This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Econometric Models of Cyclical Behavior, Vols. 1 and 2

Volume Author/Editor: Bert G. Hickman, ed.

Volume Publisher: UMI

Volume ISBN: 0-870-14232-1

Volume URL: http://www.nber.org/books/hick72-1

Publication Date: 1972

Chapter Title: Appendix To Part 1: Equations And Definitions Of Variables For The FRB-MIT-Penn Econometric Model, November, 1969

Chapter Author: Albert Ando, Franco Modigliani, Robert Rasche

Chapter URL: http://www.nber.org/chapters/c2785

Chapter pages in book: (p. 543 - 598)

APPENDIX TO PART ONE: EQUATIONS AND DEFINITIONS OF VARIABLES FOR THE FRB-MIT-PENN ECONOMETRIC MODEL, NOVEMBER, 1969

ALBERT ANDO University of Pennsylvania FRANCO MODIGLIANI Massachusetts Institute of Technology ROBERT RASCHE University of Pennsylvania

IN what follows, we define the variables and list the equations for a version of the FRB-MIT-Penn Model that was used to generate the simulation results for the analysis by the National Bureau team headed by Professor Victor Zarnowitz. This is also the version of the model used for the analysis reported by Ando and Modigliani in "Econometric Analysis of Stabilization Policies," *Papers and Proceedings of the American Economic Association*, May, 1969.

A substantial revision and reestimation of the model was recently undertaken, the version of the model given below being replaced in the spring of 1970.

The equations are listed as they appear in the coding for computer simulation of the model. The variable on the left of the equality sign is the one for which the equation was normalized. The variables on the right of the equality sign are separated into two groups. The terms between the equality sign and the line of three dots, under the heading "Solve," are the ones that must be solved simultaneously for the model in the current period. The terms to the right of the dotted line under the heading "Constant" contain only exogenous and lagged endogenous variables and constants, and therefore can be taken as given in solving the model for the current period. It should be noted that the form of coding for simulation is not necessarily the form in which the behavior represented by the equation was originally conceptualized and estimated. Thus, for instance, in equation (4), *CON* is listed as the depend-

544 • ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

ent variable, although the theory and estimation were carried out with CON/N as dependent (the alphabetical list of definitions begins on page 556). The demand equation for money, equation (87), is expressed with RTB as the dependent variable, although the original formulation was with MD\$/XOBE\$ as dependent. These alterations for simulation coding will become fairly obvious as the reader becomes familiar with the listing, and he is requested to make the necessary readjustment in order to understand the behavioral hypotheses embodied in each of the equations.

The *a*'s with subscripts represent fixed numerical coefficients. Most of these are estimated from the time series data through a variety of methods, but some of them are fixed a priori in accordance with welldefined theories. The subscripts refer to positions in the coefficient matrix in the simulation program; the numerical values of these coefficients are given at the end of each sector.

R refers to the estimation error of *the previous period* for the equation in which it appears; and, therefore, the coefficient a attached to R is the autocorrelation coefficient of the error for the equation.

The variables are listed first in their numerical order in the system and then in the alphabetical order of their names. Endogenous variables are given plain numbers, and the number given to a variable corresponds to the number given to the equation explaining that variable. Exogenous variables are given a number preceded by either E or AC. The latter are those policy variables which are most commonly used for stabilization, though not all policy variables in the system are given numbers preceded by AC. The special dummy variables are unnumbered. They are mostly associated with strikes that are in the system but not explicitly carried in our data matrix.

Variables that can be measured in monetary units are either in billions of current dollars (denoted by a dollar sign after the name symbol) or in billions of 1958 dollars (without the dollar sign), except for revenues and transfer payments of governments, which are measured in billions of current dollars but have no dollar sign.

All flow variables are expressed at an annual rate. All ratio variables, such as interest rates and the rate of unemployment, are expressed as percentages.

MODEL 1 X 2 XOBE 3 XB4 CON 5 YΗ 6 EC7 WC 8 KC 9 YC 10 D - I11 12 13 RH 14 15 EH\$ 16 17 OPD 18 KPS 19 EPS 20 EPD 21 SME 22 OME 23 OUME 24 RPD 25 RTPD 26 XBC 27 RPS 28 RTPS

NUMERICAL LIS

NOTE: Numbers without which are at present unoccur

NUMERICAL LISTING OF VARIABLES: FRB-MIT-PENN MODEL

riginal formulation	1	Х	Gross output
tions for simulation	2	XOBE	GNP, OBE definition
comes familiar with	3	ХВ	Gross private domestic business product
ary readjustment in	4	CON	Consumption
odied in each of the	5	YH	Household product
	6	EC	Consumer expenditures on durable goods
nerical coefficients.	7	WC	Depreciation of consumer durable goods
ta through a variety	8	КС	Stock of consumer durables, end of period
cordance with well-	9	YC	Net imputed rent on consumer durables
n the coefficient ma-	10	D - I	Nonfarm inventory investment (1958 dollars)
of these coefficients	. 11		
	12		
period for the equa-	13	RH	Rent index for residential structures (taken ex-
tient a attached to R			ogenously)
he equation.	14		
l order in the system	15	EH\$	Expenditure on residential construction
ndogenous variables	16		
to a variable corre-	17	OPD	New orders for producers' durables
laining that variable.	18	KPS	Net stock of producers' structures, end of period
d by either E or AC.	19	EPS	Expenditures on producers' structures
most commonly used	20	EPD	Expenditures on producers' durables
the system are given	21	SME	Shipment of machinery and equipment
variables are unnum-	22	ОМЕ	Net new orders for machinery and equipment
hat are in the system	23	OUME	Unfilled orders for machinery and equipment, end of period
units are either in bil-	24	RPD	Cost of capital for producers' durables
fter the name symbol)	25	RTPD	Current dollar rent per unit of new producers'
sign), except for rev-			durables
which are measured in	26	XBC	Production capacity of producers' durables
n.	27	RPS	Cost of capital for producers' structures
ual rate. All ratio var-	28	RTPS	Current dollar rent per unit of new producers'
nemployment, are ex-	· ·		structures

NOTE: Numbers without definitions or symbols denote vectors in the data matrix which are at present unoccupied.

re carried out with finitions begins on n (87), is expressed riginal formulation tions for simulation comes familiar with ary readjustment in odied in each of the

_				
29	VWPD	Present value of depreciation deduction for pro-	54	4 YLS
•••	תתיי	ducers' durables	5	5 YNIS
30	KPD	Net stock of producers' durables, end of period	56	
31	VWPS	Present value of depreciation, deduction for pro-		G ψ
		ducers' structures	57	YPC\$
32	VPD	Equilibrium ratio of producers' durables to out-	58	TCIS
• •		put, multiplied by a constant		
33	VPS	Equilibrium ratio of producers' structures to out-	59	TCIF
		put, multiplied by a constant		
34	WPD\$	Bookkeeping depreciation in producers' dura-	60	YPCT\$
	WDC¢	bles	61	YPCCs
35	WPS\$	Bookkeeping depreciation in producers' struc-	62	YDVS
		tures	63	QTXF
86	EGSC\$	Construction expenditures by state and local	64	TXF
-		government	65	TIBF
7	EGSO\$	Other expenditures on goods and services by	66	TIBS
~		state and local government		
8	EGSL\$	Employee compensation by state and local gov-	67	QTO
•		ernment	68	TO
9	1	Stock of nonfarm business inventory multiplied	69	QTU
<u>^</u>		by 4.0, end of period		2 - 0
0	XBNF	Nonfarm business product and product of	70	ΤU
	1/0 B.#	households	71	QGB
1	YCR\$	Corporate retained profits		2 - 0
2	QEIM	Natural log of imports (EIM, 43)	72	GB
3	EIM	Imports	73	GSP
4	ECO	Personal consumption expenditures		
5	EGS\$	State and local government expenditure on	74	YP\$
		goods and services	75	QYTF\$
6	XB\$	Gross private domestic business product		_ • <i>v</i>
7	YH\$	Income originating in households	76	YTF\$
8	XOBE\$	GNP, OBE definition		- - <i>• ψ</i>
9	EPD\$	Expenditures on producers' durables	77	TPF
0	EPS\$	Expenditures on producers' structures	78	TPS
1	ECO\$	Personal consumption expenditures		
2	EC\$	Consumer expenditures on durables	79	YD\$
3	XBNF\$	Nonfarm business product and products of	: 80	YS\$

. ب د مدیره است.

n deduction for pro-	54	YL\$	Labor income, nonfarm business sector
n deduction for part	55	YNI\$	National income, OBE definition
ables, end of period	56	YPG\$	Total profit after depreciation and before income
n, deduction for pro-			taxes, nonfarm business sector
n, deddenon - T	57	YPC\$	Net profits before income taxes of corporations
ers' durables to out-	58	TCIS	Corporate income tax liability, state and local government
nt rs' structures to out-	59	TCIF	Corporate income tax liability, federal govern- ment
nt in producers' dura-	60	YPCT\$	Net corporate profits after taxes
in producers dura-	61	YPCC\$	Cash flow of corporations after taxes
hungers' struct	62	YDV\$	Corporate dividends
in producers' struc-	63	QTXF	Natural log of federal excise taxes $(TXF, 64)$
by state and local	64	TXF	Federal excise taxes
by state and local	65	TIBE	Federal indirect business taxes
L	66	TIBS	State and local government indirect business
ds and services by	00	TIDS	taxes
state and local gov-	67	QTO	Natural log of OASI contributions (TO, 68)
	68	ТО	OASI contributions
inventory multiplied	69	QTU	Natural log of unemployment insurance contribution $(TU, 70)$
ct and product of	70	ΤU	Unemployment insurance contribution
	71	QGB	Natural log of unemployment insurance bene- fits $(GB, 72)$
M, 43)	72	GB	Unemployment insurance benefits
(VI, 43)	73	GSP	State and local government transfer payments to
enditures			persons
ent expenditure on	74	YP\$	Personal income
ent expension	75	QYTF\$	Natural log of taxable income for federal per-
siness product		-	sonal income taxes (1-YTF\$/YP\$) (76, 74)
seholds	76	YTF\$	Taxable income for federal personal income
Senores			taxes
s' durables	77	TPF	Federal personal income tax liability
s' structures	78	TPS	State and local government personal income tax
benditures		-	and nontax payments
n durables	79	YD\$	Disposable personal income
act and products of	80	YS\$	Gross national product net of federal taxes and transfers

.

81	TSC	State and local government contributions to so- cial insurance	107	RSL
82	EGSN\$	Net state and local government expenditures	108	RMS
83	QMC\$	Natural log of currency outside banks (MC\$,		
		84)	109	RCD
84	MC\$	Currency outside banks	110	QMPTA \$
85				
86	MD\$	Demand deposits adjusted at all commercial banks	111	MTPAS
87	RTB	Treasury bill rate	112	MCDAS
88	RCP	Commercial paper rate		
89	MDS\$	Adjusted net demand deposit at all member banks	113	MCD\$
90	MRU\$	Unborrowed reserves at all member banks	114	MTM\$
91	RCB	Corporate bond rate	115	MFR\$
92	RCL	Commercial loan rate	116	QMSL\$
93	DCL\$	Commercial and industrial loans at all commer-		
		cial banks	117	MSLS
94			118	QMMS\$
95				
96			119	MMS\$
97	0 (1) (0 0		120	<i>QMIS\$</i>
98	QJMSB	Natural log of blowup factor to convert net ad-	121	
		justed demand deposits at member banks to	121	MIS\$
20		those at all commercial banks (JMSB, 99)	122	MT\$
99	JMSB	Blowup factor to convert net adjusted demand	123 124	YD LU
		deposits at member banks to those at all com- mercial banks	124	LU LE+LA
100	VG\$	Residual in net worth identity, billions of dollars	125	LE+LA RDP
100	VG\$ YSG\$	State and local government income	120	RCHI
101	KSL	Stock of capital owned by state and local	128	RCH3
102	KJL	government	129	РХВ
103	RSLG	Municipal bond rate	130	POBE
104	RM	Mortgage rate	131	PC
105	ZINT	Interpolation variable for the passbook savings	132	PCON
·	-	equation	133	PPD
106	RTP	Effective rate on passbook savings deposits at	134	PRS
		commercial banks	135	PS

•

-- -- -- -

----<u>'</u>

1			
ontributions to so-	107	RSL	Effective rate on savings and loan association shares
ent expenditures	108	RMS	Effective rate on deposits at mutual savings banks
side banks (MC\$,	109	RCD	Rate on certificate of deposits
	110	QMPTA\$	Natural log of passbook savings at member banks, seasonally adjusted (<i>MTPA\$</i> , 111)
at all commercial	111	MTPA\$	Passbook savings at member banks, seasonally adjusted
	112	MCDA\$	Nonpassbook savings deposits of public at member banks seasonally adjusted
osit at all member	113	MCD\$	Nonpassbook savings deposits of public at member banks
member banks	114	MTM\$	Total time deposits at member banks
member ballks	115	MFR\$	Free reserves at all member banks
	116	QMSL\$	Natural log of savings and loan association
loans at all commer-		-	shares (<i>MSL</i> \$, 117)
ioans at all commercial	117	MSL\$	Savings and loan association shares
	118	QMMS\$	Natural log of mutual savings bank deposits (MMS\$, 119)
	119	MMS\$	Mutual savings bank deposits
	120	QMIS\$	Natural log of life insurance reserves (MIS\$,
or to convert net ad-		~	121)
it member banks to	121	MIS\$	Life insurance reserves
nks (JMSB, 99)	122	MT\$	Time deposits at all commercial banks
net adjusted demand	123	YD	Disposable personal income
to those at all com-	124	LU	Unemployment
	125	LE+LA	Total employment including armed forces
tity, billions of dollars	126	RDP	Dividend-price ratio
ht income	127	RCHI	Cost of capital for single family dwellings
by state and local	128	RCH3	Cost of capital for multifamily dwellings
	129	РХВ	Implicit price deflator for XB (3)
	130	POBE	Implicit deflator of XOBE (2)
	131	РС	Implicit price deflator for EC (6)
the passbook savings	132	PCON	Implicit price deflator for CON (4)
	133	PPD	Implicit price deflator for EPD (20)
ok savings deposits at	134	PRS	Implicit price deflator for EH\$ (15)
	135	PS	Implicit price deflator for EGS (45)
1			

.

