This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Short-Term Macroeconomic Policy in Latin America
Volume Author/Editor: Jere R. Behrman and James Hanson, eds.
Volume Publisher: NBER
Volume ISBN: 0-88410-489-3
Volume URL: http://www.nber.org/books/behr79-1
Publication Date: 1979

Chapter Title: Derivation of Transfer Functions for Prices (appendix 5-b)
Chapter Author: Roque B. Fernandez
Chapter URL: http://www.nber.org/chapters/c3888
Chapter pages in book: (p. 175-176)

Appendix Derivation of 5-B Transfer Functions for Prices

The hypothesis of rational expectations in our model implies that the expected p_{t} is computed as if the public attempted to obtain an optimal unbiased forecast of p_{t} using Equation (5-6). Combining (5--14) and (5-6) we can write:

$$
\begin{align*}
p_{t} & =(1 /[1-b]) \sum_{j=0}^{\infty}\left(1 /\left[1-b^{-1}\right]\right)^{j}\left(E \phi m_{t+j}-y_{n, t+j}\right) \tag{B5-1}\\
& +\left[J_{3} /\left(1-J_{0}\right)\right] \sum_{j=0}^{\infty}\left(\alpha /\left[1-b^{-1}\right]\right)^{j} y_{c, t-1}+c_{0}+u_{4 t}
\end{align*}
$$

In (B5-1) we have a term in $E \phi m_{t+j}$. Developing this term for $j=0,1, \ldots$ taking expectations and recalling that

$$
\phi=\phi_{0}+\phi_{1} L+\phi_{2} L^{2}+\ldots,
$$

we have

$$
\begin{array}{ll}
E \phi m_{t+j}=E \phi_{0} m_{t}+\phi_{1} m_{t-1}+\dot{\phi}_{2} m_{t-2}+\ldots & j=0 \\
E \phi m_{t+j}=E \phi_{0} m_{t+1}+E \phi_{1} m_{t}+\phi_{2} m_{t-1}+\ldots & j=1
\end{array}
$$

$$
E \phi m_{t+j}=E \phi_{0} m_{t+2}+E \phi_{1} m_{t+1}+E \phi_{2} m_{t-1}+\ldots \quad j=2
$$

Recall that the E operator is conditional on the information in period $t-1$, so $E m_{t-1}=m_{t-1}$, and so on, for periods before period $t-1$. Now provided that we use the process (5-12) to obtain $E m_{t+j}, j=1$, $2, \ldots$, we notice that the forecasts of m_{t} are obtained through linear combinations of $m_{t-1}, m_{t-2}, m_{t-3}, \ldots$ These linear combinations should be combined with the other terms in $m_{t-1}, m_{t-2}, m_{t-3}, \ldots$ that appear because of the lagged response of prices to changes in m_{t}, and with $y_{n, t+j}, j=1,2, \ldots$ and $y_{c, t-1}$ to forecast p_{t}. Then we can rearrange the terms in $m_{t-1}, m_{t-2}, m_{t-3}, \ldots$, and rewrite (B5-1) as

$$
\begin{aligned}
p_{t} & =v(L) L m_{t}-(1 /[1-b]) \sum_{j=0}^{\infty}\left(1 /\left[1-b^{-1}\right]\right)^{j} y_{n, t+j} \\
& +\left(J_{3} /\left[1-J_{0}\right]\right) \sum_{j=0}^{\infty}\left(\alpha /\left[1-b^{-1}\right]\right)^{j} y_{c, t-1}+c_{0}+u_{4 t}
\end{aligned}
$$

The first difference form of this equation is:
$D p_{t}=v(L) L D m_{t}+h_{0} D y_{c, t-1}+c+u_{5 t}$
where c accounts for the term in $y_{n, t+j}$ after differencing (recall that $y_{n, t}$ is a trend and differencing it yields the trend) and h_{0} represents the coefficient of $y_{c, t-1}$.

Equation (B5-3) is reproduced in the text as equation (5-14-a), which in turn is parsimoniously (in terms of the number of parameters) represented by the transfer function (5-15).

