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Abstract. Single equation instrumental variable models for discrete out-
comes are shown to be set not point identifying for the structural functions that
deliver the values of the discrete outcome. Bounds on identi�ed sets are derived
for a general nonparametric model and sharp set identi�cation is demonstrated
in the binary outcome case. Point identi�cation is typically not achieved by
imposing parametric restrictions. The extent of an identi�ed set varies with
the strength and support of instruments and typically shrinks as the support of
a discrete outcome grows. The paper extends the analysis of structural quan-
tile functions with endogenous arguments to cases in which there are discrete
outcomes.
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models, Discrete distributions, Ordered choice, Endogeneity, Instrumental vari-
ables, Structural quantile functions, Incomplete models.

JEL Codes: C10, C14, C50, C51.

1. Introduction

This paper gives results on the identifying power of single equation instrumental
variables (IV) models for a discrete outcome, Y , in which explanatory variables, X,
may be endogenous. Outcomes can be binary, for example indicating the occurrence
of an event; integer valued - for example recording counts of events; or ordered - for
example giving a point on an attitudinal scale or obtained by interval censoring of
an unobserved continuous outcome. Endogenous and other observed variables can be
continuous or discrete.

The scalar discrete outcome Y is determined by a structural function thus:

Y = h(X;U)

and it is identi�cation of the function h that is studied. Here X is a vector of
possibly endogenous variables, U is a scalar continuously distributed unobservable
random variable, normalised marginally uniformly distributed on the unit interval
and h is restricted to be weakly monotonic, normalised non-decreasing and càglàd in
U .

There are instrumental variables, Z, excluded from the structural function h, and
U is distributed independently of Z for Z lying in a set 
. X may be endogenous
in the sense that U and X may not be independently distributed. This is a single
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Instrumental Variable Models for Discrete Outcomes 2

equation model in the sense that there is no speci�cation of structural equations
determining the value of X. In this respect the model is incomplete.

There could be parametric restrictions. For example the function h(X;U) could
be speci�ed to be the structural function associated with a probit or a logit model
with endogenous X, in the latter case:

h(X;U) = 1
h
U >

�
1 + exp(X 0�)

��1i
U � Unif(0; 1)

with U potentially jointly dependent with X but independent of instrumental vari-
ables Z which are excluded from h. The results of this paper apply in this case. Until
now instrumental variables analysis of binary outcome models has been con�ned to
linear probability models.

The central result of this paper is that the single equation IV model set identi�es
the structural function h. Parametric restrictions on the structural function do not
typically secure point identi�cation although they may reduce the extent of identi�ed
sets.

Underpinning the identi�cation results are the following inequalities:

for all � 2 (0; 1) and z 2 
 : Pra[Y � h(X; �)jZ = z] � �
Pra[Y < h(X; �)jZ = z] < �

(1)

which hold for any structural function h which is an element of an admissible structure
that generates the probability measure indicated by Pra.

In the binary outcome case these inequalities sharply de�ne the identi�ed set of
structural functions for the probability measure under consideration in the sense that
all functions h, and only functions h, that satisfy these inequalities for all � 2 (0; 1)
and all z 2 
 are elements of the observationally equivalent admissible structures
which generate the probability measure Pra.

When Y has more than two points of support the model places restrictions on
structural functions additional to those that come from (1) and the inequalities de�ne
an outer region1, that is a set within which lies the set of structural functions identi�ed
by the model. Calculation of the sharp identi�ed set seems infeasible when X is
continuous or discrete with many points of support without additional restrictions.
Similar issues arise in some of the models of oligopoly market entry discussed in Berry
and Tamer (2006).

When the outcome Y is continuously distributed (in which case h is strictly
monotonic in U) both probabilities in (1) are equal to � and with additional com-
pleteness restrictions, the model point identi�es the structural function as set out in
Chernozhukov and Hansen (2005) where the function h is called a structural quantile
function. This paper extends the analysis of structural quantile functions to cases in
which outcomes are discrete.

Many applied researchers facing a discrete outcome and endogenous explanatory
variables use a control function approach. This is rooted in a more restrictive com-
plete, triangular model which can be point identifying but the model�s restrictions
are not always applicable. There is a brief discussion in Section 4 and a detailed

1This terminology is borrowed from Beresteanu, Molchanov and Molinari (2008).
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comparison with the single equation instrumental variable model in Chesher (2009).
A few papers take a single equation IV approach to endogeneity in parametric

count data models, basing identi�cation on moment conditions.2 Mullahy (1997) and
Windmeijer and Santos Silva (1997) consider models in which the conditional expec-
tation of a count variable given explanatory variables, X = x, and an unobserved
scalar heterogeneity term, V = v, is multiplicative: exp(x�) � v, with X and V
correlated and with V and instrumental variables Z having a degree of independent
variation. This IV model can point identify � but the �ne details of the functional
form restrictions are in�uential in securing point identi�cation and the approach,
based as it is on a multiplicative heterogeneity speci�cation, is not applicable when
discrete variables have bounded support.

The paper is organised as follows. The main results of the paper are given in
Section 2 which speci�es an IV model for a discrete outcome and presents and dis-
cusses the set identi�cation results. Section 3 presents two illustrative examples; one
with a binary outcome and a binary endogenous variable and the other involves a
parametric ordered-probit-type problem. Section 4 discusses alternatives to the set
identifying single equation IV model and outlines some extensions including the case
arising with panel data when there is a vector of discrete outcomes.

2. IV models and their identifying power

This Section presents the main results of the paper. Section 2.1 de�nes a single
equation instrumental variable model for a discrete outcome and develops the prob-
ability inequalities which play a key role in de�ning the identi�ed set of structural
functions. In Section 2.2 theorems are presented which deliver bounds on the set of
structural functions identi�ed by the IV model in theM > 2 outcome case and sharp
identi�cation in the binary outcome case. Section 2.3 discusses the identi�cation
results with brief comments on: the impact of support and strength of instruments
and discreteness of outcome on the identi�ed set, sharpness, and local independence
restrictions.

2.1. Model. The following two restrictions de�ne a model, D, for a scalar discrete
outcome.

D1. Y = h(X;U) where U 2 (0; 1) is continuously distributed and h is weakly
monotonic (normalized càglàd, non-decreasing) in its last argument. X is a
vector of explanatory variables. The codomain of h is some ascending sequence
fymgMm=1 which is independent of X. M may be unbounded. The function h is
normalised so that the marginal distribution of U is uniform.

