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Abstract

In this paper we consider endogenous regressors in the binary choice model under a

weak median exclusion restriction, but without further specification of the distribution of

the unobserved random components. Our reduced form specification with heteroscedastic

residuals covers various heterogeneous structural binary choice models. As a particularly

relevant example of a structural model where no semiparametric estimator has of yet

been analyzed, we consider the binary random utility model with endogenous regressors

and heterogeneous parameters. We employ a control function IV assumption to establish

identification of a slope parameter β by the mean ratio of derivatives of two functions

of the instruments. We propose an estimator based on direct sample counterparts, and

discuss the large sample behavior of this estimator. In particular, we show
√

n consis-

tency and derive the asymptotic distribution. In the same framework, we propose tests

for heteroscedasticity, overidentification and endogeneity. We analyze the small sample

performance through a simulation study. An application of the model to discrete choice

demand data concludes this paper.
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1 Introduction

The Model: The binary choice model constitutes a workhorse of modern microeconometrics

and has found a great many applications throughout applied economics. It is commonly treated

in a latent variable formulation, i.e.

Y ∗ = X ′β + U (1.1)

Y = I {Y ∗ > 0} ,

where Y ∗ is an unobserved continuously distributed random variable, in the classical choice

literature often utility or differences in utility, X is a random K-vector of regressors, β is a

K-vector of fixed coefficients, and I {·} denotes the indicator of an event. Throughout much of

the literature, and indeed in this paper, interest centers on the coefficient β which summarizes

the effect of a set of regressors X on the dependent variable. If U is assumed independent of

X, and U follows a certain parametric distribution then E [Y |X] = FU(X ′β), where FU is the

known parametric cdf of U, and estimation is straightforward via ML. Both assumptions are

restrictive in many economic applications and have therefore come under critique. In particular,

invoking these assumptions rules out that model (1.1) is the reduced form of individual behavior

in a heterogeneous population, where parameters vary across the population in an unrestricted

fashion, and it rules out endogeneity.

This paper aims at weakening these critical assumptions, while retaining an estimator with a

simple and interpretable structure. In particular, it establishes interpretation and constructive

identification of β under assumptions that are compatible with, e.g., a heterogeneous popula-

tion characterized by an unrestricted distribution of random utility parameters. The weakening

of assumptions is twofold: First, we do not want to place restrictive parametricity or full inde-

pendence assumptions on the distribution of the unobservables (or indeed any random variable

in this model), and employ instead relatively weak median exclusion restrictions. Second, due

to its paramount importance in applications we want to handle the case of endogenous regres-

sors, e.g., we want to allow for X to be correlated with U . The estimator we propose has a

simple, “direct” structure, akin to average derivative estimator (ADE). A characteristic feature

of this class of estimators is that they use a control function instrumental variables approach

for identification. The identification result is constructive in the sense that it can be employed

to yield a
√

n consistent semiparametric estimator for β.

Main Identification Idea: Throughout this paper, we will be concerned with model (1.1).

However, we view model (1.1) as a reduced form of a structural model in a heterogeneous

population. As a consequence, we will also be concerned with the providing an example for

the interpretation of β when employing sensible independence restrictions in the heterogeneous

structural model.
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The independence restriction we are invoking in model (1.1) is a conditional median exclu-

sion restriction. Specifically, we introduce a L random vector of instruments, denoted Z, and

assume that they are related to X via

X = ϑ(Z) + V, (1.2)

where ϑ is a smooth, but unknown function of Z. For instance, in the special case where

out of K continuously distributed regressors (X1, .., XK) only X1 is endogenous and there is

exactly one additional instrument denoted by Z1 (so that Z =
(
Z1, X2.., XK

)′
), ϑ could be a

continuous version of the mean regression mX(z) = E [X|Z = z] = (E [X1|Z = z] , X2, ..., XK)′,

in which case V would be the mean regression residuals in the first equation. Alternatively,

it could also be a vector containing the conditional α quantile of X1 conditional on Z as first

element, provided this is considered a more plausible specification for the application at hand1.

If we let the conditional median of U given Z = z and V = v be denoted by k0.5
U |ZV (z, v),

then we may formalize our identifying assumption as

k0.5
U |ZV (z, v) = g(v),

for all (z, v) in its support. What does this assumption mean in economic terms, and why is it

a sensible assumption if we think of a heterogeneous population? In section 2 we show that this

assumption is implied by a heterogeneous random utility model with endogeneity arising from

omitted variables. In this case, the median exclusion restriction is implied if instruments are

(jointly) independent of omitted variables and of V , but it holds also under weaker restrictions.

What economic interpretation of β is implied by our assumptions? Taking the binary choice

model with random utility parameters as an example, in the second section we establish the

following: 1. If we are willing to assume conditionally symmetric random parameters, we obtain

that β has the interpretation of a mean of marginal effects. 2. In the absence of symmetry we

show that β has the interpretation of a local average structural derivative (see Hoderlein (2005,

2009) and Hoderlein and Mammen (2007)).

Given that we have devised a sensible identification restriction and defined an interesting

structural parameter, the question that remains to be answered is how to actually identify and

estimate this parameter. To answer this question, we introduce the following notation: Let

Ȳ = k0.5
Y |ZV (Z, V ) = I {P [Y = 0|Z, V ] < 0.5} denote the conditional median of Y given Z and

V , and assume that ϑ(z) = E [X|Z = z] . Then, under assumptions to be detailed below,

β = E
[[

DzE [X|Z]′
]−1∇zE

[
Ȳ |Z]

B(Z)
]
, (1.3)

1While the identification analysis proceeds on this level of generality, for the large sample theory we specify

ϑ to be the mean regression.

3



where ∇z and Dz denote gradient and Jacobian, and B(z) denotes a bounded weighting func-

tion to be defined below. Intuitively, the identification follows by a combination of arguments

employed to identify average derivatives (see Powell, Stock and Stoker (1989), PSS, for short),

and the chain rule, and is only up to scale. This identification principle is constructive, and

yields in a straightforward fashion a sample counterparts estimator, see equation (4.3) below.

Because of its direct structure, the estimator shares all advantages of direct estimators. In

particular, the estimator is robust to misspecification and avoids computationally difficult op-

timization problems involving nonconvex objective functions. Moreover, the estimator is
√

n

consistent, and has a standard limiting distribution.

Additional Contributions: Beyond constructing an estimator for a sensible parameter

in a heterogeneous population, the flexibility of the model enables us to check the specification

for several issues that have not been considered exhaustively, if at all, in the literature on this

type of models. For instance, we propose powerful tests for endogeneity and heteroscedasticity.

Another important issue we discuss is overidentification. As will turn out, in a general non-

separable setup overidentification is markedly different from the issue in the linear framework.

In addition to clarifying the concept, we propose a Hausman type test for overidentification.

We develop a semiparametric notion of weakness of the instruments, and establish how our ap-

proach allows to mitigate the problem of weak instruments. Finally, we show that our approach

allows to handle discrete and continuous endogenous regressors.

Literature: The binary choice model (1.1) with exogenous regressors has been analyzed

extensively in the semiparametric literature, most often via single index models. Since this

paper employs a direct estimator, our approach is related to contributions by PSS (1989), Hris-

tache, Juditsky and Spokoiny (2001) and Chaudhuri, Doksum and Samarov (1997), to mention

just a few. The main alternative are “optimization”, or M -, estimators for β, including semi-

parametric LS (Ichimura (1993)), semiparametric ML (Klein and Spady (1993)), and general

M -estimators (Delecroix and Hristache (1997). None of these of estimators can handle gen-

eral forms of heteroscedasticity even in the exogenous setting, and to do so one has to employ

maximum score type estimators, see Manski (1975). But these estimators have a slow conver-

gence rate and a nonstandard limiting distribution, and only the estimator of Horowitz (1992)

achieves almost
√

n convergence.

In spite of the wealth of literature about model (1.1) in the exogenous case, and the impor-

tance of the concepts of endogeneity and instruments throughout econometrics, the research

on model (1.1) with endogenous regressors has been relatively limited. However, there are im-

portant contributions that deserve mentioning. For the parametric case, we refer to Blundell

and Smith (1986) and Rivers and Voung (1988). For the semiparametric case, Lewbel proposes

the concept of special regressors, i.e. one of the regressors is required to have infinite support,
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which is essential for identification (Lewbel (1998)). Our approach is more closely related to the

work of Blundell and Powell (2004, BP, for short), and Petrin and Train (2006). Like BP, we

use a control function assumption to identify the model, but as already mentioned in a different

fashion. This makes our approach also weakly related to other control function models in the

semiparametric literature, most notably Newey, Powell and Vella (1998) and Das, Newey and

Vella (2003). Related is also Matzkin (1992, 2005), who was the first to consider nonparametric

identification in the exogenous binary choice model, and Bajari, Fox, Kim and Ryan (2008),

who propose a nonparametric estimator of the distribution of random coefficients. Finally, our

work is also related to Ai and Chen (2001), Vytlacil and Yildiz (2007), and in particular the

“Local Instruments” approach of Heckman and Vytlacil (2005) and Florens, Heckman, Meghir

and Vytlacil (2008) for analyzing treatment effects.

Organization of Paper: We start out in the next section by considering the case of a

linear random utility model with heterogeneous parameters. We derive the median exclusion

restriction formally, and establish the interpretation of β stated above. In section three we state

formally the assumptions required for identification of β and provide a discussion. Moreover,

we establish identification both in the heteroscedastic as well as the homoscedastic case (we

require the latter among other things to test the random utility parameters specification). This

identification principle is constructive in the sense that it yields direct estimators through sam-

ple counterparts. The asymptotic distribution of these estimators is in the focus of the fourth

section. Specifically, we establish
√

n consistency to a standard limiting distribution2. Beyond

suggesting a
√

n consistent estimator, the general identification principle is fruitful in the sense

that it allows to construct tests for endogeneity, heteroscedasticity and overidentification, and

this will be our concern in the fifth section. A simulation study underscores the importance

of correcting for endogeneity and heterogeneity and will be discussed in the sixth section. In

the seventh section, we apply our methods to a real world discrete choice demand application:

We consider the decision to subscribe to cable TV, using data similar to Goolsbee and Petrin

(2004). Finally, this paper ends with a conclusion and an outlook.

2This is in stark contrast to the exogenous binary choice model, where single index estimators only allow for

very limited forms of heteroscedasticity (namely that the distribution of U |X is only a function of the index

X ′β), and only maximum score type estimators allow for heteroscedastic errors of general form (Manski (1975,

1985), Horowitz (1992)), but those do not achieve
√

n rate of convergence.
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2 A Structural Example: Binary Demand Decisions in

a Heterogeneous Population

The question that should be answered for any reduced form microeconometric model is how it

can be derived from individual behavior in a heterogeneous population. To answer this iden-

tification question for the one defined through (1.1), we start out with a general nonseparable

model of a heterogeneous population as in Hoderlein (2005, 2009) or Hoderlein and Mammen

(2007). The most general version of (1.1) has the structural unobservables (e.g., preferences)

influencing the latent variable in a nonseparable fashion, i.e. Y ∗ = φ(X, A), where A ∈ A

denotes the unobservables. Here A is a Borel space, e.g., the space of piecewise continuous

utility functions. Note that A may include objects like preferences, but also other omitted de-

terminants. In our example, we denote the former by A1, while the remainder of A is denoted

by A2. In discrete choice demand analysis for instance, A2 are often omitted characteristics of

the product.

Specific Model: While we could proceed to discuss the model on this level of generality,

in this paper we restrict ourselves to linear models on individual level, largely because linear

models are the dominating class of models in economic applications, and leave the most general

case for a companion paper. A linear heterogeneous population with omitted variables A2 may

then be formalized through a random coefficient model, i.e.,

Y ∗ = X ′β(A1) + A′
2γ(A1) (2.1)

Y = I {Y ∗ > 0} ,

where θ(A1) = (β(A1)
′, γ(A1)

′)′ is a mapping from the space of unobservables (say, preferences)

A1 ⊆ A into RK . Since we assume the random elements A1 (in our example, preferences) to vary

across the population, θ(A1) varies across the population, too. This model admits a reduced

form representation as (1.1). What are now plausible stochastic conditions that we would like

to impose on the reduced form (1.1) to identify β, and how can they be derived from restrictions

in the structural model (2.1), and in particular on the random coefficients θ(A1)?

We answer this question under the assumption that the endogeneity arises from potential

correlation of X and A2 only, and that A1, e.g., the unobservable preferences that determine the

parameters, are independent from all economic variables in the system, i.e. A1 ⊥ (X, Z, A2). In

discrete choice demand analysis for instance, this endogenous regressor is the own price of the

good, which is assumed to be correlated with its omitted unobserved characteristics contained

in A2, see Goolsbee and Petrin (2004).

An unnecessarily strong, but economically plausible identifying independence restriction is

the independence of instruments Z from all unobservables in the system, i.e., Z ⊥ (A, V ). Con-
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tinuing our discrete choice example, the discrete choice literature suggests to use the wholesale

price, franchise fees, or other regional supply side characteristics of a market as instruments.

It is plausible that these instruments are independent of individual preferences and omitted

characteristics of the product. This assumption implies that X ⊥ A2|V, and recall that our

maintained hypothesis is that A1 ⊥ (X,V, A2) which is implied by A1 ⊥ (X, Z, A2) , see also

Petrin and Train (2006) for similar arguments, and discussions on when an additive IV equation

arises.