36	РНС	Construction cost index	162	GDSS
37			163	WCCA.
38	VCN\$	Net worth of households	164	н сся,
39	LMHT	Man-hours private domestic nonfarm business	165	YNNP
		sector, including proprietors	166	YRTS
40	D - 1\$	Nonfarm inventory investment	167	YII\$
41	PPS	Implicit price deflator for EPS (19)	168	PI
42	LH	Total hours per man in nonfarm private do-	169	WCO\$
		mestic business and household sectors	170	
43	LF+LA	Labor force, including armed forces	171	UPC
44			172	UPCO
45	QLMHT	Natural log of man-hours private domestic non-	173	UPPD
		farm business sector, including proprietors	174	UPPS
		(<i>LMHT</i> , 139)	175	UPS
46	QLH	Natural log of total hours per man in nonfarm	176	UPHC
		private domestic business and household	177	UPRS
		sectors (LH, 142)	178	UPI
47	LEBT	Employment, private domestic nonfarm busi-	179	
		ness sector, including proprietors	180	
48	LE	Total civilian employment	181	QHS1\$
49				
50	ULU	Unemployment rate	182	HS1\$
51			183	QHS3\$
52	PL	Employee compensation rate in nonfarm private		~ .
		domestic business	184	HS3\$
53	QYPC\$	Natural log of net profits before income taxes of corporations (YPC\$, 57)	185	D - DSL
54	QPXB*	Natural log of price deflator for nonfarm busi-	186	KH1
		ness product (PXB*, 189)	187	KH3
55	TSS	Current surplus of state and local government	188	РНСА
		enterprises	189	PXB*
56	PXBNF	Implicit deflator for XBNF (40)	E1	EEX
57	MTP\$	Passbook savings at member banks	E2	EGF
58	РСО	Implicit price deflator for ECO (44)	~~ =	201
59	IVA\$	Inventory valuation adjustment	E3	YRW
60		· · · ·	E4	EGFL\$
61	GDSF	Net deficit of federal goverment	E5	N N

ŧ.

. .

	162	GDSS	Net deficit of state and local government
	163	WCCA\$	Capital consumption allowance, total
	164		
nonfarm business	165	YNNP\$	Net national product
	166	YRT\$	Rental income of persons
ent	167	Y11\$	Interest income
PS (19)	168	РІ	Price deflator for stock of inventories
onfarm private do-	169	WCO\$	Corporate capital consumption allowances
old sectors	170		
d forces	171	UPC	Exogenous
	172	UPCON	Exogenous
ivate domestic non-	173	UPPD	Exogenous
luding proprietors	174	UPPS	Exogenous
	175	UPS	Exogenous
ber man in nonfarm	176	UPHC	Exogenous
s and household	177	UPRS	Exogenous
	178	UPI	Exogenous
estic nonfarm busi-	179		
rietors	180		
	181	QHS1\$	Ln $(HS1$/((N - N20)*(NS/NA)*PHCA))$, ln
			(182/(E5 - E17)*(E88)*(188))
	182	HSI\$	Housing starts, single dwelling units
	183	QHS3\$	Ln $(HS3\$/((N - N20)*(1 - NS/NA)*PHCA))$
te in nonfarm private			$= \ln (184/(E5 - E17) * (1 - E88) * (188))$
	184	HS3\$	Housing starts, multifamily dwelling units
before income taxes	185	D - DSL	Flow of funds into savings and loan associa-
b			tions and mutual savings banks
or for nonfarm busi-	186	KH1	Stock of single family houses
	187	KH3	Stock of multifamily houses
nd local government	188	РНСА	Construction cost adjusted
	189	PXB*	Price deflator for nonfarm business product
F (40)	EI	EEX	Exports
ber banks	E2	EGF	Federal government expenditures on goods and
ECO (44)			services
iment	E3	YRW	Income originating in the rest of the world
	E4	EGFL\$	Compensation of federal government employees
rment	E5	Ν	Population

E6 E7			E34 E35	011
E8				
E9	UWPS	Rate of depreciation of producers' structures		
E10	TIME	Time, 1 in 1947-1	E36	GFG
E11	UDC	Desired proportion of debt in corporate capital		-
E12	UWPD	Depreciation rate for producers' durable equip- ment	E37	TUIB
E13	ZLNG	Dummy variable for long amendment on de-	E38	GS1
		preciation basis	E39	JS2
E14	D - IF	Farm inventory investment	E40	JS3
E15	WAPD	Proportion of new equipment depreciated using	E41	JS4
		accelerated depreciation method	E42	JCD
E16	WAPS	Proportion of new structures depreciated using	E43	JMSA
,		accelerated depreciation method	E44	MGF\$
E17	N20/N	Ratio of population under 20 to total population		
E18	GFS	Federal grants-in-aid to state and local govern-	E45	
		ments	E46	JCLS
E19	EGPD+	Federal government defense procurement ex-		0020
		penditures, led one period	E47	
E20	NDI	Number of man-hours idle (>10 million) due	E48	
		to major strikes	E49	
E21	WPIF	Wholesale price index for rest of world	E50	JCDS
E22	JCAA	Dummy variable for Canadian auto agreement		
E23	YRW\$	Income originating in rest of the world	E51	
E24	TCDF	Federal customs duties	E52	
E25	JOA	Dummy variable for OASI coverage change	E53	
E26	JOB	Dummy variable for OASI coverage change	E54	JMT
E27	JOC	Dummy variable for OASI coverage change		
E28	JOD	Dummy variable for OASI coverage change	E55	PGE
E29	TUIC	Ratio of covered to total labor force		
E30	L26U	Percentage of unemployed who are unemployed	E56	РҮН
		twenty-six weeks or less	E57	LA
E31			E58	N16
E32	TEGF	Federal estate and gift taxes		JRI
E33	GBFC	Unemployment benefits beyond twenty-six		JR2
		weeks paid by federal government 1958–1961	E61	JR3

552° • ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

	E34	GFI	Federal government interest payments
	E35	GFP	Federal government transfer payment to per- sons other than unemployment insurance bene-
			fits
ucers' structures	E36	GFG	Federal government subsidies less surpluses of
n corporate capital	200	0.0	government enterprises
ers' durable equip-	E37	TUIB	Maximum weekly benefits payable under un-
ters durable equip-			employment insurance system
amendment on de-	E38	GSI	State and local government interest payments
amendment on co	E39	JS2	Seasonal dummy variable for the second quarter
	E40	JS3	Seasonal dummy variable for the third quarter
at depreciated using	E41	JS4	Seasonal dummy variable for the fourth quarter
thod	E42	JCD	Dummy variable for the development of CD's
s depreciated using	E43	JMSA	Seasonal adjustment factor for MD\$
thod	E44	MGF\$	U.S. government deposits at all commercial
0 to total population			banks
te and local govern-	E45		
	E46	JCLS	Seasonal adjustment factor for commercial
se procurement ex-			loans
se procurement an	E47		
(>10 million) due	E48		
	E49		
est of world	E50	JCDS	Seasonal adjustment factor for nonpassbook
dian auto agreement			time deposits at all member banks
of the world	E51		
	E52		
coverage change	E53		
coverage change	E54	JMT	Blowup factor to convert time deposits at all
coverage change			member banks to those at all commercial banks
coverage change	E55	PGE	Implicit deflator for compensation of govern-
bor force			ment employees
who are unemployed	E56	РҮН	Implicit deflator for YH
who are anon-page	E57	LA	Armed forces
	E58	N16	Total noninstitutional population over 16
es	E59	JRI	Productivity time trend for man-hours equation
beyond twenty-six	E60	JR2	Productivity time trend for man-hours equation
ernment 1958-1961	E61	JR3	Productivity time trend for man-hours equation
			-

E62			E93 PFM
E63	TT60	Decreasing time trend, 59 in 1947-1, 1 in	E94
		1961-11, 0 thereafter	ACI UTC
E64	LEO	Employment not otherwise classified	AC2 TCPD
E65	XBF\$	Farm business output	
E66	XBF	Farm business output	AC3 UTXF
E67	JTPS	Seasonal adjustment factor for passbook sav-	AC4 UTO
		ings deposits at member banks	AC5 UTU
E68	LPRI	Number of males employed ages 25-65,	AC6 UTPF
		millions	AC7 ZRD
E69	JIC	Dummy variable for 1964 automobile strike	
E70	JSTK	Dummy variable for 1962 stock market crash	
E71	YRC\$	Interest paid by consumers	AC8 ZRT
E72	YFT\$	Personal transfer payment to foreigners	
E73	YCRW\$	Corporate profits originating in the rest of the	AC9 ZDRA
		world	ACIO ZMS
E74			
E75	PEGF	Price deflator for federal purchases of goods	ACII ZDR
		and services	
E76	TOSI	Contribution to social insurance other than	AC12 JL
		OASI and unemployment insurance	AC13 TEX
E77	YSD\$	Statistical discrepancy	
E78	GFR	Government transfers to rest of world	AC14 ZCT
E79	YBT\$	Business transfer payments	AC15 RCDC
E80	YPF\$	Proprietors' income in agriculture	
E81			AC16
E82	YLAG\$	Compensation of employees, agriculture	AC17
E83	JT1	Strike dummy, man-hours equation	AC18 SLPD
E84	JT2	Strike dummy, man-hours equation	i
E85	JT3	Strike dummy, man-hours equation	AC19 SLPS
E86	JT4	Strike dummy, man-hours equation	
E87	UTP	Property tax rate used in housing equation	AC20
E88	NS/NA	Proportion of persons expected to live in single- family houses	
E89	RFVA	Average FHA-VA ceilings on mortgage rate	The following vari
E90	EHF\$	Expenditure on residential houses, farm	yet been assigned a po
E91		-	
E92	PWM	Raw materials price, imports	<i>C(I)</i>
		• • •	JIA

554 • ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

Dummy variable for 1959 steel strike

	E93	PFM	Raw materials price, farm
in 1947-1, 1 in	E94		
· III - 12 · · · ·	AC1	UTC	Marginal rate of corporate income tax
classified	AC2	TCPD	Effective rate of tax credit on investment in
classified			producers' durables
	AC3	UTXF	Index of federal excise-tax rate
for passbook sav-	AC4	UTO	OASI contribution rate, total
	AC5	UTU	Unemployment insurance contribution rate
nks	AC6	UTPF	Effective rate of federal personal income tax
byed ages 25-65,	AC7	ZRD	Implicit reserve requirement against net de-
			mand deposits at all member banks on call
automobile strike			date
stock market crash	AC8	ZRT	Implicit reserve requirement against time de-
	ACO	2.01	posits at member banks
to foreigners	AC9	ZDRA	Federal Reserve discount rate
ng in the rest of the	AC9 AC10	ZMS	
	ACIO	ZMS	Unborrowed reserves at member banks plus
		200	currency outside of banks
purchases of goods	AC11	ZDR	Federal Reserve discount rate for the first
			fifteen days of the quarter
surance other than	AC12	JL	Legal reserve change dummy variable
insurance	AC13	TEX	Per capita exemption for federal personal
			income tax
est of world	AC14	ZCT	Ceiling rate on passbook saving deposits
	AC15	RCDC	Ceiling rate on single maturity time deposits of
s iculture			one hundred thousand dollars or more
	AC16		
es, agriculture	AC17		
	AC18	SLPD	Service life of producers' durable equipment
equation	_		for tax purposes
equation	AC19	SLPS	Service life of producers' structures for tax
equation		0210	purposes
equation	AC20		parposes
housing equation	11020		
ected to live in single-			
	TI	ne following	g variables appear in the coding sheets but have not
gs on mortgage rate	yet be	en assigned	a position in the datamatrix:
l houses, farm			
		C(I)	Denotes a residual used to satisfy an identity

JIA

All at Sun tout a Court and A

orts

•

	JIB	Dummy variable for dock strike	20	
	JID	Time trend variable	20	EPD
	012		50	EPS\$
			19 533	EPS
ALPH	ABETICAL	LISTING OF VARIABLES: FRB-MIT-PENN	E33	GBFC
MOD	EL		72	GB
	C(I)	Denotes a residual used to satisfy an identity	161	GDSF
4	CON	Consumption	162	GDSF
93	DCL\$	Commercial and industrial loans at all com-	E36	GFG
25	2020	mercial banks		070
185	D - DSL	Flow of funds into savings and loan associa-	E34	GFI
		tions and MSB	E35	GFP
E14	D - IF	Farm inventory investment		
140	D 1\$	Nonfarm inventory investment		
10	D - I	Nonfarm inventory investment (1958 dollars)	E78	GFR
51	ECO\$	Personal consumption expenditures	E18	GFS
44	ECO	Personal consumption expenditures		
52	EC\$	Consumer expenditures on durables	E38	GSI
6	EC	Consumer expenditures on durables	73	GSP
EI	EEX	Exports		
E4	EGFL\$	Compensation of federal government employees	182	HS1\$
E2	EGF	Federal government expenditures on goods and	. 184	HS3\$
		services	159	IVA\$
E19	EGPD+	Federal government defense procurement expenditures, led one period	39	Ι
36	EGSC\$	Construction expenditures by state and local	E22	JCAA
50	LUSCØ	government	E50	JCDS
38	EGSL\$	Employee compensation by state and local	200	5005
50	20020	government	E42	JCD
82	EGSN\$	Net state and local government expenditures	E46	JCLS
37	EGSO\$	Other expenditures on goods and services by		0020
		state and local government	E69	JIC
45	EGS\$	State and local government expenditure on	AC12	JL
		goods and services	E43	JMSA
E90	EHF\$	Expenditure on residential houses. farm	99	JMSB
15	EH\$	Expenditure on residential construction		
43	EIM	Imports		
• •		•		

ike	20	EPD	Expenditures on producers' durables
	50	EPS\$	Expenditures on producers' structures
	19	EPS	Expenditures on producers' structures
	E33	GBFC	Unemployment benefits beyond twenty-six
FRB-MIT-PENN			weeks paid by federal government 1958-61
	72	GB	Unemployment insurance benefits
satisfy an identity	161	GDSF	Net deficit of federal government
Satisfy an income y	162	GDSS	Net deficit of state and local government
loans at all com-	E36	GFG	Federal government subsidies less surpluses of government enterprises
	E34	GFI	Federal government interest payments
and loan associa-	E34 E35	GFP ·	Federal government transfer payments to per-
	E33	011	sons other than unemployment insurance bene-
			fits
ent (1958 dollars)	E78	GFR	Government transfers to rest of world
ditures	E18	GFS	Federal grants-in-aid to state and local govern-
1			ment
iditures Iurables	E38	GSI	State and local government interest payments
F	73	GSP	State and local government transfer payments
jurables			to persons
ernment employees	182	HS1\$	Housing starts, single dwelling units
itures on goods and	184	HS3\$	Housing starts, multifamily dwelling units
itures on goods and	159	IVA\$	Inventory valuation adjustment
ense procurement	39	1	Stock of nonfarm business inventory multi-
ense procurement			plied by 4.0, end of period
by state and local	E22	JCAA	Dummy variable for Canadian auto agreement
by state and local	E50	JCDS	Seasonal adjustment factor for nonpassbook
by state and local			time deposits at all member banks
by state and local	E42	JCD	Dummy variable for the development of CD's
iment expenditures	E46	JCLS	Seasonal adjustment factor for commercial
ds and services by			loans
us and services by	E69	JIC	Dummy variable for 1964 automobile strike
nt expenditure on	AC12	JL	Legal reserve change dummy variable
	E43	JMSA	Seasonal adjustment factor for MD\$
houses. farm	99	JMSB	Blowup factor to convert net adjusted demand
construction			deposits at member banks to those at all com-
			mercial banks
durables	E54	JMT	Blowup factor to convert time deposits at all

۲ ۲

.