D2. There exists a vector Z such that Pr[U � � jZ = z] = � for all � 2 (0; 1) and
all z 2 
.

A key implication of the weak monotonicity condition contained in Restriction
D1 is that the function h(x; u) is characterized by threshold functions fpm(x)gMm=0

2See the discussion in Section 11.3.2 of Cameron and Trivedi (1988).
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as follows:

for m 2 f1; : : : ;Mg: h(x; u) = ym if and only if pm�1(x) < u � pm(x) (2)

with, for all x, p0(x) � 0 and pM (x) � 1. The structural function, h, is a non-
decreasing step function, the value of Y increasing as U ascends through thresholds
which depend on the value of the explanatory variables, X, but not on Z.

Restriction D2 requires that the conditional distribution of U given Z = z be
invariant with respect to z for variations within 
. If Z is a random variable and 
 is
its support then the model requires that U and Z be independently distributed. But
Z is not required to be a random variable. For example values of Z might be chosen
purposively, for example by an experimenter, and then 
 is some set of values of Z
that can be chosen.

Restriction D1 excludes the variables Z from the structural function h. These
variables play the role of instrumental variables with the potential for contributing to
the identifying power of the model if they are indeed �instrumental�in determining
the value of the endogenous X. But the model D places no restrictions on the way
in which the variables X, possibly endogenous, are generated.

Data are informative about the conditional distribution function of (Y;X) given
Z for Z = z 2 
, denoted by FY XjZ(y; xjz). Let FUXjZ denote the joint distribution
function of U and X given Z. Under the weak monotonicity condition embodied in
the model D an admissible structure Sa � fha; F aUXjZg with structural function h

a

delivers a conditional distribution for (Y;X) given Z, F aY XjZ , as follows.

F aY XjZ(ym; xjz) = F
a
UXjZ(p

a
m(x); xjz); m 2 f1; : : : ;Mg (3)

Here the functions fpam(x)gMm=0 are the threshold functions that characterize the
structural function ha as in (2) above.

Distinct structures admitted by the model D can deliver identical distributions of
Y and X given Z for all z 2 
. Such structures are observationally equivalent and the
model is set, not point, identifying because within a set of admissible observationally
equivalent structures there can be more than one distinct structural function. This
can happen because on the right hand side of (3) certain variations in the functions
pam(x) can be o¤set by altering the sensitivity of F

a
UXjZ(u; xjz) to variations in u and

x so that the left hand side of (3) is left unchanged.
Crucially the independence restriction D2 places limits on the variations in the

functions pam(x) that can be so compensated and results in the model having nontrivial
set identifying power. A pair of probability inequalities place limits on the structural
functions which lie in the set identi�ed by the model. They are the subject of the
following Theorem.

Theorem 1. Let Sa � fha; F aUXjZg be a structure admitted by the model D delivering
a distribution function for (Y;X) given Z, F aY XjZ , and let Pra indicate probabilities



Instrumental Variable Models for Discrete Outcomes 5

calculated using this distribution. The following inequalities hold.

For all z 2 
 and � 2 (0; 1):

8<:
Pra[Y � ha(X; �)jZ = z] � �

Pra[Y < h
a(X; �)jZ = z] < �

(4)

Proof of Theorem 1. For all x each admissible ha(x; u) is càglàd for variations in
u, and so for all x and � 2 (0; 1):

fu : ha(x; u) � ha(x; �)g � fu : u � �g

fu : ha(x; u) < ha(x; �)g � fu : u � �g

which lead to the following inequalities which hold for all � 2 (0; 1) and for all x and
z.

Pra[Y � ha(X; �)jX = x;Z = z] � F aU jXZ(� jx; z)

Pra[Y < h
a(X; �)jX = x;Z = z] < F aU jXZ(� jx; z)

Let F aXjZ be the distribution function of X given Z associated with F aY XjZ . Using this
distribution to take expectations over X given Z = z on the left hand sides of these
inequalities delivers the left hand sides of the inequalities (4). Taking expectations
similarly on the right hand sides yields the distribution function of U given Z = z
associated with F aU jZ(� jz) which is equal to � for all z 2 
 and � 2 (0; 1) under the
conditions of model D.

2.2. Identi�cation. Consider the model D, a structure Sa = fha; F aUXjZg ad-
mitted by it, and the set ~Sa of all structures admitted by D and observationally
equivalent to Sa. Let ~Ha be the set of structural functions which are components of
structures contained in ~Sa. Let F aY XjZ be the joint distribution function of (Y;X)
given Z delivered by the observationally equivalent structures in the set ~Sa.

The model D set identi�es the structural function generating F aY XjZ - it must

be one of the structural functions in the set ~Ha. The inequalities (4) constrain this
set as follows: all structural functions in the identi�ed set ~Ha satisfy the inequalities
(4) when they are calculated using the probability distribution F aY XjZ , conversely no
admissible function that violates one or other of the inequalities at any value of z or
� can lie in the identi�ed set. Thus the inequalities (4) in general de�ne an outer
region within which ~Ha lies. This is the subject of Theorem 2.

When the outcome Y is binary the inequalities do de�ne the identi�ed set, that
is, all and only functions that satisfy the inequalities (4) lie in the identi�ed set ~Ha.
This is the subject of Theorem 3. There is a discussion of sharp identi�cation in the
case when Y has more than two points of support in Section 2.3.3.

Theorem 2. Let Sa be a structure admitted by the model D and delivering the
distribution function F aY XjZ . Let S� � fh�; F

�
UXjZg be any observationally equivalent

structure admitted by the model D. Let Pra indicate probabilities calculated using the
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distribution function F aY XjZ . The following inequalities are satis�ed.

For all z 2 
 and � 2 (0; 1):

8<:
Pra[Y � h�(X; �)jZ = z] � �

Pra[Y < h
�(X; �)jZ = z] < �

(5)

Proof of Theorem 2. Let Pr� indicates probabilities calculated using F �Y XjZ . Be-
cause the structure S� is admitted by model D, Theorem 1 implies that for all z 2 

and � 2 (0; 1):

Pr�[Y � h�(X; �)jZ = z] � �

Pr�[Y < h�(X; �)jZ = z] < �
Since Sa and S� are observationally equivalent, F �Y XjZ = F

a
Y XjZ and the inequalities

(5) follow on substituting �Pra� for �Pr��.