Interpretation of β : The following result states that these independence conditions

imply an exclusion restriction that defines a sensible centrality parameter of the distribution of

random coefficients in (2.1). For the result, we require the notation B = β(A1), C = A′
2γ(A1),

U = X ′ (β(A1)− β) + A′
2γ(A1), and let EXV [·] denotes integration over the distribution of

(X, V ). Since this section is motivational, the statement of the theorem is informal (i.e.,

excluding regularity conditions)

Theorem 1. Let the model defined by equations (1.1) and (1.2) be the reduced form of the

structural model defined in equations (1.2) and (2.1). Suppose that A1 ⊥ (X, Z,A2) and Z ⊥
(A, V ) hold. Assume further that, conditional on (X, V ): 1. (B,C) are jointly symmetrically

distributed about (β,E [C|V ]), and 2. U is absolutely continuously distributed with respect to

Lebesque measure. Finally, assume that regularity conditions hold such that all objects exist

and are well defined. Then follows that k0.5
U |ZV (Z, V ) = k0.5

U |XV (X, V ) = g(V ) and

β = E [β(A1)] .

If we dispense with the conditional symmetry assumption, and start out with the median exclu-

sion restriction k0.5
U |ZV (Z, V ) = g(V ), then we obtain that k0.5

U |XV (X,V ) = g(V ) and

β = EXV

[
E

[
β(A1)|X, V, Y ∗ = k0.5

Y ∗|XV (X, V )
]]

. (2.2)

Therefore, we conclude that our economically plausible independence assumptions together

with symmetry of the distribution of random components imply a median exclusion restric-

tion and define a parameter β that is the mean of the distribution of random coefficients

of the observable regressors. More generally, if we just assume the median exclusion re-

striction k0.5
U |ZV (Z, V ) = g(V ) but dispense with the symmetry assumption, we obtain that

the coefficient β has the interpretation of a local average structural derivative, i.e., β =

E
[
β(A1)|X = x, V = v, Y ∗ = k0.5

Y ∗|XV (x, v)
]
, for all (x, v) ∈ supp (X) × supp (V ). Due to the

linear random coefficient structure with exogenous A1, this quantity is invariant to changes

in x, v, and hence we may integrate over x, v, keeping the quantile of the unobservable latent

variable fixed at the median, i.e., at the center of the conditional distribution. If we identify

this center of the distribution with a type of individuals (the “median” person), then we may
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speak of β as an average structural effect for this type. Another more statistical interpretation

of (2.2) is that of a best approximation to the underlying heterogeneous coefficient β(A1), con-

ditioning on all the information that we have to our disposal in the data3. In what follows, we

will treat our model under the assumption that kα
U |Z,V (Z, V ) = g(V ), with probability one, so

that the latter interpretation is the most adequate. The role of the symmetry assumption is to

point out that under stronger assumptions β reduces to a completely standard object.

Average Structural Function: In the exogenous binary choice model, it is often deriva-

tives of the conditional probabilities (sometimes called “elasticities”) that are of interest, be-

cause they show the nonlinearity in the causal effect. Blundell and Powell (2004) extend this

notion to the endogenous setup without heteroscedasticity (e.g., random coefficients). They

propose to integrate the conditional probability (conditioning is with respect to X, V ) over V .

In a heterogeneous population, integration can be seen as a step where an average is formed

over the unobserved heterogeneity. As shown in theorem 1, under the weak median exclusion

restriction only the structural effect of the median person is identified, but the behavior for in-

dividuals in the tails of the distribution of unobservables is left unidentified. Hence integrating

over the entire distribution of unobserved heterogeneity is not possible.

However, what is possible is to integrate out the control function residuals V , which are

accounting for the endogenous components of U . A natural analog to Blundell and Powell’s

(2004) average structural function is the following average median structural function:

AMSF (x) =

∫
k0.5

Y |XV (x, v)FV (dv) =

∫
I {x′β + g(V ) > 0}FV (dv).

The derivative of this quantity has the interpretation of a partial integral over the local average

structural derivative (in the general case with nonsymmetric random coefficients), integrating

over v, but keeping x fixed. In light of the above theorem this could be interpreted as the

nonlinear structural effect on the median person, but we leave a detailed discussion of this

quantity for future research, and focus on β in this paper.

3See Hoderlein and Mammen (2007) for a related discussion in the case of a continuous dependent variable.

As already mentioned, this result could be generalized to models of the form Y ∗ = φ(X, A) = m(X) + U , with

U = φ(X, A)−m(X) and k0.5
U |XV (X, V ) = l(V ), but due to the lack of relevance for applications we desist from

discussing this more general case here.
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3 Details of the Estimator in the Endogenous Binary

Choice Random Coefficients Model

3.1 Identification via Median Restriction on U

Throughout this section, and indeed through much of the paper, we require the following

notation: Let the K × L matrix of derivatives of a K-vector valued Borel function g(z) be

denoted by Dzg(z), and let ∇zg(z) denote the gradient of a scalar valued function. Denote by

mY |ZV (z, v) a continuous version of E [Y |Z = z, V = v], and let fA(a), fAB(a, b) and fA|B(a; b)

be the marginal, joint and conditional Radon-Nikodym density of the random vectors A and

B with respect to some underlying measure µ, which may be the counting or the Lebesgue

measure, (i.e., A may be discretely or continuously distributed). Define the nonparametric

score Qz (v, z) = ∇z log fV |Z(v; z). Let kα
S|Z(z) denote the conditional α-quantile of a random

variable S given Z = z, i.e. for α ∈ (0, 1) , kα
S|Z(z) is defined by P(Y ≤ kα

S|Z(z)|Z = z) = α. Let

G− denote the Moore-Penrose pseudo-inverse of a matrix G. Finally, let ck, k = 1, 2, ... denote

generic constants, and we suppress the arguments of the functions whenever convenient.

As already discussed in the introduction, the main idea is now that instead of running

a regression using Y, we employ Ȳ = k0.5
Y |ZV (Z, V ), i.e. the conditional median of Y given

Z and V (which is the L1-projection of Y on Z × V), and consider the L2-projection of Ȳ

on Z. Consequently, we consider weighting functions defined on Z only. In the following two

subsections we first list and discuss all assumptions that specify the true population distribution

and the DGP, and then establish the role they play in identifying β. Readers less interested in

the econometric details of this model may skip these subsections, and proceed directly to the

main result (theorem 2).

3.1.1 Assumptions

Assumption 1. The data (Yi, Xi, Zi), i = 1, . . . , n are independent and identically distributed

such that (Yi, Xi, Zi) ∼ (Y, X, Z) ∈ Y × X × Z ⊂ R1+K+L The joint distribution of (Y, X, Z) is

absolutely continuous with respect to a σ-finite measure µ on Y × X × Z with Radon-Nikodym

density fY XZ(y, x, z). The underlying measure µ can be written as µ = µY × µXZ , where µXZ

is the Lebesgue measure.

Assumption 2. The weighting function B(z) is nonzero and bounded with compact support

B ⊂ Z, where usually Z = RL.

Assumption 3. ϑ(z) is continuously differentiable in the components of z for all z ∈ Int (B).

[Dzϑ(z)′]− exists and every element is bounded from below for all z ∈ B. [Dzϑ(Z)′]− is square

integrable on B.
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Assumption 4. E [Y |Z = z] = mY |Z(z) is continuously differentiable in the components of z

for all z ∈ Int (B). DzmY |Z(Z) is square integrable on B. g(z, v) = FU |V (ϑ(z)′β+v′β; v)fV |Z(v; z)

is bounded in absolute value by a nonnegative integrable function q(z), for all z ∈ B.

Assumption 5. E
[
Ȳ |Z = z

]
= mȲ |Z(z) is continuously differentiable in the components of z

for all z ∈ Int (B). DzmȲ |Z(Z) is square integrable on B. Moreover 0 < P
[
Ȳ = 1|Z = z

]
< 1

for all z ∈ B.

For the stochastic terms U and V , the following holds:

Assumption 6. U and V are jointly continuously distributed.

In addition, either of the following hold:

Assumption 7. U is independent of Z given V .

Assumption 8. 1. k0.5
U |ZV (Z, V ) = g(V ).

2. Let Ṽ = l(V ) = − (g(V ) + V ′β). Either of the following hold:

a. Ṽ is independent of Z. Moreover, Ṽ is absolutely continuously with respect to Lebesgue

measure, with Radon-Nikodym density fṼ . fṼ ($) is differentiable for all $ ∈ im(l).

Finally, fṼ (Dzϑ(Z)′β) is absolutely integrable on B.

b. There is one endogenous regressor Xk, and l is a continuous piecewise invertible func-

tion. Moreover, fV |Z(v, z) and its partial derivatives wrt the components of z are bounded

on B from below and above, i.e. c1 > sup(v,z)∈supp(V )×B fV |Z(v, z) ≥ inf(v,z)∈supp(V )×B fV |Z(v, z) =

c2 > 0, and c3 > sup(v,z)∈supp(V )×B
∥∥∇zfV |Z(v, z)

∥∥ ≥ inf(v,z)∈supp(V )×B
∥∥∇zfV |Z(v, z)

∥∥ =

c4 > 0. Finally, let Qz (V, Z) be absolutely integrable on supp(V ) × B , and let τ(z) =

E
[
Ȳ Qz (V, Z) |Z = z

]
be square integrable on B.

c. Let 8.3b hold, but instead of one endogenous regressor, assume there are many endoge-

nous regressors X1, .., XK1, K1 ≤ K, and in addition g(v) = v′γ, with γ ∈ RK1 .

Remark 3.1 - Discussion of Assumptions: Starting with assumption 1, we assume to

possess continuously distributed instruments and regressors. Strictly speaking, we do not even

require continuous instruments for identification, but only for the specific direct estimator we

propose. Indeed, we conjecture that a direct estimator akin to Horowitz and Haerdle (1998) in

the exogenous single index model may be devised, but this is beyond the scope of this paper.

The iid assumption is inessential and may be relaxed to allow for some forms of stationary time

series dependence. Note that unlike Blundell and Powell (2004), we do not require the support

of V |X to be invariant in X, which is why endogenous binary regressors are ruled out in their
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case. However, note that the assumption that l be invertible or single index.in assumption 8.2

or 8.3 effectively rules out binary endogenous regressors.

Regarding the choice of weighting function B, due to assumption 2 we delete all observations

outside a fixed multivariate interval Iz. As such, the weighting is unrestrictive and merely serves

as a devise to simplify already involved derivations below. It could be abandoned at the price of

a vanishing trimming procedure. In addition we require that [Dzϑ(z)′]− exists and is bounded

on B (cf. assumption 3), and hence we choose B(z) = I {z ∈ Iz} I {det |Dzϑ(z)Dzϑ(z)′| ≥ b} ,

with b > 0. By choosing the weighting function and the region B appropriately we may ensure

that the instruments are not weak in the sense that det |Dzϑ(z)Dzϑ(z)′| ≥ b for some subset

of Z with positive measure. If we view the derivative in a linear regression of X on Z as an

average derivative, it may be the case that instruments are on average not strongly related

to endogenous regressors, but are quite informative for β in certain areas of Z space. We

consider it to be an advantage of our nonparametric approach that we can concentrate on those

areas, and hence suggest that a similar weighting be performed in applications. However, in

applications B is usually not known, implying that a threshold b be chosen and Dzϑ(z) be

pre-estimated4.

Particularly novel is assumption 8.1. Instead of the full independence of U and Z conditional

on V assumed in assumption 7 (and implying the Blundell and Powell (2004) assumption

U⊥X|V ) this assumption (only) imposes a conditional location restriction. Hence it allows for

all other quantiles of U than the median to depend on Z and V, and thus on X, in an arbitrary

fashion, which as we have seen in the introduction is sensible when unobserved heterogeneity

is modelled. Assumption 8.2a covers the case when Ṽ is independent of Z, in which case the

function l need not be restricted at all. The other assumptions 8.2b–8.2c allow for arbitrary

dependence between V and Z at the expense of placing some structure on l. Note, In the

case of a single endogenous regressor this structure is very general: indeed, any continuous and

piecewise invertible function will do. If there are many endogenous regressors, we still obtain

identification in the important examples when l is of single index form (a combination of this

assumption with assumption 8.2b allows for l being a piecewise invertible function of an index).

4The trimming becomes then dependent on estimated quantities. We skip the large sample theory of such

an approach, because it adds little new insight and makes the analysis more involved. An interesting situation

arises when the instruments are weak everywhere. We conjecture that we may derive a generalized inverse by

some type of regularization, e.g. by constructing a matrix [Dzϑ(Z)′]∗ that is analogous to, say Ridge regression.

However, we do leave the explicit behavior of such a model for future research.
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3.1.2 Essential Arguments in the Identification of β in the Heteroscedastic Case

To see how assumptions 1–8 help in identifying β, rewrite the model as follows

Y = I
{
(ϑ(Z) + V )′ β + U > 0

}
. (3.1)

Note first that under assumption 8.3 the conditional median Ȳ becomes

Ȳ = I
{
ϑ(Z)′β + k0.5

U |ZV (Z, V ) + V ′β > 0
}

= I {ϑ(Z)′β > l(V )} , (3.2)

as I is a monotonic function. This very much resembles the standard model, but with Ȳ

instead of Y. However, note two complications: first Ṽ = l(V ) may not be fully independent of

Z, second, l is unknown. We now establish that β is nevertheless constructively identified in

this setup.

To do so, we start with the case when Ṽ is fully independent of Z, i.e., the scenario is as given

in 8.3a. Then,

mȲ |Z(z) = E
[
Ȳ |Z = z

]
= P {ϑ(z)′β > l(V )} (3.3)

due to standard arguments. To focus now on the essential arguments, we consider only a

compact set B ⊂ Z and a nonzero and bounded weighting function B(z) with support B, see

assumption 2. Since mȲ |Z(z) and ϑ(z) are continuously differentiable in all components of Z,

for all z ∈ B, we obtain by the chain rule

∇zmȲ |Z(Z) = fl(V ) (ϑ(Z)′β) Dzϑ(Z)′β, (3.4)

with probability one. This steps rules out that X contains a constant. Moreover, note that

fl(V ) is a scalar valued function. Next, we premultiply equation (3.4) by the generalized inverse

[Dzϑ(Z)′]−, which exists on B due to assumption 3, and the weighting function B(z) to obtain

[Dzϑ(Z)′]−∇zmȲ |Z(Z)B(Z) = βfl(V ) (ϑ(Z)′β) B(Z), (3.5)

or, upon taking expectations,

βc1 = E
[
[Dzϑ(Z)′]−∇zE

[
Ȳ |Z]

B(Z)
]
, (3.6)

where c = E
[
fl(V ) (ϑ(Z)′β) B(Z)

]
. From now on, we will tacitly suppress this constant, so

that identification is only up to scale. This last step is warranted, because the elementwise

square integrability of all functions on B (assumption 5), together with Cauchy-Schwarz ensures

that the expectations exist. The identification of β in the case when V and Z are not fully

independent (i.e., equation (3.8) below) is harder to show, and left to the appendix.