558 • ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

4

		member banks to those at all commercial	E68	LPRI
		banks		
E25	JOA	Dummy variable for OASI coverage change	124	LU
E26	JOB	Dummy variable for OASI coverage change	E30	L26U
E27	JOC	Dummy variable for OASI coverage change		3
E28	JOD	Dummy variable for OASI coverage change	112	MCDA\$
E59	JR1	Productivity time trend for man-hours equation		1
E60	JR2	Productivity time trend for man-hours equation	113	MCD\$
E61	JR3	Productivity time trend for man-hours equation		1
E70	JSTK	Dummy variable for 1962 stock market crash	84	MC\$
E39	JS2	Seasonal dummy variable for the second	86	MD\$
		quarter		
E40	JS3	Seasonal dummy variable for the third quarter	89	MDS\$
E41	JS4	Seasonal dummy variable for the fourth quarter		:
E67	JTPS	Seasonal adjustment factor for passbook sav-	115	MFR\$ 1
		ings deposits at member banks	E44	MGF\$
E83	JT1	Strike dummy, man-hours equation		1
E84	JT2	Strike dummy, man-hours equation	121	MIS\$
E85	JT3	Strike dummy, man-hours equation	119	MMS\$
E86	JT4	Strike dummy, man-hours equation	90	MRU\$
8	KC	Stock of consumer durables, end of period	117	MSL\$
186	KHI	Stock of single-family houses	114	MTM\$
187	KH3	Stock of multifamily houses	111	MTPA\$
30	KPD	Net stock of producers' durables, end of period		
18	KPS	Net stock of producers' structures, end of period	157	MTP\$
102	KSL	Stock of capital owned by state and local govern-	122	MT\$
		ment	E20	NDI .
E57	LA	Armed forces		
147	LEBT	Employment, private domestic nonfarm busi-	E88	NS/NA
		ness sector, including proprietors		1
125	LE+LA	Total employment including armed forces	E5	N
E64	ĽΕΟ	Employment not otherwise classified	E58	N16
148	LE	Total civilian employment	E17	N20/N
143	LF+LA	Labor force, including armed forces	22	OME
142	LH	Total hours per man in nonfarm private domes-	17	OPD
		tic business and household sectors	23	OUME
139	LMHT	Man-hours private domestic nonfarm business		2 1
		sector, including proprietors	131	PC

-

at all commercial	E68	LPRI	Number of males employed ages 25–65, millions
	124	LU	Unemployment
SI coverage change	E30	L26U	Percentage of unemployed who are unemployed
SI coverage change			twenty-six weeks or less
SI coverage change	112	MCDA\$	Nonpassbook savings deposits of public at
SI coverage change man-hours equation			member banks, seasonally adjusted
man-hours equation	113	MCD\$	Nonpassbook savings deposits of public at
man-hours equation			member banks
stock market crash	84	MC\$	Currency outside banks
e for the second	86	MD\$	Demand deposits adjusted at all commercial
e for the second			banks
for the third quarter	89	MDS\$	Adjusted net demand deposit at all member
for the fourth quarter			banks
r for passbook sav-	115	MFR\$	Free reserves at all member banks
nks	E44	MGF\$	U.S. government deposits at all commercial
equation			banks
equation	121	MIS\$	Life insurance reserves
equation	119	MMS\$	Mutual savings bank deposits
equation	90	MRU\$	Unborrowed reserves at all member banks
equation es, end of period	117	MSL\$	Savings and loan association shares
ses	114	MTM\$	Total time deposits at member banks
es	111	MTPA\$	Passbook savings at member banks, seasonally
rables, end of period			adjusted
uctures, end of period	157	MTP\$	Passbook savings at member banks
tate and local govern-	122	MT\$	Time deposits at all commercial banks
	E20	NDI	Number of man-hours idle (>10 million) due
			to major strikes
nestic nonfarm busi-	E88	NS/NA	Proportion of persons expected to live in single-
prietors			family houses
ng armed forces	E5	Ν	Population
e classified	E58	N16	Total noninstitutional population over 16
	E17	N20/N	Ratio of population under 20 to total population
ned forces	22	ОМЕ	Net new orders for machinery and equipment
nfarm private domes-	17	OPD	New orders for producers' durables
d sectors	23	OUME	Unfilled orders for machinery and equipment,
tic nonfarm business		•	end of period
brs	131	РС	Implicit price deflator for EC (16)
L			

þr

200	Beottomerikk	C MODELS OF CICERCIE DEMANDIX		
158	РСО	Implicit price deflator for ECO (44)	83	QMC\$
132	PCON	Implicit price deflator for CON (4)		
E75	PEGF	Price deflator for federal purchases of goods and services	120	QMIS\$
E93	PFM	Raw materials price, farm	118	QMMS\$
E55	PGE	Implicit deflator for compensation of govern-		
		ment employees	110	QMPTAS
188	РНСА	Construction cost adjusted	116	QMSL\$
136	РНС	Construction cost index		
168	PI	Price deflator for stock of inventories	154	<i>QPXB</i> *
152	PL	Employee compensation rate in nonfarm private		
		domestic business	67	QTO
130	POBE	Implicit deflator of XOBE (2)	69	QTU
133	PPD	Implicit price deflator for EPD (20)		
141	PPS	Implicit price deflator for EPS (19)	63	QTXF
134	PRS	Implicit price deflator for EH\$ (15)	153	<i>QYPC\$</i>
135	PS	Implicit price deflator for EGS (45)		
E92	PWM	Raw materials price, imports	75	QYTF\$
156	PXBNF	Implicit deflator for XBNF (40)	91	RCB
189	РХВ*	Price deflator for nonfarm business product	AC15	RCDC
129	РХВ	Implicit price deflator for XB (3)		
E56	РҮН	Implicit deflator for YH (5)	109	RCD
42	QEIM	Natural log of imports (EIM, 43)	127	RCH1
71	QGB	Natural log of unemployment insurance bene-	128	RCH3
	-	fits $(GB, 72)$	92	RCL
181	QHS1\$	Ln $(HSI / ((N - N20) * (NS/NA) * PHCA))$, ln	. 88	RCP
		(182/(E5 - E17)*(E88)*(188))	126	RDP
183	QHS3\$	$\ln (HS3\$/((N - N20)*(1 - NS/NA)*PHCA))$	E89	RFVA
		$= \ln (184/(E5 - E17)*(1 - E88)*(188))$	13	RH
98	QJMSB	Natural log of blowup factor to convert net ad-	108	RMS
		justed demand deposits at member banks to		
		those at all commercial banks (JMSB, 99)	104	RM
146	QLH	Natural log of total hours per man in nonfarm	24	RPD
	-	private domestic business and household sec-	27	RPS
		tors (<i>LH</i> , 142)	103	RSLG
145	QLMHT	Natural log of man-hours private domestic non-	107	RSL
	-	farm business sector, including proprietors		
		(<i>LMHT</i> , 139)	87	RTB

560 • ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

¢

.

٦

· · ·			EQUATIONS AND DEFINITIONS OF VARIABLES • 561
R			
	83	QMC\$	Natural log of currency outside banks (MC\$,
<i>CO</i> (44)			84)
ON (4)	120	QMIS\$	Natural log of life insurance reserves (MIS\$,
purchases of goods		-	121)
	118	QMMS\$	Natural log of mutual savings bank deposits
		-	(<i>MMS</i> \$, 119)
ensation of govern-	110	QMPTA\$	Ln (MPTA\$)
	116	QMSL\$	Natural log of savings and loan association
			shares (<i>MSL</i> \$, 117)
	154	QPXB*	Natural log of price deflator for nonfarm busi-
nventories e in nonfarm private			ness product (PXB*, 189)
e in nomarin private	67	QTO	Natural log of OASI contributions (TO, 68)
	69	QTU	Natural log of unemployment insurance contri-
(2) SPD (20)			bution $(TU, 70)$
	63	QTXF	Natural log of federal excise taxes $(TXF, 64)$
PS (19) (H\$ (15)	153	QYPC\$	Natural log of net profits before income taxes of
GS (45)			corporations (YPC\$, 57)
	75	QYTF\$	Ln (1- <i>YTF\$/YP\$</i>) (76, 74)
ts (40)	91	RCB	Corporate bond rate
business product	AC15	RCDC	Ceiling rate on single maturity time deposits of
(B (3))			one hundred thousand dollars or more
	109	RCD	Rate on certificate of deposits
M, 43)	127	RCHI	Cost of capital for single family dwellings
ent insurance bene-	128	RCH3	Cost of capital for multifamily dwellings
	92	RCL	Commercial loan rate
S/NA)*PHCA)), in	88	RCP	Commercial paper rate
88))	126	RDP	Dividend-price ratio
-NS(NA)*PHCA))	E89	RFVA	Average FHA-VA ceilings on mortgage rate
E88)*(188))	13	RH	Rent index for residential structures
or to convert net ad-	108	RMS	Effective rate on deposits at mutual savings
t member banks to			banks
nks (<i>JMSB</i> , 99)	104	RM	Mortgage rate
per man in nonfarm	24	RPD	Cost of capital for producers' durables
and household sec-	27	RPS	Cost of capital for producers' structures
	103	RSLG	Municipal bond rate
rivate domestic non-	107	RSL	Effective rate on savings and loan association
icluding proprietors			shares
	87	RTB	Treasury bill rate
1			

5 6 1

.

.....

25	RTPD	Current dollar rent per unit of new producers'	E29	TUIC
		durables	70	TU
28	RTPS	Current dollar rent per unit of new producers'	64	TXF
		structures	E11	UDC
106	RTP	Effective rate on passbook savings deposits at	150	ULU
		commercial banks	172	UPCON
AC18	SLPD	Service life of producers' durable equipment for	171	UPC
		tax purposes	176	UPHC
AC19	SLPS	Service life of producers' structures for tax pur-	178	UPI
		poses	173	UPPD
21	SME	Shipment of machinery and equipment	174	UPPS
E24	TCDF	Federal customs duties	177	UPRS
59	TCIF	Corporate income tax liability, federal govern-	175	UPS
		ment	ACI	UTC
58	TCIS	Corporate income tax liability, state and local	AC4	UTO
		government	AC6	UTPF
AC2	TCPD	Effective rate of tax credit on investment in pro-	E87	UTP
		ducers' durables	AC5	UTU
E32	TEGF	Federal estate and gift taxes	AC3	UTXF
AC13	ΤΕΧ	Per capita exemption for federal personal in- come tax	E12	UWPD
65	TIBF	Federal indirect business taxes	E9	UWPS
66	TIBS	State and local indirect business taxes	138	VCN\$
E10	TIME	Time, 1 in 1947-1	100	VG\$
E76	TOSI	Contribution to social insurance other than OASI and unemployment insurance	32	VPD
68	ТО	OASI contributions	33	VPS
77	TPF	Federal personal income tax liability	4	
78	TPS	State and local government personal income tax and nontax payments	29	VWPD
81	TSC	State and local government contributions to so- cial insurance	31	VWPS
155	TSS	Current surplus of state and local government enterprises	E15	WAPD
E63	<i>TT60</i>	Decreasing time trend, 59 in 1947-I, 1 in 1961- II, 0 thereafter	E16	WAPS
E37	TUIB	Maximum weekly benefits payable under un-	163	WCCA\$
		employment insurance system	169	WCO\$

	E29	TUIC	Ratio of covered to total labor force
it of new producers'	70	ΤU	Unemployment insurance contribution
	64	TXF	Federal excise taxes
it of new producers'	E11	UDC	Desired proportion of debt in corporate capital
	150	ULU	Unemployment rate
k savings deposits at	172	UPCON	Exogenous
11 minmont for	171	UPC	Exogenous
lurable equipment for	176	UPHC	Exogenous
turnes for tox pur	178	UPI	Exogenous
structures for tax pur-	173	UPPD	Exogenous
1 minmont	174	UPPS	Exogenous
nd equipment	177	UPRS	Exogenous
ut Coloral govern	175	UPS	Exogenous
pility, federal govern-	AC1	UTC	Marginal rate of corporate income tax
bility, state and local	AC4	UTO	OASI contribution rate, total
bility, state and local	AC6	UTPF	Effective rate of federal personal income tax
on investment in pro-	E87	UTP	Property tax rate used in housing equation
ion investment in pro-	AC5	UTU	Unemployment insurance contribution rate
	AC3	UTXF	Index of federal excise-tax rate
xes r federal personal in-	E12	UWPD	Depreciation rate for producers' durable equip- ment
	E9	UWPS	The rate of depreciation of producers' structures
taxes	138	VCN\$	Net worth of households, trillions of dollars
usiness taxes	100	VG\$	Residual in net worth identity, billions of dollars
insurance other than	32	VPD	Equilibrium ratio of producers' durables to out- put, multiplied by a constant
t insurance	33	VPS	Equilibrium ratio of producers' structures to out-
tax liability nt personal income tax	29	VWPD	put, multiplied by a constant Present value of depreciation deduction for pro- ducers' durables
nt contributions to so-	31	VWPS	Present value of depreciation deduction for pro- ducers' structures
and local government	E15	WAPD	Proportion of new equipment depreciated using accelerated depreciation method
9 in 1947-1, 1 in 1961-	E16	WAPS	Proportion of new structures depreciated using accelerated depreciation method
fits payable under un- ystem	163 169	WCCA\$ WCO\$	Capital consumption allowance, total Corporate capital consumption allowances

OR

7	WC	Depreciation of consumer durable goods	E80 YPF\$
34	WPD\$	Bookkeeping depreciation in producers' dura- bles	56 YPG\$
E21	WPIF	Wholesale price index for rest of world	74 YP\$
35	WPS\$	Bookkeeping depreciation in producers' struc-	E71 YRC\$
		tures	166 YRT\$
26	XBC	Production capacity of producers' durables	E23 YRWS
E65	XBF\$	Farm business output	E3 YRW
E66	XBF	Farm business output	E77 YSD\$
53	XBNF\$	Nonfarm business product and households' out-	101 YSG\$
		put	80 YS\$
40	XBNF	Nonfarm business product and product of	
		households	76 YTF\$
46	XB\$	Gross private domestic business product	
3	XB	Gross private domestic business product	AC14 ZCT
48	XOBE\$	GNP, OBE definition	AC9 ZDRA
2	XOBE	GNP, OBE definition	ACII ZDR
1	X	Gross output	
E79	YBT\$	Business transfer payments	105 ZINT
41	YCR\$	Corporate retained profits	
E73	YCRW\$	Corporate profits originating in the rest of the world	E13 ZLNG
9	YC	Net imputed rent on consumer durables	AC10 ZMS
7 9	YD\$	Disposable personal income	
62	YDV\$	Corporate dividends	AC7 ZRD
123	YD	Disposable personal income	
E72	YFT\$	Personal transfer payment to foreigners	AC8 ZRT
47	YH\$	Income originating in households	
5	YH	Household product	
167	Y11\$	Interest income	The following va
E82	YLAG\$	Compensation of employees, agriculture	yet been assigned a p
54	YL\$	Labor income, nonfarm business sector	
55	YNI\$	National income, OBE definition	C(I)
165	YNNP\$	Net national product	JIA
61	YPCC\$	Cash flow of corporations after taxes	JIB
57	YPC\$	Net profits before income taxes of corporations	JID
60	YPCT\$	Net corporate profits after taxes	

.,

.

