P S_{-1^{*}} X B_{-1}+\cdots+a_{87} V P S_{-11^{*}} X B_{-11}\right) \\ & +a_{93} * K P S_{-1}+a_{92} R_{19} \end{aligned}$
(18)	KPS	$=.25 E P S$	$+K P S_{-1 *} *(1.0-.25 * U W P S)$
(27)	RPS	$=\left(1.0-U D C * A C_{1}\right) *\left(a_{126} R C B+a_{127} * R D P\right)$	$+\left(1.0-U D C^{*} A C_{1}\right) * a_{441}$
(28)	RTPS	$\begin{aligned} = & 0.1 * P P S(.0) * R P S+U W P S) *\left(1.0-A C_{1} * V W P S\right. \\ & \left.-Z L N G * A C_{17}\right) *\left(1.0-A C_{17}^{*}(1.0-Z L N G) /(1.0\right. \\ & \left.-A C_{1}\right) \end{aligned}$	$A C_{17}=T C P S$

(continued)

II. DISTRIBUTION OF INCOME
A. DEFINITION OF OUTPUTS

(54) $Y L \$=(.01 * P L) * L M H T$
D. NONLABOR INCOME

D. NONLABOR INCOME

[^2]II. DISTRIBUTION OF INCOME (concluded)

	Normalization	Solve	Constant
(159)	ivas	$=a_{507} * P I+a_{588} * P{ }^{*} * I_{-1}$	$-a_{588} P_{-1}{ }^{*} I_{-1}-a_{507} \mathrm{Pl}_{-1}+a_{509}$
(140)	D-18	$=.01 * I * P I+I V A \$$	$-I_{-1}{ }^{*} .01 * P I_{-1}$
h. SAving and net-worth identity			
Normalization		Solve	Constant
(138)	vCNs	$=.05 *(Y D V \$ / R D P)$	
1. miscellaneous items			
	Normalization	Solve	Constant
(80)	YS\$	$=$ XOBES - TCIF -TIBF-TO-TPF-TU +GB	+GFI + GFP + GFG - TEGF - TOSI
(166)	YRTS	$=.0414 * R H * K H I_{-1} * C(166)$	
(167)	YIIS	= EXOGENOUS	
(163)	wCcas	$\begin{aligned} = & (\text { WPDS }+W P S S) * 4.0+.04 * P R S *\left(t_{546} K H I_{-1}\right. \\ & \left.+a_{5 s 8} K H 3_{-1}\right) \end{aligned}$	+C(163)

III. TAXES AND TRANSFERS
A. Corporate income taxes

$$
\begin{array}{ll}
\text { (68) } & T O \\
\text { (69) } & \ln T U \\
\text { (70) } & T U \\
(81) & T S C
\end{array}
$$

$$
\begin{aligned}
& =E X P(\ln T O) \\
& =a_{233} \ln Y P \$ \\
& =E X P(\ln T U) \\
& =a_{25 T^{*}} E G S L \$
\end{aligned}
$$

$$
+a_{417}+a_{256} R_{81}
$$

$A C_{5}=U T U$
$+a_{234} \ln (T U I C)+a_{235}+a_{236} \ln \left(A C_{5}\right)$
$+a_{234}$
$+a_{417}+a_{256} R_{81}$
IV. LABOR MARKET
A. DEMAND FOR MAN-HOURS AND HOURS/MAN AND EMPLOYMENT