12



3.1.3 Main Identification Results

The following theorem summarizes the discussion in the previous section and in the appendix.

We use th notation Y̆ = E [Y |Z, V ] .

Theorem 2. (i) Let the true model be as defined in 1.1 and 1.2, and suppose that assump-

tions 1–3, 5–6 and 8.1– 8.2a hold. Assume further that E
[
fV̄ |Z (ϑ(Z)′β; Z) B(Z)

]
= 1. Then

β is identified by relationship:

β = E
[
[Dzϑ(Z)′]−∇zE

[
Ȳ |Z]

B(Z)
]
. (3.7)

(ii) If instead of assumption 8.2a either of assumptions 8.2b – 8.2c hold, then we obtain that β

is identified up to scale by

β = E
[
[Dzϑ(Z)′]−

{∇zE
[
Ȳ |Z]− E [

Ȳ Qz (V, Z) |Z]}
B(Z)

]
, (3.8)

where Qz (V, Z) denotes the nonparametric score ∇z log fV |Z(V ; Z).

(iii) If we strengthen the conditional median independence assumption 8 to the full independence

assumption 7 and assume that assumption 4 holds, we obtain that in addition to (3.8), β is (up

to scale) identified by

E
[
[Dzϑ(Z)′]− {∇zE [Y |Z]− E [Y Qz(V, Z)|Z]}B(Z)

]
, (3.9)

as well as by

E
[
[Dzϑ(Z)′]−

{
∇zE

[
Y̆ |Z

]
− E

[
Y̆ Qz(V, Z)|Z

]}
B(Z)

]
. (3.10)

Remark 3.2 - Interpretation of Theorem 2: First, consider the scenario where V and

Z are independent which gives rise to (3.7). β is identified by a weighted average ratio of

derivatives, involving the derivatives of the function ϑ, and of the mean regression of Ȳ (i.e.,

the conditional median given Z and V ), on Z alone. Note that the control residuals V do not

appear in this equation, however, the model relies on correct specification of the conditional

median restriction and of ϑ. Allowing ϑ to be a conditional mean or a quantile enables the

applied researcher to choose between various specifications of the IV equation, in order to select

the one with the best economic interpretation (or one that works if the endogenous regressors

do not have moments).

This identification result is constructive in the sense that it suggests in a straightforward

fashion a sample counterpart estimator by replacing all functions with nonparametric esti-

mators and the expectation by the average. While we always obtain a term of the form

E
[
[Dzϑ(Z)′]−∇zE

[
Ȳ |Z]

B(Z)
]
, note that in the more general case where V and Z are allowed

to be dependent we obtain an additional correction term, i.e. E
[
[Dzϑ(Z)′]− E

[
Ȳ Qz (V, Z) |Z]

B(Z)
]
,
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which accounts for the higher order dependence in the IV equation. The same applies in the

full independence scenario, i.e., when U ⊥ V |Z.

It is instructive to compare the heteroscedastic case with the case when U ⊥ V |Z. Observe

that the independence assumption 7 implies assumption 8, so that equation (3.8) remains

valid. But we obtain in addition that β is identified up to scale by (3.9) and (3.10). Under full

independence, we have thus a battery of potential estimating equations, where we could either

use directly an L2-projection of Y on Z, or use a two projection strategy, where we use L1,

respectively, L2-projections of Y on (Z, V ) in the first stage, and then use a L2-projection in

the second stage. As shown below, we are able to obtain a powerful test for heteroscedasticity

out of a comparison.

4 A Sample Counterpart Estimator: Asymptotic Distri-

bution and Conditions for
√

n Consistency

4.1 The Case for Direct Estimation

As mentioned above, the identification principle does not necessarily imply that we have to use

a direct estimator. Indeed, in the case where assumption 8.2a holds (i.e., Ṽ ⊥ Z), we could

base an optimization estimator on equation (3.2), i.e.

Ȳ = I
{

ϑ(Z)′β > Ṽ )
}

. (4.1)

However, there are a number of reasons to use direct estimators here. Several have already

been mentioned: First, they are natural because they build upon sample counterparts of the

identification result. Consequently, their mechanics is easily understood, which makes them

accessible to applied people. Moreover, several related issues (like overidentification) can be

discussed straightforwardly. Second, they are robust to certain forms of misspecification. Third,

they avoid the optimization of a highly nonlinear function, which both may not lead to global

maxima (sometimes not even to well defined ones, if the semiparametric likelihood is flat), and

may be computationally very expensive. Finally, and perhaps most importantly, in the case

where Ṽ is not fully independent of Z, it is not even clear how to construct an optimization

estimator.

There are, however, also reasons that speak against the use of kernel based direct estimators.

One of the theoretical arguments against them is that they require higher order smoothness

assumptions, as will be obvious below. Note, however, that in the general setup with unre-

stricted (nonparametric) IV equation X = ϑ(Z) + V , there is a “diminished smoothness gap”.

Any optimization estimator depends on an estimator V̂ of V as a regressor. In the general
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nonparametric setup, this is a function of a nonparametric estimator for ϑ. Using results in

Newey (1994), it is straightforward to see that for a
√

n consistent estimator of β we require

that E
[
ϑ̂
]
− ϑ = op

(
n−1/2

)
for the “no bias condition” to hold. In the kernel case this is,

however, only possible under smoothness assumptions on ϑ which are very similar to the ones

we require to hold for our direct estimator, in particular undersmoothing.

The second main drawback of direct estimators is the lack of efficiency compared to opti-

mization estimators. Improving the efficiency, however, is possible, as we show in a companion

paper (Hoderlein (2008)) for the full independence case, where we advocate so called one step

efficient estimators. Alternatively, as in Newey and Stoker’s (1994) analysis of the weighted

average derivative estimators, we can define optimal weights.

4.2 A Sample Counterpart Estimator for β

In this section, we discuss the behavior of a sample counterpart estimator to (3.7) under inde-

pendence of V from Z, and we leave the more involved analysis that includes the correction term

E
[
[Dzϑ(Z)′]− E

[
Ȳ Qz (V, Z) |Z]

B(Z)
]

for future research. Moreover, throughout this section,

we focus on the case when ϑ(z) = mX|Z(z), i.e., ϑ is the nonparametric mean regression, and

we leave the quantile regression for future work. Finally, we take V as given and do not treat

the effect of pre-estimation of V . However, given previous work on nonparametric regression

with generated regressors, this is innocuous under appropriate smoothness assumption on ϑ

which we are invoking anyway.

The first impression from looking at

β = E
[[

DzmX|Z(Z)′
]−∇zE

[
Ȳ |Z]

B(Z)
]
. (4.2)

is that due to the non-smoothness in Ȳ no fast enough first step estimator can be devised for

an average derivative type estimator to become root n estimable. However, this is not the case.

To see how the estimator is constructed, and understand why it is
√

n consistent, note first

that since Y is binary,

Ȳ = k0.5
Y |ZV (Z, V ) = I {P [Y = 0|Z, V ] < 0.5} ,

and consequently, E
[
Ȳ |Z]

= P [P [Y = 0|Z, V ] < 0.5|Z] This suggests estimating∇zE
[
Ȳ |Z = z

]

via ∑
j

∇zWj(z)I
{

P̂j < 0.5
}

,

where Wj(z) are appropriate Kernel weights, e.g.,
[∑

j Khj(z)
]−1

Khj(z),Khj(z) = h−LK((Zj − z) /h)

and K((Zj − z) /h) = Πl=1,..,LK
((

Z l
j − zl

)
/h

)
is a standard L-variate product kernel with
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standard univariate kernel function K. Moreover, P̂j denotes an estimator of Pj = p(Zj, Vj) =

P [Yj = 0|Zj, Vj]. The problem with this estimator is that the pre-estimator P̂j appears within

the nondifferentiable indicator, resulting in a potentially very difficult pre-estimation analy-

sis. To improve upon the tractability of the problem, we replace the indicator I by a smooth

indicator, i.e., K (ξ) =
∫ ξ

−∞ K(t)dt. Then, a straightforward sample counterpart estimator to

β = E
[[

DzmX|Z(Z)′
]−∇zE

[
Ȳ |Z]

B(Z)
]
, looks as follows:

β̂H = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)K
{(

P̂j − 0.5
)

/h
}

B(Zj), (4.3)

where the subscript H indicates “heterogeneity”. As is shown formally in theorems 3 and 4

below, the main result of this section is that under appropriate assumptions

√
n

(
β̂H − β

) D−→ N (0, ΣH),

where ΣH is defined as ΣH = E
(∑3

k=1 σkσ
′
k

)
+ 2E (σ2σ

′
3)− ββ′, and

σ1 =
[
DzmX|Z(Zi)

′]−∇zmȲ |Z(Zi)B(Zi),

σ2 =
[
DzmX|Z(Zi)

′]− fZ(Zi)
−1∇zfZ(Zi)V

′
i

[
DzmX|Z(Zi)

′]−∇zmȲ |Z(Zi)B(Zi),

σ3 =
[
DzmX|Z(Zi)

′]− fZ(Zi)
−1∇zfZ(Zi)

(
Ȳi −mȲ |Z(Zi)

)
B(Zi).

(4.4)

To understand the large sample behavior of this estimator, rewrite β̂H as β̂H = T1n +T2n +T3n,

where

T1n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)ȲjB(Zj),

T2n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi) [K {(Pj − 0.5) /h} − I {Pj < 0.5}] B(Zj), (4.5)

T3n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)
[
K

{
(P̂j − 0.5)/h

}
−K {(Pj − 0.5) /h}

]
B(Zj)..

In this decomposition, T1n is the leading term. It will dominate the asymptotic distribution.

Its large sample behavior can be established using theorem 3, which also covers the sample

counterparts estimator in the full independence case, which is defined as

β̂1 =
1

n

∑
i

[
Dzm̂X|Z (Zi)

′]−∇zm̂Y |Z (Zi) B(Zi). (4.6)

Hence, we will first discuss the independence case. Then, we will give assumptions under

which T2n and T3n will tend to zero faster than the leading term. Essentially, these conditions

are higher order smoothness conditions on the conditional cdf FP |Z and on fZ , as well as the

corresponding restrictions on the kernel (i.e., to be of higher order), so that fast enough rates

of convergence are obtained.
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4.3 The Large Sample Behavior of β̂1

When discussing the estimation of β using any regression it is important to clarify the prop-

erties of details of the estimator (4.6). This concerns in particular the kernel and bandwidth.

As mentioned above we use a product kernel in all regressions. Therefore we formulate our

assumptions for the one-dimensional kernel functions K. To simplify things further, instead

of a bandwidth vector h ∈ RL we assume that we have only one single bandwidth for each

regression, denoted h. We shall make use of the following notation: Define kernel constants

µk =

∫
ukK(u)du and κ2

k =

∫
ukK(u)2du.

In principle, we also have two bandwidths to consider, one in estimating mX|Z , and one in

estimating mY |Z . However, since the estimation problems are symmetric (i.e., in particular

both mean regressions share the same regressors and have thus the same dimensionality), we

assume for ease of exposition the same kernel and the same bandwidth, denoted by K and h,

in both regressions. Our assumptions regarding kernel and bandwidth are standard (cf. PSS):

Assumption 9. Let r = (L+4)/2 if L is even and r = (L+3)/2 if L is odd. All partial deriva-

tives of E [X|Z = z], E [Y |Z = z] and fZ(z) of order r+1 exist for all z ∈ B. Moreover, the ex-

pectations of
[
DzmX|Z(Z)′

]−
BYl(Z) and

[
DzmX|Z(Z)′

]−
BXl(Z)

[
DzmX|Z(Z)′

]−∇zmY |Z(Z)

exist for all l = 1, ..., r,, where BYl (resp., BXl) contains sums of products of all partial deriva-

tives of mY |Z and fZ (resp. mX|Z and fZ) such that the combined order of derivatives of the

product is at most l + 1.

Assumption 10. The one-dimensional kernel is Lipschitz continuous, bounded, has compact

support, is symmetric around 0 and of order r (i. e. µk =
∫

ukK(u)du = 0 for all k < r and∫
urK(u)du < ∞).

Assumption 11. As n →∞, h → 0, nhL+2 →∞ and nh2r → 0.

The following theorem summarizes the results when is ϑ = mX|Z . In particular, it establishes

asymptotic normality of the appropriate sample counterpart estimators

Theorem 3. Let the true model be as defined in 1.1 and 1.2. Suppose assumptions 1–

4, 6–7, and 9– 11 hold. Assume further that V ⊥ Z. For scale normalization, assume

E
[
fU |V (X ′β; V ) B(Z)

]
= 1. Then,

√
n

(
β̂1 − β

) D−→ N (0, Σ1)

where

Σ1 = E

(
3∑

k=1

σkσ
′
k

)
+ 2E (σ2σ

′
3)− ββ′
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and

σ1 =
[
DzmX|Z(Zi)

′]−∇zmY |Z(Zi)B(Zi)

σ2 =
[
DzmX|Z(Zi)

′]− fZ(Zi)
−1∇zfZ(Zi)V

′
i

[
DzmX|Z(Zi)

′]−∇zmY |Z(Zi)B(Zi)

σ3 =
[
DzmX|Z(Zi)

′]− fZ(Zi)
−1∇zfZ(Zi)

(
Yi −mY |Z(Zi)

)
B(Zi)

Remark 4.1 – Discussion of Theorem 3: The first results shows a number of parallels

to PSS in the case of exogenous ADEs. Similar to PSS, we obtain root-n consistency of our

estimator for β, and we may be able to eliminate the bias under similar assumptions on the rate

of convergence as detailed in assumptions 9 and 11. The variance in term is a more complicated

expression, but shares similar features, in particular in the first two terms, with the PSS result.