•

	E80	YPF\$	Proprietors' income in agriculture
durable goods	56	YPG\$	Total profit after depreciation and before income
n in producers' dura-			taxes, nonfarm business sector
f world	74	YP\$	Personal income
rest of world	E71	YRC\$	Interest paid by consumers
n in producers' struc-	166	YRT\$	Rental income of persons
oducers' durables	E23	YRW\$	Income originating in rest of the world
oducers durables	E3	YRW	Income originating in the rest of the world
	E77	YSD\$	Statistical discrepancy
t and households' out-	101	YSG\$	State and local government income
t and households out-	80	YS\$	Gross national product net of federal taxes and
luct and product of			transfers
luct and product of	76	YTF\$	Taxable income for federal personal income
i see product			taxes .
usiness product	AC14	ZCT	Ceiling rate on passbook saving deposits
pusiness product	AC9	ZDRA	Federal reserve discount rate
	AC11	ZDR	Federal reserve discount rate for the first fif-
		2011	teen days of the quarter
	105	ZINT	Interpolation variable for the passbook savings
nts	100		equation
ts	E13	ZLNG	Dummy variable for long amendment on depre-
ating in the rest of the	210	22.00	ciation basis
durables	AC10	ZMS	Unborrowed reserves at member banks plus
nsumer durables		25	currency outside of banks
ome	AC7	ZRD	Implicit reserve requirement against net de-
		ZRD	mand deposits at all members banks on call date
ome	AC8	ZRT	-
nt to foreigners	ACo	ZRI	Implicit reserve requirement against time de-
puseholds			posits at member banks
	Т	ne following	variables appear in the coding sheets but have not
yees, agriculture		-	a position in the data matrix:
business sector	yet bet	-	-
definition		C(I)	Denotes a residual used to satisfy an identity
demition		JIA	Dummy variable for 1959 steel strike
fton toxos		JIB	Dummy variable for dock strike

JID

Time trend variable

. '

• .

ns after taxes ne taxes of corporations fter taxes

.

`¶`

e

OR

	Normalization		
(4) (5) (8)		an Solve	Constant
	CON	$= a_1 * YD + a_{26} * (VCN/(.01 * PCON))$	+ $N(a_2 * YD_{-1}/N_{-1} + \cdots + a_{12} * YD_{-11}/N_{-11}$ + $a_{177} * (VCN_{-1}/01 * PCON_{-1} * N_{-1}) + \cdots$ + $a_{478} * (VCN_{-3}/01 * PCON_{-3}) + a_{480}R_4)$
с а	EC	$= a_{491}*YD + CON(a_{495}(PC/PCON)*(.225 + .01RCB) + a_{493} + a_{494}*JIC + a_{496}(PC_{-1}/PCON_{-1})*(.225 + .01RCB_{-1}) + \cdots + a_{500}(PC_{-5}/PCON_{-5})*(.225 + .01RCB_{-5}))$	$(+a_{433}) + a_{492} * KC_{-1} + a_{17}N + a_{18}R_6 * CON$ $B_{-1})$
	ŴС	= .05625* <i>EC</i>	+ .225KC_1
	КC	= .25*(EC - WC)	+ K C_1
(6)	YС	= .0379 * (EC/8.0)	+ .0379*KC_1
(2)	ΥН	$= (a_{14}CON + a_{15}YD + a_{16} + a_{405}R_5) * (PCON/PYH)$	
· IN ·	B. IN VESTMENT 1. Equipment	IN EQUIPMENT AND PLANTS	
	Normalization	on Solve	Constant
(11)	OPD	$= .01*(a_{43}VPD_{-1}*XB)$	+ $.01((a_{44}*VPD_{-2}*XB_{-1}) + (a_{45}*VPD_{-3}*XB_{-2}) + \cdots + (a_{53}*VPD_{-1}^{*}XB_{-1}) + a_{60}*VPD_{-1}^{*}XB_{-1} + a_{61}*VPD_{-1}^{*}XB_{-1})$
(20)	EPD	$= (a_{94} + a_{100}(OUME_{-1}/SME_{-1}))*OPD$	+ $(a_{95} + a_{10}, (OUME_{-g}/SME_{-2}))* OPD_{-1} + \cdots$ + $(a_{99} + a_{105}(OUME_{-6}/SME_{-6}))* OPD_{-5}$
(24)	RPD	$= (1.0 - UDC*AC_1)*(a_{112}*RCB + a_{113}*RDP)$	$+ u_{114}(1.0 - UDC*AC_1)$
(25)	RTPD	$= 0.1*PPD(.01*RPD + UWPD)*(1.0 - AC_*VWPD)$ - ZLNG*AC_2)*(1.0 - AC_*(1.0 - AC_))/(1.0 - AC_1)	$AC_{i} = UTC$ $AC_{i} = TCPD$
(29)	ИМРД	$= (1.0 - WAPD)(1.0) - EXP(01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}) + 2.0*WAPD*(1.0 - (1.0) - EXP(01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s})/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s})/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s})/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s})/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s})/(.01*RPD*AC_{1s}))/(.01*RPD*AC_{1s$	$AC_{IN} = SLPD$

•

ç

566

(11)	OPD	$= .01*(a_{43}VPD_{-1}*XB)$	+ $.01((a_{4*}PPD_{-2}*XB_{-1}) + (a_{45}*PPD_{-3}*XB_{-2}) + \cdots + (a_{45}*PPD_{-1}*XB_{-1}) + a_{60}*VPD_{-1}*XB_{-1} + a_{61}*VPD_{-1}*XB_{-1})$
(20)	EPD	$= (a_{94} + a_{100}(OUME_{-1}/SME_{-1}))*OPD$	+ $(a_{95} + a_{101}(OUME_{-2}/SME_{-2}))*OPD_{-1} + \cdots$ + $(a_{99} + a_{103}(OUME_{-6}/SME_{-6}))*OPD_{-5}$
(24)	RPD	$= (1.0 - UDC*AC_1)*(a_{112}*RCB + a_{113}*RDP)$	$+ u_{114}(1.0 - UDC*AC_1)$
(25)	RTPD	$= 0.1*PPD(.01*RPD + UWPD)*(1.0 - AC_1*VWPD) - ZLNG*AC_2)*(1.0 - AC_2*(1.0 - AC_1))/(1.0 - AC_1)$	$AC_2 = TCPD$
(29)	VWPD	$= (1.0 - WAPD)(1.0) - EXP(01*RPD*AC_{16}))/(.01*RPD*AC_{18}) + 2.0*WAPD*(1.0 - (1.0) - EXP(01*RPD*AC_{18}))/(.01*RPD*AC_{18}))/(.01*RPD*AC_{18}))/(.01*RPD*AC_{18}))/$	$AC_{IS} = SLPD$
(30)	KPD	= .25 EPD	$+ KPD_{-1*}(1.0 - UWPD/4.0)$
(32)	VPD	$= ((.01*PXB/(0.1*RTPD)**a_{128})*EXP(a_{129}*(TIME - 46.5))$	
(34)	WPD\$	$= (.01*PD*UWPD*KPD_{-1})/4.0$	
2.	2. Plants		
	Normalization	on Solve	Constant
(61)	EPS		$= .01(a_{77}VPS_{-1}^*XB_{-1} + \cdots + a_{87}VPS_{-11}^*XB_{-11}) + a_{92}^*KPS_{-1} + a_{$
(18)	KPS	= .25 EPS	$+ KPS_{-1}^{*}(1.025*UWPS)$
(27)	RPS	$= (1.0 - UDC*AC_1)*(u_{126}RCB + u_{127}*RDP)$	$+ (1.0 - UDC^*AC_1)^* a_{411}$
(28)	RTPS	$= 0.1*PPS(.01*RPS + UWPS)*(1.0 - AC_1*VWPS - ZLNG*AC_{17})*(1.0 - AC_{17}*(1.0 - ZLNG))/(1.0 - AC_1)$	$AC_{II} = TCPS$

I. FINAL DEMAND EQUATIONS (continued)

26 B. INVESTMENT IN EQUIPMENT AND PLANTS (continued)

;	 LIAIUS (COMINIECO 			
	Normalization	on Solve		Constant
(31)	(11) <i>VWPS</i>	= (1.0 - WAPS)*(1.0) - $EXP(01*RPS*AC_{19}))(.01RPS*AC_{19})$ + $2.0*WAPS*(1.0 - (1.0)$ - $EXP(01*RPS*AC_{19}))(.01*RPS*AC_{13}))(.01*RPS*AC_{13}))(.01*RPS*AC_{13}))$	RPS*AC19) RP3*AC19))/	AC ₁₈ = SLPS
(33)	SdA	$= ((.01*PXB/(0.1*RTPS))**u_{130})*EXP(u_{131}*(TIME - 46.5))$	*EXP(d ₁₃₁ *(TIME	
(35)	WPS\$	$= (.01*PPS*UWPS*KPS_1)/4.0$		
3.	3. Supplementary	y Equations		
	Normalization	on Solve		Constant
(21)	SME	$= a_{106}EPD*(PPD*.01)$	$+ a_{102} + a_$	$+ u_{107} + u_{108} R_{21}$
(22)	OME	$= a_{109}^* OPD * (PPD * 01)$	+ "" +	$+ a_{110} + a_{113} R_{22}$
(23)	OUME	= .25 <i>0ME</i> 25 <i>SME</i>	+ 0UME_1	dE_1
(36)	(26) XBC	11	+ a ₁₁₅ X.	$+ a_{115}XB_{-1} + \cdots + a_{125}XB_{-11} + (1.0 - a_{21})*XBC_{-1}$
C. H	C. HOUSING			

= a_{51} ln (CON/.001*N) + a_{522} ln RCH I (181) In (HS1\$/)

 $= u_{\rm S02} \ln (100.0RH/PHCA) + u_{\rm S03} \ln (RCH3)$ + $a_{594} \ln (D-DSL)$ (183) In (HS3\$/).

ł

1

1

, ŧ

Ì

1 1

+ $u_{584} \ln RCHI_{-1} + \cdots + u_{384} \ln RCHI_{-3}$ + $u_{585} \ln (D - DSL)_{-1} + \cdots + u_{587} \ln (D - DSL)_{-3}$ + $u_{3,89}$ + u_{590} ln ((KH1/(l) - N20/N)* NS/NA * $N.0011_{-1}$) + $u_{591}R_{181}$

:

Constant

Solve

Normalization

+ a_{uot} ln (100.0*RH*/*PHCA*)_1 + · · · · · + a_{uot} ln (100.0*RH*/*PHCA*)_3 + a_{uot} ln (*D*-*DSL*)_1 + · · · + $u_{\rm sin}$ ln (D-DSL) - 5 + $u_{\rm end}$ (TIME - 4.()) + · · · + $u_{\rm end}$ (LDLE H2 - · · · 6.0, NL + · · · · · · + a_{595} ln (*RCH3*)₋₁ + · · · + a_{601} ln (*RCH3*)₋₇

(21) SME	$= a_{106}EPD*(PPD*.01)$	$+ a_{107} + a_{108} R_{21}$
(22) <i>OME</i>	$= u_{100}^* OPD^* (PPD^* 01)$	$+ a_{110} + a_{111} R_{22}$
(23) <i>OUME</i>	= .250ME25SME	$+ OUME_{-1}$
(26) <i>XBC</i>	H	$+ a_{115}XB_{-1} + \cdots + a_{125}XB_{-11} + (1.0 - a_{21})*XBC_{-1}$
C. HOUSING		
Normalization	tion Solve	Constant
(181) In (<i>HS1\$</i> /)	= 4 ₅₁ ln (CON/.001*N) + 4 ₅₂ ln RCH1	
		$\begin{array}{l} + a_{382} \ln RCH_{I-1} + \cdots + a_{384} \ln RCH_{I-3} \\ + a_{655} \ln (D - DSL)_{-1} + \cdots + a_{387} \ln (D - DSL)_{-3} \\ + a_{655} \ln (PCON/PHCA)_{-1} + \cdots + a_{387} \ln (D - DSL)_{-3} \\ + a_{681} \ln (PCON/PHCA)_{-1} + \cdots + a_{562} TIME_{-4} a_{562} \\ \end{array}$
(183) In (<i>HS35</i>))	$= u_{393} \ln (100.0RH/PHCA) + u_{393} \ln (RCH3) + u_{394} \ln (D-DSL)$	$\begin{aligned} &+ a_{rso} + a_{rso} \ln ((KHI/l) &- a_{rso} + a_{rso} \ln ((KHI/l) &- N20/N) &+ N8.001)_{-1} + a_{rso} R_{181} \\ &- N20/N) &+ N85/NA & N8.001)_{-1} + a_{rso} R_{181} \\ &+ a_{rso} \ln (RCH3)_{-1} + \cdots + a_{rso} \ln (RCH3)_{-7} \\ &+ a_{rso} \ln (100.0RH/PHCA)_{-1} + \cdots \\ &+ a_{rso} \ln (100.0RH/PHCA)_{-1} + \cdots \\ \end{aligned}$
(182) <i>HS1</i> 5 (184) <i>HS3</i> 5 (15) <i>EH</i> 5	$= EXP(\ln (HS1S/))*(1.0)$ $- N20/N)*NS/NA*N*PHCA*.001$ $= EXP(\ln (HS3S/))*(1.0 - N20/N)*(1.0)$ $- NS/NA)*N*.001*PHCA$	$+ \cdots + a_{603} \ln (D - DSL)_{-5} + a_{610} (T ME - 4.0) + a_{611} + a_{611} + a_{612} (1.0/KH3_{-1} - 60.0) + a_{613} R_{183}$
(127) RCHI	$= \frac{a_{614}(7315 + H535)}{(1.0 - UTPF_{*.01})^* (a_{557}RM + a_{6}RCR)}$	$+ \frac{u_{615}^{*}(TIME - 4.0) + \frac{u_{616}^{*}(HSIS + HS3S)_{-1}}{+ \frac{u_{617}^{*}(HSIS + HS3S)_{-2} + \frac{u_{618}^{*}}{+ u_{61$
(128) RCH3 (186) KH1 187) KH3	$= u_{561}RM + u_{502}RCB$ = $u_{547}^{*}(u_{546} + u_{549}^{*}(TIME - 4.0))/(4.0*PRS*.01)$ = $u_{567}^{*}(u_{566} + u_{567}^{*}(TIME - 4.0))/(4.0*PRS*.01)$	$+ (1.0 - UTPF^{*}.01)^{*} d_{535} UTP + d_{362}$ $+ d_{563} + d_{544} UTP$ $+ d_{545} + d_{544} + UTP$ $+ d_{546} * KHI_{-1} + (HSI_{5}/.01^{*}PRS))_{-1}$
(188) PHCA	= <u>PHC*PHCA_1</u> PHC_1	$+ \frac{u_{566}^{4} \wedge H_{5-1} + u_{569}^{*} (HS38/(PR5*,01))_{-2}}{u_{576}^{*} (HS38/(PR5*,01))_{-3}} + PHCA_{-1}^{*} (0025)$

