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Productivity of the U.S.
Agricultural Sector: The Case
of Undesirable Outputs

V. Eldon Ball, Rolf Färe, Shawna Grosskopf, and
Richard Nehring

13.1 Introduction

The purpose of this paper is two-fold: (a) to show how to model the
joint production of desirable (marketed) and undesirable (nonmarketed,
or “bad”) outputs in a way that is useful for productivity analysis, and (b)
to apply that model to data on the U.S. agricultural sector using activity
analysis techniques.

To put our work in perspective with the productivity literature, we note
that we follow Solow (1957) in the sense that we are modeling a production
technology in order to identify productivity growth and technical change.
Our approach differs significantly from Solow’s in several ways. Instead of
a single output, we include a vector of good outputs as well as a vector of
undesirable outputs in our model. Thus, instead of a single output produc-
tion function, we use distance functions as our representation of technol-
ogy. These allow us to model joint production of goods and bads. Instead
of specifying a parametric form of the technology, we use activity analysis
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to construct a nonparametric representation of technology that also allows
us to identify the production frontier. That, in turn, permits us explicitly
to identify deviations from frontier performance and shifts in the frontier
itself. Following Caves, Christensen, and Diewert (1982) we employ a dis-
crete approach rather than the differential approach used by Solow. Fi-
nally, our approach does not require information on input and output
prices or shares, which are used to aggregate inputs and outputs in the
growth accounting/Solow approaches. Clearly, that is particularly useful
in the case in which one wishes to include joint production of desirable
and undesirable outputs, since the latter are typically nonmarketed.

The paper begins with a discussion of how we model the joint produc-
tion of desirable and undesirable outputs both conceptually and empiri-
cally. Next we turn to a discussion of the Malmquist productivity index
and how it may be computed. Since the Malmquist productivity index is de-
fined in terms of output distance functions, it seeks the greatest feasible
expansion of all outputs, both good and bad. Since the expansion of bad
outputs may be undesirable (due to regulations, for example), we turn to
a modified version of that index, which we refer to as the Malmquist-
Luenberger productivity index in section 13.4. This index allows for con-
tractions of undesirable outputs and expansions of “good,” or desirable,
outputs.

We apply our methods to a panel of state-level data recently made avail-
able by the U.S. Department of Agriculture’s Economic Research Service
(ERS). This data set includes variables that proxy effects of pesticides and
fertilizer on groundwater and surface-water quality for the 1972–93 time
frame. Although we consider our results to be preliminary, we find—as
expected—that measured productivity differs when undesirable outputs
are accounted for.1 Our preferred model—the Malmquist-Luenberger in-
dex—generally reports higher productivity growth for states with declin-
ing trends in water contamination resulting from the use of pesticides and
chemical fertilizers.

13.2 Modeling Technologies with Good and Bad Outputs

The production of desirable outputs is often accompanied by the simul-
taneous or joint production of undesirable outputs. Examples include the
paper and pulp industry, electricity generation, and agriculture, among
many others.

If we wish to measure productivity when both desirable and undesirable
outputs are produced, we should obviously account explicitly for their

1. At the moment we cannot say whether the differences we observe are significant. Future
research plans include application of bootstrapping methods to allow us to pursue such hy-
pothesis testing.
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joint production. If we denote desirable outputs by y ∈ �M
� , undesirable

outputs by b ∈ �I
�, and inputs by x ∈ �N

�, then the technology may be
written as

(1)  can produce T x y b x y b= [( , , ) : ( , )].

The technology consists of all feasible input and output quantities; that is,
it consists of all desirable and undesirable outputs that can be produced
by the given input vectors.

To model the joint production of the good and bad outputs, it is conve-
nient to model the technology in terms of the output sets, that is,

(2) P x y b x y b T( ) [( , ) : ( , , ) ].= ∈

Clearly, T can be recovered from P(x) as

(3) T x y b y b P x x M= ∈ ∈ ℜ+[( , , ) : ( , ) ( ), ].

Thus the technology is equivalently represented by either its output sets
P(x), x ∈ �N

� or its technology set T.
For the case in which a single desirable output is produced, the technol-

ogy is often modeled by means of a production function F(x). This func-
tion is defined on the output set P(x) as

(4) F x y y P x( ) max[ : ( )].= ∈

As before, the output sets and hence the technology may also be recovered
from this representation of technology, namely as

(5) P x y F x y( ) [ : ( ) ].= ≥

We model the idea that reduction of bad outputs is costly by imposing
what we call “weak disposability of outputs,” that is,

(6)  and  imply ( , ) ( ) ( , ) ( ).y b P x y b P x∈ ≤ ≤ ∈0 1 2� � �

In words, this states that reduction of undesirable outputs is feasible
only if good outputs are also reduced, given fixed input levels. Hence it
may be infeasible to reduce the undesirable outputs only, that is, if ( y, b)
is feasible and b� � b then it may be impossible to produce ( y, b�) using x,
that is, ( y, b) ∈ P(x) and ( y, b�) ∉ P(x). Clearly, if undesirable outputs
could be disposed of costlessly (freely), then this problem would not arise.

With respect to the good outputs, we assume that they are freely or
strongly disposable, that is,

(7) if  and  imply ( , ) ( ) ( , ) ( ).y b P x y y y b P x∈ ′ ≤ ′ ∈

2. Shephard (1970) introduced the notion of weak disposability of outputs.
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The reason for distinguishing between desirable and undesirable outputs
in terms of their disposability is that the former typically have a positive
price, whereas the latter are typically not marketed and, therefore, do not
have readily observable prices.

The notion that desirable and undesirable outputs are jointly produced
is modeled by what Shephard and Färe (1974) call “null-jointness.” In
words this means that if no bad outputs are produced, then there can be
no production of good outputs. Alternatively, if one wishes to produce
some good outputs then there will be undesirable byproducts of produc-
tion. More formally, we have

(8)  and  then ( , ) ( ) ,y b P x b y∈ = =0 0

that is, if ( y, b) is a feasible output vector consisting of desirable outputs
y and undesirable outputs b, then if no undesirable outputs are produced
(b � 0) then by null-jointness, production of positive desirable outputs is
not feasible, so y � 0.

In order to develop a framework for the empirical measurement of pro-
ductivity with good and bad outputs, we need to formulate an explicit
reference technology. Here we assume that at each time period t � 1, . . . ,
t there are k � 1, . . . , K observations of inputs and outputs,

(9) ( , , ) , , . . . , , , . . . , ., , ,x y b k K t tt k t k t k = =1 1

Following Färe, Grosskopf, and Lovell (1994) we define the output sets
from the data as an activity analysis or data envelopment analysis (DEA)
model,3 namely

(10) P x y b z y y m M

z b b i I

z x x n N

z k K

t t t t
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t
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= ≥ =

= =
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≥ =

=

=

=

∑

∑

∑

1

1

1

1

1

1

0 1

where zt
k are the intensity variables, which serve to form the technology

from convex combinations of the data.
To illustrate the model in equation (10), we assume that there are two

firms k � 1,2 producing one desirable and one undesirable output with
the data in table 13.1.

The data in table 13.1 and the corresponding output set are illustrated
in figure 13.1. The two observations are labeled k � 1 and k � 2 in the
figure. Each uses one unit of input to produce their good and bad outputs.
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The output set P(1) is constructed from these two observations such that
outputs are weakly disposable and the good output y is strongly dispos-
able. Moreover, the figure shows that if b � 0 then y � 0; thus the two
outputs are jointly produced or null-joint in the terminology of Shephard
and Färe.

In general one can show that equation (10) satisfies equations (6) and
(7) in addition to satisfying constant returns to scale, that is,

(11) P x P x( ) ( ), .� � �= > 0

In words, constant returns to scale means that proportional scaling of
the input vector x yields proportional scaling of the output set P(x).

Moreover, one can also show that inputs are strongly disposable in the
following sense:

(12)  for P x P x x x( ) ( ) .′ ⊆ ≥ ′

For the good and bad outputs to satisfy null-jointness at each period t,
we need to assume that the bad outputs satisfy the following two condi-
tions:

k

K

ki
t

i

I

ki
t

b i I

b k K

=

=

∑

∑

> =

> =

1

1

0 1

0 1

, , . . . , ,

, , . . . , .

Table 13.1 Hypothetical Data Set

Observation Good Bad Input
(k) (y) (b) (x)

1 1 (1/2) 1
2 2 2 1
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The first inequality says that each bad is produced by at least one firm.
The second states that each firm produces at least one bad. Now, referring
back to the activity analysis formulation of technology in equation (10),
suppose that the right-hand side of the constraints on the bad outputs are
such that bt

i � 0, i � 1, . . . , I. If we have null-jointness that means that
we should also have yt

m � 0, m� 1, . . . , M. The inequalities above guaran-
tee that this is so, since together they require that each intensity variable
is multiplied by at least one nonzero value of bt

ki. Thus the only way to
have �K

k�1 zt
kbt

km � 0 when these constraints hold is to have zt
k � 0 for all

k, which would imply that yt
m � 0, m � 1, . . . , M as required for null-

jointness of y and b.4

Next we show that the model in equation (10) has the property that
decreases in the production of bads require that inputs be increased. We
demonstrate this property using the data in table 13.1. Based on our data,
if we wish to produce ( y, b) � (2, 2), then we must employ one unit of
input. Now if we wish to produce ( y, b) � (2, 1); that is, if we wish to
reduce the bad output by one unit, then we must increase our input usage
to x � 2.5 This shows that resources may be required to “clean up” the
bad outputs. For additional properties of the production model in equa-
tion (10), see Färe and Grosskopf (1996).