This will be our baseline result. discuss the conditions under which we may include first stage

projections of Y , like the median regression that is required to deal with heteroscedasticity.

Remark 4.2 – Estimating Σ1: Estimation of the variance components is straightforward by

sample counterparts. For instance, an estimator for Σ23
1 = E (σ2σ

′
3) is given by

Σ̂23
1 = n−1

∑
f̂Z(Zi)

−2
[
Dzm̂X|Z(Zi)

′]−∇zf̂Z(Zi)
(
Yi − m̂Y |Z(Zi)

)

×
{[

Dzm̂X|Z(Zi)
′]−∇zf̂Z(Zi)

(
Xi − m̂X|Z(Zi)

)′ [
Dzm̂X|Z(Zi)

′]−∇zm̂Y |Z(Zi)
}′

B(Zi).

Consistency of this estimator can essentially be shown by appealing to a law of large numbers,

but this analysis is beyond the scope of this paper.

4.4 The Large Sample Behavior of β̂H

We now extend theorem 3 to the heteroscedastic case. To treat heteroscedasticity, we have

introduced the two projection estimator

β̂H = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)K
{(

P̂j − 0.5
)

/h
}

B(Zj),

Recall the decomposition β̂H = T1n + T2n + T3n in (4.5). The first term T1n can be handled

along exactly the same lines as the estimator in theorem 3, using some minor modifications in

assumptions. It remains to be shown that the terms T2n and T3n tend to zero faster. To this end,

we have to be precise about details of the estimator β̂H . First, there are several bandwidths:

There is a bandwidth associated with the K {·} function, as well as smoothness parameters

when estimating Pj = p(Zj, Vj). To distinguish between the different kernels and bandwidths,

we call the derivative of K {·} K1, a kernel with bandwidth h1 and order r1, and the univariate

elements of a product kernel employed in the estimation of p as K2, with bandwidth h2 and

order r2.

18



Assumption 12. K1 and K2 are continuous, bounded, compactly supported, and symmetric

functions of order r1, r2 (i. e.
∫

ukK(u)du = 0 for all k < r and
∫

urK(u)du < ∞).

Assumption 13. Let r = (L + 4)/2 if L is even and r = (L + 3)/2 if L is odd. All partial

derivatives of FP |Z and fZ(z) of order r + 1 exist for all z ∈ B. Moreover, the expectations

of
[
DzmX|Z(Z)′

]−
BFl(Z) and

[
DzmX|Z(Z)′

]−
BFl(Z)

[
DzmX|Z(Z)′

]−∇zmY |Z(Z) exist for all

l = 1, ..., r, where BFl contains sums of products of all partial derivatives of FP |Z and fZ such

that the combined order of derivatives of the product is at most l + 1.

Assumption 14. fZV is bounded and has bounded first partial derivatives with respect to all

components of z, for all z ∈ B.

Assumption 15. As n →∞, h1, h2 → 0, nh1, nh
L+dim(V )+2
2 →∞ and nh2r1

1 , nh
L+dim(V )+4
2 → 0.

Note that we require higher order smoothness conditions on FP |Z and fZ that in connection

with higher order kernels ensure that the bias terms
√

nT2n and
√

nT3n are op(1).

Theorem 4. Let the true model be as defined in 1.1 and 1.2, and suppose that assumptions

1–3, 5–6, 8.1–8.2a, 9–15 are true. Assume further E
[
fV̄ |Z

(
mX|Z(Z)′β; Z

)
B(Z)

]
= 1 holds.

Then,
√

nT2n = op(1),
√

nT3n = op(1), and
√

n
(
β̂H − β

) D−→ N (0, ΣH), where ΣH is defined

in equation (4.4).

This theorem characterizes the large sample behavior of our estimator. Under the smooth-

ness and higher order bias reduction assumptions, it essentially behaves like the independence

case estimator β̂1, with Y replaced by Ȳ , i.e., with known conditional median.

5 Specification Testing

5.1 Overidentification: Issue and Test

The first question that we can analyze within our framework is how to treat overidentification

if we have more instruments than regressors. In the linear model, overidentification allows

to delete instruments and recover β by various different estimators that always only use a

subset of instruments. In the (X,V ) projection of the Blundell and Powell (2003) approach, as

already noted by the authors a similar feature is missing. In our setup it may be introduced,

and the linear model result may be better understood. We discuss in the following the full

independence case, but all arguments may be trivially extended to the heteroscedastic case

random coefficients case.

If we return to the theorem 2 and the associated assumptions, we see that β would be

identified by taking the derivatives w.r.t. any subset of instruments Z1 such that Z = (Z ′
1, Z

′
−1)

′
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and
[
Dz1mX|Z(z)Dz1mX|Z(z)′

]
would be nonsingular for all z ∈ B. by similar arguments as in

theorem 2, the following result holds:

β = E
[[

Dz1mX|Z(Z)′
]−∇z1mY |Z (Z) B(Z)

]
. (5.1)

Consequently, the question of overidentification is not about exclusion of instruments in the

regression. Instead the question of overidentification is about exclusion of derivatives of

instruments, while the instruments should always be included in the regressions. Indeed, one

can show that otherwise a nonvanishing bias term of the form E [E [Y |Z] Qz1|Z1, V ], where

Qz1 = ∇z1 log fZ−1|Z1V (Z−; Z1, V ), is obtained. Excluding instruments is only possible if they

can be excluded from both equation (using, say, a standard omission-of-variables test).

An overidentification test is straightforwardly constructed as in Hausman (1978): Suppose

M such partition of Z = (Z ′
1, Z

′
−1)

′ exist s.th. β is identified, which may be obtained by

successively deleting one or more derivatives in constructing the estimator, then we simply

compare their distance using some metric. The test would consider H0 : β(1) = β(2) = ... = β(M).

To this end, we determine the joint distribution of B =
(
β(1)′, β(2)′, ..., β(M)′)′. As a corollary

from the large sample theory of this paper, R′B = 0, B̂ d→ N (0, ΣI), where ΣI is a covariance

matrix with typical element Σjk. This element is given by

Σjk = E

(
3∑

l=1

σj
kσ

k′
k

)
+ 2E

(
σj

2σ
k′
3

)− ββ′

where for h = j, k.

σh
1 =

[
Dzh

mX|Z(Zi)
′]−∇zh

mY |Z(Zi)B(Zi)

σh
2 =

[
Dzh

mX|Z(Zi)
′]− fZ(Zi)

−1∇zh
fZ(Zi)V

′
i

[
Dzh

mX|Z(Zi)
′]−∇zh

mY |Z(Zi)B(Zi)

σh
3 =

[
Dzh

mX|Z(Zi)
′]− fZ(Zi)

−1∇zh
fZ(Zi)

(
Yi −mY |Z(Zi)

)
B(Zi)

Then,

Γ̂OvId =
(
R′B̂

)′ [
RΣ̂IR

′
]−1 (

R′B̂
) D−→ χ2

M−1,

by standard arguments.

5.2 Testing for Heterogeneity under the Assumption of Endogeneity

The principle of comparing different coefficients as means for testing a hypothesis under our

specification can be maintained more generally. If we assume to be in the scenario with en-

dogenous regressors, we can test whether we have a heteroscedastic error or not. To illustrate

the main idea, suppose that V ⊥ Z, and hence, in the case of heteroscedasticity we know that

a sample counterpart to

β = E
[[

DzmX|Z(Z)′
]−∇zmȲ |Z (Z) B(Z)

]
, (5.2)
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where Ȳ = k0.5
Y |Z,V (Z, V ) produces a root n consistent, asymptotically normal estimator regard-

less of heteroscedasticity of U , while a sample counterpart estimator based on

β = E
[[

DzmX|Z(Z)′
]−∇zmY |Z (Z) B(Z)

]
,

will be inconsistent under heteroscedasticity. However, under H0 of homoscedasticity, we

have again that both estimators should vary only by sampling error. Using the notation

E
[
Ȳ − Y |Z]

= mȲ−Y |Z(Z), a straightforward test statistic is therefor suggested by the fol-

lowing reformulation of H0 :

0 = E
[[

DzmX|Z(Z)′
]−∇zmȲ−Y |ZB(Z)

]
= δ.

The theory of the obvious sample counterpart δ̂ = n−1
∑[

Dzm̂X|Z(Zi)
′]−∇zm̂Ȳ−Y |Z (Zi) B(Zi)

is a corollary to theorem 4. Specifically,
√

nδ̂
D−→ N (0, Σδ), where Σδ is defined as in equation

(4.4), safe for the fact that Ȳ is replaced by Ȳ −Y. A test statistic for heteroscedasticity is then

simply a Wald test of whether δ is greater than zero, i.e.

Γ̂het = δ̂′Σ̂−1
δ δ̂

D−→ χ2
K ,

where Σ̂δ is an estimator for Σδ, and this test statistic may be used to assess whether our model

is truly heteroscedastic.

5.3 Testing for Endogeneity

Finally, consider analyzing whether regressors are endogenous. There are a variety of options.

As in Hoderlein (2005, 2008a) and Hoderlein and Mammen (2008), we may compare the regres-

sion E [Y |X] with the regression E [Y |X, V ]. Under the null of exogeneity, the two functions

should be the same, and hence we use a standard nonparametric omission of variables test,

with the only added difficulty that V is now a generated regressor. This test would be consis-

tent regardless of whether the single index specification on the regressors is correct or not, and

would deliver nonparametric test statistics that have local power against Pitman alternatives

converging at a certain rate. This procedure can be seen as a nonparametric generalization of

Hausman’s (1978) second test for the inclusion of control functions as test of exogeneity in a

linear model.

However, if we believe the index specification to be correct, than there are other, and in

some instances better, options. Note that, under the null of exogeneity, a sample counter-

part estimators to the average derivative identification principle β = E [∇xE [Y |X] C(X)] (C

is a again a bounded weighting function), and an estimator based on our identification prin-

ciple (say, β = E
[[

DzmX|Z(Z)′
]−∇zE [Y |Z] B(Z)

]
), should yield estimators that vary only
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be sample randomness, while under the alternative they should differ significantly. Hence, a

similar test as the original test in Hausman (1978) may be performed. Let β̂Ex denote a sam-

ple counterpart estimator to E [∇xE [Y |X] C(X)] like the PSS ADE, β̂End any of the sample

counterpart estimator to E
[[

DzmX|Z(Z)′
]−∇zE [Y |Z] B(Z)

]
defined below, B̂ = (β̂′Ex, β̂

′
End),

and G = (I,−I). Next, rewrite H0 : G′B = 0, and use the fact that B̂ d→ N (0, ΣE), where

ΣE is a variance covariance matrix that is straightforwardly derived from the theory below, in

particular theorem 3 (the subscript E is meant to denote endogeneity). Then, a Hausman-type

test statistic for H0, Γ̂1 =
(
G′B̂

)′ [
GΣ̂EG′

]−1 (
G′B̂

)
behaves asymptotically as follows:

Γ̂1 =
(
G′B̂

)′ [
GΣ̂EG′

]−1 (
G′B̂

)
d→ χ2

K . (5.3)

What would be the advantage of such a specification test? First, it has more power against

certain alternatives. Indeed, because of the parametric rate of all estimators, we may detect

local alternatives in the parameter vector that converge to H0 at root n. Therefore this test

will be superior, provided the misspecification due to endogeneity affects the index.

6 Simulation

The finite sample performance of the estimators we propose is best analyzed by a Monte Carlo

simulation study. In this section, we are chiefly concerned with analyzing the behavior of β̂H .

The main scenario we consider involves an asymmetric error distribution, such that conditional

mean and median differ. Moreover, we assume that V in the IV equation is fully independent

of Z, in which case there is no correction term, and the estimator takes the convenient ratio-

of-coefficients form as in (4.3).

To obtain an idea of the behavior of our estimator, we analyze the performance of our

estimator at different data sizes. We find that our estimator performs well for moderate data

sizes, and as theory predicts, we find that the mean square error reduces as the sample size

increases, but we observe a small bias even in relatively large samples. However, we establish

that our estimator is superior to parametric and semiparametric estimators that do not account

for heterogeneity. As examples for estimators that do not account for heterogeneity we consider

the parametric estimator of River and Voung (1988) β̂RV , and the full independence estimator

β̂1. Moreover, we show that even an infeasible oracle estimator that uses some prior knowledge

not available to the econometrician shows slow convergence behavior in this setup.