	Normalization	Solve	Constant
(139)	LMHT	$=E X P(.01 * \ln L M H T)$	
(145)	$\ln (L M H T)$	$\begin{aligned} = & \ln (X B N F)+a_{458} \ln (X B / X B C)+a_{459} \ln (U L U) \\ & +a_{460} \ln (X B N F) \end{aligned}$	$\begin{aligned} &-a_{460} \ln \left(X B N F_{-1}\right)+a_{461} J R I+a_{462} J R 2+a_{463} J R 3 \\ &+a_{468} J T I+a_{469} J T 2+a_{470} J T 3+a_{471} J T 4+a_{486} \\ &+a_{465} R_{\text {+45 }} \end{aligned}$
(142)	LH	$=E X P(.01 * \ln (L H))$	
(146)	$\ln (L H)$	$=a_{466} \ln (L M H T)$	$\begin{aligned} & -a_{466} \ln (L M H T)_{-1}+a_{467} \ln \left(L H_{-1}\right)+a_{473} T T 60 \\ & \quad+a_{474}+a_{475} R_{146} \end{aligned}$
(147)	$\angle E B T$	$=L M H T / L H$	
(148)	$L E$	$=\angle E B T$	$+\angle E O$
(125)	($L E+L A$)	$=L E$	+ LA
B. SUPPLY OF LABOR AND UNEMPLOYMENT			
	Normalization	Solve	Constant
(143)	$L F+L A$	$=a_{447^{*}}(L E+L A) *\left(1.0-\frac{L P R I}{N / 6}\right)$	$\begin{aligned} & N I 6 *\left(a_{448} * \frac{(L E+L A)_{-1}}{N / 6} *\left(1.0-\frac{L P R I}{N / 6}\right)_{-1}\right. \\ & +\cdots+a_{455} * \frac{(L E+L A)_{-8}}{N / 6_{-8}} *\left(1.0-\frac{L P R I}{N / 6}\right)_{-8}+a_{456} \\ & +a_{457} * \ln (T I M E+88.0)+a_{487} *\left(1.0-\frac{L P R I}{N / 6}\right) \\ & \left.+a_{445} R_{143}\right) \end{aligned}$
(124)	$L U$	$=(L F+L A)-(L E+L A)$	
(150)	ULU	$=(L U /(L F+L A)) * 100.0$	

A. THE WAGE RATE

v. Prices

	Normalization	Solve	Constant
(152)	$P L$	$\begin{aligned} = & \left(a_{633} /\left(U L U+U L U_{-1}\right)+a_{636} * Y P C C \$ /\left(Y P C C \$_{-1}\right.\right. \\ & \left.\left.+Y P C C \$_{-2}\right)\right) * P L_{-2} \end{aligned}$	$\begin{aligned} & \left(1.0+a_{637} *\left(P \text { PON }_{-2}-\text { PCON }_{-4}\right) / \text { PCON }_{-4}+a_{638}\right. \\ & \left.\quad+a_{639} R_{132}\right) * \text { PL }_{-2}+a_{640}\left(U T O-U T O_{-2}\right) * P L_{-2} \end{aligned}$
B. THE General price level			
Normalization		Solve	Constant
(154) QPXB		$\begin{aligned} =\ln & (P L)-a_{621} \ln (P L) \\ & +a_{622}(O U M E / S M E) * E X P(.002698(T I M E-80.0)) \\ & +a_{624}(\ln X B N F-\ln L M H T) \end{aligned}$	$\begin{aligned} + & a_{625}+a_{621} Q P X B_{-1}+a_{627} \Delta \ln (31.91 * P W M \\ & +68.09 * P F M) \\ & +a_{628}((O U M E / S M E) * E X P(.002698(\text { TIME }-80))]_{-1} \\ & +a_{629} J S I+a_{630} J S 2+a_{631} J S 3+a_{632} \text { TIME } \end{aligned}$
(189) P PXB* ${ }^{*}=E X P(Q P X B) /(1.0-(T / B F / X B \$))$			
C. ALL OTHER PRICES ARE DEFINED IN TERMS OF PROPORTIONALITY TO THE GENERAL PRICE AND THESE PROPORTIONALITIES ARE TAKEN AS EXOGENOUS IN THE CURRENT VERSION OF THE MODEL, AS FOLLOWS:			

[^3]\[

\]

$=U P P D * P X B N F$
$=$ EXOGENOUS
$=U P R S * P X B N F$
$=$ EXOGENOUS
$=$ UPS $* P X B N F$
$=$ EXOGENOUS
(133) $\quad P P D$
(173)
UPPD
(134)
(177)
(13PS
(135)
(175) $\quad U P S$

$-a_{277^{*}} A C_{7}{ }^{*}$ DCLS - $_{-1 * J C L S_{-1}}$
$+a_{278} R_{115}\left(\sum_{i=1}^{4} \cdot 25 M D S \$_{-1}\right)$
4. Relation Between the Treasury Bill Rate and Commercial Paper Rate

[^4]VI. FINANCIAL SECTOR (continued)

[^5]