I. FINAL DEMAND EQUATIONS (concluded)

D. STATE AND LOCAL GOVERNMENT EXPENDITURE

-YSS

571

	II. DISTRIBUTION OF INCOME	INCOME
A. DEFINITION OF	ON OF OUTPUTS	
Normalization	ization Solve	Constant
<i>x</i> (1)	= CON + EC + EH\$/(.01*PRS) + EPD + I + EPS + EGS\$/(.01*PS) - EIM	$+ EEX + EGF - I_{-1} + D - IF$
(2) <i>XOBE</i>	= X - YC - WC	
(3) XB	$= XOBE - EGSL_{\$}/(.01*PGE) - YH$	-YRW - EGFLS((.01*PGE)
(40) XBNF	= XB + YH	– XBF
(44) ECO	= CON + EC - YC - WC	
B. NET NATIONAL	IONAL PRODUCT AND NATIONAL INCOME	
Norma	Normalization Solve	Constant
(165) YNNP\$	s = XOBES - WCCAS	
(55) YNI\$	= YNNP\$ - TIBS - TIBF - TSS	-YBT\$ - YSD\$ + GFG
C. LABOR INCOME	JCOME	
Norma	Normalization Solve	Constant
(54) YL\$	= (.01*PL)*LMHT	
D. NONLABOR INCOME	OR INCOME	
Normalization	ization Solve	
(56) YPG\$	= YNI\$ - YI\$ - FG SI \$ - VINTS	Constant
E. CORPORA	E. CORPORATE PROFITS, CASH FLOWS AND DIVIDENDS	-YLAGS - EGFLS - YPFS
Normalization	zation Solve	
		COnstant

.

572

(165)	(165) YNNP\$ (55) YNI\$	= XOBE\$ - WCCA\$ = YNNP\$ - TIBS - TIBF - TSS	$-\gamma BT$ \$ $-\gamma SD$ \$ $+GFG$
с. L/	C. LABOR INCOME	46	Constant
	Normalization	Solve	
(54)	\$7 <i>X</i>	= (.01*PL)*LMHT	
D. N	D. NONLABOR I	INCOME	
	Normalization	on Solve	Constant
(56)	YPG\$	= YNI\$ - YL\$ - EGSL\$ - YRT\$ - YII\$	-YLAG\$ - EGFL\$ - YPF\$
О Ш	CORPORATE	PROFITS, CASH FLOWS AND DIVIDENDS	
	Normalization	on Solve	Constant
(153)) n (<i>YPC</i> \$)	$= a_{482} \ln (YPG\$) + a_{443} \ln (XB/XBC)$	$+ a_{444} \ln (XB/XBC)_{-1} + a_{445}TIME + a_{446} + a_{461}R_{153}$
(57)	YPC\$	= EXP(.01* n YPCS)	
(09)	YPCT\$	= YPC\$ - TCIF - TCIS	
(19)	YPCC\$	= YPCT\$ + WCO\$	
(691)	WCO\$	$= WCCA\$04*PRS(a_{546}*KHI_{-1} + a_{568}KH3_{-1})$	+ C(169)
(62)	YDV\$	$= u_{205} YPCC\$$	$+ u_{206} + u_{208} YPCC\$_{-1} + \cdots + u_{215} YPCC\$_{-8} \\ + u_{408} R_{62}$
(41)	YCR\$	= YPC\$ - YDV\$ - TCIF - TCIS - IVA\$	
н Н	ERSONAL IN	F. PERSONAL INCOME AND DISPOSABLE INCOME	
	Normalization	on Solve	Constant
(74)	\$ <i>P</i> \$	= YNI\$ - YPC\$ - TO - TU + YDV\$ + GB + GSP - TSC	-TOSI + GSI + GFI + GFP + YRCS + YBTS
(62)	YD\$	$= YP\$ - TPF - TPS + .01*RCB*(KC_{-1}*PC + EC\$/8.0)$	-TEGF - YRCS
		(continued)	

. •

1e.

- ° f

) () . .

$PI*I_{-1} $		Normalization	uc	Solve	Constant
UDD- OUTUT TUDEVING AND NET-WORTH IDENTITYNormalizationSolveNormalizationVCN\$= .05*(VDV\$/RDP)VCN\$= .05*(VDV\$/RDP)+VCN\$= .05*(VDV\$/RDP)+VCN\$= .05*(VDV\$/RDP)+VCN\$= .05*(VDV\$/RDP)+VCN\$= .05*(VDV\$/RDP)+++	(159)	11/18	$= \alpha_{507} * PI + \alpha_{508} * PI * I_{-1}$		$- a_{508}PI_{-1}*I_{-1} - a_{507}PI_{-1} + a_{509}$ $- I = 0.01*PI$
NormalizationSolve $VCNS$ = .05*($YDVS/RDP$)+ VSS = .05*($YDVS/RDP$)> VSS = .05*($YDVS/RDP$)Solve VSS = .068ES - $TCIF - TIBF - TO - TPF - TU + GB$ + VSS = .0414*RH*KH1_1*C(166)+ $VIIS$ = .0414*RH*KH1_1*C(166)* $VIIS$ = .0414*RH*SS)*4.0 + .04*PSS*($u_{Sig}KH1_{-1}$ +	H. SAV	VING AND		~	
$VCNS = .05*(YDVS/RDP) + $ $CELLANEOUS ITEMS$ $CELLANEOUS ITEMS$ $Normalization Solve$ $Normalization Solve + $ $VSS = XOBES - TCIF - TIBF - TO - TPF - TU + GB + $ $VRTS = .0414*RH*KH1_{-1}*C(166)$ $YIIS = EXOGENOUS$ $WCCAS = (WPDS + WPSS)*4.0 + .04*PRS*(u_{546}KH1_{-1} + $		Normalizati		Solve	Constant
SCELLANEOUS ITEMSNormalizationSolveNormalizationSolve $YS$$ = $XOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YS$$ = $XOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YS$$ = $XOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YS$$ = $XOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YS$$ = $XOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YS$$ = $XOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YS$$ = $XOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRT$$ = $AOBES - TCIF - TIBF - TO - TPF - TU + GB$ YRT= AOBES - TCIF - TIBF - TO - TPF - TU + GBYRT$= AOBES - TCIF - TIBF - TO - TPF - TU + GBYRT$= AOBES - TCIF - TIBF - TO - TPF - TU + GBYRT$= AOBES - TCIF - TIBF - TO - TPF - TU + TU$	(138)	VCN\$	= .05*(<i>YDV\$/RDP</i>)		+ $VCNS_{-1}$ + (.25*(VDS_{-1} - CON_{-1} *.0]* $PCON_{-1}$) + .01*(PRS_{-1} - PRS_{-2})*(KHI_{-2} + $KH3_{-2}$) + .01*(PC_{-1} - PC_{-2})* KC_{-2} - 50.0* $VDVS_{-2}$ (RDP_{-2} + VGS_{-1})*.001
Normalization Solve $YSS = XOBES - TCIF - TIBF - TO - TPF - TU + GB$ $YRTS = .0414*RH*KH1_{-1}*C(166)$ $YIIS = EXOGENOUS$ $WCCAS = (WPDS + WPSS)*4.0 + .04*PRS*(u_{546}KH1_{-1})$	I. MISC	CELLANE	OUS ITEMS		
YSS = XOBES - TCIF - TIBF - TO - TPF - TU + GB $YRTS = .0414*RH*KH1_1*C(166)$ YIIS = EXOGENOUS $WCCAS = (WPDS + WPSS)*4.0 + .04*PRS*(u_{546}KH1_{-1})$		Normalizati	ио	Solve	Constant
$YKIS = .0414*KHI_1*C(100)$ YIIS = EXOGENOUS $WCCAS = (WPDS + WPSS)*4.0 + .04*PRS*(u_{546}KHI_{-1})$	<u>،</u>	YS\$	= XOBE\$ - TCIF - TIB	BF - TO - TPF - TU + GB	+ GFI + GFP + GFG - TEGF - TOSI
$WCCA\$ = (WPD\$ + WPS\$)*4.0 + .04*PRS*(a_{546}KHI_{-1})$		YKIS YII\$	$= .0414*KH*KH1_1*C(1)$ $= EXOGENOUS$	00)	
		WCCA\$	$= (WPD\$ + WPS\$)*4.0 + + a_{568}KH3_{-1})$	+ .04*PRS*(u ₅₄₆ KH1_1	+ C(163)
				II. TAXES AND TRAN	SFERS
III. TAXES AND TRANSFERS	A. COR	PORATE II	NCOME TAXES		
III. TAXES AND TRANSFERS A. CORPORATE INCOME TAXES	z	lormalization		Solve	
	(58) TC	TCIS	$= u_{137}(YPC\$ - IVA\$) + u_{111}FG \le N\$$	EGANE	Constant

.

= "####dC.*YPC\$ + "... # 4C.* CPL (59) TCHF

•

· oci · cep + GEG - TEGE - TOSI					
Solve	= XOBE\$ - TCIF - TIBF - TO - TPF - TU + GB	= .0414* <i>RH</i> * <i>KH</i> 1_1* <i>C</i> (166)	= EXOGENOUS	$= (WPD\$ + WPS\$)*4.0 + .04*PRS*(u_{546}KHI_{-1})$	$+ a_{568} KH3_{-1}$
Normalization	(80) YS\$	(166) YRT\$	(167) YIIS	(163) WCCAS	

.

III. TAXES AND TRANSFERS

A. CORPORATE INCOME TAXES

	Normalization	n	Solve	Constant	
(58) (59)	(58) TCIS (59) TCIF	$= a_{197}(YPC\$ - IVA\$) + a_{118}EGSN\$$ $= a_{292}*AC_1*YPC\$ + a_{208}*AC_2*EPD\$$	₅EGSN\$ C₂*EPD\$	$+ u_{199} + u_{200}R_{38} + u_{207}R_{39} + $	AC ₁ = UTC
B. 1	NDIRECT BU	B. INDIRECT BUSINESS TAXES			
	Normalization		Solve	Constant	
(63)	ln <i>TXF</i>	$= a_{216} \ln ECO\$$		$+ a_{217} \ln (AC_3) + a_{218} + a_{167} R_{63}$ $AC_3 =$	$AC_3 = UTXF$
(64)	TXF	$= EXP(.01 \ln TXF)$			
(65)	TIBF	= TXF		+ TCDF	
(99)	TIBS	$= u_{219}YS\$ + u_{220}EGSN\$$		$+ (a_{223} + a_{224}(YSS_{-1})(.001 + N_{-1}))$	
C. P	ERSONAL IN	C. PERSONAL INCOME TAXES		$+ a_{228}(EGSNS_{-1}/(.001*N_{-1}) + a_{221}*R_{66})*(.001*N)$	(N*I0
	Normalization	И	Solve	Constant	
(75)	$\ln\left(1-\frac{YTF}{YP\$}\right)$	(75) $\ln\left(1-\frac{YTF\$}{YP\$}\right) = a_{249} \ln YP\$$		$-a_{249} \ln N + a_{290} \ln (AC_{13}) + a_{251} AC_{13}$	$AC_{13} = TEX$

I 575

(continued)

1 -	Normalization	tion	Solve	Constant	
<u>^</u>	YTF\$	$= (-EXP\left(\ln\left(1 - \frac{YTF\$}{YP\$}\right)\right) + 1)*YP\$$	$\left(\frac{f\xi}{\delta^2}\right) + 1 \gg YP\xi$		
	TPF	$= AC_{6}*YTFS/100.0$			$AC_6 = UPTF$
	(78) TPS	$= a_{252} YP\$ + a_{253} EGSN\$$	۰. ۲	+ α 255*N*.001	
5	NTRIBUT	D. CONTRIBUTIONS TO SOCIAL INSURANCE	URANCE		
	Normalization	tion	Solve	Constant	
	In (<i>TO</i>)	= <i>a</i> 226 In YP\$		$+ u_{227} JOA + u_{229} JOB + u_{229} JOC + u_{230} JOD + a_{231} + u_{232} \ln (AC_4)$	$+ a_{230}JOD + a_{231}$
					$AC_4 = UTO$
	то	$= EXP(\ln TO)$			
	In <i>TU</i>	= <i>a</i> 233 In <i>YP</i> \$		$+ a_{234} \ln (TUIC) + a_{235} + a_{236} \ln (AC_5)$	$(AC_{\rm s})$ $AC_{\rm s} = UTU$
(0)	TU	$= EXP(\ln TU)$			
	TSC	$= u_{257} * EGSL$		$+ a_{117} + a_{256}R_{81}$	
~	A NSE D				
~ I	ANSFEK	L. INANSFER PAYMENTS			
	Normalization	tion	Solve	Jone Constant	
	$\ln GB$	= α ₂₃₁ ln (<i>LU</i>)		$+ a_{zas} \ln (TUIC) + a_{zas} \ln TIIIR + z_{zas} + a_{zas} \ln TUIC$	
-	GB 222	$= EXP(.01* n \ GB)$		$+a_{241} + a_{409}R_{71}$	г а ₂₄₀ III (L26U)