We consider the case of one endogenous regressor, w.l.o.g. X1i, and denote the set of

regressors by Xi = (X1i, X2i, .., X5i)
′, and the set of all instruments Zi = (Z1i, X2i, ..., X5i)

′. For
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the purpose of concreteness, we specify the DGP as the following 5 - dimensional regression:

Yi = I {β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + Ui > 0} ,

X1i = Z1i + Vi, i = 1, .., n,

where β = (1, 0.5, 0.5, 0.5, 0.5)′ and the data (Yi, Xi, Zi, Ui), i = 1, .., n, are iid draws from the

following distribution: For the error Ui, we assume that there is an omitted determinants called

Wi such that

(log(Wi), Zi)
′ v N (µ, Σ),

log(Vi)
′ v N (0, 1),

where

µ = 0, Σ =




2 1.5 0 0 0 0

1.5 2 1 1 1 1

0 1 2 1 1 1

0 1 1 2 1 1

0 1 1 1 2 1

0 1 1 1 1 2




,

and Vi is independent of (log(Wi), Zi)
′ . Observe that the Wi are in particular correlated with

Z1i. Next, the error Ui is defined through:

Ui = Wi − k0.5
W |Z(Zi) + Vi,

so that k0.5
U |ZV (Zi, Vi) = Vi. Hence, as we require the error Ui obeys the conditional median

exclusion restriction, but depends on Zi. As baseline, our estimator (4.3) is defined as a local

quartic polynomial estimator, with Epanechnikov kernels. Moreover, the “smooth indicator”

is defined as the integral of the Epanechnikov kernel over the positive areas. The conditional

probability is also estimated using a local quartic polynomial estimator, with Epanechnikov

kernel. The independence estimator β̂1 is defined similarly, with the exception that no “smooth

indicator” is required. The oracle estimator is obtained by using fitted values Y1i instead of

either the conditional median k0.5
Y |ZV (Zi, Vi) (as is the case in the β̂H) or the Yi (as is the

case in β̂1). The fitted values Y1i are obtained in the following way: We assume that the

oracle has knowledge of the Y ∗
i , and compute the conditional median k0.5

Y ∗|ZV (Zi, Vi), and set

Y1i = I
{

k0.5
Y ∗|ZV (Zi, Vi) > 0

}
. Bandwidths for all estimators are obtained by doing a grid

search for the bandwidth that minimizes the MSE in 100 repetitions. Finally, β̂RV is obtained

by estimating a probit model with control function residuals as additional regressors.

The result of applying our methods can be found in figures 1 - 3 in the graphs in the

appendix. For each j = 1, .., J, J = 500, a new sample (Xi, Zi,Wi, Ui) of size n is drawn from
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the distribution specified above. To illustrate the behavior of the estimator, in fig. 1 we plot

the density of the estimated four elements of β for n = 2500 as solid line. Note that the first

coefficient is normalized to one. The vertical line in all of these plots is at the true value of 0.5.

The closer this distribution is to a spike centered at this value, the better the performance of

the estimator. We compare the distribution of β̂H with that of the parametric estimator β̂RV

(first dotted line), the independence estimator β̂1 (second dotted line), and the oracle estimator

β̂O (solid line).

First, the most obvious feature of the result is the clear ordering in terms of the performance

of the estimators, regardless of data size. Obviously, in terms of the bias, β̂H is less biased than

any of the two alternative feasible estimators β̂1 and β̂RV , and only the infeasible oracle esti-

mator show less bias. In terms of variance, all three estimators nonparametric estimators are

approximately similar. The fact that the variance is not significantly affected by the first step

estimation of the conditional median arises because the median estimator still uses all observa-

tions. While the parametric estimator β̂RV shows less variance than any of the semiparametric

estimators, its much larger bias results in a greatly increased MSE compared to any semipara-

metric estimator, a result of the double misspecification of β̂RV : First, the estimator erroneously

imposes a parametric structure, second it erroneously assumes full conditional independence.

Indeed, going from β̂RV over β̂1 to β̂H may be seen as first removing the parametricity assump-

tion, and then correcting for heteroscedasticity. As we see, the first step reduces the bias at

the expense of increasing the variance somewhat. Still, the MSE is almost halved. The second

step reduces again the bias while only affecting the variance marginally, and the MSE is again

reduced significantly.

It is interesting to see how the estimator behaves as n varies. The heteroscedasticity robust

estimator β̂H significantly outperforms β̂1 and β̂RV at moderate sample sizes (n = 2500); for

smaller sample sizes the advantage in particular over the semiparametric competitor β̂1 becomes

less pronounced. As such we find the familiar results in other simulation studies on the binary

choice case (e.g., Frölich (2005)), namely that in binary choice models semiparametric methods

require a significant amount of data to outperform misspecified models. Once, however, we

have a significant amount of data, the advantages become obvious, see fig.2 and 3, who show

the behavior with n = 7500 and n = 15000 observations. The bias of β̂H starts to vanish,

clearly visible in the bottom right panel of fig. 3. The same result is also obtained from the
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tables, cf tab 1-4 below, which provide the specific numerical results. We obtain for β̂H :

Coefficient 2 3 4 5

n = 2500 0.017288 0.015739 0.016421 0.016928

n = 7500 0.010301 0.009498 0.008755 0.008411

n = 15000 0.009207 0.008299 0.007690 0.007135

Table 1: MSE of β̂H at Different Data Sizes

The reduction of the MSE with increasing sample size is obvious. Note also that due to the

largely symmetric setup, all four coefficients are equally affected. A more detailed analysis

shows a reduction in both bias and variance, as is also evident from the graphs, see fig. 1-

3. Note, however, that the reduction in bias is quite slow. It is instructive to compare the

estimator with the other estimators. For β̂1, we obtain the following result:

Coefficient 2 3 4 5

n = 2500 0.020972 0.020581 0.020385 0.021524

n = 7500 0.017027 0.016416 0.015744 0.015766

n = 15000 0.016466 0.016306 0.015324 0.014847

Table 2: MSE of β̂I at Different Data Sizes

This result is clearly worse than the heteroscedasticity robust estimator β̂H , with an increase in

MSE of roughly 25 - 100 %. In contrast, as was to be expected, the (infeasible) oracle estimator

β̂O outperforms both estimators:

Coefficient 2 3 4 5

n = 2500 0.012412 0.009253 0.011056 0.009996

n = 7500 0.004054 0.004245 0.005386 0.005296

n = 15000 0.002875 0.002583 0.003155 0.002967

Table 3: MSE of β̂O at Different Data Sizes

When decomposing the MSE, we find that the variance remains very comparable across all

semiparametric estimators given the data size, while it is the bias that causes the differences.

While the oracle estimator starts out relatively unbiased, and remains so, the independence

estimator contains a nonvanishing bias component. The heteroscedastic estimator starts out

with a bias that diminishes with increasing sample size. Note that the difference between β̂H

and β̂O can be seen as a measure of the degree of information loss associated with the indicator

function. Viewing the indicator as a filter, we conclude that the information loss is quite severe,

and that significant data sizes are required to distinguish between different structure within

the indicator.
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Finally, consider the estimator from Rivers and Voung (1988). Due to the significant bias,

this estimator performs worst, see the following table 4.

Coefficient 2 3 4 5

n = 2500 0.036005 0.037955 0.036398 0.036653

n = 7500 0.035706 0.034574 0.034498 0.035680

n = 15000 0.034166 0.034278 0.034125 0.034720

Table 4: MSE of β̂RV at Different Data Sizes

Indeed, by closer inspection we find that the MSE is almost entirely due to the squared

bias, and the variance contribution is quite small. Thus, the performance of the estimator

shows only very little improvement with increasing sample size. Since all estimators correct

for endogeneity, we can summarize the finding by saying that in this scenario correcting for

heterogeneity and adopting a semiparametric procedure produces significantly better results.

We conclude that the interaction between the various sources of misspecification makes at

least in this setup semiparametric estimators quite attractive. And with a sufficient amount

of data, it is also evident that allowing for a heterogeneous error structure improves the result

significantly, and leads to a performance which is not much worse than that of an infeasible

oracle estimator. Our application below will make the importance of being less restrictive in

this part of the model also for real world data apparent.

7 Application to Discrete Consumer Choice

7.1 Description of Data and Variables

As an example for an application of our method to a structural model in a heterogeneous

population, we use data that is very similar to the one employed in Goolsbee and Petrin (2004)

about the choice of television transmission mode, see Table A.1 for an overview of all variables.

The data comes from two data sources. First, from December 2000 until January 2001 NFO

Worldwide fielded a household survey on television choices sponsored by Forrester Research as

part of their Technographics 2001 program5. These households were randomly drawn from the

NFO mail panel that is designed to be nationally representative.

The households that were surveyed basically have the choice between four different ways to

receive television programming: local antenna, direct broadcast satellite (DBS), as well as basic

and expanded cable, which we group into cable versus non-cable (satellite dish/local antenna).

5NFO was the largest custom market-research firm in the United States until it became part of the TNS

Group in 2004.
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Local antenna reception is free but only carries the local broadcast stations6. DBS systems are

national companies that deliver many of the cable channels that usually priced uniformly across

the whole country (in 2001 the two leading companies DirectTV and DISH Network (Echostar)

charged $30 and $32 per month respectively). Hence, there is almost no price variation in the

alternative. Compared to cable, DBS provides a greater variety of channels and more pay per

view options but bares the potential for signal interference and charges a higher price. The fair

amount of regional variation in cable prices permits us to estimate own price effects, while the

cross price effects are constant, and hence neglectable.

Other than the choices people make, the survey also provides information on various socioe-

conomic household characteristics e.g. household income, household composition, education

of the head of household and if applicable of the respective partner. Dropping observations

with missing values in their choices or doubtful values in several household characteristics and

removing outliers (recall that we also have to compactify our support) reduces the sample to

approximately 15.900 observations. Table A.2 in the appendix provides summary statistics for

the sub sample including renter status and whether households live in single unit dwellings.

Both characteristics are known to influence the ability to receive satellite.

We also make use of a second source of data, which provides us with information on cable

prices and cable franchise characteristics each household faces (within a specific cable franchise

area). The data come from Warren Publishing’s 2002 Television and Cable Factbook, and

provides detailed information on the cable industry, which is divided into geographically sepa-

rated cable systems. From this data source, we use the channel capacity of the cable system,

whether pay per view is available, the price of basic plus expanded basic service, the price for

premium channels (here we use the price for HBO) and the number of over-the-air channels

(this corresponds to the number of local channels carried by the cable system).

As source of endogeneity, we follow Goolsbee and Petrin (2004), and assume that prices

are correlated with unobserved characteristics like advertisement. To deal with endogeneity,

we use variation in city franchise tax/fee to instrument cable prices (recall that the own price

might be correlated with unobserved cable characteristics e.g. advertising or quality). Table

A.3 presents summary statistic for the respective variables. Technically, we can match both

data sources using Warren’s ICA system identification number, which is based on zip code

information. Hence, we can assign a specific household to the adequate local cable company7

even though these individuals might not subscribe to cable.

6Looking at households that have a TV allows to assume that local antenna forms the chosen alternative for

those who neither declare to subscribe to cable nor to DBS.
7Typically only one cable company receives the right to serve a region as a result of a franchise agreement

with a local government even though the household might not subscribe to cable.
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7.2 Empirical Results

The focus in our empirical analysis is on the own price effect, and how the result is altered by

the introduction of our method. The effect of household covariates is not of interest, and we use

these variables merely as controls. Since we are not interested in their effect, we employ princi-

pal components to reduce them to some three orthogonal approximately continuous variables,

mainly because we require continuous covariates for nonparametric estimation. While this has

some additional advantages, it is arguably ad hoc. However, we performed some robustness

checks like alternating the components or adding parametric indices to the regressions, and

the results do not change in an appreciable fashion (nor is the remaining variation statistically

significant).

To show the performance of our estimator, it is instructive to start out with the standard

practise of estimating a linear probability model and using 2SLS. We obtain the following result:

Estimate Std. Error t value p value

Intercept 0.697908 0.008805 79.266 0

Own Price 0.228026 0.020040 11.379 0

Income 0.028096 0.002513 11.181 0

PrinComp 1 - 0.025945 0.008904 - 2.914 0.003575

PrinComp 2 0.014143 0.004033 3.507 0.000454

PrinComp 3 - 0.018363 0.002663 - 6.895 0

Table 5: Linear Probability Model - 2SLS

There are two things noteworthy: First, quite in contrast to Economic theory, the model

predicts that higher own price is associated with higher demand. Second, the income effect is

positive, but small in absolute size. Due to the large sample size of n = 15.918 all variables

are highly significant, with p-values of virtually zero. This holds true even for the - in absolute

size - small income effect. This finding remains stable across specifications, however, the own

price effect becomes progressively more plausible as we move to less obviously misspecified

specifications.

The following tables show the behavior of the full independence estimator β̂1. Specifically,

it shows the point estimate, as well as the 2.5 and 97.5 quantile of the bootstrap distribution8

instead of the asymptotic distribution which is cumbersome to estimate. In this procedure, a

coefficient is statistically not significant from zero if the confidence interval contains zero.

8We have performed n = 200 bootstrap repetitions with replacement from the same data. Since the choice

of bandwidth is not clear (we conjecture that a second order expansion type of analysis can be performed), we

have settled for a slightly smaller bandwidth in the bootstrap replications, because this is a common devise to

mitigate small sample bias in the construction of pointwise confidence bands in nonparametric regression.
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Estimate BS 0.025 value BS 0.975 value

Own Price - 2.10788 - 5.94305 1.76096

Income 1 1 1

PrinComp 1 - 3.31908 - 4.32975 - 2.49948

PrinComp 2 1.70843 1.23556 2.35323

PrinComp 3 - 0.35490 - 1.15326 0.48962

Table 6: Coefficients of β̂1 (Relative to Income) with

Bootstrap Confidence Intervals

As we see from the results, this is the case for the own price effect, which is in absolute

value only twice as strong as the income effect. Compared to the income effect, the estimate

points in the opposite direction. And if we look at the non normalized results we also obtain

that the income effect is positive (and actually of as small an order of magnitude as in the

linear probability model), while the price effect is negative as it should be, but as mentioned

insignificant. The first two principal components are significant, however not the third, and

have generally the same sign and relative order of magnitude as in the linear probability model.