1. Life insurance reserves
Vi. Financial sector (concluded)
F. TIME DEPOSITS AT COMMERCIAL BANKS (continued)

$$
\begin{array}{ll}
\hline(108) & R M S \\
(118) & \ln M M S \$
\end{array}
$$

(119) MMS\$

$$
\begin{aligned}
& =a_{337} R S L \\
& =a_{382} \ln R S L+a_{383} \ln R M S+a_{384} \ln R C B+\left(a_{385}\right.
\end{aligned}
$$

$$
\left.+a_{3 \times 6}+a_{347}\right) \ln (V C N \$ * 1000)+\left(a_{388}\right.
$$

$$
\left.+a_{389}\right) \ln (.01 * P C O N)
$$

$$
=E X P(.01 * \ln M M S \$)
$$

$$
+a_{393}
$$

$$
\begin{aligned}
& +a_{358} R M S_{-1}+a_{359} \\
& +a_{390} \ln M M S \$_{-1}+a_{391} \ln N+a_{3: 312} \ln (.01 * P C O N) \\
& +a_{393}
\end{aligned}
$$

I. LIFE INSURANCE RESERVES

	Normalization	Solve	Constant
(120)	In MIS \$	$\begin{aligned} = & a_{394} \ln R C P+\left(1.0-a_{345}\right) \ln (V C N \$ * 1000) \\ & +a_{396} \ln (.01 * P C O N) \end{aligned}$	$+a_{397} \ln M I S \$_{-1}+u_{398} \ln \left(.01 * P C O N_{-1}\right)+a_{399}$
(121)	MIS\$	$=E X P(.01 * \ln M / S \$)$	
J. DIVIDEND PRICE RATIO			
Normalization		Solve	Constant
(126)	RDP	$=a_{425} * R C B$	
K. SAVINGS Flows for housing starts			
Normalization		Solve	Constant
(185)	D-DSL	$=\frac{11.0 *(M S L \$+M M S \$)}{1.12\left(M S L \$_{-1}+M M S \$_{-1}-M S L \$_{-12}-M M S \$_{-12}\right)}$	$\frac{-11.0 *\left(M S L \$_{-1}+M M S \$_{-1}\right)}{1.12\left(M S L \$_{-1}+M M S \$_{-1}-M S L \$_{-12}-M M S \$_{-12}\right)}$

588 - ECONOMETRIC MODELS OF CYCLICAL behavior

NUMERICAL VALUES FOR COEFFICIENTS
(TABLE I)
I. A.

(4)	$a_{1}=$. 0794	$a_{8}=$. 0448
	$a_{476}=$	37.9982	$a_{9}=$. 0372
	$a_{404}=$. 0954	$a_{10}=$. 0289
	$a_{2}=$. 0764	$a_{11}=$. 0199
	$a_{3}=$. 0728	$a_{12}=$. 0103
	$a_{4}=$. 0686	$a_{477}=$	17.1962
	$a_{5}=$. 0636	$a_{478}=$	2.1265
	$a_{6}=$. 0580	$a_{479}=$. 000
	$a_{7}=$. 0517	$a_{480}=$. 6055
(6)	$a_{491}=$. 3588	$a_{498}=$	-. 0011
	$a_{495}=$	-. 0008	$a_{499}=$	-. 0009
	$a_{493}=$. 2119	$a_{500}=$	-. 0005
	$a_{494}=$	-. 0030	$a_{492}=$	-. 3312
	$a_{496}=$	-. 0010	$a_{17}=$	-. 2612
	$a_{497}=$	-. 0011	$a_{18}=$. 6342
(5)	$a_{14}=$. 0791	$a_{16}=$	-6.4838
	$a_{15}=$	-. 0168	$a_{405}=$. 4435

B. 1 .
(17)

$a_{43}=11.3460$	$a_{61}=-10.1810$
$a_{44}=10.4400$	$a_{62}=-8.9030$
$a_{45}=9.4480$	$a_{63}=-7.7250$
$a_{46}=$	8.3890
$a_{47}=$	$a_{64}=-6.6330$
$a_{48}=$	6.1580
$a_{49}=$	$a_{65}=-5.6080$
$a_{50}=$	$a_{66}=-4.6350$
$a_{51}=$	2.9080
$a_{52}=$	$a_{67}=-3.7000$
$a_{53}=$	$a_{68}=-2.7830$
$a_{60}=-11.5750$	$a_{69}=-1.8720$
	$a_{70}=-.9500$