13.3 The Malmquist Productivity Index

In this section we discuss the Malmquist productivity index as proposed
by Färe et al. (1989). Their index is based on Shephard’s output distance
function and is the geometric mean of two of the Malmquist indexes intro-
duced by Caves, Christensen, and Diewert (1982).

The output distance function, introduced into economics by Shephard
(1970), is given by

(13) D x y b y b P x

x y b T

o( , , ) inf [ : ( / , / ) ( )]

inf [ : ( , / , / ) ]

= ∈

= ∈

� � �

� � �

where the last equality holds, since (x, y, b) ∈ T if and only if ( y, b) ∈ P(x);
see equations (2) and (3). The output distance function is the largest feasi-
ble expansion of the output vector ( y, b), and it has the property of being
a complete representation of the technology, that is,

(14) if and only ifD x y b y b P xo( , , ) ( , ) ( ).≤ ∈1
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4. Note that it is the strict equality on the bad output constraints that drives this result;
thus null-jointness and weak disposability are intimately related in the activity analysis
model.

5. Scaling observation k � 1 by a factor of 2 yields the desired result.



Thus the output distance function assigns a value to the input-output vec-
tor (x, y, b) of less than or equal to 1 for feasible input-output vectors only.

As a representation of the technology, the distance function inherits the
properties assumed for the technology; see Färe (1988) or Shephard (1970)
for details. In addition to the inherited properties it is homogeneous of
degree �1 in good and bad outputs ( y, b).

In the simple case in which a single (good) output is produced, there is
the following direct relationship between the production function F(x) and
the output distance function Do(x, y).

(15) D x y
y

F xo( , )
( )

=

To see this we note that since Do(x, y) is a complete representation of the
technology, we have

(16) P x y D x yo( ) [ : ( , ) ].= ≤ 1

Now, if we apply the definition of a production function to equation (16)
and use the fact that Do(x, y) is homogeneous of degree �1 in outputs,
we have

(17) F x y y P x y D x y

y y D x

D x

o

o

o

( ) max[ : ( )] max[ : ( , ) ]

max[ : ( , ) ]

( , )
.

= ∈ = ≤

= ⋅ ≤

=

1

1 1

1
1

Now Do(x, 1) � y � Do(x, y) � y/[F(x)].
Färe, Grosskopf, Lindgren, and Roos (1989, hereafter FGLR) define the

Malmquist productivity indexes for adjacent periods as

(18) M
D x y b

D x y b

D x y b

D x y bt
t o

t t t t

o
t t t t

o
t t t t

o
t t t t

+
+ + + +

+

+ + +

=












1
1 1 1 1

1

1 1 1
1 2

( , , )

( , , )

( , , )

( , , )
.

/

This index is the geometric mean of the two output-oriented Malmquist
indexes introduced by Caves, Christensen, and Diewert (1982), namely

(19) and
D x y b

D x y b

D x y b

D x y b
o
t t t t

o
t t t t

o
t t t t

o
t t t t

+ + + +

+

+ + +1 1 1 1

1

1 1 1( , , )

( , , )

( , , )

( , , )
.

It is of interest to compare the FGLR formulation with Robert Solow’s
(1957) index, noting of course that the Malmquist indexes are all in dis-
crete time.

Solow assumes that the technology can be represented by an aggregate
production function
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(20) y F x t A t x xt t t t t t= = −( , ) ( )( ) ( ) ,( ) ( )
1 2

1	 	

where the residual A(t) captures technical change and 	(t) is input x1’s
output share in period t. Here, we simplify by setting 	(t) � 	 for all t.
Then, using the equivalences derived above between production functions
and distance functions in the scalar output case, we can insert Solow’s
production function into the Malmquist index in equation (18), which
yields

(21) M
A t x x y

A t x x y

A t x x y

A t x x yt
t

t t t

t t t

t t t

t t t
+

−

+ + − +
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+ + − +
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+
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1 1 2
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1 2
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/

[( ) ( ) ]/

[( ) ( ) ]/
( )

( )
.

x x y

x x y
A t

A t

t t t

t t t

	 	

	 	

This shows that the Malmquist index proposed by FGLR is the discrete
analog of the Solow residual where 	(t) � 	.

FGLR also show that their Malmquist index decomposes into two com-
ponent measures, one accounting for efficiency change (MEFFCHt�1

t ) and
one measuring technical change (MTECHt�1

t ). These are

(22) MEFFCH t
t o

t t t t

o
t t t t

D x y b

D x y b
+

+ + + +

=1
1 1 1 1( , , )

( , , )

and

(23) MTECH t
t o

t t t t

o
t t t t

o
t t t t

o
t t t t

D x y b

D x y b

D x y b

D x y b
+

+ + +

+ + + + +
=













1
1 1 1

1 1 1 1 1

1 2
( , , )

( , , )

( , , )

( , , )

/

where

(24) MEFFCH MTECHM t
t

t
t

t
t+ + += ⋅1 1 1.

In the Solow formulation we would have

(25) MEFFCH t
t+ =1 1

and

(26) MTECH t
t A t

A t
+ = +1 1( )

( )
,

implying that there is no efficiency change in the Solow formulation (pro-
duction is implicitly assumed to be technically efficient) and therefore pro-
ductivity change is due solely to technical change.

To illustrate the Malmquist index we simplify our model and assume
that one input x is used to produce one output y.
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Two technologies T t and T T�1 are included in figure 13.2 along, with
two observations, (xt, yt) and (xt�1, yt�1). Notice that these observations
are not technically efficient; rather, production occurs “below” the bound-
ary of the associated total product set in both periods. The Malmquist
index as measured along the y-axis equals

(27) M
c a
f b

c d
f et

t+ =






1

1 2
0 0
0 0

0 0
0 0

/
/

/
/

.
/

Under constant returns to scale (as in our figure), this is equivalent to
the ratio of the average products in the two periods, which has clearly
increased over time. Thus the overall index will be greater than one indi-
cating an improvement in productivity between period t and t � 1.

One of the nice features of the Malmquist index is the fact that we can
identify the two component measures defined above (see equations [22]
and [23]), which allows us to identify sources of productivity change over
time. In our figure, the efficiency change component is

(28) MEFFCH t
t c

a
e
f

+ =






1 0
0

0
0

,

and the technical change component is

(29) MTECH t
t a

d
b
e

+ =






1

1 2
0
0

0
0

/

.

The efficiency change term MEFFCHt�1
t tells us whether an observation

is getting closer or farther from the frontier over time; that is, it tells us
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whether an observation is catching up to the frontier. In our example, the
observation is actually falling farther behind the frontier over time; that
is, it was closer to the frontier in period t than in period t � 1. Thus the
value of this term would be less than 1, indicating a decline in technical
efficiency over time.

On the other hand, our figure illustrates that technical progress has
occurred between t and t � 1. This is captured in our technical change
component MTECHt�1

t , which is greater than 1 for our observation.
MTEC Ht�1

t tells us how much the frontier has shifted over time evaluated
at the observed inputs in periods t and t � 1 (the index takes the geometric
mean of the shifts in the frontier at these two input levels).

In our example there has been a decline in efficiency over time, but an
improvement in terms of technical change. The product of these two yields
the overall productivity change, which in this example is greater than 1,
signalling an overall improvement in productivity. This means that techni-
cal change accounted for the observed improvement in productivity in
this case.

To calculate the productivity index and its component measures we esti-
mate the component distance functions using linear programming tech-
niques. These are discussed in some detail in Färe, Grosskopf, Norris, et
al. (1994) for the interested reader.

13.4 The Malmquist-Luenberger Productivity Index

We now turn to the Malmquist-Luenberger productivity index, which—
unlike the Malmquist index described earlier that treats all outputs the
same—allows us to credit observations for increases in good outputs yet
“debit” them for increases in undesirable outputs. This index was intro-
duced by Chung (1996) and Chung, Färe, and Grosskopf (1997), and it is
based on the output-oriented directional distance function. This distance
function differs from the Shephard output distance function in that it does
not necessarily change outputs ( y, b) proportionally, but rather changes
them in a preassigned direction. This new distance function is a special
case of the directional technology distance function (see Chambers,
Chung, and Färe 1998, where the latter is essentially the shortage function
due to Luenberger; see, e.g., Luenberger 1992, 1995).

Consider a direction vector (gy , � gb) � 0, where gy ∈ �M
� . Then the

output-oriented directional distance function is defined as

(30) Do y b y bx y b g g y g b g P x( , , ; , ) sup[ : ( , ) ( )].− = + − ∈� � �

This function is defined by adding the direction vector to the observed
vector and scaling that point by simultaneously increasing good outputs
and decreasing bad outputs. Figure 13.3 illustrates.
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In this figure the output set is denoted by P(x) and the output vector ( y,
b) is an element of that set. The direction vector is (gy , �gb) and the dis-
tance function expands the output vector as much as is feasible along the
direction vector. It ends up at ( y � Do gy , b � Do gb), where Do � Do (x, y,
b; gy , � gb).