There is the following Corollary whose proof, which is elementary, is omitted.

Corollary. If the inequalities (5) are violated for any (z; �) 2 
�(0; 1) then h� =2 ~Ha.

The consequence of these results is that for any probability measure F aY XjZ gen-
erated by an admissible structure the set of functions that satisfy the inequalities (5)
contains all members of the set of structural functions ~Ha identi�ed by the model D.
When the outcome Y is binary the sets are identical, a sharpness result which follows
from the following Theorem.

Theorem 3 If Y is binary and h�(x; u) satis�es the restrictions of the model D
and the inequalities (5) then there exists a proper distribution function F �UXjZ such
that S� = fh�; F �UXjZg satis�es the restrictions of model D and is observationally
equivalent to structures Sa that generate the distribution F aY XjZ .

A proof of Theorem 3 is given in the Annex. The proof is constructive. For a
given distribution F aY XjZ and each value of z 2 
 and each structural function h�

satisfying the inequalities (5) a proper distribution function F �UXjZ is constructed
which respects the independence condition of Restriction D2 and has the property
that at the chosen value of z the pair fh�; F �UXjZg deliver the distribution function
F aY XjZ at that value of z.

2.3. Discussion.

2.3.1. Intersection bounds. Let ~Ia(z) be the set of structural functions sat-
isfying the inequalities (5) for all � 2 (0; 1) at a value z 2 
. Let ~Ha(z) denote the set
of structural functions identi�ed by the model at z 2 
, that is ~Ha(z) contains the
structural functions which lie in those structures admitted by the model that deliver
the distribution F aY XjZ for Z = z. When Y is binary ~Ia(z) = ~Ha(z) and otherwise
~Ia(z) � ~Ha(z).
The identi�ed set of structural functions, ~Ha, de�ned by the model given a dis-

tribution F aY XjZ is the intersection of the sets ~Ha(z) for z 2 
, and because for
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each z 2 
, ~Ia(z) � ~Ha(z) the identi�ed set is a subset of the set de�ned by the
intersection of the inequalities (5), thus:

~Ha � ~Ia =

8><>:h� : for all � 2 (0; 1)
0B@ min

z2

Pra[Y � h�(X; �)jZ = z] � �

max
z2


Pra[Y < h
�(X; �)jZ = z] < �

1CA
9>=>; (6)

with ~Ha = ~Ia when the outcome is binary.
The set ~Ia can be estimated by calculating (6) using an estimate of the distribution

of FY XjZ . Chernozhukov, Lee and Rosen (2008) give results on inference in the
presence of intersection bounds. There is an illustration in Chesher (2009).

2.3.2. Strength and support of instruments. It is clear from (6) that the
support of the instrumental variables, 
, is critical in determining the extent of an
identi�ed set. The strength of the instruments is also critical.

When instrumental variables are good predictors of some particular value of the
endogenous variables, say x�, the identi�ed sets for the values of threshold crossing
functions at X = x� will tend to be small in extent. In the extreme case of perfect
prediction there can be point identi�cation.

For example, suppose X is discrete with K points of support, x1; : : : ; xK , and
suppose that for some value z� of Z, P [X = xk� jZ = z�] = 1. Then the values of all
the threshold functions at X = xk� are point identi�ed and, for m 2 f1; : : : ;Mg:3

pm(xk�) = P [Y � mjZ = z�]: (7)

2.3.3. Sharpness. The inequalities of Theorem 1 de�ne the identi�ed set when
the outcome is binary. When Y has more than two points of support there may exist
admissible functions that satisfy the inequalities but do not lie in the identi�ed set.
This happens when for a function, that satis�es the inequalities, say h�, it is not
possible to �nd an admissible distribution function F �UXjZ which, when paired with
h�, delivers the �observed�distribution function F aY XjZ . In the three or more outcome
case it is not possible, without further restriction, to characterise the identi�ed set
of structural functions using inequalities involving only the structural function; the
distribution of observable variables, FUXjZ , must feature as well. Section 3.1.3 gives
an example based on a 3 outcome model.

When X is continuous it is not feasible to compute the identi�ed set without

3This is so because

P [Y � mjZ = z�] =
KX
k=1

P [U � pm(xk)jxk; z�]P [X = xkjz�] = P [U � pm(xk�)jxk� ; z�];

the second equality following because of perfect rediction at z�. Because of the independence restric-
tion and the uniform marginal distribution normalisation embodied in Restriction D2, for any value
p:

p = P [U � pjz�] =
KX
k=1

P [U � pjxk; z�]P [X = xkjz�] = P [U � pjxk� ; z�]

which delivers the result (7) on substituting p = pm(xk�).



Instrumental Variable Models for Discrete Outcomes 8

additional restrictions because in that case FUXjZ is in�nite dimensional . A similar
situation arises in the oligopoly entry game studies in Ciliberto and Tamer (2009).
Some progress is possible when X is discrete but if there are many points of support
for Y and X then computations are infeasible without further restriction. Chesher
and Smolinski (2009) give some results using parametric restrictions.

2.3.4. Discreteness of outcomes. The degree of discreteness in the distrib-
ution of Y a¤ects the extent of the identi�ed set. The di¤erence between the two
probabilities in the inequalities (4) which delimit the identi�ed set is the conditional
probability of the event: (Y;X) realisations lie on the structural function. This is
an event of measure zero when Y is continuously distributed. As the support of Y
grows more dense then as the distribution of Y comes to be continuous the maximal
probability mass (conditional on X and Z) on any point of support of Y will pass to
zero and the upper and lower bounds will come to coincide.

However, even when the bounds coincide there can remain more than one ob-
servationally equivalent structural function admitted by the model. In the absence
of parametric restrictions this is always the case when the support of Z is less rich
than the support of X. The continuous outcome case is studied in Chernozhukov
and Hansen (2005) and Chernozhukov, Imbens and Newey (2007) where complete-
ness conditions are provided under which there is point identi�cation of a structural
function.