EQUATIONS AND DEFINITIONS OF VARIABLES •
(20)
$a_{94}=\quad .6475$
$a_{100}=-.7150 \quad a_{102}=\quad .2122$
$a_{95}=.2555 \quad a_{103}=.3562$
$a_{101}=-.1448 \quad a_{104}=\quad .2862$
$a_{96}=.0598 \quad a_{99}=.0302$
$a_{97}=-.0018 \quad a_{105}=\quad .0044$
(24) $\quad a_{112}=2.1010$
$a_{113}=1.3775$
$a_{114}=3.5539$
(32) $a_{128}=1.0000$
$a_{129}=0.0$
2.
(19)

$a_{77}=$.3512
$a_{78}=$.5328
$a_{79}=$.5822
$a_{80}=$.5537
$a_{81}=$.4894
$a_{82}=$.4190
$a_{83}=$.360

$a_{84}=.3183$
$a_{85}=.2865$
$a_{86}=.2457$
$a_{87}=.1647$
$a_{93}=-.2067$
$a_{92}=.5792$
(27) $a_{126}=.0263$
$a_{127}=.7258$
$a_{411}=-1.8330$
(33) $a_{130}=.4500$
$a_{131}=-.0029$
3.
(21) $a_{106}=.8941$
$a_{107}=7.2440$
$a_{108}=.7693$
(22) $a_{109}=.8941$
$a_{110}=7.2440$
$a_{111}=.7693$

590 - ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

(26) | $a_{115}=$ | 0.0 | $a_{121}=$ | .0025 | |
| ---: | :--- | ---: | :--- | :--- |
| | $a_{116}=$ | -.0004 | $a_{122}=$ | .0020 |
| | $a_{117}=$ | .0013 | $a_{123}=$ | .0022 |
| | $a_{118}=$ | .0023 | $a_{124}=$ | .0008 |
| | $a_{119}=$ | .0028 | $a_{125}=$ | .0002 |
| | $a_{120}=$ | .0028 | $a_{21}=$ | .0400 |

$(12$
(18)
(18)
C.
(181)

$$
a
$$

$a_{572}=$
$a_{577}=. \quad .7927$
$a_{573}=\quad .0600 \quad a_{578}=1.1656$
$a_{574}=-1.9201 \quad a_{579}=1.2728$
$a_{582}=-0.9502 \quad a_{580}=1.1142$
$a_{583}=-0.8445 \quad a_{581}=\quad .6900$
$a_{584}=-0.5278 \quad a_{588}=\quad .0050$
$a_{585}=\quad .0590 \quad a_{589}=10.7379$
$a_{586}=\quad .0486 \quad a_{590}=-2.1213$
$a_{587}=\quad .0290 \quad a_{591}=\quad .6465$
$a_{575}=-.7501$
(183)

$a_{592}=$	-1.8011	$a_{603}=$	2.8911
$a_{593}=$	-.7765	$a_{604}=$	2.3934
$a_{594}=$.0622	$a_{605}=$.1157
$a_{595}=$	-.4423	$a_{606}=$.1436
$a_{596}=$	-.1759	$a_{607}=$.1460
$a_{597}=$.0228	$a_{608}=$.1229
$a_{598}=$.1538	$a_{609}=$.0742
$a_{599}=$.2170	$a_{610}=$.0050
$a_{600}=$.2124	$a_{611}=$	4.4551
$a_{601}=$.1401	$a_{612}=$	-3.5173
$a_{602}=$	1.4929	$a_{613}=$.6114
$a_{614}=$	2.0771	$a_{617}=$.7631
$a_{615}=$.0184	$a_{618}=$	2.9980
$a_{616}=$	1.6145	$a_{619}=$.3247
$a_{557}=$.7000		$a_{559}=$

D.
$19=80.000$
$10=-1.1400$
$a_{561}=$
$a_{562}=\quad .0500$
$a_{563}=-2.4400$
$a_{564}=80.000$
(186)
(187)
$\begin{array}{lr}a_{566}= & 2.9658 \\ a_{567}= & .0408\end{array}$
$a_{567}=$
D.
(36)