AC_s=UTU $+ a_{234} \ln (TUIC) + a_{235} + a_{238} \ln (AC_5)$ $+ a_{417} + a_{236}R_{81}$ $= EXP(\ln TU)$ $= EXP(\ln TO)$ $= a_{257} * EGSL$ = a₂₃₃ In YP\$ (69) In *TU* (70) TU (81) TSC (68) TO

•

 $AC_4 = UTO$

E. TRANSFER PAYMENTS

	Normalization	n Solve	Constant
(11)	(71) In <i>GB</i>	$= a_{237} \ln (LU)$	$+ a_{238} \ln (TUIC) + a_{239} \ln TUIB + a_{240} \ln (L26U)$ $+ a_{241} + a_{409}R_{11}$
(72)	GB	$= EXP(.01*\ln GB)$	
(73)	(73) GSP	$= (u_{242}Y55/(.01*POBE) + u_{243}(LE+LA/N)Y55/(.01*POBE) + u_{246} + u_{243}(.00001*N*PS) $	$+ a_{246}$ $+ a_{245}GFS$
(155)	(155) <i>TSS</i>	$= a_{so1}*YS$ + $a_{so2}*EGSN$	$+ a_{505} + a_{506} * YSS_{-1} + a_{503}R_{155}$
F. N	ET DEFICIT	F. NET DEFICIT OF GOVERNMENT	
	Normalization	n Solve	Constant
(161)	(161) <i>GDSF</i>	= TPF + TCIF + T + TO + TU - GB	$\begin{array}{ccc} GB & + TEGF + TOSI - EGF\$ - GFP - GFS - GFI \\ - GFG - GFR \end{array}$

+ GFS - GSI

= TPS + TCIS + TIBS + TSC - EGS\$ - GSP + TSS

(162) *GDSS*

	Normalization		Solve	Constant
(139)	(139) <i>LMHT</i>	$= EXP(.01*\ln LMHT)$		
(145)	(145) In (<i>LMHT</i>)	$= \ln (XBNF) + a_{438} \ln (XB/XBC) + a_{438} \ln (ULU) + a_{460} \ln (XBNF)$	<i>XBC</i>) + <i>a</i> ₄₅₉ ln (<i>ULU</i>)	$- a_{400} \ln (XBNF_{-1}) + a_{461}JRI + a_{422}JR2 + a_{453}JR3 + a_{408}JTI + a_{459}JT2 + a_{470}JT3 + a_{471}JT4 + a_{486}$
(142) <i>LH</i>	ГН	$= EXP(.01*\ln{(LH)})$		+ (J ₄₆₅ K 145
(146)	(146) In (<i>LH</i>)	$= a_{466} \ln (LMHT)$		$-a_{466} \ln (LMHT)_{-1} + a_{467} \ln (LH_{-1}) + a_{473}T760$
(147)	(147) <i>LEBT</i>	= TMH1/TH		$+ a_{374} + a_{475} K_{146}$
(148) LE	LE	<i>= LEBT</i>		+ 160
(125)	(125) (<i>LE+LA</i>)	= <i>LE</i>		+ 14
B. SL	B. SUPPLY OF LA	LABOR AND UNEMPLOYMENT	AENT	
	Normalization		Solve	Constant
(143)	(143) <i>LF+LA</i>	$= a_{47}^* (LE + LA)^* \left(1.0 - \frac{LPRI}{NI6} \right)$	<u>16</u>)	$NI6*(a_{448}*\frac{(LE+LA)_{-1}}{NI6_{-1}}*\left(1.0-\frac{LPRI}{NI6}\right)_{-1}+\dots+a_{455}*\frac{(LE+LA)_{-8}}{NI6_{-8}}*\left(1.0-\frac{LPRI}{NI6}\right)_{-8}+a_{456}$
				+ a_{457} * ln (<i>TIME</i> + 88.0) + a_{487} * $\left(1.0 - \frac{LPRI}{NI6}\right)$
(124) <i>LU</i>	ΓN	= (<i>F</i> + <i>FA</i>) - (<i>FE</i> + <i>FA</i>)		$+ a_{168}R_{143}$
(150)	ULU	= (LU/(LF+LA))*100.0		
THI	A. THE WAGE RATE	ш	V. PRICES	
	Normalization	Sol	Solve	
(152)	PL	$= (a^{\text{ess}})(UUU + UUU) + (a^{\text{ess}}) =$		Constant
		+ YPCC\$_2))*PL_2	18* Y F C C 3/(Y F C C 3-1	$(1.0) + a_{827} * (PCON_{-2} - PCON_{-1}) PCON_{-1} + a_{628} + a_{628} R_{100} * PL_{-1} + a_{021} TOON_{-1} + A_{022} PCON_{-1} + A_{023} PCON_{-1} $
ŀ				m_{2} = 14. m_{2} = m_{2} = m_{2} = m_{2} = m_{2} = m_{2} = m_{2}

,

.

.

578

.

-

		+ + $a_{453} * \frac{(LE+LA)_{-8}}{NI6_{-8}} * \left(1.0 - \frac{LA}{NI6}\right)_{-8} + a_{456}$
		+ $a_{457} * \ln (TIME + 88.0) + a_{487} * \left(1.0 - \frac{LPRI}{N16}\right)$ + $a_{458}R_{143}$
(124) <i>LU</i>	= (LF + LA) - (LE + LA)	
(120) 070		
	V. PRICES	
A. THE WAUE KALE		
INOFINALIZATION	JOIL SOLVE	Constant
(152) <i>PL</i>	$= (a_{636}/(ULU + ULU_{-1}) + a_{636}*YPCC\$/(YPCC\$_{-1} + YPCC\$_{-1}))*PL_{-2}$	$(1.0 + a_{637}*(PCON_{-2} - PCON_{-4}) PCON_{-4} + a_{638} + a_{638} + a_{638}R_{152})*PL_{-2} + a_{646}(UTO - UTO_{-2})*PL_{-2}$
B. THE GENERAL PRIC	AL PRICE LEVEL	
Normalization	ion Solve	Constant
(154) <i>QPXB</i>	$= \ln (PL) - a_{621} \ln (PL) + a_{622} (OUME/SME) * EXP(.002698(TIME - 80.0)) + a_{624} (\ln XBNF - \ln LMHT)$	$+ a_{625} + a_{621}QPXB_{-1} + a_{627}\Delta \ln (31.91*PWM + 68.09*PFM) + 68.09*PFM) + a_{626}[(OUME/SME)*EXP(.002698(TIME - 80))]_{-1} + a_{682.05}I + a_{682.15}I + a_{682.1$
(189) <i>PXB</i> *	= EXP(QPXB)/(1.0 - (TIBF/XBS))	
C. ALL OTHER PRICES THESE PROPORTION AS FOLLOWS:		ARE DEFINED IN TERMS OF PROPORTIONALITY TO THE GENERAL PRICE AND ALITIES ARE TAKEN AS EXOGENOUS IN THE CURRENT VERSION OF THE MODEL,
Normalization	on Solve	Constant
(156) <i>PXBNF</i> (129) <i>PXB</i>	= 100.0*(.01*PXB*(XBNF - YH) + YH\$)/XBNF = 100.0*(XBNF\$ - YH\$ + XBF\$)/(XBNF - YH + XBF)	

v. PRICES (concluded)

ç

C. ALL OTHER PRICES ARE DEFINED IN TERMS OF PROPORTIONALITY TO THE GENERAL PRICE AND

	Normalization		Solve	Constant
(051)	POBE	$= \frac{100.0 * (XB\$ + EGSL\$}{(XB + (EGSL\$/PGE) + EGSL\$ + EGSL\$)}$	$\frac{100.0*(XB\$ + EGSL\$ + YH\$ + YRW\$ + EGFL\$)}{(XB + (EGSL\$ PGE) + YH + (EGFL\$ PGE) + YH)}$	
(131) PC	PC	= UPC*PXBNF		
(171)	(171) UPC	= EXOGENOUS		
(132)	(132) PCON	= UPCON*PXBNF		
(172)	(172) UPCON	= EXOGENOUS		
(158)	(158) <i>PCO</i>	$= PCON*(ECO - EC + WC + .0379*(KC_{-1} + EC/8.0))/ECO - PC*(-EC + WC + .01*RCB*(KC_{-1} + EC/8.0))/ECO + .01*RCB*(KC_{-1} + EC/8.0))/ECO$	WC + .0379 *(KC _1 *(-EC + WC C/8.0))/ECO	
(133)	(133) <i>PPD</i>	= UPPD*PXBNF		
(173)	(173) UPPD	= EXOGENOUS		
(134)	PRS	= UPRS*PXBNF		
(177)	UPRS	= EXOGENOUS		
(135)	PS	= UPS*PXBNF		
(175)	UPS	= EXOGENOUS		
(136)	(136) <i>PHC</i>	= UPHC*PXBNF		
(176)	(176) UPHC	= EXOGENOUS		
(141) PPS	Sdd	= UPPS*PXBNF		
(174)	(174) UPPS	= EXOGENOUS		
(168) <i>PI</i>	Ы	= UPI*PXBNF		
(178) UPI		= EXOGENOUS		

.

•

580

•

· ·	VARIABLES AND REAL VARIABLES	Constant
= UPPD*PXBNF = EXOGENOUS = UPRS*PXBNF = EXOGENOUS = UPS*PXBNF = EXOGENOUS	 (136) PHC = UPHC*PXBNF (176) UPHC = EXOGENOUS (141) PPS = UPPS*PXBNF (174) UPPS = UPPS*PXBNF (178) PI = UPI*PXBNF (168) PI = UPI*PXBNF (178) UPI = EXOGENOUS (178) UPI = EXOGENOUS D. TRANSFORMATION BETWEEN THE CURRENT DOLLAR VARIABLES AND REAL VARIABLES 	nSolve $= XB*(PXB*.01)$ $= YH*(PYH*.01)$ $= YH*(PYH*.01)$ $= YOBE*(POBE*.01)$ $= EPD*(PPD*.01)$ $= EPD*(PPS*.01)$ $= EPD*(PPS*.01)$ $= ECO*(PCO*.01)$ $= ECO*(PCO*.01)$ $= EC*(PC*.01)$ $= EC*(PC*.01)$ $= XBNF*(PXBNF*.01)$ $= YDS/(.01*PCON)$
(133) <i>PPD</i> (173) <i>UPPD</i> (134) <i>PRS</i> (135) <i>PS</i> (175) <i>UPS</i>	(136) <i>PHC</i> (176) <i>UPHC</i> (141) <i>PPS</i> (174) <i>UPPS</i> (168) <i>PI</i> (178) <i>UPI</i> D. TRANSFORMA	Normalization (46) XB\$ (47) YH\$ (48) XOBE\$ (48) XOBE\$ (50) EPD\$ (51) ECO\$ (52) EC\$ (53) XBNF\$ (123) YD

.

N. FINANCIAL A. MONEY MARKET I. Demand for Currency. A. MONEY MARKET I. Demand for Currency. Normalization Solve (83) In MC\$ $= (1.0 - a_{126}) \ln ECO$ + a_{236} \ln RTP$ (84) MC\$ $= (1.0 - a_{126}) \ln ECO$ + a_{236} \ln RTP$ (84) MC\$ $= (1.0 - a_{126}) \ln ECO$ + a_{236} \ln RTP$ (84) MC\$ $= (1.0 - a_{126}) \ln BCO$ + a_{236} \ln BTP$ (87) RTB $= EXP(.01* \ln MC$)$ (87) RTB $= (1.0 - a_{126}) \ln BCO$ + a_{236} + RTD$ (87) RTB $= (1.0 - a_{126}) \ln BCO$ + a_{236} + RTD$ (86) MD\$ Solve (86) MD\$ $= (MDS$ * JMSA +) MSA$ (15) MFR$ = a_{280} * (1.0 - AC_7) * MRU$ + a_{27} * (\frac{5}{161}, 25MD58_7) + a_{27} * (\frac{5}{161}, 25MD58_7) + a_{27} * A_{2$

Constant	$- u_{268}^{*} (1.0 - AC_7) * MRUS_{-1} + u_{268}^{*} (1AC_8) - AC_{8,-1} * MTS_{-1} + (AC_7 - AC_{7-1}) * MDSS_{-1} + (u_{270} + u_{271} * JSI + u_{272} * JS2 + u_{273} * JS3 + (u_{270} + u_{271} * JSI + u_{273} * JSI + u_{278} * ZDRA) * \left(\sum_{i=1}^{4} .2SMDSS_{-i}\right) + u_{276}MFRS_{-1}$	$- a_{271} * AC_7 * DCL S_{-1} * JCL S_{-1}$ + $a_{278} R_{115} \left(\sum_{i=1}^{4} .25 MDS S_{-i} \right)$	ĺ	Constant	$+ a_{380}RTB_{-1} + a_{291}JCD + a_{410}$		Constant		$AC_{x} = ZMS$		Constant	$+ a_{324} + a_{325}JS2 + a_{325}JS3 + a_{327}JS4 + a_{308}In (MDS5) - + a_{408}In (MDS5) - + a_{408}In (MS18) - $		
	$- a_{266}^{*}(1.0 - A - AC_{6,-1})^{*}M + (a_{270} + a_{27} + a_{27} + a_{27} + a_{27} + a_{27}^{*}ZDR$	$- a_{277}^* A C_{7^*} + u_{278} R_{115} \left(\right)$			$+ a_{280}RTB_{-1}$ -				+ AC10			$+ a_{324} + a_{325}J_5 + a_{438} \ln (M)$		
Solve	$= a_{268}^{*} (1.0 - AC_{7}) * MRU \$ + a_{274}^{*} \left(\sum_{i=1}^{4} .25MDS \$_{-i}\right) * RTB + a_{277}^{*} AC_{7}^{*} DCL \$_{4} JCL \$$		4. Relation Between the Treasury Bill Rate and Commercial Paper Rate	Solve		s Sheet Identities	Solve	AC ₈ *MTM\$)/AC ₇			Solve			(continued)
_			een the Treasury Bill R _é	Ę	$= (a_{279} - a_{280})RTB$	5. Reserve and Commercial Bank Balance Sheet Identities	5	$= (MRU\$ - MFR\$ - AC_{\$}*MTM\$)/AC_{7}$	=-MC\$	/ Equations	-	= <i>u</i> ₃₂₃ * n (<i>MDS\$</i>)	$= EXP(.01*\ln JMSB)$	
Normalization	115) MFR\$		Relation Betw	Normalization	RCP	Reserve and C	Normalization	\$SUM	MR U\$	6. Supplementary Equations	Normalization	ln (<i>JMSB</i>)	JMSB	
	2		4		88)	s.		(68	606	ۍ		(86	(66	

ľ

.