2.3.5. Local independence. It is possible to proceed under weaker indepen-
dence restrictions, for example: P [U � � jZ = z] = � for � 2 �L, some restricted set
of values of � , and z 2 
. It is straightforward to show that, with this amendment to
the model, Theorems 1 and 2 hold for � 2 �L from which results on set identi�cation
of h(�; �) for � 2 �L can be developed.

3. Illustrations and elucidation

This Section illustrates results of the paper with two examples. The �rst has a binary
outcome and a discrete endogenous variable which for simplicity in this illustration
is speci�ed as binary. It is shown how the probability inequalities of Theorem 2
deliver inequalities on the values taken by the threshold crossing function which de-
termine the binary outcome. In this case it is easy to develop admissible distributions
for unobservables which, taken with each member of the identi�ed set, deliver the
probabilities used to construct the set.

The second example employs a restrictive parametric ordered-probit-type model
such as might be used when analysing interval censored data or data on ordered
choices. This example demonstrates that parametric restrictions alone are not su¢ -
cient to deliver point identi�cation. By varying the number of �choices�the impact
on set identi�cation of the degree of discreteness of an outcome is clearly revealed.
In both examples one can clearly see the e¤ect of instrument strength on the extent
of identi�ed sets.



Instrumental Variable Models for Discrete Outcomes 9

3.1. Binary outcomes and binary endogenous variables. In the �rst exam-
ple there is a threshold crossing model for a binary outcome Y with binary explana-
tory variable X, which may be endogenous. An unobserved scalar random variable
U is continuously distributed, normalised Uniform on (0; 1) and restricted to be dis-
tributed independently of instrumental variables Z. The model is as follows.

Y = h(X;U) �
�
0 ; 0 < U � p(X)
1 ; p(X) < U � 1 ; U k Z 2 
; U � Unif(0; 1)

The distribution of X is restricted to have support independent of U and Z with
2 distinct points of support: fx1; x2g.

The values taken by p(X) are denoted by �1 � p(x1) and �2 � p(x2). These
are the structural features whose identi�ability is of interest. Here is a shorthand
notation for the conditional probabilities about which data are informative.

�1(z) � P [Y = 0 \X = x1jz] �2(z) � P [Y = 0 \X = x2jz]

�1(z) � P [X = x1jz] �2(z) � P [X = x2jz]

The set of values of � � f�1; �2g identi�ed by the model for a particular distri-
bution of Y and X given Z = z 2 
 is now obtained by applying the results given
earlier. There is a set associated with each value of z in 
 and the identi�ed set for
variations in z over 
 is the intersection of the sets obtained at each value of z. The
sharpness of the identi�ed set is demonstrated by a constructive argument.

3.1.1. The identi�ed set. First, expressions are developed for the probabili-
ties that appear in the inequalities (4) which, in this binary outcome case, de�ne the
identi�ed set. With these in hand it is straightforward to characterise the identi�ed
set. The ordering of �1 and �2 is important and in general is not restricted a priori.

First consider the case in which �1 � �2. Consider the event fY < h(X; �)g. This
occurs if and only if h(X; �) = 1 and Y = 0, and since h(X; �) = 1 if and only if
p(X) < � there is the following expression.

P [Y < h(X; �)jz] = P [Y = 0 \ p(X) < � jz] (8)

So far as the inequality p(X) < � is concerned there are three possibilities: � � �1,
�1 < � � �2 and �2 < � . In the �rst case p(X) < � cannot occur and the probability
(8) is zero. In the second case p(X) < � only if X = x1 and the probability (8) is
therefore

P [Y = 0 \X = x1jz] = �1(z):

In the third case p(X) < � whatever value X takes and the probability (8) is therefore

P [Y = 0jz] = �1(z) + �2(z):
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The situation is as follows.

P [Y < h(X; �)jz] =

8<:
0 ; 0 � � � �1
�1(z) ; �1 < � � �2
�1(z) + �2(z) ; �2 < � � 1

The inequality P [Y < h(X; �)jZ = z] < � restricts the identi�ed set because in each
row above the value of the probability must not exceed any value of � in the interval
to which it relates and in particular must not exceed the minimum value of � in that
interval. The result is the following pair of inequalities.

�1(z) � �1 �1(z) + �2(z) � �2 (9)

Now consider the event fY � h(X; �)g. This occurs if and only if h(X; �) = 1
when any value of Y is admissible or h(X; �) = 0 and Y = 0. There is the following
expression.

P [Y � h(X; �)jz] = P [Y = 0 \ � � p(X)jz] + P [p(X) < � jz]

Again there are three possibilities to consider: � � �1, �1 < � � �2 and �2 < � .
In the �rst case � � p(X) occurs whatever the value of X and

P [Y � h(X; �)jz] = �1(z) + �2(z)

in the second case � � p(X) when X = x2 and p(X) < � when X = x1, so

P [Y � h(X; �)jz] = �1(z) + �2(z)

while in the third case p(X) < � whatever the value taken by X so

P [Y � h(X; �)jz] = 1:

The situation is as follows.

P [Y � h(X; �)jz] =

8<:
�1(z) + �2(z) ; 0 � � � �1
�1(z) + �2(z) ; �1 < � � �2
1 ; �2 < � � 1

The inequality P [Y � h(X; �)jZ = z] � � restricts the identi�ed set because in each
row above the value of the probability must at least equal all values of � in the interval
to which it relates and in particular must at least equal the maximum value of � in
that interval. The result is the following pair of inequalities.

�1 � �1(z) + �2(z) �2 � �1(z) + �2(z) (10)

Bringing (9) and (10) together gives, for the case in which Z = z, the part of the
identi�ed set in which �1 � �2, which is de�ned by the following inequalities.

�1(z) � �1 � �1(z) + �2(z) � �2 � �1(z) + �2(z) (11)
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The part of the identi�ed set in which �2 � �1 is obtained directly by exchange of
indexes, thus:

�2(z) � �2 � �1(z) + �2(z) � �1 � �1(z) + �2(z) (12)

and the identi�ed set for the case in which Z = z is the union of the sets de�ned
by the inequalities (11) and (12). The resulting set consists of two rectangles in the
unit square, one above and one below the 45� line, oriented with edges parallel to the
axes. The two rectangles intersect at the point �1 = �2 = �1(z) + �2(z).