$a_{700}=$	-61.9952	$a_{716}=$.0001
$a_{701}=$	-.0085	$a_{117}=$.0001
$a_{702}=$	-.0043	$a_{718}=$.0001
$a_{703}=$	-.0007	$a_{719}=$.0001
$a_{704}=$.0023	$a_{720}=$.0001
$a_{705}=$.0046	$a_{721}=$.0001
$a_{706}=$.0063	$a_{722}=$.0001
$a_{707}=$.0073	$a_{723}=$.0001
$a_{708}=$.0077	$a_{724}=$.0001
$a_{709}=$.0075	$a_{725}=$.0001
$a_{710}=$.0066	$a_{726}=$.3763
$a_{711}=$.0050	$a_{727}=$	-.0537
$a_{712}=$.0028	$a_{728}=$.2341
$a_{713}=$	-.0011	$a_{729}=$	-.0482
$a_{714}=$	-.0006		
$a_{715}=$	-.0002		
$a_{161}=$.0250	$a_{164}=$	-25.0807
$a_{162}=$	-.0098	$a_{166}=$.6000
$a_{163}=$.0231	$a_{165}=$.2815
$a_{168}=$	-.0705	$a_{171}=$	51.4739
$a_{169}=$.0607	$a_{172}=$.5000
$a_{170}=$.0926	$a_{173}=$.4310

592 - ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR
E.
G.
I.
III. A.
(169) $a_{546}=.0050$ $a_{568}=.0067$
B.
II. E.

(153)	$a_{482}=$.9638		$a_{445}=$
	$a_{443}=$.0019		
	$a_{444}=$	-.1059	$a_{446}=$	-.0316
(62)	$a_{205}=$.0623	$a_{481}=$.9090
	$a_{206}=$.2151	$a_{212}=$.0203
	$a_{208}=$.0518	$a_{213}=$.0137
	$a_{209}=$.0426	$a_{214}=$.0070
	$a_{210}=$.0345	$a_{215}=$	0.0
	$a_{211}=$.0272		.2570
(169)	$a_{546}=$.0067		
	$a_{568}=$.0050		

C.
G.

$$
\begin{array}{ll}
(159) & a_{507}=0.0 \\
& a_{508}=-.0103 \\
& a_{509}=-.0513
\end{array}
$$

I.

$$
\begin{array}{ll}
(163) & a_{546}= \\
& a_{568}=
\end{array} .00670 .0050
$$

NUMERICAL VALUES FOR COEFFICIENTS (TABLE III)

III. A.

(58)	$a_{197}=$.0150	$a_{199}=$
	$a_{198}=$.0277	$a_{200}=$
(59)	$a_{202}=$.8999	
	$a_{203}=$	-.1786	$a_{204}=$
		$a_{207}=$.6475

B.

(63) | | $a_{216}=$ | .5995 | |
| ---: | ---: | ---: | ---: |
| | $a_{217}=$ | 1.0000 | |
| | $a_{218}=$ | .7653 | |
| | $a_{167}=$ | .6300 | |
| (66) | $a_{219}=$ | .0322 | $a_{223}=$ |
| | $a_{220}=$ | .1314 | $a_{224}=$ |
| | $a_{221}=$ | .95 | $a_{225}=$ |

C.
(75) $\quad a_{249}=-.3225$
$a_{250}=.2751$
$a_{251}=-2.1074$
(78) $\quad a_{252}=.0187$
$a_{253}=.1629$
$a_{255}=-30.8473$

594 - econometric models of cyclical behavior
D.

(67)	$a_{226}=$.8611	$a_{230}=-.1169$
	$a_{227}=$	-.2642	$a_{231}=-4.5190$
	$a_{228}=$	-.2751	$a_{232}=1.0000$
	$a_{229}=$	-.1045	
(69)	$a_{233}=$.5412	$a_{235}=-6.9292$
	$a_{234}=$.9974	$a_{236}=1.0000$
(81)	$a_{257}=$.0780	
	$a_{417}=$	1.1956	
	$a_{256}=$.9500	

E.

(71)	$a_{237}=$	1.3956	$a_{240}=$.8480
	$a_{238}=$	1.0000	$a_{241}=$	-9.7437
	$a_{239}=$.2443	$a_{409}=$.6341
(73)	$a_{242}=$.0207	$a_{246}=$	4.6314
	$a_{243}=$	-.0315	$a_{247}=$.9022
	$a_{245}=$.0257		
(155)	$a_{501}=$	-.0010	$a_{505}=$	1.2159
	$a_{502}=$.0133	$a_{506}=$.0029
	$a_{503}=$.9500		

NUMERICAL VALUES FOR COEFFICIENTS
 (TABLE IV)