In order to see the relation between the directional and the Shephard
output distance functions, suppose we change the direction slightly (elimi-
nate the negative sign on the bad outputs) and choose gy � y and gb �
b, then

(31) Do x y b y b y y b b P x

y b P x

y b P x

y b

( , , ; , ) sup[ : ( , ) ( )]

sup{ : [ ( ), ( ) ( )]}

sup{ : [ ( ), ( ) ( )]}

sup{( ) : [ ( ), ( )

= + + ∈

= + + ∈

= − + + + ∈

= − + + + + ∈

� � �

� � �

� � �

� � �

1 1

1 1 1 1

1 1 1 1 PP x

D x y bo

( )]}

( , , )
.=

−
1

1

Thus, if we choose the directions gy � y and gb � b, we find that the
directional distance function is essentially Shephard’s output distance
function. In our figure, the observed point would be projected to the fron-
tier in this case by scaling to the Northeast in our figure, seeking the largest
feasible increase in both good and bad outputs. This would mean that
observations with relatively more bads, ceteris paribus, would be deemed
more efficient, which is inconsistent with the notion that the bads are unde-
sirable. If we ignore the undesirable outputs and scale only on the good
outputs (as in the traditional output distance function and Malmquist in-
dex), we would go due North to the frontier. To sum up,
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(32) Do
o

x y b y b
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 −

1
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or

(33) D x y b
x y b y bo

o

( , , )
( , , : , )
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+

1
1 D

The Malmquist-Luenberger index used here is defined by choosing the
direction as the observed vector of good and bad outputs ( y, �b) and
making use of the Malmquist index in equation (18) and the idea of equa-
tion (33).
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The definition is such that if the direction had been ( y, b) instead of ( y,
�b), it would coincide with the Malmquist index in equation (18). As in
that case, improvements in productivity are signalled by values of the in-
dex greater than unity.

Like the Malmquist index, the Malmquist-Luenberger index can be de-
composed into components, namely an efficiency change and a technical
change component,6
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As for the Malmquist index, the product of these two components
equals the Malmquist-Luenberger index MLt�1

t and the components have
similar interpretations. Values greater than 1 indicate improvements, and
values less than 1 indicate declines in performance.

The directional distance functions, like the Shephard distance functions,

6. One may further decompose both of these components, analogous to the Malmquist
index decomposition developed in Färe, Grosskopf, and Lovell (1994) or Färe, Grosskopf,
Norris, et al. (1994).
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can be estimated as solutions to linear programming problems. As an ex-
ample, let us consider the (k�, t � 1) observation of data relative to the
period t reference technology, that is,

(37)
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Our empirical illustration includes computations of both the Malmquist
(goods only) and Malmquist-Luenberger productivity indexes. One may
also compute what we call a Luenberger productivity indicator, which is
also based on the directional distance functions described above. This in-
dex has an additive rather than multiplicative structure and is described
briefly in appendix A.

Next, we turn to our empirical illustration.

13.5 Empirical Illustration: The Case of U.S. Agriculture

In this section we provide an empirical illustration of the measurement
of productivity in the presence of undesirable outputs using a unique data
set developed by the U.S. Department of Agriculture’s (USDA’s) Eco-
nomic Research Service (ERS), in cooperation with the USDA’s Natural
Resources Conservation Service (NRCS). As part of our illustration, and
paralleling the discussion of the theoretical models, we include results for:
(a) productivity based on goods alone, using the Malmquist productivity
index, and (b) productivity including both goods and bads using the
Malmquist-Luenberger index (our preferred model). Before turning to
these results, we first turn to a discussion of the data.

The data used to construct our productivity indexes based on desirable
outputs and inputs alone are described in Ball et al. (1999). The inputs
include services of capital, land, labor, and intermediate goods. The desir-
able outputs are crops and livestock. The data are available for forty-eight
states over the period 1960–93 and are used to construct a state-by-year
panel.

As a first step, we construct longitudinal indexes of outputs and inputs.
An index of relative real output (alternatively, real input) between two
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states is obtained by dividing the nominal output (input) value ratio for the
two states by the corresponding output (input) price index. We construct
multilateral price indexes using a method proposed independently by El-
tetö and Köves (1964) and Szulc (1964) (henceforth EKS). The “EKS”
index is based on the idea that the most appropriate index to use in a
comparison between two states is the Fisher index, which is expressed as
the geometric mean of the Laspeyres and Paasche indexes.

When the number (K ) of states exceeds two (i.e., K � 2), the application
of the Fisher index number procedure to the [K(K � 1)]/2 possible pairs
of states yields a matrix of bilateral price indexes that does not satisfy
Fisher’s circularity test. The problem is to obtain results that satisfy the
circularity test and that deviate the least from the bilateral Fisher indexes.

If Pij
EKS and Pij

F represent the EKS and Fisher indexes between states i
and j, the EKS index is formed by minimizing the following distance cri-
terion:

� = −
= =
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From the first-order conditions for a minimum, it can be shown that the
multilateral index with the minimum distance is given by
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The EKS index between states i and j is, therefore, a geometric mean of K
(the number of states) ratios of bilateral Fisher indexes. The multilateral
EKS indexes defined by equation (38) satisfy transitivity while minimizing
the deviations from the bilateral Fisher indexes.

Comparisons of levels of capital, land, labor, and intermediate inputs
require relative input prices. Relative price levels of capital inputs among
states are obtained via relative investment-goods prices, taking into ac-
count the flow of capital services per unit of capital stock.

Differences in the relative efficiency of land prevents the direct compari-
son of observed prices. We construct price indexes for land based on an
application of the hedonic regression technique. This approach assumes
that the price of a good is a function of its characteristics, and it estimates
the imputed prices of such characteristics by regressing the prices of goods
on their differing quantities of their characteristics.

For our cross-section of states, we estimate the following equation by
ordinary least squares (OLS):
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where w j
k is the price of the jth parcel of land in state k, xj

km is the mth
characteristic of the jth parcel of land in state k, and Dk is a dummy vari-
able equal to unity for the corresponding state and zero otherwise. When
the log of price is related to linear-state dummy variables as above, a he-
donic price index can be calculated from the antilogs of the �k coefficients.

In constructing indexes of relative labor input, we assume that the rela-
tive efficiency of an hour worked is the same for a given type of labor in
all forty-eight states. Hours worked and average hourly compensation are
cross-classified by sex, age, education, and employment class (employee
versus self-employed and unpaid family workers). Since average hourly
compensation data are not available for self-employed and unpaid family
workers, each self-employed worker is imputed the mean wage of hired
workers with the same demographic characteristics.

Finally, all our calculations are base-state invariant, but they are not
base-year invariant. We use 1987 as the base year for all our time series in-
dexes. The reason for this is that the detailed price comparisons are carried
out only for 1987, which means that we construct price indexes for the
remaining years by chain linking them to 1987. Thus we have a “true” panel
of data with both time and spatial consistency and comparability.

The data for the undesirable outputs were constructed in collaboration
with ERS, EPA, and NCRS; details are included in appendix B and are
based on Kellogg, Nehring, and Grube (1999), Kellogg and Nehring
(1997), and Kellogg, Nehring, Grube, Plotkin, et al. (1999). These undesir-
able outputs were intended to capture the effects of the agricultural use of
chemical pesticides and fertilizers on groundwater and surface water qual-
ity. There are essentially two sets of undesirable outputs. The first set in-
cludes separate indexes of nitrogen and pesticide leaching into groundwa-
ter and runoff into surface water. This first set of undesirable outputs does
not attempt to adjust for toxicity or risks from exposure. To summarize,
the first set of undesirable outputs includes the following:

nitrogen leaching (from fertilizer)
nitrogen runoff (from fertilizer)
pesticide leaching
pesticide runoff

In contrast, the second set of indexes of undesirable outputs does explicitly
account for toxicity and, hence, environmental risk. However, these risk-
adjusted indexes are available only for pesticides. In this case we have risk-
adjusted indexes for both pesticide runoff and leaching. We also have two
types of risk: that associated with exposure to humans and that associ-
ated with exposure to fish. To sum up, we have the following for the risk-
adjusted case:

human risk–adjusted effect of pesticide leaching
human risk–adjusted effect of pesticide runoff
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fish risk–adjusted effect of pesticide leaching
fish risk–adjusted effect of pesticide runoff

As with the data on good output and input quantities, we normalize on
1987.

In our empirical illustration we begin by computing Malmquist produc-
tivity and its components based solely on the data on good outputs and
inputs. This provides us with a benchmark for the traditional approach
that does not explicitly account for byproducts of agricultural production.
Next we compute Malmquist-Luenberger productivity indexes with a
number of alternative good and bad specifications.

As a reference point, we first compute productivity with the Malmquist
index for the traditional model in which only good outputs are included.
Table 13.2 includes a summary of average annual productivity changes for
this model for each of the forty-eight states in our sample, including the
extended decomposition of productivity into technical change, efficiency
change, and change in scale efficiency (as in Färe, Grosskopf, Norris, et al.
1994). Recalling that values above 1 signal improvements and those below
1 declines in performance,7 these results suggest that there has been wide-
spread improvement in productivity in the agricultural sector, due largely
to technical change. Another noteworthy feature is the high level of techni-
cal efficiency across the board.