There is one such set for each value of z in 
 and the identi�ed set for � � (�1; �2)
delivered by the model is the intersection of these sets. The result is not in general
a connected set, comprising two disjoint rectangles in the unit square, one strictly
above and the other strictly below the 45� line. However with a strong instrument
and rich support one of these rectangles will not be present.

3.1.2 Sharpness. The set just derived is precisely the identi�ed set - that is,
for every value � in the set a distribution for U given X and Z can be found which is
proper and satis�es the independence restriction, U k Z, and delivers the distribution
of Y given X and Z used to de�ne the set. The existence of such a distribution is
now demonstrated.

Consider some value z and a value �� � f��1; ��2g with, say, ��1 � ��2, which
satis�es the inequalities (11), and consider a distribution function for U given X and
Z, F �U jXZ . The proposed distribution is piecewise uniform but other choices could be
made. De�ne values of the proposed distribution function as follows.

F �U jXZ(�
�
1jx1; z) � �1(z)=�1(z) F �U jXZ(�

�
1jx2; z) � (��1 � �1(z)) =�2(z)

F �U jXZ(�
�
2jx1; z) � (��2 � �2(z)) =�1(z) F �U jXZ(�

�
2jx2; z) � �2(z)=�2(z)

(13)
The choice of values for F �U jXZ(�

�
1jx1; z) and F �U jXZ(�

�
2jx2; z) ensures that this

structure is observationally equivalent to the structure which generated the condi-
tional probabilities that de�ne the identi�ed set.4 The proposed distribution respects
the independence restriction because the implied probabilities marginal with respect
to X are independent of z, as follows.

P [U � ��1jz] = �1(z)F �U jXZ(�
�
1jx1; z) + �2(z)F �U jXZ(�

�
1jx2; z) = ��1

P [U � ��2jz] = �1(z)F �U jXZ(�
�
2jx1; z) + �2(z)F �U jXZ(�

�
2jx2; z) = ��2

It just remains to determine whether the proposed distribution of U given X and
Z = z is proper, that is has probabilities lying in the unit interval and respecting
monotonicity. Both F �U jXZ(�

�
1jx1; z) and F �U jXZ(�

�
2jx2; z) lie in [0; 1] by de�nition.

The other two elements lie in the unit interval if and only if

�1(z) � ��1 � �1(z) + �2(z)

�2(z) � ��2 � �1(z) + �2(z)
4This is because for j 2 f1; 2g, �j(z) � P [Y = 0jxj ; z] = P [U � �j jX = xj ; Z = z].
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which both hold when ��1 and �
�
2 satisfy the inequalities (11). The case under consid-

eration has ��1 � ��2 so if the distribution function of U given X and Z = z is to be
monotonic, it must be that the following inequalities hold.

F �U jXZ(�
�
1jx1; z) � F �U jXZ(�

�
2jx1; z)

F �U jXZ(�
�
1jx2; z) � F �U jXZ(�

�
2jx2; z)

Manipulating the expressions in (13) yields the result that these inequalities are
satis�ed if:

��1 � �1(z) + �2(z) � ��2
which is assured when ��1 and �

�
2 satisfy the inequalities (11). There is a similar

argument for the case ��2 � ��1.
This argument above applies at each value z 2 
 so it can be concluded that for

each value �� in the set formed by intersecting sets obtained at each z 2 
 there
exists a proper distribution function F �U jXZ with U independent of Z which, combined
with that value delivers the probabilities used to de�ne the sets.

3.1.3 Numerical example.. The identi�ed sets are illustrated using proba-
bility distributions generated by a structure in which binary Y � 1[Y � > 0] and
X � 1[X� > 0] are generated by a triangular linear equation system which delivers
values of latent variables Y � and X� as follows.

Y � = a0 + a1X + "

X� = b0 + b1Z + �

Latent variates " and � are jointly normally distributed conditional on an instrumental
variable Z. �

"
�

�
jZ � N

��
0
0

�
;

�
1 r
r 1

��
Let � denote the standard normal distribution function. The structural equation

for binary Y is as follows:

Y =

�
0 , 0 < U � p(X)
1 , p(X) < U � 1

with U � �(") � Unif(0; 1) and U k Z and p(X) = �(�a0 � a1X) with X 2 f0; 1g.
Figure 1 shows identi�ed sets when the parameter values generating the proba-

bilities are: a0 = 0, a1 = 0:5, b0 = 0, b1 = 1, r = �0:25, for which:

p(0) = �(�a0) = 0:5 p(1) = �(�a0 � a1) = 0:308

and z takes values in 
 � f0;�75;�:75g.
Pane (a) in Figure 1 shows the identi�ed set when z = 0. It comprises two

rectangular regions, touching at the point p(0) = p(1) but otherwise not connected.
In the upper rectangle p(1) � p(0) and in the lower rectangle p(1) � p(0). The
dashed lines intersect at the location of p(0) and p(1) in the structure generating
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the probability distributions used to calculate the identi�ed sets. In that structure
p(0) = 0:5 > p(1) = 0:308 but there are observationally equivalent structures lying
in the rectangle above the 45� line in which p(1) > p(0).

Pane (b) in Figure 1 shows the identi�ed set when z = :75 - at this instrumental
value the range of values of p(1) in the identi�ed set is smaller than when z = 0 but
the range of values of p(0) is larger. Pane (c) shows the identi�ed set when z = �:75 -
at this instrumental value the range of values of p(1) in the identi�ed set is larger than
when z = 0 and the range of values of p(0) is smaller. Pane (d) shows the identi�ed
set (the solid �lled rectangle) when all three instrumental values are available.

The identi�ed set is the intersection of the sets drawn in Panes (a) - (c). The
strength and support of the instrument in this case is su¢ cient to eliminate the
possibility that p(1) > p(0). If the instrument were stronger (b1 � 1) the solid �lled
rectangle would be smaller and as b1 increased without limit it would contract to a
point. For the structure used to construct this example the model achieves �point
identi�cation at in�nity� because the mechanism generating X is such that as Z
passes to �1 the value of X becomes perfectly predictable.