IV. A.

$$
\begin{array}{lll}
(145) & a_{458}= & -.4360 \\
& a_{459}=-.0293 & a_{468}=-.0044 \\
& a_{460}=-.2750 & a_{469}=-.0058 \\
& a_{461}=-.0079 & a_{470}=-.0033 \\
& a_{462}=-.0059 & a_{471}=-.0025 \\
& a_{463}=-.0066 & a_{486}=-.9629 \\
a_{465}=.6022
\end{array}
$$

NUMERI

V. A
B.
(154

NUMERI
VI. A. il
(83)

$$
(146)
$$

$$
a_{466}=\quad .2986
$$

$$
a_{467}=\quad .6362
$$

$$
\begin{align*}
& =-.1169 \\
& =-4.5190 \\
& =1.0000 \tag{143}\\
& =-6.9292 \\
& =1.0000
\end{align*}
$$

$$
a_{473}=\quad .0003
$$

$a_{447}=$.2695	$a_{454}=$	-.0116
$a_{448}=$.1905	$a_{455}=$	0.0
$a_{449}=$.1244	$a_{456}=$.8369
$a_{450}=$.0714	$a_{457}=$.0510
$a_{451}=$.0312	$a_{485}=$.5868
$a_{452}=$.0040	$a_{487}=$	-1.0526

NUMERICAL VALUES FOR COEFFICIENTS

(TABLE V)
V. A.

(152) | $a_{635}=$ | .2185 | $a_{638}=$ | -.0324 |
| :--- | :--- | :--- | :--- |
| | $a_{636}=$ | .0542 | $a_{639}=$ | .5288

B.

$$
\begin{array}{rll}
\text { (154) } & a_{621}= & .7472 \\
& a_{622}= & a_{627}=-.0512 \\
& a_{624}= & -.0906 \\
& a_{625}= & a_{628}=-.0390 \\
& a_{621}= & a_{629}=0.0 \\
& & a_{630}=-.0013 \\
& & a_{631}=-.0012 \\
a_{632}=-.0016
\end{array}
$$

NUMERICAL VALUES FOR COEFFICIENTS

(TABLE VI)
VI. A. 1.
(83)

$$
\begin{array}{lrlr}
a_{258}= & .8117 & a_{260}= & -.4013 \\
a_{259}= & -.0467 & a_{261}= & .7518
\end{array}
$$

596° - ECONOMETRIC models of cyclical behavior
2.
(87)
$a_{262}=-212.5539$
$a_{265}=139.9768$
$a_{263}=-2.0931$
$a_{264}=-6.1365$
$a_{266}=27.1245$
$a_{267}=.6821$
(115) $\quad a_{268}=\quad .6573$
$a_{274}=-.0016$
$a_{269}=-.3464$
$a_{275}=.0013$
$a_{270}=\quad .0027$
$a_{276}=.6484$
$a_{271}=-.0020$
$a_{277}=-.5124$
$a_{272}=-.0023$
$a_{278}=$
. 2271
$a_{273}=-.0022$
4.
(88)
$a_{279}=1.0486$
$a_{281}=-.2346$
$a_{280}=.3331$
$a_{410}=.5463$
6.
(98)

$$
\begin{aligned}
& a_{323}=-.0946 \\
& a_{324}=-.3326 \\
& a_{325}=-.0028 \\
& a_{326}=-.0010
\end{aligned}
$$

B.

(91) | $a_{282}=$ | .3082 | $a_{293}=$ | .0371 |
| ---: | ---: | ---: | ---: |
| | $a_{283}=$ | -.0328 | $a_{294}=$ |
| | $a_{284}=$ | .0121 | $a_{295}=$ |
| | $a_{285}=$ | .0413 | $a_{296}=$ |
| $a_{286}=$ | .0581 | $a_{297}=$ | .0257 |
| $a_{287}=$ | .0657 | $a_{298}=$ | .0186 |
| $a_{288}=$ | .0665 | $a_{299}=$ | .0117 |
| $a_{289}=$ | .0630 | $a_{300}=$ | 0.0 |
| $a_{290}=$ | .0571 | $a_{400}=$ | 1.1709 |
| $a_{291}=$ | .0500 | $a_{401}=$ | .7364 |
| $a_{292}=$ | .0432 | | |

D.
E.

$$
a_{327}=-.0008
$$

$$
a_{328}=.1765
$$

(104)

$$
a_{329}=
$$

$$
.6514
$$

F. 1.
(106)
(110)
139.9768
27.1245
.6821
$-.0016$.0013 .6484
$-.5124$
. 2271
$-.2346$
.5463
$-.0008$
.1765
.6514
$\begin{array}{ll}= & .0371 \\ = & .0323 \\ = & .0286 \\ = & .0257 \\ = & .0228 \\ = & .0186 \\ = & .0117 \\ = & 0.0 \\ = & 1.1709 \\ = & .7364\end{array}$
C.
.