Turning now to the analysis of productivity in which we explicitly ac-
count for potential detrimental effects of pesticide and fertilizer use, we
begin with a brief overview of the trends in production of undesirable
outputs. Table 13.3 displays average annual growth rates in the non–risk
adjusted measures of undesirable outputs by state. The first two columns
proxy the effects of excess pesticides and nitrogen fertilizers on ground
water quality; the second two proxy their effects on surface water quality.
The average annual increase for all the states in our sample is on the order
of 1.5 percent in groundwater contamination and between 2.7 and 3.7 per-
cent in surface water contamination. A quick glance at the individual state
averages reveals considerable variation. One interesting pattern we observe
is that if we average over the major corn-producing states (Illinois, Indi-
ana, Iowa, Michigan, Minnesota, Missouri, Nebraska, Ohio, Wisconsin,
and South Dakota) they have average increases above the national average
in pesticide runoff and leaching, particularly in the earlier part of our time
period 1972–81. In the later part of the period 1981–93, growth rates de-
clined but were still positive. In contrast, if we average across the large
cotton-producing states (Alabama, Arizona, Arkansas, California, Geor-
gia, Louisiana, Mississippi, North Carolina, Tennessee, and Texas) we ob-
serve below-average pesticide runoff and leaching, with a decline in leach-
ing and increase in runoff from the earlier part of the period to the later

7. Subtracting 1 from the value in the table gives the average annual percentage increase
or decrease in the associated index.
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Table 13.2 Traditional Malmquist Model: No Bads

MALMQ EFFCHG TECHCH SCALECH VRSEFFCH

Alabama 1.0097 1.0011 1.0086 1.0001 1.0010
Arizona 1.0090 0.9986 1.0104 1.0000 0.9986
Arkansas 1.0330 1.0069 1.0260 0.9914 1.0157
California 1.0200 1.0000 1.0200 1.0000 1.0000
Colorado 1.0119 0.9901 1.0220 0.9901 1.0000
Connecticut 1.0227 1.0000 1.0227 1.0000 1.0000
Delaware 1.0406 1.0000 1.0406 1.0000 1.0000
Florida 1.0234 1.0000 1.0234 1.0000 1.0000
Georgia 1.0234 0.9997 1.0237 0.9983 1.0014
Idaho 1.0240 0.9974 1.0267 0.9997 0.9977
Illinois 1.0281 1.0000 1.0281 1.0000 1.0000
Iowa 1.0043 0.9776 1.0273 0.9776 1.0000
Indiana 1.0223 0.9932 1.0293 0.9997 0.9935
Kansas 1.0164 0.9865 1.0302 0.9927 0.9938
Kentucky 1.0059 0.9988 1.0072 1.0016 0.9971
Louisiana 1.0161 0.9902 1.0262 0.9999 0.9903
Maine 1.0037 0.9873 1.0166 1.0000 0.9873
Maryland 1.0063 0.9925 1.0140 1.0012 0.9913
Massachusetts 1.0180 1.0000 1.0180 1.0000 1.0000
Michigan 1.0091 0.9934 1.0158 1.0020 0.9914
Minnesota 1.0031 0.9799 1.0237 0.9857 0.9940
Mississippi 1.0233 0.9959 1.0275 0.9965 0.9994
Missouri 0.9950 0.9870 1.0081 0.9996 0.9874
Montana 1.0085 0.9955 1.0130 1.0037 0.9918
North Carolina 1.0354 1.0047 1.0305 1.0035 1.0012
North Dakota 1.0132 0.9876 1.0259 1.0003 0.9873
Nebraska 1.0244 0.9960 1.0285 0.9940 1.0020
New Hampshire 1.0137 1.0045 1.0092 1.0045 1.0000
New Jersey 1.0102 1.0049 1.0052 0.9995 1.0054
New Mexico 1.0072 0.9998 1.0075 0.9998 1.0000
Nevada 0.9992 0.9903 1.0090 1.0000 0.9903
New York 1.0134 0.9979 1.0155 1.0002 0.9978
Ohio 1.0039 0.9955 1.0085 1.0012 0.9943
Oklahoma 0.9953 0.9904 1.0049 1.0018 0.9886
Oregon 1.0058 0.9990 1.0068 1.0000 0.9990
Pennsylvania 1.0056 0.9962 1.0094 1.0016 0.9946
Rhode Island 1.0112 1.0019 1.0093 1.0019 1.0000
South Carolina 1.0115 0.9980 1.0135 1.0002 0.9977
South Dakota 1.0094 0.9850 1.0248 1.0015 0.9835
Tennessee 1.0093 0.9998 1.0095 1.0020 0.9977
Texas 1.0128 0.9998 1.0130 0.9998 1.0000
Utah 1.0095 0.9989 1.0107 1.0022 0.9967
Vermont 1.0125 1.0000 1.0125 1.0000 1.0000
Virginia 1.0090 0.9969 1.0121 1.0011 0.9958
Washington 1.0330 1.0000 1.0330 1.0000 1.0000
West Virginia 1.0035 0.9927 1.0109 0.9991 0.9936
Wisconsin 1.0116 0.9923 1.0195 0.9923 1.0000
Wyoming 1.0112 0.9964 1.0149 1.0031 0.9933

Grand mean 1.0135 0.9958 1.0177 0.9989 0.9969

Notes: Average annual productivity change (geometric mean) 1972–1993. MALMQ � Malmquist.
EFFCHG � efficiency change. TECHCH � technology change. SCALECH � scale efficiency change.
VRSEFFCH � change in efficiency under variable returns to scale (VRS).



Table 13.3 Growth Rates of Undesirable Outputs, 1972–93

Pesticide Nitrogen Pesticide Nitrogen
Leaching Leaching Runoff Runoff

U.S. Growth 1.457975 1.605701 2.720772 3.742445

Alabama �0.66178 �1.86044 0.158949 0.347739
Arizona �4.30669 0.916722 2.436606 3.300701
Arkansas �1.06582 5.730058 1.126583 6.048018
California �4.17287 �0.31007 3.456654 2.886361
Colorado 3.345479 �0.20643 4.996925 2.71688
Delaware 3.359957 2.147653 4.197571 3.300701
Florida �1.54628 �3.3083 1.398584 0.41434
Georgia �2.71806 �1.90331 �0.49902 0.224131
Idaho 7.377519 1.75107 7.314736 n.a.
Illinois 4.4356 1.660584 4.313539 1.903807
Indiana 4.456804 �1.12226 4.548081 �0.56724
Iowa 3.499369 5.640201 3.94283 6.778445
Kansas 4.754962 2.30858 4.968092 4.028983
Kentucky 7.069839 �0.36536 9.034774 2.624652
Louisiana 1.125453 3.579004 3.035036 5.306479
Maryland 3.78025 1.948008 4.713547 2.739829
Michigan 4.618252 2.493359 5.89248 4.306935
Minnesota 3.862868 5.672146 4.832284 7.276444
Mississippi �1.76854 0.856069 0.372424 1.971661
Missouri 0.825782 1.66205 3.510189 2.838578
Montana 6.271978 7.162273 8.527898 n.a.
Nebraska 4.784035 2.174189 4.648753 2.708397
Nevada �12.214 n.a. n.a. n.a.
New Jersey 0.030331 0.988759 2.943945 3.300701
New Mexico �1.55457 0.61349 3.799125 6.601402
New York 4.419186 �0.05891 8.909959 4.034752
North Carolina 0.228167 0.009149 0.402215 1.539176
North Dakota 6.379878 22.63614 6.55775 23.59918
Ohio 4.738903 4.12331 4.840595 5.412055
Oklahoma 1.091972 4.995701 2.390846 5.991969
Oregon 5.804647 �2.97216 5.881847 n.a.
Pennsylvania 3.816409 0.367492 6.010053 2.271067
South Carolina �4.32401 0.989152 �4.94202 1.698452
South Dakota 3.79704 10.19079 5.526619 12.30475
Tennessee 1.808472 0.930429 2.213043 3.36549
Texas 1.983041 2.23293 1.440772 3.657867
Utah 3.129082 �1.12566 4.249905 n.a.
Virginia 1.680214 1.396692 4.965877 4.72977
Washington 6.299346 �3.54085 8.745588 n.a.
West Virginia 1.343964 0.272183 4.896003 3.300701
Wisconsin 3.943217 3.907079 5.88467 7.66399
Wyoming 3.195111 0.207072 6.247087 n.a.

Corn states
1972–81 5.94335 7.54430 6.52824 7.34857
1981–93 3.38477 �1.88265 3.70539 1.22602
1972–93 3.99776 2.42642 4.38584 3.67482



part. Corn states have higher growth rates of nitrogen leaching and runoff
than cotton states as well for the full time period, but this is due to very
fast growth in the earlier years and dramatic relative declines (and reduc-
tions in nitrogen leaching) in the later part of the time period.

When we turn to the human risk– and fish risk–adjusted measures of
pesticide leaching and runoff that are summarized in table 13.4, the pat-
terns over the time period are even more dramatic, reflecting the changes
in chemical use over our time period (which are accounted for in our risk
adjustment).8 Here we see average reductions in groundwater contamina-
tion of almost 3 percent and surface water contamination of almost 5 per-
cent when adjusted for risk to humans. When adjusted for risk to the fish
population, we observe a decrease of more than 4 percent in groundwater
contamination and a 5 percent increase in surface water contamination.
Again, a glance at the state-by-state results reveals very wide variation.

Although the non–risk adjusted patterns are more clear-cut, we do see
differences when we compare corn- and cotton-producing states: On aver-
age, corn-producing states show declines in fish risk–adjusted effects of
pesticides, whereas, on average, the major cotton-producing states show
increases over the entire time period, although both cotton and corn states
show declines in the later years compared to the earlier years. In terms of
the human risk–adjusted trends, both cotton and corn states showed in-
creases in all but human risk–adjusted runoff over the earlier part of our
period (1972–81), but have reduced both leaching and runoff over the later
part (1981–93) of our time period. Recall that on average the major corn-
and cotton-producing states exhibited positive (but falling) growth in non–
risk adjusted leaching and runoff, with rates for corn-producing states ex-
ceeding those of cotton-producing states on average. In contrast, based
on patterns for risk adjusted water pollution, corn-producing states have
reduced their pesticide damages, especially relative to cotton-producing
states. Thus, other things being equal, we would expect that the
Malmquist-Luenberger model would signal lower productivity growth, es-

8. If there is strong variation from year to year, then these patterns may be obscured when
we are looking at average annual changes, as we do here.