Finally, the heteroscedasticity robust estimator β̂H produces the most sensible results:

Estimate BS 0.025 value BS 0.975 value

Own Price - 8.02943 - 12.91400 - 2.90706

Income 1 1 1

PrinComp 1 - 0.12521 - 1.04786 0.52044

PrinComp 2 1.38809 0.93442 2.01614

PrinComp 3 - 0.88721 - 2.02577 - 0.08665

Table 7: Coefficients of β̂H (Relative to Income) with

Bootstrap Confidence Intervals

Here we see that the own price effect is significantly negative. At first glance, the results

appears to be slightly different from Goolsbee and Petrin (2004), who find a relatively low own

price elasticity. However, as the income effect is rather weak (it is again of the same order of

magnitude as in the linear probability model in the non normalized version. but recall that

identification is only up to scale), this is not necessarily a contradiction. With respect to the

application, we conclude that the likelihood that the average person in this population chooses

cable reacts only modestly to an increase in income, which given the small fraction of total

expenditures seems plausible (and is perhaps very different if one were to consider the demand

for cars). However, given that price of cable is a significant variable in the marketing of this

good, the average consumer seems to react more strongly to price incentives, and as theory
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predicts, a price increase reduces the probability of buying cable.

With respect to the performance of various different estimators, we conclude that avoiding

the misspecification associated with the linear probability model, as well as allowing for hetero-

geneous preferences (compared to the full independence estimator β̂1) substantially alters the

result, and provides us with more plausible estimates for the (centrality) parameter of interest.

8 Summary and Outlook

The notion that we do not observe important determinants of individual behavior even in data

sets with large cross section variation becomes more and more influential across microeconomet-

rics. Indeed, it is widely believed now that unobserved tastes and preferences account for much

more of the variation than observable characteristics. Hence, it is imperative to devise models

that account for heterogeneity on individual level, in particular if the unobserved determinants

and omitted variables are believed to be correlated with observables.

In these heterogeneous models, most often interest centers on average effects. In this paper,

we analyze the binary choice model with random utility parameters under a median exclusion

restriction that defines such a (local) average effect. It is moreover established that this effect

coincides with the parameter β in the reduced form binary choice model with heteroscedastic

errors under a median exclusion restriction. We show how to nonparametrically identify this

parameter β, and we propose a
√

n consistent, asymptotically normal sample counterparts

estimator. Moreover, based on our theory, we propose tests for overidentification, endogeneity

as well as heterogeneity. Therefore we can provide means to check the specification, in addition

to provide the first estimator for this parameter in this class of models.

In a Monte Carlo study we show that our estimator performs superior to an estimator

which does not exploit the heterogeneity structure of the model. In an application, we show

that our estimator uses significantly weaker assumptions than those employed in the literature,

and through its use we may be able to reveal new and interesting features. How to extend

this type of semiparametric approach from binary choice data to multinomial choice data and

more complicated settings including simultaneity remains an interesting direction for future

research. Our conjecture is that a similar estimation principle may be applicable to a large

class of models.

References

[1] Ai, Ch. 1997. A Semiparametric Maximum Likelihood Estimator, Econometrica 65, 933–

964.

30



[2] Bajari, P., Fox, J., Kim K. and S. Ryan, 2008. Discrete Choice Models with a Nonpara-

metric Distribution of Random Coefficients, Working Paper.

[3] Blundell, R. and J. Powell. 2004. Endogeneity in semiparametric binary response models,

Review of Economic Studies 71, 655–679.

[4] Blundell, R., and R. Smith. 1986. An Exogeneity Test for a Simultaneous Tobit Model,

Econometrica 54, 679—685.´

[5] Chaudhuri, P., K. Doksum and A. Samarov. 1997. On average derivative quantile regres-

sion, Ann. Statist. 25, 715—744.

[6] Das, M., Newey, W. and F. Vella. 2003. Nonparametric estimation of sample selection

models, Review of Economic Studies 70, 33–58.

[7] Delecroix, M., and M. Hristache. 1999. M-estimateurs semi-paramétriques dans les modèles
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9 Appendix 1: Technical Proofs

Proof of the Identification Theorems

Proof of Theorem 1

To see the first statement, rewrite

Y = I {X ′β(A1) + A′
2γ(A1) > 0} = I{X ′β + X ′ (β(A1)− β) + A′

2γ(A1)︸ ︷︷ ︸
U

> 0}. (9.1)

Then we obtain that

k0.5
Y |XV (X,V ) = I

{
k0.5

Y ∗|XV (X,V ) > 0
}

= I{X ′β + k0.5
U |XV (X,V ) > 0}

Next, note that due to Z ⊥ (A, V ) =⇒ X ⊥ A|V, and thus E [C |X, V ] = E [C |V ] = g(V )

and E [B|X, V ] = E [B|V ]. Since (X,V,A2) ⊥ A1 =⇒ V ⊥ B, it moreover holds that

E [B|V ] = E [B], and the condition that (B,C) are jointly symmetrically distributed about

(β,E [C|V ]) conditional on (V, X) holds also conditioning on V only. Consequently, β =

E [B|V ] = E [β(A1)], and β is the mean of the distribution of random coefficients. Moreover,

k0.5
U |XV (X, V ) = E [X ′ (B− β) + C |X, V ] = X ′E [B− β|V ] + E [C |V ] = g(V ),

and a very similar argument holds to show that k0.5
U |ZV (Z, V ) = g(V ) as well.

To see equation (2.2), observe first that k0.5
U |ZV (Z, V ) = g(V ) implies that k0.5

U |XV (X, V ) =

g(V ). Start by using the definition of the α-quantile to obtain

P(U ≤ kα
U |Z,V (Z, V )|Z, V ) = α = P(U ≤ kα

U |X,V (X, V )|X, V ),

for any α ∈ (0, 1). Taking conditional expectations with respect to (X,V ) on both sides

produces

E
[
E

{
I
(
U ≤ kα

U |Z,V (Z, V )
) |Z, V

} |X,V
]

= P(U ≤ kα
U |X,V (X,V )|X,V ).

But due to kα
U |Z,V (Z, V ) = g(V ), and the law of iterated expectations, we have that

E [I (U ≤ g(V )) |X,V ] = P(U ≤ kα
U |X,V (X, V )|X, V ),
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implying that kα
U |X,V (X, V ) = g(V ), provided U is continuously distributed.

Hence, if we assume the median exclusion restriction k0.5
U |ZV (Z, V ) = g(V ), we obtain that

∇xk
0.5
Y ∗|XV (X, V ) = β. Since Y ∗ = X ′β(A1) + A′

2γ(A1) = φ(X, A), and X ⊥ A|V , we can

apply Hoderlein and Mammen’s (2007) theorem to obtain that the (constant) derivative has

the following interpretation:

β = E
[
β(A1)|X = x, V = v, Y ∗ = k0.5

Y ∗|XV (x, v)
]
, (9.2)

for all (x, v) ∈ supp (X)× supp (V ). Q.E.D.

Proof of Theorem 2

Ad (i).The case when Ṽ is independent of Z is already discussed in the main text.

Ad (ii). Next, consider the case defined by assumptions 8.2b: W.l.o.g, we consider two subsets

of the support of V , denoted S1 and S2. Then, let l ↗ on S1 = (−∞, a), ↘ on S2 = (a,∞)

with inverses l1, l2. Let ϑ(z)′β ≤ maxv∈S1 l(v) = l(a). Then,

mȲ |Z(z) = P [ϑ(Z)′β > l(V )|Z = z]

= P [ϑ(Z)′β > l(V ), V ∈ S1|Z = z] + P [ϑ(Z)′β > l(V ), V ∈ S2|Z = z]

= P [l1 (ϑ(Z)′β) > V ∧ a|Z = z] + P [l2 (ϑ(Z)′β) > V ∨ a|Z = z]

=

∫ l1(ϑ(z)′β)

−∞
fV |Z(v|z)dv +

∫ ∞

l2(ϑ(z)′β)

fV |Z(v|z)dv (9.3)

Taking derivatives by applying Leibnitz’ rule produces

∇zmȲ |Z(z) = Dzϑ(z)′β
[
∂l1
∂s

(ϑ(z)′β) fV |Z(l1(ϑ(z)′β)|z)− ∂l2
∂s

(ϑ(z)′β) fV |Z(l2(ϑ(z)′β)|z)

]

+

∫ l1(ϑ(z)′β)

−∞
∇z

[
log fV |Z(v|z)

]
fV |Z(v|z)dv

+

∫ ∞

l2(ϑ(z)′β)

∇z

[
log fV |Z(v|z)

]
fV |Z(v|z)dv

= Dzϑ(z)′β [· · · ] + E
{

Ỹ Qz (V ; Z) |Z = z
}

. (9.4)

where Qz (V ; Z) = ∇z

[
log fV |Z(V ; Z)

]
, and all the integrals on the right hand side of the first

and second equality exist by assumption 8.3b

Finally, consider the case defined by assumptions 8.2c. For simplicity, consider the two

dimensional case: V = (V1, V2), i.e., l(v) = av1 + bv2. Then,

mȲ |Z(z) = P [ϑ(Z)′β > aV1 + bV2|Z = z]

= P
[
V1 < a−1 (ϑ(Z)′β − bV2) |Z = z

]

=

∫ b−1ϑ(z)′β

−∞

∫ a−1(ϑ(z)′β−bv2)

−∞
fV |Z(v; z)dv1dv2 (9.5)

34



To handle this expression, we need the following auxiliary lemma. Observe that (U, V, X)

are any random variables here:

Lemma A.1: Let (U, V, X) (for simplicity) be random variables. Let the conditional density

of (U, V ) given X be denoted by f(u, v; x). Let

F (x) =

∫ α(x)

−∞

∫ β(x,v)

−∞
f(u, v; x)dudv.

Then,

∂xF (x) =

∫ α(x)

−∞

∫ β(x,v)

−∞
∂xf(u, v; x)dudv + ∂xα(x)

∫ β(x,α(x))

−∞
f(u, α(x); x)du

+

∫ α(x)

−∞
∂xβ(x, v)f(β(x, v), v; x)dv.

Proof.

F (x + h) =

∫ α(x+h)

−∞

∫ β(x+h,v)

−∞
f(u, v; x + h)dudv

=

∫ α(x)+∂xα(x)h

−∞

∫ β(x,v)+∂xβ(x,v)h

−∞
[f(u, v; x) + ∂xf(u, v; x)h] dudv

+ O(h2)

=

(∫ α(x)

−∞
+

∫ α(x)+∂xα(x)h

α(x)

)(∫ β(x,v)

−∞
+

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

)
[f + ∂xfh] dudv

+ O(h2)

=

∫ α(x)

−∞

∫ β(x,v)

−∞
[f + ∂xfh] dudv +

∫ α(x)

−∞

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

[f + ∂xfh] dudv

+

∫ α(x)+∂xα(x)h

α(x)

∫ β(x,v)

−∞
[f + ∂xfh] dudv

+

∫ α(x)+∂xα(x)h

α(x)

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

[f + ∂xfh] dudv + O(h2)

= F (x) + h

∫ α(x)

−∞

∫ β(x,v)

−∞
∂xfdudv +

∫ α(x)

−∞

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

fdudv

+

∫ α(x)+∂xα(x)h

α(x)

∫ β(x,v)

−∞
fdudv + O(h2).
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Since

lim
h→0

h−1

∫ α(x)+∂xα(x)h

α(x)

∫ β(x,v)

−∞
f(u, v; x)du

︸ ︷︷ ︸
B(x,v)

dv = ∂xα(x)B(x, α(x))

and

lim
h→0

h−1

∫ α(x)

−∞

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

f(u, v; x)dudv

=

∫ α(x)

−∞
lim
h→0

h−1

∫ β(x,v)+∂xβ(x,v)h

β(x,v)

f(u, v; x)dudv

=

∫ α(x)

−∞
∂xβ(x, v)f(β(x, v), v; x)dv,

the assertion follows. Q.E.D.

Adapting this result to our scenario produces

∇zmȲ |Z(z) = a−1β

[∫ b−1ϑ(z)′β

−∞
fV |Z(a−1 (ϑ(z)′β − bv2) , v2; z)dv2

]

+

∫ b−1ϑ(z)′β

−∞

∫ a−1(ϑ(z)′β−bv2)

−∞
∇z

[
ln fV |Z(v1, v2; z)

]
︸ ︷︷ ︸

Qz(v1,v2;z)

fV |Z(v1, v2; z)dv1dv2

Finally, the 2nd term may be written

∫ ∞

−∞

∫ ∞

−∞
1{−∞≤v1≤a−1(ϑ(z)′β−bv2),−∞≤v2≤b−1ϑ(z)′β}Qz(v1, v2; z)fV |Z(v1, v2; z)dv1dv2 (9.6)

=

∫ ∞

−∞

∫ ∞

−∞
1{av1+bv2≤ϑ(z)′β}Qz(v1, v2; z)fV |Z(v1, v2; z)dv1dv2

= E [Y Qz(V ; Z)|Z = z] ,

which shows the statement.

Ad iii. In the case of U ⊥ V |Z,

Y̆ = E [Y |Z, V ] = FU |V (ϑ(Z)′β + V ′β, V ),

provided assumption 6 holds. Next, we apply a similar logic as in the previous subsection, with

Y̆ in place of Ȳ . However, due to the law of iterated expectations, we have that E
[
Y̆ |Z

]
=

E [Y |Z]. Hence, E [Y |Z] = E
[
FU |V (ϑ(Z)′β + V ′β, V )|Z]

, and

∇zmY |Z(z) = E
[
fU |V (ϑ(Z)′β + V ′β, V )|Z = z

]
Dzϑ(z)′β + E [Y Qz(V, Z)|Z = z] ,
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where Qz(v, z) = ∇z log fV |Z(v; z), for all z ∈ B, due to differentiability and domination assump-

tions 4. Rearranging terms, and premultiplying with B(Z) and taking expectations produces

(3.9) up to a constant of scale. This expectation exists again under the elementwise square

integrability of all functions on B (assumption 4). Note that the right hand side of (3.9) may

be rewritten as (3.10), using the law of iterated expectations. Q.E.D.