583

 $AC_{11} = ZDR$ $+ a_{315} \cdot 25 \approx (D - IS_{-1} + EPDS_{-1} + EPSS_{-1} - WCOS_{-1})$ $+ u_{307}RCL_{-1} + u_{308}JS2 + u_{309}JS3 + u_{310}JS4 + u_{311}$ $+ u_{551}RCB_{-1} + u_{552}RCB_{-2} + u_{553}RCB_{-3} + u_{554}JCD_{-3}$ + $(1 - a_{315})DCLS_{-1} + a_{315}DCLS_{-2}$ + $(u_{317} - a_{316})*(XBNFS_{-1} - YHS_{-1} - (D-lS)_{-1})$ $+ a_{283}RCP_{-1} + \cdots + a_{300}RCP_{-18} + a_{400} + a_{401}R_{91}$ $+ u_{305}AC_{11} + (u_{306} - u_{305})AC_{11,-1} - u_{306}AC_{11,-2}$ $- a_{317}^* (XBNF\$_{-2} - YH\$_{-2} - (D-I\$)_{-2})$ Constant Constant Constant Constant $+ a_{769} + a_{771} * RCB_{-1} + a_{773}R_{103}$ $+ a_{555} + a_{556}R_{104}$ VI. FINANCIAL SECTOR (continued) ----- $= u_{318}(D - I\$) + u_{313}EPD\$ - .25*u_{313}*EPS\$ + u_{316}(XBNF\$)$ - $YH\$ - (D-I\$) + (u_{318}*(RTB - RCL) + u_{416}*(RCB)$ B. TERM STRUCTURE EQUATION FOR CORPORATE BOND RATE $-RCL) * (XBNF\$ - YH\$ - XBNF\$_1 + YH\$_1)$ $= u_{302}*DCL\$/(MD\$ + MT\$ - DCL\$) + u_{303}RCB$ $+ u_{304}(MCDA\$/(MD\$ + MT\$))$ 1 Solve Solve Solve Solve F. TIME DEPOSITS AT COMMERCIAL BANKS $= a_{770}^* RCB + a_{772} DCLS/MTS$ E. DETERMINATION OF MORTGAGE RATE ì ı C. COMMERCIAL LOAN MARKET $+ a_{3n_3}WCO$ \$ D. MUNICIPAL BOND RATE 1. Passbook Savings Accounts $= u_{282}RCP$ $= u_{550}RCB$ Normalization Normalization Normalization Normalization (103) RSLG (93) DCL\$ RCL (91) RCB (104) RM (62)

584

i

D. MUNICIP.	D. MUNICIPAL BOND RATE		
Momolization	ization	Solve	Constant
(103) RSLG	$= a_{770} * RCB + a_{772} DCLS MTS$	DCLS/MTS	$+ a_{759} + a_{771}^* RCB_{-1} + a_{773}R_{103}$
E. DETERMINATION	NATION OF MORTGAGE RATE	GE RATE	
Norma	Normalization	Solve	Constant
(104) <i>RM</i>	= 11 ₅₅₀ RCB		$+ u_{551}RCB_{-1} + u_{552}RCB_{-2} + u_{553}RCB_{-3} + u_{554}JCD_{-3} + u_{555} + u_{556}R_{104}$
F. TIME DEPOSITS . 1. Passbook Savings	F. TIME DEPOSITS AT COMMERCIAL BANKS 1. Passbook Savings Accounts	IAL BANKS	
Norma	Normalization	• Solve	Constant
(106) RTP	$= u_{350}RM + u_{351}ZINT$	NT	$+ a_{352}RTP_{-1} + a_{415}$
(157) MTP\$	= MTPA\$ *JTPS		
(105) ZINT	11		$= .5333(AC_{14} - AC_{14,-1} + ZINT_{-1})$ $AC_{14} = ZCT$
(110) In (<i>MTPA\$</i>)	11	$u_{363} \ln RTP + u_{364} \ln RSL + u_{365} \ln RCB + u_{366} \ln (.01*PCON) + (1.0 - u_{363}) \ln (VCN3*1000)$	+ $a_{368} \ln MTPS_{-1} + a_{369} \ln (.01 * PCON_{-1}) + a_{370}$
(111) MTPA\$	= EXP(.01* n MTPA\$)	PAS)	
2. Nonpass	2. Nonpassbook Time Deposits		
Norma	Normalization	Solve	Constant
(109) RCD	$= u_{360}RTB$		$+ a_{361}RCD_{-1} + a_{362}$
(112) MCDA\$	s = EXOGENOUS		
(113) MCD\$	= JCDS*MCDA\$		

;

q
de
lu
10
0
\underline{c}
SECTOR
FINANCIAL
٧I.

¢

986 F. TIME DEPOSITS AT COMMERCIAL BANKS (continued)

٠

3. Accounting Identity

Non	Normalization	Solve	Constant
(114) <i>MTM\$</i> (122) <i>MT\$</i>	M \$ \$	= MCD\$ + MTP\$ = JMT*MTM\$	
G. SAVIN	/INGS AND	G. SAVINGS AND LOAN ASSOCIATIONS Normalization Solve	Constant
(117) MSLS (117) MSLS (117) MSLS	s	$= u_{353}RTP + u_{354}RM$ = $u_{314} \ln RTP + u_{354} \ln RSL + u_{376} \ln RCB$ + $u_{317} \ln (.01*PCON) + (1.0 - u_{378}) \ln (VCN3*1000)$ = $EXP(.01*\ln MSLS)$	+ $a_{355}RSL_{-1} + a_{356}$ + $a_{379} \ln MSLS_{-1} + a_{380} \ln (.01*PCON_{-1}) + a_{381}$
H. MUTU	AL SAVI	H. MUTUAL SAVINGS BANKS	
		20145	CONSIGN
(108) <i>RMS</i> (118) In <i>MMS\$</i> (119) <i>MMS\$</i>	\$\$ URANC	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$+ a_{358} RMS_{-1} + a_{359}$ + $a_{390} \ln MMSS_{-1} + a_{391} \ln N + a_{392} \ln (.01 * PCON)$ + a_{393}
Nor	Normalization	Solve	Construction
1201 12 4455	410.6		Constant

+ a_{397} in *MIS* + a_{398} in (.01 * *PCON*-1) + a_{399} $= a_{384} \ln RCP + (1.0 - a_{385}) \ln (VCN\$*1000)$ $+ a_{386} \ln (.01*PCON)$ $= EXP(.01*\ln M/5.8)$ (120) In MIS\$ (121) MIS\$

1 1

ł

•

	$+ a_{358}RMS_{-1} + a_{359}$	$+ a_{390} \ln MMSS_{-1} + a_{391} \ln N + a_{312} \ln (.01*PCON) + a_{393}$	
	$= a_{35}RSL$	$= a_{382} \ln RSL + a_{333} \ln RMS + a_{334} \ln RCB + (a_{385} + a_{386} + a_{386} + a_{386}) \ln (VCN\$ + 1000) + (a_{386} + a_{339}) \ln (.01*PCON)$	$= EXP(.01*\ln MMS\$)$
NORTHAILLAUDI	(108) RMS	(118) In <i>MMS\$</i>	(119) MMS\$

.

I. LIFE INSURANCE RESERVES

Normalization	Solve	Constant
(120) In <i>MIS\$</i>	$= u_{334} \ln RCP + (1.0 - u_{348}) \ln (VCN\$*1000) + u_{346} \ln (.01*PCON)$	+ a_{337} ln <i>MISS</i> -1 + a_{338} ln (.01* <i>PCON</i> -1) + a_{339}
(121) <i>MIS</i> \$	$= EXP(.01*\ln MIS\$)$	
J. DIVIDEND PRICE RATIO	CE RATIO	
Normalization	Solve	Constant
(126) <i>RDP</i>	= a ₄₂₅ *RCB	$+ a_{426}^{*}RCB_{-1} + a_{427}^{*}RCB_{-2} + a_{428}^{*}RCB_{-3} + a_{429}RCB_{-4} + a_{439}^{*}RCB_{-5} + a_{411}^{*}RCB_{-6} + (-a_{412} - a_{413} - a_{414}) + a_{421}^{*}CB_{-6} + \cdots + a_{441}(PCO_{-1})PCO_{-5}) + \cdots + a_{441}(PCO_{-1})PCO_{-4}) + PCO_{-5}) + a_{421}ISTK + a_{421}ISTK + a_{421}(PCO_{-5}) + a_{423} + a_{448}R_{126}$
K. SAVINGS FLOV	K. SAVINGS FLOWS FOR HOUSING STARTS	

, i

Constant	-11.0*(MSL\$_1 + MMS\$_1) 1.12(MSL\$_1 + MMS\$_1 - MSL\$_12 - MMS\$_12)
Solve	11.0*(<i>MSL</i> \$ + <i>MMS</i> \$) 1.12(<i>MSL</i> \$ ₋₁ + <i>MMS</i> \$ ₋₁ - <i>MSL</i> \$ ₋₁₂ - <i>MMS</i> \$_ ₁₂)
Normalization	$\frac{1}{1} = 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7$

• '

NUMERICAL	VALUES	FOR	COEFFICIENTS
	(TABL		

I. A.

£

(4)	$a_1 =$.0794	$a_8 =$.0448
	$a_{476} =$	37.9982	$a_9 =$.0372
	$a_{404} =$.0954	$a_{10} =$.0289
	$a_2 =$.0764	$a_{11} =$.0199
	$a_3 =$.0728	$a_{12} =$.0103
	$a_4 =$.0686	$a_{477} =$	17.1962
	$a_5 =$.0636	$a_{478} =$	2.1265
	$a_6 =$.0580	$a_{479} =$.000
	$a_7 =$.0517	$a_{480} =$.6055
(6)	$a_{491} =$.3588	$a_{498} =$	0011
	$a_{495} =$	0008	$a_{499} =$	0009
	$a_{493} =$.2119	$a_{500} =$	0005
	$a_{494} =$	0030	$a_{492} =$	3312
	$a_{496} =$	0010	$a_{17} =$	2612
	$a_{497} =$	0011	$a_{18} =$.6342
(5)	$a_{14} =$.0791	$a_{16} =$	-6.4838
	$a_{15} =$	0168	$a_{405} =$.4435

B. 1.

.

(1 -		11 2460	10 10 10
(17)	$a_{43} =$	11.3460	$a_{61} = -10.1810$
	$a_{44} =$	10.4400	$a_{62} = -8.9030$
	$a_{45} =$	9.4480	$a_{63} = -7.7250$
	$a_{46} =$	8.3890	$a_{64} = -6.6330$
	$a_{47} =$	7.2780	$a_{65} = -5.6080$
	$a_{48} =$	6.1580	$a_{66} = -4.6350$
	$a_{49} =$	5.0250	$a_{67} = -3.7000$
	$a_{50} =$	3.9080	$a_{68} = -2.7830$
	$a_{51} =$	2.8250	$a_{69} = -1.8720$
	$a_{52} =$	1.8000	$a_{70} =9500$
	$a_{53} =$.8510	
	$a_{60} = -$	-11.5750	

(1

(3

(2

(2

(20)	$a_{94} =$.6475	$a_{98} =$.0090
	$a_{100} =$	7150	$a_{102} =$.2122
	$a_{95} =$.2555	$a_{103} =$.3562
	$a_{101} =$	1448	$a_{104} =$.2862
		.0598	$a_{99} =$	
		0018	$a_{105} =$.0044
(24)	$a_{112} =$	2.1010		
		1.3775		
		3.5539		
(32)	$a_{128} =$	1.0000		
	$a_{129} =$	0.0		
2.				
(19)	$a_{77} =$.3512	$a_{84} =$.3183
	$a_{78} =$.5328	$a_{85} =$.2865
	$a_{79} =$.5822	$a_{86} =$	
	$a_{80} =$.5537	$a_{87} =$.1647
	$a_{81} =$.4894	$a_{93} =$	2067
	$a_{82} =$.4190	$a_{92} =$	
	$a_{83} =$.3602		
(27)	$a_{126} =$.0263		
	$a_{127} =$.7258		
	$a_{411} =$	-1.8330		
(33)	$a_{130} =$.4500		
	$a_{131} =$	0029		
3.				
(21)	$a_{106} =$.8941		
• •	$a_{107} =$			
	$a_{108} =$			
(22)				
(22)		.8941		
	$a_{110} =$			
	$a_{111} =$.7693		

EQUATIONS AND DEFINITIONS OF VARIABLES • 589

- CIENTS
- ____.0448
- = .0372 = .0289 = .0199
- = .0103 = 17.1962 = 2.1265
- .000
- .6055
- = -.0011= -.0009
- = -.0005= -.3312
- = -.2612 = .6342
- = -6.4838
- = .4435

= -10.1810= -8.9030

- = -7.7250
- = -6.6330= -5.6080

= -4.6350

- = -3.7000= -2.7830
- = -1.8720
- = -.9500

- I

		0.0		0025
(26)	$a_{115} =$	0.0	$a_{121} =$.0025
	$a_{116} =$	0004	$a_{122} =$.0020
	$a_{117} =$.0013	$a_{123} =$.0022
	$a_{118} =$.0023	$a_{124} =$.0008
	$a_{119} =$.0028	$a_{125} =$.0002
	$a_{120} =$.0028	$a_{21} =$.0400
C.				
(181)	$a_{571} =$	2.1213	$a_{576} =$.1541
	$a_{572} =$	8447	$a_{577} =$.7927
	$a_{573} =$.0600	$a_{578} =$	1.1656
	$a_{574} =$	-1.9201	$a_{579} =$	1.2728
	$a_{582} =$	-0.9502	$a_{580} =$	1.1142
	$a_{583} =$	-0.8445	$a_{581} =$.6900
	$a_{584} =$	-0.5278	$a_{588} =$.0050
	$a_{585} =$.0590	$a_{589} =$	10.7379
	$a_{586} =$.0486	$a_{590} =$	-2.1213
	$a_{587} =$.0290	$a_{591} =$.6465
	$a_{575} =$	7501		
(183)	$a_{592} =$	-1.8011	$a_{603} =$	2.8911
(102)	$a_{593} =$	7765	$a_{604} =$	2.3934
	$a_{594} =$.0622	$a_{605} =$.1157
	$a_{595} =$	4423	$a_{606} =$.1436
	$a_{596} =$	1759	$a_{607} =$.1460
	$a_{596} =$.0228	$a_{608} =$.1229
	$a_{597} = a_{598} = a_{5$.1538	$a_{609} =$.0742
	$a_{598} =$.2170	$a_{610} =$.0050
	$a_{600} =$.2170	$a_{610} = a_{611} =$	4.4551
		.1401	$a_{611} = a_{612} =$	-3.5173
	$a_{601} =$	1.4929		.6114
	$a_{602} =$	1.4/2/	$a_{613} =$	
(15)	$a_{614} =$	2.0771	$a_{617} =$.7631
	$a_{615} =$.0184	$a_{618} =$	2.9980
	$a_{616} =$	1.6145	$a_{619} =$.3247
(127)	$a_{557} =$.7000	$a_{559} =$	80.000
()	$a_{558} =$.3000	$a_{560} =$	-1.1400
	- 300		000	

.