Cotton states
1972–81 1.19993 4.48643 1.21995 4.11132
1981–93 �3.47005 �1.99648 1.67742 3.67881
1972–93 �0.97291 1.06712 1.24173 3.33962

Note: Pesticide data are in acre treatment terms. n.a. � not available.

Table 13.3 (continued)

Pesticide Nitrogen Pesticide Nitrogen
Leaching Leaching Runoff Runoff
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Table 13.4 Growth Rates: Human– and Fish–Risk Adjusted Leaching and Runoff,
Average Annual Growth Rates 1972–93

Human Risk Fish Risk

Leaching Runoff Leaching Runoff

Alabama �5.08470 �1.06678 �0.20990 6.09136
Arizona n.a. �10.83268 n.a. 17.80097
Arkansas �1.27859 3.40360 �4.09960 5.20793
California 3.24825 5.80737 �3.73905 17.19049
Colorado �1.16701 �12.73851 �6.14268 �4.54310
Delaware �2.05306 �6.86531 10.87384 �4.47528
Florida �10.59873 �19.54001 �0.02943 7.87374
Georgia �4.99913 �13.72472 3.41988 1.54338
Idaho �9.78556 �13.78041 n.a. �20.54799
Illinois �1.20208 �5.39991 �16.98420 �4.12020
Indiana �1.65013 �8.41646 8.37802 �3.38601
Iowa �4.93930 �4.57139 �16.34977 �3.18199
Kansas 0.91712 �3.86589 �1.49433 1.23912
Kentucky 2.06691 1.34536 1.03638 1.61903
Louisiana �1.17057 4.74926 �1.64338 11.82326
Maryland �2.65318 �4.94753 1.17823 �0.06571
Michigan �1.69295 �1.93151 �14.94175 0.38559
Minnesota �7.97353 �1.74013 �21.99322 �0.44378
Mississippi �4.89603 1.58262 8.43648 14.43836
Missouri �1.80773 �11.42821 2.65703 �1.57733
Montana 3.42449 �3.64715 n.a. �1.90672
Nebraska �0.55471 �3.09422 �16.65064 2.17545
Nevada n.a. n.a. n.a. n.a.
New Jersey �6.35944 9.83772 1.23985 �0.49122
New Mexico �4.70814 �8.79969 �9.30233 �6.00275
New York �4.35752 �0.85828 �4.13647 2.71222
North Carolina �4.08713 �12.08633 4.46486 �0.34217
North Dakota �12.60767 �4.53576 n.a. 3.42076
Ohio �1.28696 �8.31534 �20.45495 �0.17986
Oklahoma �5.13906 �6.80717 3.45326 �0.42510
Oregon 0.83694 4.42137 8.11467 �2.70753
Pennsylvania �4.09475 2.86996 �6.62414 3.64236
South Carolina �3.60931 �8.14836 1.32843 �0.42646
South Dakota �12.84851 �3.35518 �24.51314 �3.90894
Tennessee �2.32381 0.83153 1.89718 8.54155
Texas �0.98647 �5.75428 �0.31741 4.98538
Utah n.a. �29.62295 n.a. �40.13550
Virginia �2.62515 �11.10284 8.18294 3.49778
Washington �4.96490 �2.82736 �22.56023 �8.96142
West Virginia �5.01294 �8.97672 n.a. �6.41974
Wisconsin �7.56621 �0.85298 �14.81612 1.11831
Wyoming �8.16177 �11.15268 n.a. �14.15974

United States �2.69915 �4.83464 �4.29376 5.17032

Corn states
1972–81 4.31171 �3.89088 3.69083 4.20984
1981–93 �7.78590 �6.16768 �26.36327 �6.55263
1972–93 �2.60121 �5.19191 �13.48294 �1.94014



pecially in the earlier years (relative to productivity without the undesir-
able outputs), in corn-producing states when we include indexes of pesti-
cide runoff and leaching that are not adjusted for risk; and productivity
improvements (relative to the goods-only case) when we include indexes
of pesticide runoff and leaching that are adjusted for human and fish risk.

We include our disaggregated results in appendix C.9 Here we focus on
selected states and begin with our results using non–risk adjusted mea-
sures of water contamination; see table 13.5. We display annual average
productivity growth rates in our data for two subperiods: 1972–81 and
1981–93. These were chosen to capture the observed trends in our mea-
sures of water contamination. The first two columns of data summarize
the Malmquist productivity growth for the case in which we ignore bads;
that is, we include only marketable agricultural outputs in our model. Gen-
erally, productivity increases on average between the two time periods. If
we include the undesirable outputs in our model and penalize states for
increases in water contamination (see the columns labeled “Malmquist-
Luenberg”), the average growth rates are typically different, as expected.

To get a sense of whether the difference accords with intuition, we in-
clude in the last two columns an indicator of whether water contamination
increased or decreased between the two time periods. For example, if we
look at the pattern for Colorado under heading A, we see that productivity
increased between the two time periods when we look at goods only. When
we include nitrogen leaching and runoff, the productivity growth in each
period is lower; that is, there is a positive gap between the goods-only
index and the good and bad index (Malmquist-Luenberger), and that gap
increases over time, which is consistent with the observed increase in this

9. We note that for the individual states, we encountered cases in which there were no
solutions to what we call the “mixed period problems,” that is, those in which data in one
period are compared to the frontier in a different period. This occurred in both the standard
Malmquist case and the Malmquist-Luenberger case. The number of such instances is re-
corded under the 0’s columns in the appendix tables. We conjecture that data smoothing
would reduce the incidence of nonsolutions, since we encountered very few problems when
we constructed averages over the major cotton- and corn-producing states. We also suspect
that the “bads” data—which are not generated in the same way as the rest of the data set—
may not be consistent with the production theoretic model that underlies our analysis.

Cotton states
1972–81 1.77296 �2.60857 13.20231 9.02206
1981–93 �6.89547 �3.13453 �9.02549 8.98561
1972–93 �3.18043 �2.90912 0.50071 9.00123

Note: n.a. � not available.

Table 13.4 (continued)

Human Risk Fish Risk

Leaching Runoff Leaching Runoff
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type of pollution in Colorado over the two time periods. Generally, we
would expect to see a positive value in the gap-change column when pollu-
tion increases, and a negative gap change when pollution declines.

The data under heading B confirm this pattern for our other non–risk
adjusted measures of pollution: pesticide leaching and runoff. For ex-
ample, the decline in this measure of pollution for Colorado results in a
higher measured average growth in productivity in the 1981–93 period
using the Malmquist-Luenberger index (which accounts for bads) than in
the simple Malmquist measure (which includes only good outputs).

Table 13.6 includes a sample of our results when we use the risk adjusted
measures of pollution. We note that, on average, trends in these adjusted
measures of pollution—with the exception of fish risk–adjusted runoff—
decline over the 1972–93 time period.10 Thus we would expect to see
Malmquist-Luenberger indexes (that adjust for pollution) that are higher
than their unadjusted counterparts, particularly in the 1981–93 period for
states that realize declines in these types of pollution. Comparing the
growth rates in the second and fourth columns (or the difference in column
f) confirms this result for both the case of fish risk– and human risk–
adjusted measures of pollution.

As an even more general summary of these results, we calculate produc-
tivity growth for average cotton- and corn-growing states; the results are
displayed in table 13.7. By partitioning the time period into the two sub-
periods 1972–81 and 1981–93, we see a pattern of falling pollution for
all but the fish risk–adjusted measure of pollution in the cotton states.
As expected, this yields average productivity growth in the latter period
that is higher when we account for both goods and bads (Malmquist-
Luenberger in 1981–93 column), than when we ignore them (Malmquist
1981–93 column).

Thus, for many states, we find that if we account for risk adjusted water
contamination caused by the use of agricultural chemicals, agricultural
productivity growth—especially in the latter part of the time period stud-
ied here—is higher than the traditional growth measures that ignore these
byproducts. This is consistent with the general pattern of falling human–
and fish risk–adjusted runoff and human risk–adjusted measures of leach-
ing we observe in the raw data.

10. For example, we can trace the dramatic shifts in the use and composition of pesticides
over the period between 1960 and 1993, which involved a major increase in the use of herbi-
cides relative to insecticides and the substitution of more environmentally benign pesticides
for highly toxic pesticides. In the early 1960s, concern about the environmental consequences
was minimal. Rising concern in the mid-1960s ultimately resulted in the EPA ban on the
agricultural use of many chemicals in the 1970s and 1980s, including DDT (1972) and toxa-
phene (1983), which had been widely used in cotton production. The banning of aldrin,
chlordane, and heptachlor had similar effects for corn producers. Nevertheless, there are
major corn herbicides, such as atrazine, that have not been banned, and that constitute major
components of our indexes of pesticide pollution, especially for corn-producing states.
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13.6 Summary

In this paper we provide an overview of some approaches to modeling
and measuring productivity in the presence of joint production of desir-
able and undesirable outputs. These have in common an axiomatic pro-
duction theoretic framework, in which joint production is explicitly mod-
eled using the notion of null-jointness proposed by Shephard and Färe;
and weak disposability of outputs is imposed to model the fact that reduc-
tion of bad outputs may be costly.

In measuring productivity in the presence of undesirable outputs, tradi-
tional growth-accounting and index number approaches face the problem
that prices of the undesirable outputs typically do not exist, since such
outputs are generally not marketed. An alternative that does not require
price information is the Malmquist productivity index, which is based on
ratios of Shephard-type distance functions. These do not require informa-
tion on prices, which suggests that they would be an appropriate method-
ological tool. Although an improvement over ignoring undesirable out-
puts, the Malmquist index computed with bads may not have well-defined
solutions, and it effectively registers increases in the bads (as in the goods),
ceteris paribus, as improvements in productivity.