The Proof of Theorem 3

The Structure of the Proof

Neglect for a moment the weighting function A. Rewrite (4.6) as 1
n

∑
i Ĝ

−
i B̂i, where Gi =

DzmX|Z(Zi)
′, Bi = ∇zmY |Z(Zi), Ĝi = Dzm̂X|Z(Zi)

′ and B̂i = ∇zm̂Y |Z(Zi). Tedious, but

straightforward manipulations lead to

Ĝ−
i B̂i = G−

i Bi + G−
i

[
(Gi − Ĝi)G

−
i Bi + (B̂i −Bi)

]

+G−
i (Gi − Ĝi)

(
G−

i − Ĝ−
i

)
Bi

+G−
i (Gi − Ĝi)G

−
i (B̂i −Bi) (9.7)

+G−
i (Gi − Ĝi)

(
G−

i − Ĝ−
i

)
(B̂i −Bi).

Now, in (9.7) the first two terms on the right hand side will provide us with the asymptotic

distribution, while the terms from three to five will prove asymptotically negligible. In Step 1,

we treat the behavior of the first two summands first in the case where ϑ is a mean regression.

Specifically, we show in Step 1a that

τ1n = n−1
∑

i

G−
i Bi + G−

i

[
(Gi − Ĝi)G

−
i Bi + (B̂i −Bi)

]
= S1n + S2n

i.e., the sum can be decomposed into two terms, the first of which provides us with the asymp-

totic distribution, while the second one produces the bias. In Step 1b, we establish that the

large sample theory of S1n may be handled using projection arguments coming from U -statistic

theory, while in Step 1c we show that the bias term S2nwill vanish under appropriate condi-

tions on the bandwidths, as in PSS. Finally, in Step 1d we derive the asymptotic distribution.

In Step 2, we discuss the behavior of the higher order terms in (9.7), i.e., the behavior of terms

three to five. In Step 3 we establish under which conditions generated dependent variables do

not matter for the asymptotic distribution of the estimator.
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Step 1: The General Proof

Step 1a: Consider

τ1n = n−1
∑

i

{
G−

i Bi + G−
i (Gi − Ĝi)G

−
i Bi + G−

i (B̂i −Bi)
}

(9.8)

= n−1
∑

i

G−
i Bi + n−1

∑
i

G−
i (Gi − Ĝi)G

−
i Bi + n−1

∑
i

G−
i (B̂i −Bi). (9.9)

Since the first term has a trivial structure, and the second and third terms are similar, we start

by considering the second term on the right hand side of (9.8) first. In the case where Ĝi is a

nonparametric Nadaraya Watson derivative estimator, it rewrites as

(∑

j 6=i

Khj(Zi)

)−1

∑

j 6=i

∇zKhj(Zi)X
′
j −

(∑

j 6=i

Khj(Zi)

)−1 ∑

j 6=i

∇zKhj(Zi)
∑

j 6=i

Khj(Zi)X
′
j


 .

(9.10)

Hence, Gi − Ĝi has a representation as

DzmX|Z(Zi)−
(∑

j 6=i

Khj(Zi)

)−1 [∑

j 6=i

[∇zKhj(Zi)−Wn(Zi)Khj(Zi)]
[
V ′

j + mX|Z(Zj)
′]
]

where

Wn(Zi) =

(∑

s6=i

Khs(Zi)

)−1 ∑

j 6=i

∇zKhs(Zi).

Separate this expressions into the two parts, where

−P1i =

(∑

j 6=i

Khj(Zi)

)−1 [∑

j 6=i

[∇zKhj(Zi)−Wn(Zi)Khj(Zi)] V
′
j

]
(9.11)

= (n− 1)−1
∑

j 6=i

Wjn(Zi)V
′
j

where Wjn(Zi) =
(
(n− 1)−1 ∑

j 6=iKhj(Zi)
)−1

[∇zKhj(Zi)−Wn(Zi)Khj(Zi)] and

P2i = DzmX|Z(Zi)
′ −

(∑

j 6=i

Khj(Zi)

)−1 [∑

j 6=i

[∇zKhj(Zi)−Wn(Zi)Khj(Zi)] mX|Z(Zj)
′
]

(9.12)

= DzmX|Z(Zi)
′ − (n− 1)−1

∑

j 6=i

Wjn(Zi)mX|Z(Zj)
′

Note that Wjn(Zi) = −Win(Zj) by the symmetry of the kernel. The first part, (9.11), will

contribute to the variance of the estimators, whereas the second will be produce the leading
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bias term for which we shall give conditions under which it vanishes. Rewriting

n−1
∑

i

G−
i (Gi − Ĝi)G

−
i Bi = − (n (n− 1))−1

∑
i

∑

j 6=i

G−
i Wjn(Zi)V

′
j G

−
i Bi

+ (n (n− 1))−1
∑

i

G−
i P2iG

−
i Bi

= S2
1n + S2

2n,

where the superscript 2 denotes the second term in the expression (9.8). A similar decomposi-

tion may be performed on n−1
∑

i G
−
i (B̂i −Bi) = (n (n− 1))−1 ∑

i

∑
j 6=i G

−
i Wjn(Zi)Qj+

(n (n− 1))−1 ∑
i G

−
i P4i = S3

1n+S3
2n, where Qi = Yi−mY |Z(Zi) and P4i denotes again bias terms

in the regression of Y on Z. In total, we obtain that

τ1n = n−1
∑

i

G−
i Bi + S2

1n + S3
1n + S2

2n + S3
2n = S1n + S2n, (9.13)

where S1n = n−1
∑

i G
−
i Bi +S2

1n +S3
1n collects all terms that affect the asymptotic distribution,

while S2n = S2
2n + S3

2n are all bias terms that vanish under appropriate conditions.

Step 1b: To analyze all terms that affect the distribution and are contained in S1n, consider

S2
1n first. Manipulating this expression produces

Un = (n (n− 1))−1
∑

i

∑
j>i

{
G−

i Wjn(Zi)V
′
j G

−
i Bi −G−

j Wjn(Zi)V
′
i G

−
j Bj

}

= (n (n− 1))−1
∑

i

∑
j>i

pn(Si, Sj),

where Si = (Yi, X
′
i, Z

′
i)
′, with pn symmetric, and we made use of Wjn(Zi) = −Win(Zj). To

apply Lemma 3.1 of PSS which yields
√

n
(
Ûn − Un

)
= op(1), where

Ûn = θ + n−1
∑

i

E [pn(Si, Sj)|Si] , (9.14)

we require that E
(‖pn(Si, Sj)‖2) = o(n). Following similar and straightforward, but more

tedious arguments as in PSS, this is the case provided nhL+2 → ∞. To analyze (9.14), note

first that θ = E [pn(Si, Sj)] = 0, and consider first p∗n which equals pn save that in Wjn(Zi),

(n− 1)−1 ∑
s 6=iKhs(Zi) and (n− 1)−1 ∑

s6=i∇zKhs(Zi) are replaced with their probability limits,
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fZ(Zi).and ∇zfZ(Zi). Then,

E [p∗n(Si, Sj)|Si = si]

=

∫
h−(L+1)(DzmX|Z(zi)

−fZ(zi)
−1

(∇zK((zi − z) /h)−∇zfZ(zi)fZ(zi)
−1hK((zi − z) /h)

)

×v′iDzmX|Z(zi)
−∇zmY |Z(zi)fZ(z)dz

= DzmX|Z(zi)
−fZ(zi)

−1

∫
h−1∇zK(ψ)fZ(zi + ψh)dψv′iDzmX|Z(zi)

−∇zmY |Z(zi) (9.15)

−DzmX|Z(zi)
−fZ(zi)

−2∇zfZ(zi)

∫
K(ψ)fZ(zi + ψh)dψv′iDzmX|Z(zi)

−∇zmY |Z(zi)

= −DzmX|Z(zi)
−fZ(zi)

−1∇zfZ(zi)v
′
iDzmX|Z(zi)

−∇zmY |Z(zi) + η2i

= −g−i fZ(zi)
−1∇zfZ(zi)v

′
ig
−
i bi + η2i,

where η2i denotes higher order terms, for which, by standard arguments n−1/2
∑

i η2i = op(1)

(Here we use g−i , bi to denote G−
i , Bi at a fixed position zi. We will now that we may replace

pn by p∗n at the expense of a higher order term that vanishes as well (under boundedness

assumptions on the densities), i.e.,

n−1/2
∑

i

E [pn(Si, Sj)− p∗n(Si, Sj)|Si] = op(1).

To see this, consider a typical expression in E [pn(Si, Sj)− p∗n(Si, Sj)|Si] . Using the right hand

side of the third equality in equation (9.15),

ρni = DzmX|Z(zi)
−

{
f̂Z(zi)

−1 − fZ(zi)
−1

}
∇zfZ(zi)v

′
iDzmX|Z(zi)

−∇zmY |Z(zi)

=
{

fZ(zi)− f̂Z(zi)
}

f̂Z(zi)
−1DzmX|Z(zi)

−fZ(zi)
−1∇zfZ(zi)v

′
iDzmX|Z(zi)

−∇zmY |Z(zi),

where f̂Z(zi) = (n− 1)−1 ∑
s6=iKhs(Zi). Next, write

n−1/2
∑

i

ρni = n1/2

∫
fZ(z)− f̂Z(z)

f̂Z(z)
χ(z, v)F̂ZV (dz, dv), (9.16)

where χ(z, v) = DzmX|Z(z)−fZ(z)−1∇zfZ(z)v′DzmX|Z(z)−∇zmY |Z(z), and F̂ZV denotes the

empirical cdf. Considering the denominator in (9.16), observe that

1∣∣∣fZ(z) + f̂Z(z)− fZ(z)
∣∣∣
≤ 1

|fZ(z)| −
∣∣∣f̂Z(z)− fZ(z)

∣∣∣
≤ 2

b
, (9.17)

since fZ(z) ≥ b by the assumption that Z is continuously distributed RV on B, with density

bounded away from zero. Moreover,
∣∣∣f̂Z(z)− fZ(z)

∣∣∣ ≤ b/2 with probability going to one,

as f̂Z(z) is consistent by assumptions on kernels and bandwidths. Hence, n−1/2
∑

i ρni is, in

absolute value, bounded by

c sup
z∈B

∣∣∣fZ(z)− f̂Z(z)
∣∣∣ n−1/2

∑
i

|χ(Zi, Vi)| , (9.18)
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But since n−1/2
∑

i |χ(Zi, Vi)| converges by a standard CLT for iid random variables to a normal

limit (provided the second moment are finite which we tacitly assume), and sup
z∈B

∣∣∣fZ(z)− f̂Z(z)
∣∣∣ =

Op

(
h2r +

(
nhL

)−1/2
log n

)
= op(1) under general conditions, it follows that n−1/2

∑
i ρni =

op(1). Similar arguments can be applied to any other term appearing in E [pn(Si, Sj)− p∗n(Si, Sj)|Si] ,

implying that the difference vanishes.

Repeating the same arguments as from the start of Step 1b, we can show that G−
i (B̂i −Bi) =

G−
i fZ(Zi)

−1∇zfZ(Zi)Qi + η3n, where Qi = Yi −mY |Z(Zi). Returning to (9.13)

S1n = n−1
∑

i

{
G−

i Bi + G−
i

[
(Gi − Ĝi)G

−
i Bi + (B̂i −Bi)

]}

= n−1
∑

i

{
G−

i Bi −G−
i fZ(Zi)

−1∇zfZ(Zi)V
′
i G

−
i Bi −G−

i fZ(Zi)
−1∇zfZ(Zi)Qi

}
+ n−1

∑
i

T3i,

where and T3i denotes all higher order terms that. Note that
√

n [n−1
∑

i T3i] = op(1), by

arguments above..

Step 1c: To analyze all terms that affect the distribution and are contained in S2n, consider

S2
2n first. More specifically,

S2
2n = n−1/2

∑
i

G−
i

{
DzmX|Z(Zi)

′ − (n− 1)−1
∑

j 6=i

Wjn(Zi)mX|Z(Zj)
′
}

G−
i Bi

=
√

n

∫ ∫ [
DzmX|Z(ζ)′

]−

×





DzmX|Z(ζ)′ −


h−L−1∇zK ((z − ζ)/h)

f̂Z(ζ)
− ∇zf̂Z(ζ)h−LK ((z − ζ)/h)(

f̂Z(ζ)
)2


 mX|Z(z)′





× [
DzmX|Z(ζ)′

]−∇zmY |Z(ζ)F̂Z(dz)F̂Z(dζ).

Next, let S2
2n = A1 +ωn where A1 equals S2

2n with the exception that we replace F̂Z by FZ , and

we replace f̂Z(ζ) by fZ(ζ). Hence we get a remainder term that contains expressions of the

form F̂Z −FZ and f̂Z(ζ)− fZ(ζ). In the case of the replacement of F̂Z by FZ , we can appeal to

Glivenko-Cantelli together with the fact that B is compact, and by arguments as in equations

(9.16) and (9.17), we can show that ωn = op (A1), so that we focus on the leading term A1.

After change of variable, this is

√
n

∫ [
DzmX|Z(ζ)′

]− {DzmX|Z(ζ)′ −

×
∫

h−1∇ψK (ψ)

fZ(ζ)
mX|Z(ψh + ζ)′fZ(ψh + ζ)dψ −

∫ ∇zfZ(ζ)K (ψ)

(fZ(ζ))2 mX|Z(ψh + ζ)′fZ(ψh + ζ)dψ}

× [
DzmX|Z(ζ)′

]−∇zmY |Z(ζ)fZ(ζ)dζ.
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Then make use of partial integration and apply a standard Taylor expansion, to obtain that

A1 =
√

n

∫ [
DzmX|Z(ζ)′

]−
BX(ζ)

[
DzmX|Z(ζ)′

]−∇zmY |Z(ζ)fZ(ζ)dζ + O(
√

nhr). (9.19)

where denotes higher order bias terms, i.e. BX(ζ) =
∑

l=1..,r µkh
lBXl(ζ), and BXl(ζ) contains

sums of products of all higher order derivatives of mX|Z and fZ , where the order of the product

of derivatives combined is at most of order l + 1. The expectations of these terms exist due

to assumption 9, and provided that r = 2L in connection with assumption 11. Consequently,
√

nS2
2n = op(1). Under samilar conditions on BY (ζ) (cf. assumption 9), and by similar argu-

ments
√

nS2
3n = op(1) and hence the bias expression proves asymptotically negligible under our

assumptions.

