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Abstract

This paper proposes a bootstrap artificial neural network based panel unit root
test in a dynamic heterogeneous panel context. An application to a panel of bilateral
real exchange rate series with the US Dollar from the 20 major OECD countries
is provided to investigate the Purchase Power Parity (PPP). The combination of
neural network and bootstrapping significantly changes the findings of the economic
study in favour of PPP.
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1 Introduction

The standard linear autoregressive framework used to test for unit roots in time series is
increasingly viewed to be unsatisfactory and, as a result, alternative frameworks within
which to test for unit roots are considered. Im et al. [2003] propose a panel testing
procedure, denoted IPS test, based on averaging individual unit root test statistics. Blake
and Kapetanios [2003] extend the unit root test proposed by Caner and Hansen [2000],
Kapetanios and Shin [2000] using artificial neural network. de Peretti et al. [2009] propose
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a panel unit root test, denoted PSC test, which is based on the averages of the individual
Blake and Kapetanios [2003] statistics. However, these tests suffer from size distortion.

Then, this paper extends the PSC test by using bootstrap techniques to account
for size distortion. The performance of the new bootstrap neural test is investigated
and compared to IPS test via Monte Carlo experiments in section 3. An application
to a panel of bilateral real exchange rate series with the US Dollar from the 20 major
OECD countries is provided to examine the Purchase Power Parity (PPP) property in
section 4. The procedures and programs to run the tests and to generate simulated
data, written in Gauss software, as well as the exchange rates dataset are available at:
http://recherche.univ-lyon2.fr/eric/82-Carole-Siani.html. Section 5 provides
some concluding remarks.

2 Bootstrap test

de Peretti et al. [2009] propose several test statistics for panel unit root, depending on
whether the sample period T and/or the number of cross sections N is/are large, and the
degree of heterogeneity in the number of hidden neural nodes across sections. Let any of
these test statistics be denoted by τ .

2.1 Bootstrap DGP under the null hypothesis

The original data are estimated under the null hypothesis, that is an independent panel
of unit root processes:

yit = yi,t−1 + εit, i = 1, . . . , N ; t = 1, . . . , T, (1)

Deterministic regressors, such as constant term or trend, can be included in this regres-
sion. In the case of autocorrelated error terms:

εit = ρi1εi,t−1 + . . . + ρi,pi
εi,t−pi

+ ξit, (2)

ξit ∼ independent N(0, σ2
i ). (3)

the unknown parameters (ρij)
pi

j=1 and σ2
i are estimated by maximum likelihood. Call

these estimates (ρ̂ij)
pi

j=1 and σ̂2
i . The optimal number of lags pi can be assessed using the

AIC criterion. Define it as p̂i.

2.2 Simulating bootstrap samples

Simulate B samples, denoted (yb
it)i=1,...,N ;t=1,...,T for b = 1, . . . , B:

yb
it = yb

i,t−1 + εb
it, i = 1, . . . , N ; t = 2, . . . , T ; (4)

yb
i1 = yi1, i = 1, . . . , N ; (5)

εb
it = ρ̂i1ε

b
i,t−1 + . . . + ρ̂i,pi

εb
i,t−pi

+ ξb
it, i = 1, . . . , N ; t = −∞, . . . , T ; (6)

The process εb
it is an autoregressive (AR) process. Since we cannot generate the process

from t = −∞, we proceed as follows:

1. Define a negative integer M small enough (in practice -25 is enough),
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2. εb
iM = ξb

iM ,

3. εb
i,M+1 = ρ̂i1ε

b
i,M + ξb

i,M+1,

4. εb
i,M+2 = ρ̂i1ε

b
i,M+1 + ρ̂i,2ε

b
i,M + ξb

i,M+2,

5. . . . ,

6. εb
i,M+pi

= ρ̂i1ε
b
i,M+pi−1 + . . . + ρ̂i,pi

εb
i,M + ξb

iM+pi
,

7. the following εb
it are generated according Equation 6.

M has to be small enough to allow the AR processes εb
it to follow their stationary prob-

abilistic distribution (otherwise, the null hypothesis can be rejected even if true). We
consider four different ways of generating the residuals ξb

it: parametric and three three
nonparametric bootstrap methods (see Davidson [1998] for details).

2.3 Bootstrap P value

For each simulated sample, the test statistic is computed. Let denote it τb. The important
point is that the optimal number of hidden nodes in step 1 is not imposed. Indeed the
optimal number of hidden nodes is re-assessed using the AIC for each new simulated
sample.