In order to address these problems we introduce an alternative produc-
tivity index based on a generalization of the Shephard distance functions,
namely, what we call directional distance functions. Not only are these
distance functions generally computable in the presence of undesirable
outputs, but they also allow us to credit firms for reductions in undesir-
able outputs while crediting them for increases in good outputs. The
Malmquist-Luenberger index is constructed from directional distance
functions but maintains the Malmquist multiplicative structure, allowing
us to compare our results with the traditional Malmquist productivity in-
dex, which credits only for increases in good outputs. Although not in-
cluded here, the Luenberger productivity indicator is another model that
is based on directional distance functions but that has an additive struc-
ture.11 All of these productivity indexes are computable using linear pro-
gramming techniques very similar to traditional data envelopment anal-
ysis. Further attention should be paid, however, to dealing with mixed
period problems with no solutions, perhaps through data-smoothing tech-
niques.

We apply our methods to state level data recently made available by
ERS, which include variables that proxy effects of pesticides and nitrates
(found in fertilizers) on groundwater and surface water. As expected, we

11. The directional distance function, of course, combines both additive and multiplicative
features. The additivity, and ability simultaneously to adjust inputs and outputs, while not
exploited here, may be used to establish the duality of the directional distance function
(which scales on outputs and inputs) to profits. See Chambers, Chung, and Färe (1998).
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find that measured productivity differs when we account for bads—de-
clines in water contamination were associated with improvements in the
Malmquist-Luenberger index as expected, ceteris paribus. Future research
plans include pursuit of hypothesis testing, using (for example) bootstrap-
ping techniques.

Another potentially fruitful avenue of research in this area would be to
compute the shadow prices of the undesirable outputs to provide a bench-
mark for the opportunity cost of reducing undesirable outputs from the
production side, as proposed by Färe and Grosskopf (1998). We would
also like to generalize our production model better to model the roles of
the environment and of consumers who evaluate the risks imposed by
changes in the quality of groundwater and surface water. Along these lines,
Färe and Grosskopf also proposed development of a network model to
include the interaction of the environment with bads and consumers; this
could be employed to provide a benchmark for computing shadow prices
that reflect consumer evaluation of reductions in agricultural by-products.

Appendix A

The Luenberger Productivity Indicator

Both productivity indexes discussed in sections 13.3 and 13.4 are multipli-
cative in nature. Here we introduce a productivity measure, which is addi-
tive. We follow W. E. Diewert (1993) and refer to the additive measure as
an indicator. The indicator introduced here is an output-oriented version
of the Luenberger productivity indicator introduced by Chambers (1996).
It is based on the output-oriented directional distance function discussed
in section 13.4 above. We define the index as

(38) L x y b y b x y b y b

x y b y b x y b y b

t
t
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t t t t t t
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t t t t t t
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As we did in section 13.4, we take the direction (gy , �gb) to be the
observed values of the good y and bad b outputs. Following the idea of
Chambers, Färe, and Grosskopf (1996), the Luenberger index can be addi-
tively decomposed into an efficiency change and a technical change com-
ponent,

(39) LEFFCH t
t

o
t t t t t t

o
t t t t t t

x y b y b

x y b y b

+

+ + + + + +

= −

− −

1

1 1 1 1 1 1

D

D

( , , ; , )

( , , ; , )

and

Productivity of the U.S. Agricultural Sector 567



(40) LTECH t
t

o
t t t t t t

o
t t t t t t

o
t t t t t t

o
t t t t t t

x y b y b

x y b y b

x y b y b x y b y b

+ + + + + + +

+ + + + +

+

= −

− −

+ − − −

1 1 1 1 1 1 1

1 1 1 1 1

1

1
2

[( ( , , ; , )

( , , ; , )

( , , ; , ) ( , , ; ,

D

D

D D ))],

respectively. The sum of these two components equals the Luenberger in-
dex. This index can be computed using the same programming problems
described in the discussion of the Malmquist-Luenberger index.

In passing we note that one may also define a Luenberger productivity
indicator based on a directional distance function, which, in addition to
scaling on good outputs, also scales on the input vector. This feature im-
plies that one cannot transform it into multiplicative form as we have done
with the Malmquist-Luenberger index. It has the advantage, however, of
being dual to the profit function, which implies that it is a natural compo-
nent of profit efficiency. This type of Luenberger productivity indicator
was employed by Chambers, Färe, and Grosskopf (1996).

Appendix B

Environmental Indicators of Nitrogen and
Pesticide Leaching and Runoff from Farm Fields

Indicators of groundwater and surface water contamination from chemi-
cals used in agricultural production, and trends over regions and over time
in factors that are known to be important determinants of chemical leach-
ing and runoff, have been used to calculate indexes for environmental con-
tamination. The determinants include the intrinsic leaching potential of
soils; cropping patterns; chemical use; chemical toxicity; and annual rain-
fall and its relationship to surface runoff and to percolation through the
soil. Consequently, the indexes of undesirable outputs that have been esti-
mated represent changes over time and over regions (states) in the poten-
tial for agricultural contamination of water resources. The changes are
assumed to be useful proxies for actual contamination.

Eight indexes of undesirable outputs have been compiled for the
1972–93 period, and can be matched with recently completed series of con-
ventional inputs and outputs to create a 21�48 panel of inputs and both
desirable marketed and undesirable unmarketed outputs of agricultural
production activities in the United States. The eight indexes include four
that are not adjusted for risk of exposure to toxic chemicals, and four that
include a risk adjustment. The four undesirable outputs that have been

This appendix was written by Richard Nehring (ERS) and Robert Kellogg (NRCS) based
on several working papers, including those cited in the bibliography.
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compiled with adjustments for environmental weights relating to weather
and soil/chemical characteristics, but not adjusting for risk, are

1. nitrates in groundwater, measured as adjusted pounds of excess ni-
trogen,

2. nitrates in surface water, measured as adjusted pounds of excess ni-
trogen,

3. pesticides in groundwater, measured as adjusted acre treatments of
pesticides, and

4. pesticides in surface water, measured as adjusted acre treatments of
pesticides.

The new indexing approaches incorporate the diversity of soil and cli-
matic conditions across the United States into base-year environmental
weights by estimating intrinsic vulnerability factors for each of the 3,041
counties in the United States. These environmental weights are converted
to indexes of pesticide contamination using county-level crop production
statistics and the best available pesticide use estimates by crop and by
region. Indexes of nitrate contamination are constructed by multiplying
county-level estimates of excess nitrogen from crop production by the
county-level environmental weights. The non–risk adjusted pesticide
leaching index was derived by adapting the field-level screening procedure
used by USDA’s National Resource Conservation Service (NRCS) to help
farmers evaluate the potential for pesticide loss from a field, and extending
the procedure to the national level. All indexes represent chemical loss at
the edge of the field for runoff and at the bottom of the root zone for
leaching.

The four undesirable outputs that have been compiled with adjustments
for environmental weights relating to climate and soil/chemical character-
istics, including risk, are

1. pesticides in groundwater, measured as adjusted pounds of pesticide
based on chronic human exposure in drinking water;

2. pesticides in groundwater, measured as adjusted pounds of pesticide
based on chronic safe levels for fish;

3. pesticides in surface water, measured as adjusted pounds of pesticide
based on chronic human exposure in drinking water; and

4. pesticides in surface water, measured as adjusted pounds of pesticide
based on chronic safe levels for fish.

The pesticide and nitrogen indexes reflect land-use soil characteristics of
about 160,000 sample points for 1982 and 1992 and are based on USDA’s
1992 National Resources Inventory (NRI). The NRI was used to deter-
mine the percent composition of soil types in each resource subregion by
crop. The percent composition for 1982 was applied to 1972–86, and the
percent composition for 1992 was applied to 1987–93.

Estimates of the eight undesirable indicators are based on major crop
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production that accounts for the bulk of chemical use in most states ana-
lyzed. For pesticide indexes adjusted for risk we used county data on acres
planted for seven crops—barley, corn, cotton, rice, sorghum, soybeans and
wheat. For nitrogen indexes and pesticide indexes not adjusted for risk, we
used county data on acres planted and yields for the same seven crops.
County data on acres planted and yields are available from the National
Agriculture Statistics Service (NASS) for 1972 to the present.

The pesticide-use time series was derived from two sources, USDA and
Doane’s. The Doane Pesticide Profile Study provided a database of appli-
cation rates and percent acres treated by chemical, crop, and year for
1987–93 for the United States as a whole and broken down into seven agri-
cultural production regions. For 1972–86, the Doane pesticide use data
and NASS chemical use surveys for selected years were used to generate
similar estimates. A total of approximately 200 pesticides was included with
somewhat greater coverage in more recent years (i.e., 1986–93 compared
to 1972–86), and with greater coverage in the acre treatment formulation
than in the risk adjusted index. Pesticide use parameters for all years are
made for each of seven Doane reporting regions. Application rates and esti-
mates of percent of acres treated for each chemical used in these seven re-
gions were imputed to the 2,200 resource polygons for each crop.

State-level nitrogen fertilizer application rates were obtained from
NASS and ERS survey data on commercial fertilizer applications. Annual
data were available for ten major corn states, six major cotton states, and
sixteen major wheat states. For other states, application rates were esti-
mated based on other survey data rates used in neighboring states. All
nitrogen application rates used represent average rates for the state. Excess
nitrogen is defined as the difference between the amount of nitrogen ap-
plied from all sources (chemical fertilizers plus soybean and legume cred-
its) and the amount of nitrogen removed in the crop production process
(see Kellogg, Maizell, and Goss 1992). During 1972–93, residual nitrogen
from barley, corn, cotton, rice, sorghum, soybeans, and wheat accounted
for the bulk of residual nitrogen in most of the states analyzed.