Step 1d: Finally, the first terms provide us with the variance. Since E[ (V ′
i , Qi)

′ |Zi] = 0, σ1i

is uncorrelated with σ2i and σ3i. The result follows by application of a standard central limit

theorem. Q.E.D.

Step 2: The Behavior of Higher Order Terms

The characteristic feature of all terms in the expansion is that they involve higher powers in

Gi − Ĝi or B̂i − Bi. Intuitively, what happens is that these terms will add a factor that tends

to zero faster as the variance terms cancel, and the term is of the order of the squared bias

terms. To fix ideas, recall that Bi = ∇zmY |Z(Zi) and consider

n−1/2
∑

i

G−
i (Gi − Ĝi)(B̂i −Bi)

= n1/2

∫
G−

i

(
mX|Z(z)′ −Dzm̂X|Z(z)′

) (∇zm̂Y |Z(z)−∇zmY |Z(z)
)
F̂Z(dz).

The expression on the right hand side is in absolute value bounded by

n1/2sup
z∈B

∣∣DzmX|Z(z)′ −Dzm̂X|Z(z)′
∣∣ sup

z∈B

∣∣∇zm̂Y |Z(z)−∇zmY |Z(z)
∣∣n1/2

∫ ∣∣G−
i

∣∣ F̂Z(dz)
︸ ︷︷ ︸

Cn

Since sup
z∈B

∣∣DzmX|Z(z)′ −Dzm̂X|Z(Z)′
∣∣ sup

z∈B

∣∣∇zm̂Y |Z(z)−∇zmY |Z(z)
∣∣ = Op(h

2r+
(
nhL+2

)−1
ln(n))

by an extensions to a theorem of Masry (1994), and Cn converges to a nondegenerate random

variable, provided that the second moment of G−
i is finite (which is implied by assumption 3),

this term is op(1) under general conditions. Materially similar, yet more involved arguments

can be used to establish the assertion for the other higher order terms, using assumptions 3

and 4. Q.E.D.
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Step 3: Modifications with Generated Dependent Variables - Theorem 4

To have an idea why T2n and T3n vanish, consider first T2n in Step 3a, and then T3n in Step 3b.

Step 3a: Recall that

T2n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi) [K {(Pj − 0.5) /h} − I {Pj < 0.5}] B(Zj).

As before, we analyze this expression in several steps. We start by considering

T ∗
2n = n−1

∑
i

[
DzmX|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi) [K {(Pj − 0.5) /h} − I {Pj < 0.5}] B(Zj),

and note that T2n = T ∗
2n+Rn, where Rn contains the difference

[
Dzm̂X|Z(Zi)

′]−−[
DzmX|Z(Zi)

′]−

instead of
[
DzmX|Z(Zi)

′]− . As is easy to see (given the discussion above), Rn produces a faster

vanishing higher order bias term. Quite obviously, this expression has a similar structure as

the one analyzed in Step 1b above, safe for the fact that Yj is replaced by K {(Pj − 0.5) /h} −
I {Pj < 0.5} . Following the same argumentation as the one in Step1c, we arrive at the crucial

decomposition T ∗
2n = T ∗∗

2n + %n, where %n are terms that converge faster by Glivenko-Cantelli

and compact support B, and T ∗∗
2n is defined as follows:

T ∗∗
2n

=

∫ ∫ ∫
h−(L+1)(DzmX|Z(ζ)−fZ(ζ)−1

(∇ζK((z − ζ) /h)−∇zfZ(ζ)fZ(ζ)−1hK((ζ − z) /h)
)

× [K {(p− 0.5) /h} − I {p < 0.5}] DzmX|Z(ζ)−∇zmY |Z(ζ)FPZ(dp, dz)FZ(dζ)

=

∫
g(ζ)

∫ ∫
h−1∇ψK(ψ) [K {(p− 0.5) /h} − I {p < 0.5}] fZ(ζ + ψh)FP |Z(dp; ζ + ψh)dψ ×

DzmX|Z(ζ)−∇zmY |Z(ζ)− g(ζ)∇zfZ(ζ)

∫ ∫
K(ψ) [K {(p− 0.5) /h} − I {p < 0.5}]×

fZ(ζ + ψh)FP |Z(dp; ζ + ψh)dψg(ζ)∇zmY |Z(ζ)FZ(dζ)

= Q1n −Q2n,

where g(ζ) = DzmX|Z(ζ)−fZ(ζ)−1. Next, consider the inner integral in Q1n:

h−1

∫ ∫
∇ψK(ψ)K {(p− 0.5) /h} fZ(ζ + ψh)dFP |Z(dp; ζ + ψh)dψ

−h−1

∫ ∫
∇ψK(ψ)I {p < 0.5} fZ(ζ + ψh)dFP |Z(dp; ζ + ψh)dψ

= h−1

∫ ∫
∇ψK(ψ)K(τ)FP |Z(0.5 + hτ ; ζ + ψh)fZ(ζ + ψh)dτdψ (9.20)

−h−1

∫
∇ψK(ψ)FP |Z(0.5; ζ + ψh)fZ(ζ + ψh)dψ,
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where we made use of Fubini’s theorem in connection with standard arguments for integrals of

kernels. Next, use integration by parts to obtain that the rhs of (9.20) equals

∫
K(ψ)∇ψ

[
FP |Z(0.5; ζ + ψh)fZ(ζ + ψh)

]
dψ (9.21)

−
∫
K(ψ)

∫
K(τ)∇ψ

[
FP |Z(0.5 + hτ ; ζ + ψh)fZ(ζ + ψh)

]
dτdψ

Inserting FP |Z(0.5 + hτ ; ζ + ψh) = FP |Z(0.5; ζ + ψh) + hτfP |Z (0.5; ζ + ψh) + ...

+ (r1!)
−1 hr1τ r1∂r1−1

p fP |Z (0.5 + λhτ ; ζ + ψh), where λ ∈ (0, 1), we obtain that (9.21) reduces,

under the familiar assumption on all moments of the kernel up to order r1 to be zero to

−
∫
K(ψ) (r1!)

−1 hr1µr1∇ψ∂r1−1
p fPZ (0.5; ζ + ψh) dψ,

plus a term of smaller order. Applying standard arguments, in particular expand ∂r1−1
p fP |Z (0.5; ζ + ψh)

in ψ, we obtain that
√

nT ∗∗
2n = op(1), provided that

√
nhr1hr = o(1). The same argumentation

holds for Q2n.

Step 3b: Next, consider

T3n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)
[
K

{
(P̂j − 0.5)/h

}
−K {(Pj − 0.5) /h}

]
B(Zj),

we can rewrite the last term on the right hand side as:

T3n = n−1
∑

i

[
Dzm̂X|Z(Zi)

′]− ∑

j 6=i

∇zWj(Zi)h
−1K {(Pj − 0.5) /h}

(
P̂j − Pj

)
B(Zj) + R1n

= T4n + R1n,

where R1n denotes higher order terms in a mean value expansion, and Rn = op(T4n). Using again[
Dzm̂X|Z(Zi)

′]− =
[
DzmX|Z(Zi)

′]− +
[[

Dzm̂X|Z(Zi)
′]− − [

DzmX|Z(Zi)
′]−]

, which produces a

leading term T5n and again a faster converging remainder, we find that

√
nT5n

= n−1/2
∑

i

[
DzmX|Z(Zi)

′]− n−1
∑

j 6=i

∇z
h−L−2K ((Zj − Zi)/h)

f̂Z(Zi)
K ((Pj − 0.5) /h)

(
P̂j − Pj

)

=
√

n

∫ ∫ [
DzmX|Z(z)′

]−
h−2

∫
∇ψ

K (ψ)

f̂Z(z)
K1((p(z + ψh1, $)− 0.5) /h)

×(p̂(z + ψh1, $)− p(z + ψh1, $))fZV (z + ψh,$)dψd$FZ(dz)

=
√

n

∫ ∫ [
DzmX|Z(z)′

]−
h−2f̂Z(z)−1 ×

∇z [K1((p(z,$)− 0.5) /h)(p̂(z, $)− p(z, $))fZV (z,$)] d$FZ(dz) + ρn

= T6n + ρn,
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where ρn = op(T6n). Hence,
√

nT5n is bounded in absolute value by

c1 sup
z,v∈B×V

|∇zp̂(z, v)−∇zp(z, v))| b1n + c2 sup
z,v∈B×V

|p̂(z, v)− p(z, v))| b2n, (9.22)

where b1n = n−1/2
∑

i

∣∣∣
[
DzmX|Z(Zi)

′]− K1((p(Zi, Vi)− 0.5) /h1)fZV (Zi, Vi)
∣∣∣ and

b2n = n−1/2
∑

i

∣∣∣
[
DzmX|Z(Zi)

′]−∇z [K1((p(Zi, Vi)− 0.5) /h1)fZV (Zi, Vi)]
∣∣∣ converge to nonde-

generate distributions. To see this, pick b1n = h
1/2
1 (nh1)

−1/2
∑

i

∣∣∣
[
DzmX|Z(Zi)

′]−∣∣∣ fZV (Zi, Vi)×
K1((Pi − 0.5) /h1) = h

1/2
1 b3n, where b3n is a nonparametric estimator of

E
[∣∣∣

[
DzmX|Z(Zi)

′]−∣∣∣ fZV (Zi, Vi)|Pi = 0.5
]
fP (0.5).

Observe that b3n converges to a nondegenerate limiting distribution provided that the second

moment of
∣∣∣
[
DzmX|Z(Zi)

′]−∣∣∣ fZV (Zi, Vi) exist. But this follows by elementwise square integra-

bility in assumption 3, together with the boundedness assumption 14. Hence,

c1 sup
z,v∈B×V

|∇zp̂(z, v)−∇zp(z, v))| b1n = op(1).

Similar arguments can be made for the second summand in (9.22), using the boundedness

of the derivatives in assumption 14. Consequently,
√

nT5n = op(1), implying that
√

nT3n =

op(1). Q.E.D.
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Appendix 2: Graphs and Tables

Table A.1: Variables in Data Set

1 dma dma code, code for television market

2 income household income in $

3 owncable does household have cable TV

4 ownsat does household have satellite TV

5 cableco cable company

6 age what range best describes your age

7 hhsize household size

8 hhcomp household composition

9 educ education

10 hisp hispanic or not

11 single single or couple

12 state

13 rent renter status (do they rent or own the house)

14 typeres type of residence (house, apartment, condominium)

15 angle dish angle

16 avgpbi instrument, average price of basic cable across other cable franchises

17 avgppi same for premium

18 tvsel1 tv choice (1: basic cable, 2: premium cable, 0: nothighTV, 3 or 4: satellite)

19 yearst year established (satellite dish)

20 chancap channel capacity

21 airchan number of over the air-channels available

22 paychan number of pay channels available

23 othchan other channels

24 ppv pay per view available

25 cityff city fixed fee (tax)

26 pricebe price of basic cable

27 gender gender

28 varelev variance of the local terrain and the average elevation
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Table A.1: Variables in Data Set(cont.)

29 mild local weather index

30 bright local weather index

31 stable local weather index

32 climate local weather index

33 twoway cable franchise char - probably whether signals can be sent both ways

34 hboprice HBO price

35 density population density in an area (city density)

36 cnts number of sampled households in that cable franchise market

37 poprank city code (market area: necessary to merge with damachers, cable98)
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Table A.2 Summary Statistics for Forrester Data

Mean Std. Dev. 25% 50% 75%

Satellite 0.10 0.30 0.00 0.00 0.00

Cable 0.72 0.45 0.00 1.00 1.00

Household income in $ 57,366 28,642 32,500 55,000 87,500

Rent 0.22 0.42 0.00 0.00 0.00

Single unit dwelling 0.78 0.41 1.00 1.00 1.00

Household size 2.16 1.88 1.00 1.00 3.00

Single 0.18 0.38 0.00 0.00 0.00

Age of HH 50.59 15.42 39.00 49.00 61.00

Education in years 14.06 2.69 12.00 13.00 16.00

The education level corresponds to the mean education in a non-single household.

Table A.3 Summary Statistics for Warren’s Factbook Data

Mean Std. Dev 25% 50% 75%

Monthly cable price in $ 25.45 8.39 20.88 24.43 29.95

HBO price in $ 11.13 1.51 9.95 10.95 12.45

Channel capacity 65.36 17.44 54.00 62.00 78.00

Pay-per-view available 0.92 0.26 1.00 1.00 1.00

Year franchise began 1974.94 9.82 1971 1976 1982

City franchise fee 4.06 1.55 3.00 5.00 5.00

Number of over-the-air channels 11.46 3.38 8.00 12.00 14.00

Observations 132
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Fig.1: Comparison of Distribution of Estimator for Centrality Parameter

Heterogeneity Robust (Solid Line)
Conditional Independence (Broken)
Rivers Voung (Broken and Dotted)

Oracle (Dotted)

n = 2500

Kernel Density of Estimators in 400 Realizations of the DGP
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Fig.2: Comparison of Distribution of Estimator for Centrality Parameter

Heterogeneity Robust (Solid Line)
Conditional Independence (Broken)
Rivers Voung (Broken and Dotted)

Oracle (Dotted)

n = 7500

Kernel Density of Estimator in 200 Realizations of the DGP
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Fig. 3: Comparison of Distribution of Estimators for Centrality Parameter

Heterogeneity Robust (Solid Line)
Conditional Independence (Broken)
Rivers Voung (Broken and Dotted)

Oracle (Dotted) 

n = 15000

Kernel Density of Estimators in 100 Realizations of DGP
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