The bootstrap P value is then computed as follows:

pv =
1

B

B∑
b=1

I(τb > τ),

where τ is computed on the original sample of panel data. For a test at significance level
α, the null hypothesis of unit roots is then rejected if p̂v < α.

3 Monte Carlo Experiments

We compare the performance of the asymptotic and bootstrapped neural test with the
performance of the IPS test. 1 A detailed Monte Carlo study is provided in an on
line appendix 2, using the graphical methods 3 of Davidson and MacKinnon [1998] for
investigating the size and the power of hypothesis tests.

3.1 Simulation under the null hypothesis

Simulated samples are generated as follows:

yit = yi,t−1 + εit,

εit = ρiεi,t−1 + eit,

eit ∼ i.i.d.N(0, σ2
i ),

σi ∼ i.i.d.U [0.5, 1.5],
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Table 1: Size of the tests at the 5% significance level

Test type / Statistic
Asymptotic Bootstrap

DGP ρi T N IPS Neural IPS Neural
Null 0 20 5 0.0482 0.0467 0.0530 0.0500
Null 0 20 20 0.0500 0.0354 0.0590 0.0550
Null 0 100 5 0.0476 0.0661 0.0500 0.0500
Null 0 100 20 0.0478 0.0637 0.0500 0.0500
Null i.i.d.U[0.2,0.4] 20 5 0.1046 0.0854 0.0490 0.0530
Null i.i.d.U[0.2,0.4] 50 5 0.0632 0.0760 0.0370 0.0480
Null i.i.d.U[-0.4,-0.2] 20 5 0.0924 0.0572 0.0410 0.0360
Null i.i.d.U[-0.4,-0.2] 50 5 0.0537 0.0554 0.0560 0.0580

for i = 1, . . . , N and t = 1, . . . , T . Table 1 presents the test sizes at the 5% significance
level. From Table 1 and on line appendix, it is found that in all the cases, the bootstrap
tests display almost no size distortion.

3.2 Simulation under the alternative hypothesis

On a significance level correction basis, the power of bootstrap tests should the same
as the power of their associated asymptotic tests (see Davidson and MacKinnon [1998]).
Thus a power analysis is not required. Some Monte Carlo results using SETAR models
are provided in the on line appendix. In the case of serial correlated error terms, the
neural test clearly dominates.

4 Application to a panel of bilateral real exchange

rates

We apply the bootstrapped IPS and neural panel unit root tests to real exchange rates
against the US dollar for twenty OECD countries over the period 1973Q1–1998Q2. The
dataset is the same used by Murray and Papell [2002, 2005] so that the results can be
compared. Most of the studies show evidence of unit root behaviour in real exchange
rates, which has become a puzzle in international finance.

The results are shown in Table 2. The contrast between the two panel statistics is
rather strong. IPS test fails to clearly reject the unit root null at all levels of significance:
the P values (asymptotic and bootstrap) are close to the 5% level limit, and thus may
imply non-mean reversion in the whole panel of real exchange rates. Our bootstrap
neural test rejects the null hypothesis of panel unit root at all reasonable significance
levels, giving support to the long-run PPP for the whole panel of OECD countries. This
evidence of nonlinear mean reversion in the OECD real exchange rates may suggest that

1To compare both the test on the same basis, the IPS test is also bootstrapped.
2Available at: http://recherche.univ-lyon2.fr/eric/82-Carole-Siani.html.
3Size plots, size discrepancy plots, and power-corrected size curves
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Table 2: P values for the panel Unit Root Tests for Real Dollar Exchange Rates

Test Asymptotic Bootstrap
IPS 0.0413 * 0.0486 *
ANN 0.0248 * 0.0010 ***

* P value significant at 5% level,
*** P value significant at 1% level.

previous evidence in the literature of non-mean reversion in real exchange rates is due to
using linear unit root tests.

For a comparison purpose, other panel unit root tests are also applied in the on line
appendix. Most of the panel unit root tests find the real exchange rate non-stationary.

5 Concluding Remarks

We have developed a bootstrap procedure to correct for size distortion of heterogeneous
panel tests. We investigated the small sample properties of the proposed bootstrap test. It
is found that the bootstrap neural test performs well, even when T = 20. An application
to exchange rates shows the usefulness of combining bootstrap and neural networks.
Evidence for PPP, which is generally rejected by classical linear tests, is found when our
bootstrapped neural test is employed.
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