In addition to the soil and chemical environmental weights as previously
described, the risk adjusted pesticide indicators involve estimation of envi-
ronmental risk. Environmental risk was estimated using threshold ex-
ceedence units (TEUs). Threshold concentrations used for each chemical
correspond to the maximum safe level for human chronic exposure in
drinking water. Where available, water quality standards were used. For
other pesticides, estimates of the maximum safe level were made from pub-
lished toxicity data. For each chemical used on each crop and soil type in
each resource substate area, the per-acre pesticide loss concentration was
calculated and then divided by the threshold concentration. Where the
threshold concentration was exceeded, the ratio was multiplied by the
acres treated to obtain estimates of TEUs. TEUs per substate area were
obtained by summing TEUs over chemicals, crops, soil type, and resource
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polygons in each substate area. TEUs per state were obtained by con-
verting substate estimates to state estimates using conversion factors de-
rived from the National Resource Inventory. This procedure was repeated
for each year in the time series to produce a spatial-temporal environmen-
tal indicator. Separate indicators were constructed for pesticides in lea-
chate and pesticides dissolved in runoff. Irrigated acres were included in
the total acres, but were not treated differently than nonirrigated acres
with respect to the potential for pesticide loss. The fish-related indicators
were calculated using threshold concentrations based on chronic “safe”
levels for fish.

Other measures of outputs and inputs needed to estimate TFP growth
are calculated only as state aggregates, so the eight undesirable outputs
need to be aggregated to the state level. Since changes in fertilizer and
pesticide use, environmental loadings from these chemicals, and computed
environmental weight vary dramatically by state and county, this aggrega-
tion is the important last step in the index construction, making possible
an accounting of the geographic diversity of the potential for water con-
tamination. Some summary information by state is displayed in table
13B.1.

Table 13B.1 Pesticide Leaching and Runoff Scores as Percent of U.S. Total, 1984
versus 1993

Leaching Score Runoff Score

1984 1993 1984 1993

Colorado 1.06 1.07 0.26 0.28
Illinois 7.48 9.36 11.63 10.04
Indiana 5.87 7.37 5.79 5.40
Kansas 2.48 4.19 3.83 4.51
Kentucky 2.68 2.71 1.54 1.59
Maryland 1.30 1.17 0.38 0.29
Michigan 3.09 3.32 0.94 0.96
Minnesota 2.48 2.83 4.22 4.05
Montana 0.30 0.41 0.23 0.40
Nebraska 6.03 8.79 3.30 3.19
New York 1.14 1.07 0.22 0.38
Pennsylvania 2.06 1.81 0.85 0.80
South Dakota 0.81 1.13 1.28 1.58
Texas 1.52 2.18 3.15 3.93
Virginia 2.05 1.26 0.33 0.24
West Virginia 0.07 0.05 0.02 0.02
Wisconsin 2.65 2.79 0.88 1.04

Subtotal 43.07 51.51 38.85 38.70

Major corn states 38.17 46.98 47.12 43.57
Major cotton states 38.37 31.44 42.22 45.01
Other states 23.46 21.58 10.66 11.42

Total 100.99 100.00 100.00 100.00
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Comment Robin C. Sickles

General Comments

This paper is a new installment in a series of excellent papers by combi-
nations of these authors and their colleagues dealing with the use of Malm-
quist indexes. Here the Malmquist index is used to decompose productiv-
ity growth into technology change and efficiency change (along the lines
of Färe et al. 1994) while allowing for the presence of freely nondisposable
byproducts—in particular, indexes of leaching and runoff from nitrogen
fertilizer and pesticides and indexes of human and fish risk-adjusted effects
of such. Ball, Färe, Grosskopf, and Nehring’s data set is quite unique and
is measured at the state level during the period 1972–93. If the “bads”
are excluded, then their analysis suggests widespread productivity growth.
When controlling for the effects of positively trending pesticide and fertil-
izer use, productivity growth falls. The results appeal to intuition and
point to an effective tool for productivity index construction when negative
externalities are not freely disposable. This work is cutting edge, makes a
wonderful stand-alone empirical contribution, and has a modeling frame-
work that can be ported to many other applications. A student and I, for
example, are utilizing it in revising China’s growth prospects in light of
a proper valuation of its environmental pollution as its economy rapidly
develops (Jeon and Sickles 2000).

The paper provides, among other things, an answer to the question
“ . . . how do we modify the standard productivity index to reflect the
relative value to the producer (consumer) of outputs (services and attri-
butes) when there are no market prices to serve this role?” The empirical

Robin C. Sickles is professor of economics and statistics at Rice University.
The author would like to thank R. Färe, S. Grosskopf, and C. A. K. Lovell for their in-

sightful comments and criticisms. The usual caveat applies.
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setting for this work is in agriculture, and the authors do a yeoman’s job in
developing the empirical instruments and theoretical structure to provide
answers to this question, as well as to many others. The paper also delivers
something else (on which I will focus some of my remarks below), and that
something is a way of dealing with the generic problem of the estimation
of productivity for service industries and industries in which not only are
attributes improperly given positive values, but outputs often are not given
negative value. This problem has been explored extensively in the produc-
tivity literature, but the authors are quiet on this and the closely related
literature on hedonics. A nice starting point is the edited volume by Gri-
liches (1992), which the authors should integrate into their paper.

Clearly, in this type of index number construction, the standard role of
statistics and inference is lost; I will address this issue below as well. How-
ever, let me point out at this juncture one problem with not having stan-
dard errors. Since contiguous states are not independent in agricultural
pollution, bootstrapping exercises to attach standard errors to estimates
need some form of dependency (Flachaire et al. 2000). This is a relatively
new area of research in applied statistics and one that could benefit from
a close perusal by the authors. Moreover, the innovation of the directional
distance function in this analysis is not clear to me. What is the role of
a preassigned direction for changing outputs instead of the proportional
changes utilized in the standard Malmquist index?

Pollution produced in the course of agricultural production is called
a “negative externality” in economics. Spillovers from publicly produced
infrastructures, R&D, and so on have been a topic of serious research in-
terest for some time. Might this literature and the strand promoted in this
paper benefit from some cross-fertilization?

If one maintains a constant-returns-to-scale assumption throughout,
then the decomposition of the Malmquist index into the technical and
efficiency change components is accurate. However, under a variable-
returns-to-scale assumption, their Malmquist index remains accurate, but
their decomposition may not be completely accurate (Ray and Desli 1997;
Grifell-Tatjé and Lovell 1998).

For those of us who question the nonstatistical nature of these indexes,
one can link them in a very direct way to more conventional, production-
based models and see to what extent it may be robust across methods. I
will highlight these links below in a way that hopefully provides comfort
to regression-based productivity analysts. Before I do, however, I will try
to provide a statistical interpretation to the directional-distance measures
that are introduced and analyzed in Ball, Färe, Grosskopf, and Nehring
(chapter 13 in this volume; hereafter BFGN), based on a bootstrapping
approach recently introduced by Simar and Wilson (2000a, b).
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Construction of Stochastic Productive Efficiency Measures
Using Programming and Bootstrapping

The Malmquist-Luenberger productivity index used in BFGN is based
on the output-oriented directional distance function (Chung, Färe, and
Grosskopf 1997). This is different from the Malmquist index, which
changes the desirable outputs and undesirable outputs proportionally
since one chooses the direction to be g � ( yt, �bt), more good outputs
and less bad outputs. The rationale of this kind of directional choice is
that there might be institutional regulations limiting an increase in bad
outputs, in particular pollutant emission. To accomplish this the produc-
tion technology is defined in terms of the output sets, that is, P(xt) � ( yt,
bt)|(xt, yt, bt) ∈ F t and the directional distance function then is defined as
Dt

0(xt, yt, bt; g) � sup[�|( yt � �gy , bt � �gb) ∈ P(xt)] where gy and gb are
subvectors for yt and bt of the direction vector g.

The Malmquist-Luenberger productivity index is then defined as
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which easily can be decomposed into the product of Malmquist-
Luenberger technical change and efficiency change indexes. Solutions
based on solving a set of linear programming problems may be infeasible
if the direction vector g passing through the output set at t � 1 is not
producible for technologies existing at time t.

The index numbers outlined above provide us with only point estimates
of productivity growth rates and the decompositions into their technical
and efficiency components. Clearly there is sampling variability and thus
statistical uncertainty about this estimate. In order to address this issue,
we begin by assuming a data generating process (DGP) where production
units randomly deviate from the underlying true frontier. These random
deviations from the contemporaneous frontier at time t, measured by the
distance function, are further assumed to result from inefficiency. Using
the Simar and Wilson (2000a, b) bootstrapping method, we can provide
a statistical interpretation to the Malmquist or Malmquist-Luenberger
index.

The following assumptions serve to characterize the DGP.

1. [(xi, yi, bi), i � 1, . . . n] are independently and identically distributed
(i.i.d.) random variables on the convex production set.

2. Outputs y and b possess a density f (�) whose bounded support D �
Rq
� is compact where q is the numbers of outputs.
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3. For all (x, y, b), there exist constant ε1 � 0 and ε2 � 0 such that
f (D0(x, y, b; y, �b)|x, y, b) % ε1 for all D0 ∈ [0, ε2 ].