Figure 2 shows identi�ed sets when the instrument is weaker, achieved by setting
b1 = 0:3 . In this case even when all three values of the instrument are employed
there are observationally equivalent structures in which p(1) > p(0).5

3.2. Three valued outcomes. When the outcome has more than two points of
support the inequalities of Theorem 1 de�ne an outer region within which the set
of structural functions identi�ed by the model lies. This is demonstrated in a three
outcome case:

Y = h(X;U) �

8<:
0 ; 0 < U � p1(X)
1 ; p1(X) < U � p2(x)
2 ; p2(X) < U � 1

; U kZ 2 
; U � Unif(0; 1)

with X binary, taking values in fx1; x2g as before.
The structural features whose identi�cation is of interest are now:

�11 � p1(x1) �12 � p1(x2) �21 � p2(x1) �22 � p2(x2)

and the probabilities about which data are informative are:

�11(z) � P [Y = 0 \X = x1jz] �12(z) � P [Y = 0 \X = x2jz]
�21(z) � P [Y � 1 \X = x1jz] �22(z) � P [Y � 1 \X = x2jz]

(14)

and �1(z) and �2(z) as before.
Consider putative values of parameters which fall in the following order.

�11 < �12 < �22 < �21

5 In supplementary material more extensive graphical displays are available.
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Figure 1: Identi�ed sets with a binary outcome and binary endogenous variable as
instrumental values, z, vary. Strong instrument (b1 = 1). Dotted lines intersect
at the values of p(0) and p(1) in the distribution generating structure. Panes (a) -
(c) show identi�ed sets at each of 3 values of the instrument. Pane (d) shows the
intersection (solid area) of these identi�ed sets. The instrument is strong enough and
has su¢ cient support to rule out the possibility p(1) > p(0).
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Figure 2: Identi�ed sets with a binary outcome and binary endogenous variable as
instrumental values, z, vary. Weak instrument (b1 = 0:3). Dotted lines intersect
at the values of p(0) and p(1) in the distribution generating structure. Panes (a) -
(c) show identi�ed sets at each of 3 values of the instrument. Pane (d) shows the
intersection (solid area) of these identi�ed sets. The instrument is weak and there
are observationally equivalent structures in which p(1) > p(0).
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The inequalities of Theorem 1 place the following restrictions on the ��s.

�11(z) < �11 � �11(z) + �12(z) < �12 � �21(z) + �12(z) (15a)

�11(z) + �22(z) < �22 � �21(z) + �22(z) < �21 � �21(z) + �2(z) (15b)

However, when determining whether it is possible to construct a proper distribution
FUXjZ exhibiting independence of U and Z and delivering the probabilities (14) it is
found that the following inequality is required to hold

�22 � �12 � �22(z)� �12(z)

and this is not implied by the inequalities (15).
This inequality and the inequality

�21 � �11 � �21(z)� �11(z)

are required when the ordering �11 < �21 < �12 < �22 is considered. However in the
case of the ordering �11 < �12 < �21 < �22 the inequalities of Theorem 1 guarantee
that both of these inequalities hold. So, if there were the additional restriction that
this latter ordering prevails then the inequalities of Theorem 1 would de�ne the
identi�ed set.6

3.3. Ordered outcomes: a parametric example. In the second example Y
records an ordered outcome in M classes, X is a continuous explanatory variable
and there are parametric restrictions. The model used in this illustration has Y
generated as in an ordered probit model with speci�ed threshold values c0; : : : ; cM
and potentially endogenous X. The unobservable variable in a threshold crossing
representation is distributed independently of Z which varies across a set of instru-
mental values, 
. This sort of speci�cation might arise when studying ordered choice
using a ordered probit model or when employing interval censored data to estimate
a linear model, in both cases allowing for the possibility of endogenous variation in
the explanatory variable. In order to allow a graphical display just two parameters
are unrestricted in this example. In many applications there would be other free
parameters, for example the threshold values.

The parametric model considered states that for some constant parameter value
� � (�0; �1),

Y = h(X;U ;�) U k Z 2 
 U � Unif(0; 1)

where, for m 2 f1; : : : ;Mg, with � denoting the standard normal distribution func-
tion:

h(X;U ;�) = m; if: �(cm�1 � �0 � �1X) < U � �(cm � �0 � �1X)

and c0 = �1, cM = +1 and c1; : : : ; cM�1 are speci�ed �nite constants. The notation

6There are six feasible permutations of the ��s of which three are considered in this Section, the
other three being obtained by exchange of the second index.
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h(X;U ;�) makes explicit the dependence of the structural function on the parameter
�

For a conditional probability function FY jXZ and a conditional density fXjZ and
some value � the probabilities in (4) are:

Pr[Y � h(X; � ;�)jZ = z] =
MX
m=1

Z
fx :h(x;� ;�)=mg

FY jXZ(mjx; z)fXjZ(xjz)dx (16)

Pr[Y < h(X; � ;�)jZ = z] =
MX
m=2

Z
fx :h(x;� ;�)=mg

FY jXZ(m� 1jx; z)fXjZ(xjz)dx (17)

In the numerical calculations the conditional distribution of Y and X given Z = z
is generated by a structure of the following form.

Y � = a0 + a1X +W X = b0 + b1Z + V�
W
V

�
jZ � N

��
0
0

�
;

�
1 suv
suv svv

��
Y = m; if: cm�1 < Y � cm; m 2 f1; : : : ;Mg

Here c0 � �1, cM � 1 and c1; : : : ; cM�1 are the speci�ed �nite constants employed
in the de�nition of the structure and in the parametric model whose identifying power
is being considered.

The probabilities in (16) and (17) are calculated for each choice of � by numerical
integration.7 Illustrative calculations are done for 5 and 11 class speci�cations with
thresholds chosen as quantiles of the standard normal distribution at equispaced
probability levels. For example in the 5 class case the thresholds are ��1(p) for
p 2 f:2; :4; :6; :8g, that is f�:84;�:25; :25; :84g. The instrumental variable ranges
over the interval 
 � [�1; 1] , the parameter values employed in the calculations are:

a0 = 0; a1 = 1 ; b0 = 0; suv = 0:6; svv = 1

and the value of b1 is set to 1 or 2 to allow comparison of identi�ed sets as the strength
of the instrument, equivalently the support of the instrument, varies.