(92)	$a_{302}=$	1.9060	$a_{307}=$.7274
	$a_{303}=$.1884	$a_{308}=$.0582
	$a_{304}=$	-2.1317	$a_{309}=$.0527
	$a_{305}=$.2636	$a_{310}=$.0457
	$a_{306}=$.1304	$a_{311}=$.0063
(93)	$a_{312}=$.2018	$a_{318}=$.0175
	$a_{313}=$.0861	$a_{416}=$.0583
	$a_{315}=$	-.3187	$a_{314}=$	-.3057
	$a_{316}=$.0495	$a_{317}=$	-.0246

D.

(103)	$a_{769}=$	-.8332	$a_{772}=1.7044$
	$a_{770}=$.8661	$a_{773}=$
	$a_{771}=$	-.1624	

E.
(104)

$a_{551}=$.2204	$a_{554}=$	-.2273
$a_{552}=$.1728	$a_{555}=$	2.9001
$a_{553}=$.0993	$a_{556}=$.7000

F. 1 .

(106)	$a_{350}=$. 0486	$a_{352}=$. 9650
	$a_{351}=$. 4243	$a_{415}=$. 1590
(110)	$a_{363}=$. 1230	$a_{367}=$. 9125
	$a_{364}=$. 000	$a_{368}=$. 9125
	$a_{365}=$	$-.1334$	$a_{369}=$	-. 9125
	$a_{366}=$. 9125	$a_{370}=$	-. 1986

2.

$$
\begin{aligned}
(109) & a_{360}= \\
& a_{361}= \\
& a_{362}=-.9485 \\
& -.3110
\end{aligned}
$$

```
598 - ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR
```

G.

(107)	$a_{353}=$.0742	$a_{355}=$.8581
	$a_{354}=$.0815	$a_{356}=$	-.1195
(116)	$a_{374}=$	-.0040	$a_{378}=$.9529
	$a_{375}=$.1002	$a_{379}=$.9529
	$a_{376}=$	-.0400	$a_{380}=$	-.9529
	$a_{377}=$.9529	$a_{381}=$	-.2018

H.
(108) $\quad a_{357}=.1568$
$a_{358}=\quad .8581$
$a_{359}=-.0673$
(118)
$a_{382}=-.0230$
$a_{388}=.9982$
$a_{383}=.0937 \quad a_{389}=.0653$
$a_{384}=-.0497 \quad a_{390}=\quad .9982$
$a_{385}=1.0000 \quad a_{391}=\quad .0653$
$a_{386}=-.9982 \quad a_{392}=-.9982$
$a_{387}=-.0653 \quad a_{393}=-.1669$
1.

(120)	$a_{394}=$	-.0117	$a_{397}=$
	$a_{395}=$.9297	
	$a_{396}=$.9297	$a_{398}=-.9297$
	$a_{399}=$	-.1798	

J.
(126)

$a_{425}=$.2291	$a_{436}=-5.6400$
$a_{426}=$.2192	$a_{437}=-4.6700$
$a_{427}=$.1980	$a_{438}=-3.4500$
$a_{428}=$.1655	$a_{439}=-2.1600$
$a_{429}=$.1217	$a_{440}=-.9800$
$a_{430}=$.0666	$a_{441}=$
$a_{431}=$	0.0	$a_{421}=$
$a_{432}=$	-3.140900	$a_{422}=169.0089$
$a_{433}=$	-5.1000	$a_{423}=-3.9299$
$a_{434}=$	-6.0300	$a_{484}=$
$a_{435}=$	-6.1500	

[^0]: Note: Numbers without which are at present unoccup

[^1]: Note: Numbers without definitions or symbols denote vectors in the data matrix which are at present unoccupied.

[^2]:
 (continued)

[^3]: (continued)

[^4]: (continued)

[^5]: E. DETERMINATION OF MORTGAGE RATE