4. For all (xi, yi, bi), D0(x, y, b; y, �b) has a conditional probability den-
sity function f (D0|x, y, b).

5. The distance function D0 is differentiable in its argument.

Under the those assumptions, D̂0 is a consistent estimator of D0, but the
rate of convergence is slow. The random sample � � [(xi, yi, bi), i � 1, . . . ,
n] is obtained by the DGP defined by assumptions 1–4, and bootstrapping
involves replicating this DGP. It generates an appropriately large number
B of pseudo-samples �* � [(x*i , y*i , b*i ), i � 1, . . . , B] and applies the
original estimators to these pseudo-samples. For each bootstrap replica-
tion b � 1, . . . , B, we measure the distance from each observation in the
original sample � to the frontiers estimated for either period from the
pseudo data in �*. This is obtained by solving
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For two time periods, this yields bootstrap estimates [D̂t*|t
0 (b), D̂t*|t�1

0 (b),
D̂t�1*|t

0 (b), D̂t�1*|t�1
0 (b)] for each decision-making unit (DMU). These esti-

mates can then be used to construct bootstrap estimates M̂L0(b),
MLÊCH0(b) and MLT̂CH0(b). The bootstrap method introduced by Efron
(1979) is based on the idea that if the DĜP is a consistent estimator of
DGP, the bootstrap distribution of �nQ [D̂*

0(b),D̂0] given D̂0 is asymptoti-
cally equivalent to the sampling distribution of �nQ(D̂0, D̂0) given the true
probability distribution D0 where Q(�,�) is a reasonable function. The con-
fidence interval of the estimator then can be computed by noting that the
bootstrap approximates the unknown distribution of (M̂Lt,t�1

0 � MLt,t�1
0 )

by the distribution of [M̂Lt,t�1
0 (b) � M̂Lt,t�1

0 ] conditioned on the original
data set. Therefore, we can find critical values of the distribution, a	, b	 by
simply sorting the value [M̂Lt,t�1

0 (b) � M̂Lt,t�1
0 ] b � 1, . . . , B and then find

(	/2) percentile and [100 � (	/2)] percentile values. We can also correct
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finite-sample bias in the original estimators of the indexes using the boot-
strap estimates. The bootstrap bias estimate for original estimator
M̂Lt,t�1

0 is

bîasB(M̂Lt,t�1
0 ) �

1
B
∑
B

b�1
M̂Lt,t�1

0 (b) � M̂Lt,t�1
0 .

Therefore, the bias corrected estimate of MLt�1
0 is computed as

M̂̂Lt,t�1
0 � M̂Lt,t�1

0 � bîasB [M̂Lt,t�1
0 ] � 2M̂Lt,t�1

0 �
1
B
∑
B

b�1
M̂Lt,t�1

0 (b).

The variance of bias-corrected estimator will be 4var(M̂Lt,t�1
0 ) as B → ∞.

The bias-corrected estimator can have higher mean square error than
the original estimator. So, we have to compare 4var(M̂Lt,t�1

0 ), the mean
squared error of M̂̂Lt,t�1

0 with the var(M̂̂Lt,t�1
0 ) � [(bîasB(M̂Lt,t�1

0 )]2, the
mean squared error of the original estimator M̂Lt,t�1

0 . Var(M̂Lt,t�1
0 ) can

be estimated as the sample variance of the bootstrap estimators
[M̂Lt,t�1

0 (b)]B
b�1. The bias-corrected estimator will have higher mean

squared error if var[M̂Lt,t�1
0 (b)]� 1/3[bîasB(M̂Lt,t�1

0 )]2. An eleven-step boot-
strapping algorithm suggested in Simar and Wilson (2000a, b), which rep-
licates the DGP but which assumes i.i.d. errors recently has been imple-
mented for this model by Jeon and Sickles (2000).

Construction of Productive Efficiency Measures
Using Regression-Based Procedures

The radial measures of technical efficiency the authors consider in this
paper are based on the output distance function. The goal of parametric,
semiparametric, and fully nonparametric (as well as nonstatistical) linear
programming approaches is to identify the distance function and hence
relative technical efficiencies. The output distance function is expressed as
D(X, Y ) � 1, where Y is the vector of outputs and X is the vector of
inputs. The output distance function provides a natural radial measure of
technical efficiency that describes the fraction of possible aggregated out-
puts produced, given chosen inputs. For a J-output, K-input technology,
the deterministic distance function can be approximated by [(&J

1Y
 j
j )/

(&K
1 X �k

k )] � 1 where the coefficients are weights that describe the technol-
ogy of the firm. When a firm is producing efficiently, the value of the dis-
tance function equals 1 and it is not possible to increase the index of total
output without either decreasing an output or increasing an input. Ran-
dom error and firm effects could enter the output distance function in any
number of ways. If we shift the output distance function by an exponential
function of these terms (in much the way technical change is treated in
traditional, single-output production functions), then, following Lovell
and colleagues (1994) by multiplying through by the denominator, taking
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logarithms of outputs and inputs, and imposing the required linear homo-
geneity of the distance function in outputs, the distance function can be
rewritten as

− = − + +
=

−

=
∑ ∑ln ln * ln ,y y xJ
j

J

jit j
k

K

kit k it it
1

1

1


 � 	 ε

where yJ is the normalizing output, y*jit � ( y*jit /yJ); and where 	it are one-
sided (negative in this formulation) efficiency effects, and εit are random
errors. The panel stochastic distance frontier thus can be viewed as a ge-
neric panel data model where the effects are interpreted as firm efficiencies
and which fits into the class of frontier models developed and extended by
Aigner, Lovell, and Schmidt (1977), Meeusen and van den Broeck (1977),
Schmidt and Sickles (1984), and Cornwell, Schmidt, and Sickles (1990,
hereafter CSS).

Parametric estimation can be carried out by conventional least squares
or instrumental variables. Assuming that technological changes diffuse to
all firms in the industry, firm-specific efficiencies can be distinguished from
technology change, and the total of these, productivity change, can be es-
timated. Alternative mle estimators that rely on parametric specifications
of the composed error are also available.

Semiparametric estimation can also be carried out in several ways. One
can utilize a Robinson-type estimator for the mean of the stochastic dis-
tance frontier or use kernel-based procedures to model certain dependency
structures between the random effects (	i) and selected regressors, such as
the right-hand side y’s.

Park, Sickles, and Simar (1998) develop a framework for estimating the
sort of model in which we are interested, namely, a panel model in which
the stochastic efficiency effects are allowed to be correlated with selected
regressors (in particular the y’s), thus ensuring the endogenous treatment
of multiple outputs in this regression-based distance function specifica-
tion. Derivation of the semiparametric efficient estimator for the slope co-
efficients and the corresponding estimator for the boundary function that
leads naturally to the construction of a relative efficiency measure in terms
of the distance function are found in Park, Sickles, and Simar (1998). In
the empirical implementations, one can use the “within” estimator of CSS
as the initial consistent estimator and the bootstrap method for selecting
the bandwidth in constructing the multivariate kernel-density estimates.

Given the efficient estimator �̂N,T , 	i are predicted by

ˆ ( ˆ ).,	 �i i N TS=

Under the assumptions of the model above, Park, Sickles, and Simar
(1998) prove that as T and T 2

N,T go to infinity:
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L T NP i i
= − →[ ]( ˆ ) ( , ) .	 	  0 2

Relative technical inefficiencies of the ith firm with respect to the jth
firm can be predicted by 	̂i � 	̂j. We are most interested in firm-relative
efficiencies with respect to the most efficient firm: maxj�1, . . . ,N(	̂j).

Although DEA models the technology flexibly, it does not allow for
random error. This is a shortcoming that the semiparametric methods
overcome while still allowing for flexibility in functional form. Semipara-
metric estimators based on kernel methods such as Nadaraya-Watson have
not been extensively applied in the efficiency literature, especially for multi-
output firms. The parametric output distance function can be modified
in two ways. First, we can allow efficiencies to be time varying. Second,
we can start by making minimal functional form assumptions on the in-
puts. The distance function can be rewritten as

Y f X Yit it it it it= + + +( ) * .
 	 ε

We can include additional assumptions on the time-varying properties of
the technical efficiencies. We apply a specification that is the same as in
CSS. Several other authors have allowed efficiencies to change over time.
CSS model efficiencies as a quadratic function, while Kumbhakar (1990)
models efficiencies as an exponential function of time. Others include Bat-
tese and Coelli (1992) and Lee and Schmidt (1993), who allow for other
model specifications. Semiparametric estimation proceeds in the following
manner. Assuming that the inputs are not correlated with the effects, the
conditional expectation for the distance frontier function is

E Y X f X E Y Xit it it it it[ | ] ( ) [ * | ],= +

where the means of the random effects, 	it, are also uncorrelated with the
inputs. Subtracting this conditional expectation from the distance function
provides us with the model to be estimated,

Y E Y X Y E Y Xit it it it it it it it− = − + +[ | ] * [ * | ] ,
 	 ε

where

f x E Y X E Y Xit it it it it( ) [ | ] [ * | ] .= − 


The model is estimated in two steps. First, the conditional expectations are
estimated. To estimate the conditional mean we can use a kernel-based
nonparametric regression. Next, the transformed model can be estimated
by the CSS estimator. The residuals are then used to estimate the parame-
ters in the time-varying model.
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These methods hopefully have demonstrated the isophorphism of
regression-based alternatives to the programming-based methods em-
ployed by BFGN, and will the provide the productivity researcher with a
framework for analysis that gives a more intuitive and familiar look to
their methods. I trust that the index number constructions employed by
them continue to be adopted and refined by researchers and practitioners
in business and in the government.
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