Figure 3 shows the set de�ned by the inequalities of Theorem 1 for the intercept
and slope coe¢ cients, �0 and �1 in a 5 class model. The dark shaded set is obtained
when the instrument is relatively strong (b1 = 2). This set lies within the set obtained
when the instrument is relatively weak (b1 = 1). Figure 4 shows identi�ed sets
(shaded) for these weak and strong instrument scenarios when there are 11 classes
rather than 5. The 5 class sets are shown in outline. The e¤ect of reducing the

7The integrate procedure in R (Ihaka and Gentleman (1996)) was used to calculate probabilities.
Intersection bounds over z 2 
Z were obtained as in (6) using the R function optimise. The resulting
probability inequalties were inspected over a grid of values of � at each value of � considered, a value
being classi�ed as out of the identi�ed set as soon as a value of � was encountered for which there
was violation of one or other of the inequaltites (6). I am grateful to Konrad Smolinski for developing
and programming a procedure to e¢ ciently track out the boundaries of the sets.
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discreteness of the outcome is substantial and there is a substantial reduction in the
extent of the set as the instrument is strengthened.

The sets portrayed here are outer regions which contain the sets identi�ed by the
model. The identi�ed sets are computationally challenging to produce in this con-
tinuous endogenous variable case. Chesher and Smolinski (2009) investigate feasible
procedures based on discrete approximations.

4. Concluding remarks

It has been shown that, when outcomes are discrete, single equation IV models do not
point identify the structural function that delivers the discrete outcome. The models
have been shown to have partial identifying power and set identi�cation results have
been obtained. Identi�ed sets tend to be smaller when instrumental variables are
strong and have rich support and when the discrete outcome has rich support. Im-
posing parametric restrictions reduces the extent of the identi�ed sets but in general
parametric restrictions do not deliver point identi�cation of the values of parameters.

To secure point identi�cation of structural functions more restrictive models are
required. For example, specifying recursive structural equations for the outcome and
endogenous explanatory variables and restricting all latent variates and instrumental
variables to be jointly independently distributed produces a triangular system model
which can be point identifying.8 This is the control function approach studied in
Blundell and Powell (2004), Chesher (2003) and Imbens and Newey (2009). The
restrictions of the triangular model rule out full simultaneity (Koenker (2005), Section
8.8.2) such as arises in the simultaneous entry game model of Tamer (2003). An
advantage of the single equation IV approach set out in this paper is that it allows
an equation-by-equation attack on such simultaneous equations models for discrete
outcomes, avoiding the need to deal directly with the coherency and completeness
issues they pose.

The weak restrictions imposed in the single equation IV model lead to partial
identi�cation of deep structural objects which complements the many developments
in the analysis of point identi�cation of the various average structural features studied
in for example Heckman and Vytlacil (2005).

There are a number of interesting extensions. For example the analysis can be
extended to the multiple discrete outcome case such as arises in the study of panel
data. Consider a model for T discrete outcomes each determined by a structural
equation as follows:

Yt = ht(X;Ut); t = 1; : : : ; T

where each function ht is weakly increasing and càglàd for variations in Ut and each
Ut is a scalar random variable normalised marginally Unif(0; 1) and U � fUtgTt=1
and instrumental variables Z 2 
 are independently distributed. In practice there
will often be cross equation restrictions, for example requiring each function ht to be
determined by a common set of parameters.

8But not when endogenous variables are discrete, Chesher (2005).
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Figure 3: Outer regions within which lie identi�ed sets for an intercept, �0, and
slope co¢ cient, �1, in a 5 class ordered probit model with endogenous explanatory
variable. The dashed lines intersect at the values of a0 and a1 used to generate the
distributions employed in this illustration.
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Figure 4: Outer regions within which lie identi�ed sets for an intercept, �0, and
slope co¢ cient, �1, in a 11 class ordered probit model with endogenous explanatory
variable. Outer regions for the 5 class model displayed in Figure 3 are shown in
outline. The dashed lines intersect at the values of a0 and a1 used to generate the
distributions employed in this illustration.
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De�ne h � fhtgTt=1 and � � f� tgTt=1 and:

C(�) � Pr
"
T\
t=1

(Ut � � t)
#

which is a copula since the components of U have marginal uniform distributions. An
argument along the lines of that used in Section 2.1 leads to the following inequalities
which hold for all � 2 [0; 1]T and z 2 
.

Pr

"
T\
t=1

(Yt � ht(X; � t))jZ = z
#
� C(�)

Pr

"
T\
t=1

(Yt < ht(X; � t))jZ = z
#
< C(�)

These can be used to delimit the sets of structural function and copula combinations
fh;Cg identi�ed by the model.

Other extensions arise on relaxing restrictions maintained so far. For example
it is straightforward to generalise to the case in which exogenous variables appear
in the structural function. In the binary outcome case additional heterogeneity, W ,
independent of instruments Z, can be introduced if there is a monotone index restric-
tion, that is if the structural function has the form h(X�;U;W ) with h monotonic in
X� and in U . This allows extension to measurement error models in which observed
~X = X +W . This can be further extended to the general discrete outcome case if a
monotone index restriction holds for all threshold functions.
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Annex

Proof of Theorem 3. Sharp set identi�cation for binary outcomes

The proof proceeds by considering a structural function h(x; u), that: (i) is weakly
monotonic non-decreasing for variations in u, (ii) is characterised by a threshold
function p(x), and (iii) satis�es the inequalities of Theorem 1 when probabilities are
calculated using a conditional distribution FY XjZ .

A proper conditional distribution FUXjZ is constructed such that U and Z are in-
dependent and with the property that the distribution function generated by fh; FUXjZg
is identical to FY XjZ used to calculate the probabilities in Theorem 1.

Attention is directed to constructing a distribution for U conditional on both
X and Z, FU jXZ . This is combined with FXjZ , the (identi�ed) distribution of X
conditional on Z implied by FY XjZ , in order to obtain the required distribution of
(U;X) conditional on Z.

The construction of FUXjZ is done for a representative value, z, of Z. The argu-
ment of the proof can be repeated for any z such that the inequalities of Theorem 1
are satis�ed. It is helpful to introduce some abbreviated notation. At many points
dependence on z is not made explicit in the notation.

Let 	 denote the support of X conditional on Z. Y is binary taking values in
fy1; y2g. De�ne conditional probabilities as follows.

�1(x) � Pr[Y = y1jx; z]

�1 � Pr[Y = y1jz] =
Z
�1(x)dFXjZ(xjz)

and �2(x) � 1 � �1(x), �2 � 1 � �1 and note that dependence of 	, �1(x), �2(x),
etc., on z is not made explicit in the notation.