.

ţ

(12 (18

(18

(3

i

;

D.

(38)

.

(37]

i

.0025	(128)	$u_{561} =$.9500	$a_{563} =$	-2.4400
.0023		$a_{562} =$.0500	$a_{564} =$	80.000
.0022	(186)	$a_{547} =$.8500	$a_{549} =$.0408
.0008	(100)	$a_{548} =$		$a_{546} =$	
.0002					
.0400	(187)	$a_{565} =$.1500	$a_{568} =$	
.0400		$a_{566} =$		$a_{569} =$	
		$a_{567} =$.0408	$a_{570} =$.3333
.1541	D.				
.7927			(1.0053		0001
1.1656	(36)		-61.9952	$a_{716} =$.0001
1.2728		$a_{701} =$		$a_{117} =$.0001
1.1142		$a_{702} =$	0043	$a_{718} =$	1000.
.6900		$a_{703} =$	0007	$a_{719} =$	1000.
.0050		$a_{704} =$.0023	$a_{720} =$.0001
10.7379		$a_{705} =$.0046	$a_{721} =$.0001
-2.1213		$a_{706} =$.0063	$a_{722} =$.0001
.6465		$a_{707} =$.0073	$a_{723} =$.0001
		$a_{708} =$.0077	$a_{724} =$.0001
2 2011		$a_{709} =$.0075	$a_{725} =$	
= 2.8911		$a_{710} =$.0066	$a_{726} =$	
= 2.3934		$a_{711} =$.0050	$a_{727} =$	
= .1157		$a_{712} =$.0028	$a_{728} =$	
= .1436		$a_{713} =$	0011	$a_{729} =$	0482
= .1460		$a_{714} =$			
= .1229		$a_{715} =$	0002		
= .0742	(37)	$a_{161} =$.0250	$a_{101} = -$	-25.0807
= .0050	(37)	$a_{161} = a_{162} = a_{1$	0098	$a_{164} =$	
= 4.4551		$a_{162} = a_{163} =$.0231		.2815
= -3.5173					
= .6114	(38)	$a_{168} =$			51.4739
= .7631		$a_{169} =$.0607	$a_{172} =$.5000
= 2.9980		$a_{170} =$.0926	$a_{173} =$.4310
= .3247					

EQUATIONS AND DEFINITIONS OF VARIABLES • 591

9 = 80.000

.

 $u_{0} = -1.1400$

(39)	$a_{177} =$	1380	$a_{184} = -27.6000$
	$a_{186} =$	0200	$a_{185} = 27.6000$
	$a_{178} =$.7110	$a_{187} = .2340$
	$a_{179} =$	5730	$a_{188} = .1170$
	$a_{180} =$	1.4240	$a_{189} = .0040$
	$a_{181} =$	4240	$a_{190} =1110$
	$a_{182} =$.3870	$a_{191} =2240$
	$a_{183} =$	3870	

F.

E.

(42)	$a_{192} = a_{193} = a_{193} = a_{194} = a_{195} = a_{1$	1.0148 .1349 -3.3794 0170	$a_{196} = a_{488} = a_{489} =$.0817 .0751 .0518
(169)	$a_{546} = a_{568} =$.0050 .0067		

NUMERICAL VALUES FOR COEFFICIENTS (TABLE II)

II. E.

(153)	$a_{482} =$.9638	$a_{445} =$.0019	
	$a_{443} =$.3867	$a_{446} =$	0316	
	$a_{444} =$	1059	$a_{481} =$.9090	
(62)	$a_{205} =$.0623	$a_{212} =$.0203	
	$a_{206} =$.2151	$a_{213} =$.0137	
	$a_{208} =$.0518	$a_{214} =$.0070	
	$a_{209} =$.0426	$a_{215} =$	0.0	
	$a_{210} =$.0345	$a_{408} =$.2570	
	$a_{211} =$.0272			
(169)	$a_{546} =$.0067			
	$a_{568} =$.0050			

NUMER

G.

I.

(163

(159

ł

III. A.

(58

(59

B. (63

(66)

С.

(75)

(78)

EQUATIONS AND DEFINITIONS OF VARIABLES • 593

	G.
-27.6000 27.6000	$\begin{array}{rcl} (159) & a_{507} = & 0.0 \\ & a_{508} = &0103 \end{array}$
.2340 .1170	$a_{508} =0103$ $a_{509} =0513$
.0040 —.1110	I. (162) a = 0007
2240	$\begin{array}{rcl} (163) & a_{546} = & .0067 \\ & a_{568} = & .0050 \end{array}$
	NUMERICAL VALUES FOR COEFFICIENTS
.0817	(TABLE III)
0751 0518	III. A.
	(58) $a_{197} = .0150$ $a_{199} =3599$ $a_{198} = .0277$ $a_{200} = .4792$
	(59) $a_{202} = .8908$ $a_{204} = -1.6475$ $a_{203} =1786$ $a_{207} = .8971$
	В.
CIENTS	(63) $a_{216} = .5995$ $a_{217} = 1.0000$
1	$a_{218} = .7653$
1	$a_{167} = .6300$
= .0019 =0316	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
= .9090	$a_{220} = .1314$ $a_{224} = .0167$ $a_{221} = .95$ $a_{225} = .1573$
= .0203 = .0137	С.
= .0070	$(75) a_{249} =3225$
= 0.0 = .2570	$\begin{array}{rcl} a_{250} = & .2751 \\ a_{251} = & -2.1074 \end{array}$
3	$(78) a_{252} = 0.0187$
	$\begin{array}{cccc} (78) & a_{252} - & .0187 \\ a_{253} = & .1629 \end{array}$
	$a_{255} = -30.8473$

.**---**.

D.

(67)	$a_{226} = a_{227} = a_{227} = a_{228} = a_{229} = a_{2$.8611 2642 2751 1045	$a_{230} =1169$ $a_{231} = -4.5190$ $a_{232} = 1.0000$
(69)	$a_{233} = a_{234} =$.5412 .9974	$a_{235} = -6.9292$ $a_{236} = 1.0000$
(81)	$a_{257} = a_{417} = a_{256} =$.0780 1.1956 .9500	

E.

(71)	$a_{237} = a_{238} = a_{239} =$	1.3956 1.0000 .2443		.8480 9.7437 .6341	V. A.
(73)	$a_{242} = a_{243} = a_{243} = a_{245} =$.0207 0315 .0257	$a_{246} = a_{247} =$	4.6314 .9022	(152
(155)	$a_{501} = a_{502} = a_{503} =$	0010 .0133 .9500	$a_{505} = a_{506} =$	1.2159 .0029	B. (154

NUMERICAL VALUES FOR COEFFICIENTS (TABLE IV)

IV. A.

(145)	$a_{458} =$	4360	$a_{468} =$	0044	NUMERI
	$a_{459} =$	0293	$a_{469} =$	0058	
	$a_{460} =$	2750	$a_{470} =$	0033	VI. A. I
	$a_{461} =$	0079	$a_{471} =$	0025	
	$a_{462} =$	0059	$a_{486} =$	9629	(83)
	$a_{463} =$	0066	$a_{465} =$.6022	*

(14)

(14

Ţ

NUMERI

1169 4.5190	(146) $a_{466} = a_{467} = a_{467} = a_{473} = a_{473}$	6362	$a_{474} = .2525$ $a_{475} = 0.0$
1.0000	(143) $a_{447} = a_{448} = a_{449} $	1905	$a_{454} =0116$ $a_{455} = 0.0$ $a_{456} = .8369$
-6.9292 1.0000	$a_{450} = a_{451} = a_{451} = a_{452} = a_{453} = a_{455} = a_{45} = a$	= .0714 = .0312 = .0040	$a_{457} = .0510$ $a_{485} = .5868$ $a_{487} = -1.0526$

1

:

.8480

-.0044

.

, =

-9.7437

=

NUMERICAL	VALUES FOR	COEFFICIENTS
	(TABLE V))

EQUATIONS AND DEFINITIONS OF VARIABLES • 595

= -9.7437 = .6341	V. A.	
= 4.6314 = .9022	$a_{636} = .0542$ $a_{639} =$.0324 .5288 .3261
= 1.2159 = .0029	В.	
= .0029 CIENTS	$a_{625} =0409$ $a_{630} = -$ $a_{621} = .7472$ $a_{631} = -$.0390 .0 .0013 .0012
	$a_{632} = -$.0016

NUMERICAL	VALUES	FOR	COEFFICIENTS
	(TABLE	VI)	

, a —	0058	(TABLE VI)	
	0033		
, 1 =	0025		
6 =	9629	$(83) a_{258} = \qquad .8117 \qquad \qquad a_{260} =$	4013
5 =	.6022	$a_{259} =0467$ $a_{261} = .0467$	7518

--.

2.					
					C.
(87)	$a_{262} = -$	-212.5539	$a_{265} = 139.97$	68	(92)
	$a_{263} =$	-2.0931	$a_{266} = 27.12$	45	()21
	$a_{264} =$	-6.1365	$a_{267} = .68$	21	
(115)	$a_{268} =$.6573	$a_{274} =00$	16	
	$a_{269} =$	3464	$a_{275} = .00$	13	
	$a_{270} =$.0027	$a_{276} = .64$	84	(93)
	$a_{271} =$	0020	$a_{277} =51$		(73)
	$a_{272} =$	0023	$a_{278} = .22$	71	
	$a_{273} =$	0022			
4.					D.
(88)	$a_{279} =$	1.0486	$a_{281} =23$	46	,
(00)	$a_{280} =$.3331	$a_{281} =$		(103)
	u 280		u ₄₁₀ .54		
6.					
(98)	$a_{323} =$	0946	$a_{327} =00$	08	E. ,
(20)	$a_{323} = a_{324} =$	3326			(104)
	$a_{324} = a_{325} =$	0028			
	$a_{325} = a_{326} =$	0010	$a_{329} = .65$	[4	1
	ct 326	.0010			
B.					F. I.
D.					(106)
(91)	$a_{282} =$.3082	$a_{293} = .03$	71	•
	$a_{283} =$	0328	$a_{294} = .03$	23	
	$a_{284} =$.0121	$a_{295} = .02$	86	(110)
	$a_{285} =$.0413	$a_{296} = .02$	57	1
	$a_{286} =$.0581	$a_{297} = .02$	28	
	$a_{287} =$.0657	$a_{298} = .01$	86)
	$a_{288} =$.0665	$a_{299} = .01$	17	
	$a_{289} =$.0630	$a_{300} = 0.0$		2.
	$a_{290} =$.0571	$a_{400} = 1.17$	09	(109)
	$a_{291} =$.0500	$a_{401} = .73$	64	
	$a_{292} =$.0432			8 9
					ŧ

.

(92)

			The second
С.			
· (92)	$a_{302} =$	1.9060	a — 7774
()	$u_{303} =$.1884	$a_{307} = .7274$
		-2.1317	$a_{308} = .0582$
		.2636	$a_{309} = .0527$
		.1304	$a_{310} = .0457$
	$a_{306} =$		$a_{311} = .0063$
(93)		.2018	$a_{318} = .0175$
	$a_{313} =$.0861	$a_{416} = .0583$
	$a_{315} =$	3187	$a_{314} =3057$
	$a_{316} =$.0495	$a_{317} =0246$
D.			
(103)	$a_{769} =$	8332	$a_{772} = 1.7044$
(100)	$a_{770} =$.8661	
			$a_{773} = .5000$
	$a_{771} =$.1024	
E.			
(104)	$a_{551} =$.2204	$a_{554} =2273$
	$a_{552} =$.1728	$a_{555} = 2.9001$
	$a_{553} =$.0993	$a_{556} = .7000$
	555		0.226 .7000
F. 1.			
(106)	$a_{350} =$.0486	$a_{352} = .9650$
	$a_{351} =$.4243	$a_{415} = .1590$
(110)			
(110)	$a_{363} =$.1230	$a_{367} =9125$
	$a_{364} =$.000	$a_{368} =9125$
	$a_{365} =$	1334	$a_{369} =9125$
	$a_{366} =$.9125	$a_{370} =1986$
2.			
. (109)	$a_{360} =$.9485	
(10))	$a_{360} = a_{361} =$.2143	
		3110	
	$a_{362} =$	3110	

EQUATIONS AND DEFINITIONS OF VARIABLES • 597

:

1.1.1

139.9768

27.1245 .6821 -.0016 .0013 .6484 -.5124 .2271

> -.2346 .5463

-.0008 .1765 .6514

.0371

.0323

.0286

.0257

.0228

.0186

.0117

1.1709

.7364

.

0.0

!=

=

=

=

=

=

1=

, =

i =

_

F

(107) $a_{353} =$.0742 $a_{355} =$.8581 -.1195 .0815 $a_{356} =$ $a_{354} =$ (116) $a_{374} =$ $a_{378} =$.9529 -.0040 $a_{379} =$.9529 .1002 $a_{375} =$ -.9529 -.0400 $a_{380} =$ $a_{376} =$.9529 -.2018 $a_{381} =$ $a_{377} =$ Η. (108) .1568 $a_{357} =$.8581 $a_{358} =$ -.0673 $a_{359} =$.9982 $(118) \quad a_{382} =$ -.0230 $a_{388} =$.0653 .0937 $a_{383} =$ $a_{389} =$ -.0497 $a_{390} =$.9982 $a_{384} =$.0653 1.0000 $a_{391} =$ $a_{385} =$ -.9982 $a_{386} =$ -.9982 $a_{392} =$ $a_{393} =$ -.1669 -.0653 $a_{387} =$ I. (120) $a_{394} =$ -.0117 .9297 $a_{397} =$.9297 $a_{398} =$ -.9297 $a_{395} =$.9297 $a_{399} =$ -.1798 $a_{396} =$ J. (126) $a_{425} =$.2291 $a_{436} = -5.6400$.2192 $a_{437} = -4.6700$ $a_{426} =$ $a_{438} = -3.4500$.1980 $a_{427} =$

.1655 $a_{439} = -2.1600$ $a_{428} =$ -.9800 .1217 $a_{440} =$ $a_{429} =$.0900 $a_{430} =$.0666 $a_{441} =$.4991 $a_{421} =$ $a_{431} =$ 0.0 $a_{422} = 169.0089$ -3.1400 $a_{432} =$ $a_{423} = -3.9299$ -5.1000 $a_{433} =$ -6.0300 $a_{484} =$.7883 $a_{434} =$ -6.1500 $a_{435} =$

G.