A threshold function p(x) is proposed such that

Y =

�
y1 ; 0 � U � p(x)
y2 ; p(x) < U � 1

and this function satis�es some inequalities to be stated. The threshold function is a
continuous function of x and does not depend on z.

De�ne the following functions which in general depend on z.

u1(v) = min(v; �1) u2(v) = v � u1(v)

De�ne sets as follows:

X(s) � fx : p(x) = sg X[s] � fx : p(x) � sg

and let � denote the empty set. De�ne

s1(v) � min
s

(
s :

Z
x2X[s]

�1(x)dFXjZ(xjz) = u1(v)
)
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and:

s2(v) � min
s

(
s :

Z
x2X[s]

�2(x)dFXjZ(xjz) = u2(v)
)

and de�ne functions �1(v; x) and �2(v; x).

�1(v; x) �
�
�1(x) ; x 2 X[s1(v)]
0 ; x =2 X[s1(v)]

�2(v; x) �
�
�2(x) ; x 2 X[s2(v)]
0 ; x =2 X[s2(v)]

For a structural function h(x; u) characterized by the threshold function p(x) and
for a probability measure that delivers �1(x) and FXjZ , a distribution function FU jXZ
is de�ned as

FU jXZ(ujx; z) � �(u; x) � �1(u; x) + �2(u; x)

where z is the value of Z upon which there is conditioning at various points in the
de�nition of �(u; x).

Consider functions p that satisfy the inequalities of Theorem 1 which in this binary
outcome case can be expressed as follows.

for all u 2 (0; 1) :
Z

p(x)<u

�1(x)dFXjZ(xjz) < u � �1 +
Z

p(x)<u

�2(x)dFXjZ(xjz) (A1)

It is now shown that:

1. for all x and any z the distribution function �(u; x) is proper: (a) �(0; x) = 0,
(b) �(1; x) = 1, (c) for v0 > v �(v0; x) � �(v; x).

2. there is an independence property:

for all u
Z
x2	

�(u; x)dFXjZ(xjz) = u

3. if p satis�es the inequalities (A1) then there is an observational equivalence
property: for all x

�(p(x); x) = �1(x):

(1a). Proper distribution: �(0; x) = 0.

By de�nition u1(0) = u2(0) = 0 and so s1(0) = s2(0) = 0. Therefore X[s1(0)] =
X[s2(0)] = � which implies that, for all x, �1(0; x) = �2(0; x) = 0 and so �(0; x) = 0.

(1b). Proper distribution: �(1; x) = 1.

By de�nition u1(1) = �1, so s1(1) is the smallest value of s such that X[s] = 	
so s = maxx2	 p(x). With X[s1(1)] = 	 it is assured that �1(1; x) = �1(x) for all x.

By de�nition: u2(1) = �2, so s2(1) is the smallest value of s such that X[s] = 	.
With X[s2(1)] = 	 it is assured that �2(1; x) = �2(x) for all x. So, for all x,
�(1; x) = �1(x) + �2(x) = 1.
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(1c). Proper distribution: nondecreasing �(u; x).

Since u1(v) and u2(v) are nondecreasing functions of v, so are s1(v) and s2(v). It
follows that for v0 > v

X[s1(v
0)] � X[s1(v)] X[s2(v

0)] � X[s2(v)]

and so for all x
�1(v

0; x) � �1(v; x) �2(v
0; x) � �2(v; x)

and it follows that the sum of the functions, �(v; x), is a nondecreasing function of v.

(2). Independence.

By de�nitionZ
x2	

�1(v; x)dFXjZ(xjz) =
Z

x2X[s1(v)]

�1(x)dFXjZ(xjz) = u1(v)

Z
x2	

�2(v; x)dFXjZ(xjz) =
Z

x2X[s2(v)]

�2(x)dFXjZ(xjz) = u2(v)

and so Z
x2	

�(v; x)dFXjZ(xjz) = u1(v) + u2(v) = v

which does not depend upon z.

(3). Observational equivalence.

This requires that for all x: �(p(x); x) = �1(x) which is true if for all x: (a)
�1(p(x); x) = �1(x) and (b) �2(p(x); x) = 0. Each equation is considered in turn.
The inequalities (A1) come into play.

(a) �1(p(x); x) = �1(x).
Since for all u Z

p(x)<u

�1(x)dFXjZ(xjz) < u

there exists �(u) > 0 such thatZ
p(x)<u+�(u)

�1(x)dFXjZ(xjz) = u

for all u � �1.
It follows that s1(v) > v for all v which implies X[v] � X[s1(v)] and in particular

X(v) � X[s1(v)].
For some value of x, x�, de�ne p� � p(x�). Then for p� 2 (0; 1),

X(p�) � fx : p(x) = p�g � X[p�] � X[s1(p�)]:
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Recall that �1(v; x) is equal to �1(x) for all x 2 X[s1(v)]. It has been shown that for
any p�, all x such that p(x) = p� lie in the set X[s1(p�)] and so �1(p

�; x�) = �1(x�)
and there is the result �1(p(x); x) = �1(x).

(b) �2(p(x); x) = 0.
Recall X(v) � fx : p(x) = vg. It is required to show that X(v) \ X[s2(v)] is

empty for all v.
Since u2(v) = 0 for v � �1, s2(v) = 0 for v � �1 and X[s2(v)] = � for v � �1.

Therefore, for v � �1

X(v) \X[s2(v)] = X(v) \ � = �.

From (A1) there is the following inequality.Z
p(x)<v

�2(x)dFXjZ(xjz) � v � �1

For v > �1, the constraint implies that there exists 
(v) � 0 such thatZ
p(x)<v�
(v)

�2(x)dFXjZ(xjz) = v � �1

and, since for v > �1

s2(v) � min
s

(
s :

Z
p(x)<s

�2(x)dFXjZ(xjz) = v � �1

)

it follows that s2(v) < v. It follows that for v > �1, X(v) \ X[s2(v)] = � because
with s2(v) < v:

fx : p(x) < s2(v)g \ fx : p(x) = vg = �

De�ne p� = p(x�). Then for p� 2 (0; 1), X(p�) \X[s2(p�)] = � so �2(p�; x�) = 0
and there is the result, for all x, �2(p(x); x) = 0:


