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Abstract

It is widely admitted that the inverse problem of estimating the distribution

of a latent variable X∗ from an observed sample of X, a contaminated mea-

surement of X∗, is ill-posed. This paper shows that measurement error models

for self-reporting data are well-posed, assuming the probability of reporting

truthfully is nonzero, which is an observed property in validation studies. This

optimistic result suggests that one should not ignore the point mass at zero in

the error distribution when modeling measurement errors in self-reported data.

We also illustrate that the classical measurement error models may in fact be

conditionally well-posed given prior information on the distribution of the la-

tent variable X∗. By both a Monte Carlo study and an empirical application,

we show that failing to account for the property can lead to significant bias on

estimation of distribution of X∗.
∗The authors can be reached at yan4@jhu.edu and yhu@jhu.edu. We are grateful to Chris

Bollinger, Susanne Schennach, Stephen Shore, Richard Spady, and Tiemen Woutersen for helpful
comments or discussions. We also thank Han Hong for sharing the dataset and Wendy Chi for
proofreading the draft. All errors remain our own.
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1 Introduction

Empirical studies in microeconomics usually involve survey samples, where personal

information is reported by the interviewees themselves, and therefore, the correspond-

ing variables in the sample are subject to measurement errors. The measurement error

problem can be summarized as estimating the distribution of a latent variable X∗,

fX∗ (·), from an observed sample of X, a contaminated measurement of X∗, as follows:

fX (x) =

∫
fX|X∗ (x|x∗) fX∗ (x∗) dx∗. (1)

The conditional density fX|X∗ describes the behavior of the measurement errors de-

fined as X−X∗. We focus on the estimation of the true model fX∗ given the measure-

ment error structure fX|X∗ and a sample of X. A straightforward estimator is to solve

for fX∗ from Eq.(1) with fX replaced by its sample counterpart. In fact, Eq.(1) is a

Fredholm integral equation of the first kind, which is notoriously ill-posed.1 However,

by assuming the probability of reporting truthfully is nonzero, which is an observed

property in validation studies, we show that Eq.(1) is a Fredholm equation of the

second kind, and therefore, is well-posed.

1According to Hadamard (1923), a well-posed problem should have the following three properties:
(i). A solution exists. (ii). The solution is unique. (iii). The solution depends continuously on the
data. If any of the three conditions above is violated, then the problem is ill-posed.
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The ill-posed inverse problems have been widely studied in statistics literature, and

the main efforts in solving the problems were put into various regularization methods

pioneered by Tikhonov (1963). In the econometrics literature, economists also focus

on constructing estimators and deriving optimal convergence rates of the estimators

based on various regularization methods in a general setting, such as Eq.(1). (Blun-

dell, Chen, and Kristensen (2007), Chen and Reiss (2007), and Hall and Horowitz

(2005))

In this paper, however, we show that the widely admitted ill-posed problem above

is actually well-posed for self-reporting data, assuming interviewees report truthfully

with a nonzero probability. The property can be seen in validation studies by Chen,

Hong, and Tarozzi (2008) and Bollinger (1998). This property also distinguishes sur-

vey samples used in economics from samples usually used in statistical literature,

where data are generated from certain measurement equipment. Based on this prop-

erty, we prove that Eq.(1) described earlier is in fact a Fredholm integral equation

of the second kind, which is generally well-posed. Hence we advocate that it is best

for economists to exploit the property of self-reporting data while solving the inverse

problems in measurement errors models in a generally ill-posed setup, such as Eq.(1).

We also discuss the well-known classical measurement error case, where the error

structure fX|X∗ (x|x∗) may be reduced to fε (x− x∗). We refer to the concept of

conditional (Tikhonov) well-posedness2 to discuss the relationship between the error

distribution fε and the property of ill-posedness. Basically, an inverse problem is

conditionally well-posed if it is ill-posed on a function space S, but still well-posed

on some subsets of S. Notice that such subsets always exist. Based on this concept,

2The rigorous definition of conditional well-posedness is introduced in the next section.
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another point we make in this paper is that it is important to find such subsets of S

that is large enough to contain the usual density estimator f̂X of fX . If we find such

a subset containing f̂X , the inverse problem in the measurement error models can be

treated as well-posed. We illustrate this implication by associating well-posedness of

an inverse problem with the convergence rates of the density estimators.

To our knowledge, we are the first to recognize the implication of the property of

self-reporting errors for the well-posedness of the inverse problems in measurement

error models. Our findings are important in economic applications in that our results

imply the estimation of the latent model fX∗ from the observed fX may not be as

technically challenging as previously thought.

The paper is organized as follows. In section 2, we present a general setup of the in-

verse problem in measurement error models. In Section 3, we show the well-posedness

of measurement error models for self-reporting data. In section 4, we illustrate the

conditional well-posedness for models of classical measurement error. In section 5,

we provide Monte Carlo evidence of the improvement the property can make in es-

timating fX∗ . In section 6, we present an empirical illustration, using the data-set

that matches self-reported earning from the CPS to employer-reported social security

earnings (SSR) from 1978. Section 7 concludes. Proofs are in the Appendix.

2 A general setup

We are interested in the estimation of the distribution of a latent variable X∗, fX∗ (·) ,

given the known measurement error structure fX|X∗ and a sample of X. The random

sample {Xi}i=1,...,n contains the contaminated measurements of the true values X∗
i in
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each observation i. The estimation of fX∗(·) is based on solving Eq.(1). We assume

that the supports of X and X∗ are the real line R and the inverse problem is defined

on the Lp space over the real line, i.e., Lp (R) , 1 ≤ p ≤ +∞ with fX , fX∗ ∈ Lp unless

we specify the spaces otherwise.

For simplicity, we alternatively express the inverse problem as an operator equation:

fX = LX|X∗fX∗ , (2)

where the operator LX|X∗ : Lp (R) → Lp (R) is defined as
(
LX|X∗h

)
(x) =

∫
fX|X∗ (x|x∗) h (x∗) dx∗

for any h ∈ Lp (R). The well-posedness of the inverse problem (2) is then defined as

follows:

Definition 1. (Carrasco and Florens (2007), p.5670) The equation LX|X∗fX∗ = fX

(fX∗ , fX ∈ Lp) is well-posed if LX|X∗ is bijective and the inverse operator L−1
X|X∗ :

Lp (R) → Lp (R) is continuous. Otherwise, the equation is ill-posed.

In this paper, we intend to focus on the estimation, instead of identification, of the

latent model fX∗ (·) so that we make the following assumptions.

Condition 1. fX|X∗ is known and LX|X∗ is injective.

This assumption guarantees that the left inverse of LX|X∗ exists and fX∗ is uniquely

identified from Eq. (1).3 Therefore, we can identify and estimate fX∗ as follows:

fX∗ = L−1
X|X∗fX .

3Given an operator F : Υ → Ψ, if there exists an operator G : Ψ → Υ such that GF is the
identity operator I on Υ, then G is said to be a left inverse of F . G exists if and only if F is
injective. See Naylor and Sell (2000), pp.32-33 for details.
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As in many empirical applications, however, we only observe a random sample of X

instead of the density fX itself. We have to replace fX by its estimator based the

random sample {Xi}. Let f̂ denote an estimator of f , then the latent model fX∗ can

be estimated as

f̂X∗ = L−1
X|X∗ f̂X

= fX∗ + L−1
X|X∗

(
f̂X − fX

)
.

Since the injectivity of LX|X∗ is assumed above, we still need its surjectivity and the

continuity of L−1
X|X∗ to assure the well-posedness of the problem (2).

In economic applications, the main concern for well-posedness of this inverse prob-

lem is the continuous dependence of f̂X∗ on the data of X, i.e., the bias in f̂X∗ ,

L−1
X|X∗

(
f̂X − fX

)
, is dependent on the estimation error in f̂X continuously. Notice

that whether the problem is well-posed or not is completely determined by the opera-

tor LX|X∗ : if the inverse L−1
X|X∗ is not continuous, then the problem becomes ill-posed

and a small estimation error in f̂X might cause a huge bias in f̂X∗ . As we mentioned

before, when the problem is ill-posed on the space Lp, it may still be well-posed on

some subsets of Lp, i.e., the problem is conditionally well-posed. We introduce the

rigorous definition of conditionally well-posed as follows:

Definition 2. (Petrov and Sizikov (2005), p.157) A operator equation

LX|X∗fX∗ = fX

with fX∗ , fX ∈ Lp (R) is conditionally well-posed if

(i) It is known a priori that a solution of the problem above exists and belongs to a
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specific set Υ ⊂ Lp (R);

(ii) The operator LX|X∗ is a one-to-one mapping of Υ onto LX|X∗Υ ≡ Ψ;

(iii) The operator L−1
X|X∗ is continuous on Ψ ⊂ Lp (R).

As we discussed before, it is not difficult to find such subsets Υ and Ψ. But it is

crucial to find a set Ψ such that a density estimator f̂X is in the set Ψ. We may then

just focus on solving the equation on the set Ψ, which is well-posed.

3 Measurement error models for self-reporting data

In this section, we show the well-posedness of measurement error models for self-

reporting data, which is based on a property observed in validation studies that

individuals report the true values with a nonzero probability. As a consequence, the

problem (2) becomes a Fredholm equation of the second kind and is well-posed.

3.1 A property of self-reporting errors

This subsection discusses the properties of the operator LX|X∗ in measurement er-

ror models for self-reporting data. We show why and how self-reporting errors are

essentially distinct from the traditional measurement errors.

The traditional measurement error models describe the errors generated from mea-

suring a true value, such as, height or temperature, using certain measurement equip-

ment, e.g., a ruler or a thermometer. Such errors are generally assumed to be inde-

pendent of the true values, which makes perfect sense because the errors are mainly

caused by the equipment or measuring methods. However, most measurement errors
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in economic variables are not caused by measurement but by misreporting. This is

due to the fact that most economic studies are based on self-reported survey data,

such as Current Population Survey (CPS) and Panel Study of Income Dynamics

(PSID). Therefore, it is essential for economists to take into account the properties

of the self-reporting errors before using the traditional measurement error models.

A key property of self-reporting errors is that it has a nonzero probability of being

equal to zero. This can be seen from a validation study by Chen, Hong, and Tarozzi

(2008), which provides an important empirical evidence on the exact distribution of

self-reporting errors for earnings. The authors use the data set that matches self-

reported earning from the CPS to employer-reported social security earnings (SSR)

from 1978 (the CPS/SSR Exact Match File). By quartile of Social Security Earnings,

the four sub-figures in Figure 1 show histograms of percentage of the ratio between

self-reported and social security earnings. An observation from the figure is that there

are mass points where self-reported earnings equal social security earnings, i.e., the

probability of reporting truthfully is strictly positive.

In fact, Bollinger (1998) provides estimates of the probability of reporting truthfully

in CPS. He utilizes the same CPS/SSR exact match file above to show that 11.7%

of the men and 12.7% of the women report their earnings correctly. In addition, he

finds that the probability of reporting truthfully does not vary much with the true

income. Similar observations also apply to the discrete variables. Bound, Brown,

and Mathiowetz (2001) provides the discrete version of fX|X∗ in different economic

data, where the misclassification probability matrices corresponding to fX|X∗ are all

strictly diagonally dominant, i.e., the probability of telling the truth is much larger

than that of reporting any other values.
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Employing the same data set we cited above, we plot histogram of social security

earnings X∗ for those X∗ are equal to X, the self-reported earnings in figure 2.

The histogram shows that people report truthfully almost at every earning level,

which implies they report truthfully not just because their earning levels are easy to

remember.

These validation studies suggest that there is a nonzero probability that people re-

port the truth even for a continuous variable, i.e., the distribution of self-reporting

errors has a mass point at zero. This observation may be explained by the following

reporting process shown in Figure 3: If he remembers the true value, an interviewee

first decides whether to intentionally misreport the truth or not. Empirical evidences

above suggest that he would report the truth with a nonzero probability; if he does

not remember the true value, he provides an estimate of the true value, which may be

considered as unintentionally misreporting. Admittedly, we can’t distinguish inten-

tionally misreporting from unintentionally misreporting without further information.

Based on these observations from the validation studies, it is natural to make the

following assumption in measurement error models for self-reporting data.

Condition 2. The probability of telling the truth conditional on the true values is

nonzero, i.e.

λ(x∗) ≡ Pr (X = X∗|X∗ = x∗) > 0 for any x∗.

And therefore, the self-reporting error distribution may be written as:

fX|X∗ (x|x∗) = λ(x∗)× δ(x− x∗) + (1− λ(x∗))× g (x|x∗) , (3)

where δ(·) is a Dirac delta function and g (x|x∗) is the conditional density correspond-
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ing to misreporting errors.

3.2 Well-posedness with self-reporting errors

Given the property of the self-reporting error in economic data, the corresponding

models of measurement error in Eq.(3) becomes

fX(x) =

∫
fX|X∗(x|x∗)fX∗(x∗)dx∗

= λ(x)fX∗(x) +

∫
g (x|x∗) (1− λ(x∗))fX∗(x∗)dx∗,

which is a Fredholm equation of the second kind. We may also describe it as an

operator equation,

fX = LX|X∗fX∗

= [Dλ + Lg (I −Dλ)] fX∗ , (4)

where I is an identity operator defined on Lp, Dλ : Lp (R) → Lp (R) is the multipli-

cation operator defined as

(Dλh)(z) = λ(z)h(z), 0 < λ(z) ≤ 1, (5)

and the operator Lg : Lp (R) → Lp (R) , 1 ≤ p ≤ ∞ is defined as

(Lgh)(x) =

∫
g(x|x∗)h(x∗)dx∗. (6)
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Since 0 < λ(z), this operator equation can be written as

D−1
λ fX =

[
I + D−1

λ Lg (I −Dλ)
]
fX∗ , (7)

where the only unknown is still fX∗ . Moreover, Eq. (7) belongs to Fredholm equations

of the second kind. Since it is known that Fredholm equations of the second kind are

well-posed under certain conditions, our goal here is to apply the existing results to

show the well-posedness of problem (2) under condition 2. For this purpose, we need

to assume the compactness of the operator Lg:

Condition 3. Operator Lg in Eq.(6) is compact.

The sufficient condition for compactness is different in different Lp space. In the

commonly used L2 space, an integral operator is a Hilbert-Schmidt operator and

consequently is compact if the kernel of the operator is square integrable (see e.g.

Pedersen (1999), pp.92-94.).4 Hence if we assume

∣∣∣∣∣∣ g (·|·)
∣∣∣∣∣∣

2
< ∞,

then the operator Lg is compact on L2(R).

We summarize the well-posedness of problem (4) in the following theorem.

Theorem 1. Under Conditions 1, 2, and 3, the problem (2) is well-posed.

Proof See Appendix. �

4Let k be a function of two variables (s, t) ∈ I×I = I2, where I is a finite or infinite real interval.
Then a linear integral operator K on L2(I) is called a Hilbert-Schmidt operator if the kernel k is in
L2(I × I), i.e., ||k||2 =

∫
I

∫
I
|k(s, t)|2dsdt < ∞.
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This theorem suggests that the observed property of misreporting errors has a strong

implication for modeling measurement error problems with survey data. Without

condition 2, the problem (2) is ill-posed, which implies that the estimation of the latent

model fX∗ is quite technically challenging. However, condition 2, which is directly

supported by empirical evidences, dramatically reverse the pessimistic perspective on

this inverse problem. Theorem 1 implies that the estimator of fX∗ based on equation

(2) with self-reported data should perform well in general because the misreporting

errors have a nonzero probability of being equal to zero. The virtue of honesty literally

makes the inverse problem (2) well-posed.

Furthermore, the optimistic result in Theorem 1 may also have implications on cer-

tain instrumental variable models (Newey and Powell (2003)). We may consider the

latent variable X∗ as the endogenous variable and X as its exogenous instruments.

Our results imply that an instrumental variable model may also be well-posed when

Pr(X∗ = X|X∗) > 0, i.e. the variable X∗ is exogenous with a nonzero probability.5

4 A further discussion on the classical error case

By further analyzing the relationship between the well-posedness of Eq.(2) and the

convergence rate of f̂X∗ , we illustrate in this section that if some prior information

of fX∗ is available, we usually can narrow the set on which the problem is defined

such that the problem is well-posed on the narrowed subset. In other words, the

original problem is conditionally well-posed. Moreover, we argue that conditional

well-posedness rather than well-posedness is sufficient in many economic applications.

5We thank Richard Spady for pointing this out.
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In order to conduct our analysis, we assume in this section that the error is classical,

i.e., X = X∗ + ε, where the true value X∗ is independent of the measurement error

ε. Therefore, we have

fX|X∗ (x|x∗) = fε (x− x∗) . (8)

For the simplicity, we restrict the space on which the problem is defined to all the

bounded functions with bounded Fourier transform in L∞. A result we will repeatedly

use in this section is that a linear operator is continuous if and only if it is bounded.6

We first analyze the implication of the simplification in Eq. (8) without condition

2. This convolution case has been studied thoroughly so that we only associate

the existing results with the ill-posed problem. We will then combine Eq. (8) and

condition 2 to show the well-posedness in the classical error case.

If X∗ is independent of ε, then it is known that the characteristic functions of fX , fX∗ ,

and fε (denoted by φX , φX∗ , and φε, respectively ) have the following relation:

φX(t) = φX∗(t)φε(t).

Assumption.1 guarantees that φε(t) 6= 0 for any real t. Therefore, the density

fX∗ can be recovered from its characteristic function φX∗(t) = φX(t)/φε(t) through

1
2π

∫
e−itx φX(t)

φε(t)
dt = 1

2π

∫
e−itxφX∗(t)dt. Hence the deconvolution here is well-defined.

In empirical applications, however, the density fX needs to be estimated by using the

6See Theorem 2.5. in Kress (1999).
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observed data {Xi}i=1,...,n. A popular estimator for fX is as follows:

f̂X =
1

2π

∫
e−itxφ̂X(t)dt (9)

φ̂X(t) = φ̂n(t)φK(
t

Tn

),

where φ̂n(t) is the empirical characteristic function defined by

φ̂n(t) =
1

n

n∑
i=1

eitXi ,

and φK( t
Tn

) is the Fourier transform of the kernel function K with bandwidth 1
Tn

. The

smoothing parameter Tn depends on the sample size n. In other words, a different Tn

implies a different estimator f̂X for fX . We may pick a kernel K such that φK (t) = 0

for |t| > 1. In order to let φ̂X(t) uniformly converge to φX(t) over [−Tn, Tn] at a

geometric rate with respect to the sample size n, Hu and Ridder (2008) suggests that

we need

Tn = O

(
n

log n

)γ

for γ ∈
(

0,
1

2

)
. (10)

Consequently the estimator of fX∗ , f̂X∗(x∗) is

f̂X∗(x∗) =
1

2π

∫
e−itx∗ φ̂X(t)

φε(t)
dt

= fX∗(x∗) +
1

2π

∫
e−itx∗ φ̂X(t)− φX(t)

φε(t)
dt.

The equation shows that we need to focus on the second term of the last line when

we analyze the well-posedness of the inverse problem. In the remaining part of this

section, we explore the well-posedness of the problem for three categories of error

distributions.
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4.1 Ill-posedness with a supersmooth error distribution

According to Fan (1991), the distribution of the error ε is supersmooth of order β if

φε(t) satisfies

c0|t|−d exp(−|t|β/ρ) ≤ |φε(t)| ≤ c1|t|−d1 exp(−|t|β/ρ), as |t| → ∞,

for some positive constants c0, c1, β, ρ and some constants d, d1. The distributions of

normal and Cauchy are examples of this category of distributions. For simplicity of

our analysis, we assume d = d1.

Intuitively, since φε(t) converges to zero as an exponential rate, which is much faster

than φ̂X(t)− φX(t) does when t →∞, it must be true that either the integral

bias
(
f̂X∗(x)

)
=

1

2π

∫
e−itx∗ φ̂X(t)− φX(t)

φε(t)
dt

does not exist, or a small bias of φ̂X(t) causes a huge bias of f̂X∗ . In either cases, the

problem is ill-posed on L∞. We show in the following proposition that the problem

might be well-posed on some subsets of L∞, i.e., the problem might be conditionally

well-posed, given certain information on the latent density fX∗ . The prior information

we need is as follows:

Condition 4. |φX∗(t)| = O
(
|t|−τ

)
as |t| → ∞ for some constants τ > 1.

In order to show the conditional well-posedness, we define the operator

LX|X∗ : Υ → Ψ (11)(
LX|X∗h

)
(x) =

∫
fε (x− x∗) h (x∗) dx∗
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where

Υ =

{
f ∈ L∞ (R) : sup

t∈R
|φf (t)| < ∞ and |φf (t)| = O

(
|t|−τ

)
as t →∞ for τ > 1

}
,

Ψ =

{
f ∈ L∞ (R) : sup

t∈R
|φf (t)| < ∞ and |φf (t)| = O

(
|t|−τ exp(−|t|β/ρ)

)
as t →∞ for τ > 1 + d

}
.

and φf stands for the Fourier transform of function f .Given these specifications, we

have the following results

Proposition 1. Suppose conditions 1, 4, and Eq. (8) hold. The operator LX|X∗ :

Υ → Ψ in (11) is bijective, and its inverse L−1
X|X∗ : Ψ → Υ is continuous. Thus,

problem (2) is conditionally well-posed. However, the density estimator f̂X in (9)

is not in Ψ in the sense that φf̂ (Tn) = Op(T
−r1
n ) as Tn = O(nr2) for some positive

constants r1 and r2.

Proof See Appendix. �

The result that the usual deconvolution density estimator f̂X is not in Ψ implies it is

not enough for empirical applications to just find spaces Υ and Ψ because the well-

posedness over Ψ does not help back out the latent density fX∗ . On the one hand, it

is interesting to find the spaces where the operator behaves well. On the other hand,

it is also important to realize the the empirical density has to be in the space Ψ so

that the theoretical results on well-posedness may be useful for empirical research.
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4.2 Conditional well-posedness with an ordinary smooth er-

ror distribution

Fan (1991) defines that an ordinary smooth distribution of ε satisfies

c0|t|−d ≤ |φε(t)| ≤ c1|t|−d, as |t| → ∞,

for some positive constants c0, c1, d. The ordinary smooth distributions include gamma,

double exponential and symmetric gamma, etc.

If the distribution of ε is ordinary smooth, then |φ̂X(t)−φX(t)| may converge to zero

faster than φε(t) does as t → ∞, i.e., φ̂X(t)−φX(t)
φε(t)

tends to zero as t → ∞, thus the

left inverse L−1
X|X∗ may be continuous over certain subspace of L∞. We formalize this

intuition in the following proposition. Define the operator

LX|X∗ : Υ → Ψ (12)(
LX|X∗h

)
(x) =

∫
fε (x− x∗) h (x∗) dx∗

where

Υ =

{
f ∈ L∞ (R) : sup

t∈R
|φf (t)| < ∞ and |φf (t)| = O

(
|t|−τ

)
as t →∞ for τ > 1

}
,

Ψ =

{
f ∈ L∞ (R) : sup

t∈R
|φf (t)| < ∞ and |φf (t)| = O

(
|t|−τ

)
as t →∞ for τ > 1 + d

}
.

Proposition 2. Suppose conditions 1, 4, and Eq. (8) hold. The operator LX|X∗ :

Υ → Ψ in (12) is bijective, and its inverse L−1
X|X∗ : Ψ → Υ is continuous. Thus,

problem (2) is conditionally well-posed. Moreover, the density estimator f̂X in (9)
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may be in Ψ in the sense that φf̂ (Tn) = Op(T
−r1
n ) as Tn = O(nr2) for some positive

constants r1 and r2.

Proof See Appendix. �

This theorem implies that the problem (2) may be conditionally well-posed and the

deconvolution estimator f̂X∗ is well-defined when the error term has an ordinary

smooth distribution. In order to obtain a well-behaved estimator for fX∗ , what we

really need is whether the operator LX|X∗ has a continuous left inverse over a space

containing the estimator f̂X for some Tn. In other words, the problem may be treated

as an well-posed one given a suitable set Ψ. In this sense, many ill-posed problems in

economic literature may be solved as well-posed ones if some prior information about

fX∗ is available.

4.3 Well-posedness under condition 2

Having shown in Section 3 that measurement error models of self-reporting data are

well-posed, we further explore the implications of condition 2 on the estimation of

fX∗ when the error is classical.

In this section, we assume that λ(x∗) = λ is a constant for simplicity. Our discus-

sion can be extended to the general case straightforwardly. On the other hand, we

start the discussion with the case where the probability of truth-reporting λ = λ (n)

converges to zero as the sample size n goes to infinity. Denote the probability by

λn ≡ λ (n). Notice that this is a relaxation of condition 2. The condition is assumed

to be true at the population level, hence when sample size n goes to infinity, the
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probability of truth-reporting is still strictly positive under this condition. However,

we relax this condition in the sense that we allow the probability to converge to zero

as sample size increases. This generalization of the probability λn indicates that the

proportion of people who report truthfully shrinks with the increase of the sample

size n. Accordingly, the error distribution is

fX|X∗ (x|x∗) = fε (x− x∗) (13)

= λn × δ(x− x∗) + (1− λn)× gε̃ (x− x∗) .

Let φε(t) and φε̃(t) denote the characteristic functions of fε and gε̃, respectively.

Eq.(13) then implies that

φε(t) = λn + (1− λn) φε̃(t).

Next, we show that φε(t) is ordinary smooth under the following condition:

Condition 5. i) φε̃(t) = o(|t|−β) with β > 0, as |t| → ∞.

ii) λn = O(T−d
n ) for any β ≥ d > 0, where Tn →∞ as n →∞.

Assumption 5(i) implies that the error ε is either ordinary smooth of order lower

than β or supersmooth. And assumption 5(ii) implies that the probability λn may

converge to zero at the rate of O(T−d
n ) as Tn → ∞. The requirement β ≥ d implies

that φε(Tn) = O(λn), and therefore, φε(t) is ordinary smooth of order d. Notice that

β and d may be any finite constant, i.e., β < ∞ and d < ∞, when φε̃ is supersmooth.

We then have

Lemma 1. Suppose condition 5 and Eq. (13) hold. Then φε(t) is ordinary smooth
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of order d, and therefore, the results in Proposition 2 hold.

Proof See appendix. �

The probability of truth-telling λn may be interpreted as the proportion of the error-

free sample in the whole sample, i.e., λn = nv/n, where n is the total sample size

while nv the size of an error-free sample. When combining an error-free sample of a

fixed size with a sample containing classical errors, we require λn = O
(

1
n

)
due to the

fixed nv. This is feasible when φε̃ is supersmooth. Let λn = O(T−d
n ) with Tn = (n)γ

and γ ∈ (0, 1/2), which implies that λn = O
(
n−dγ

)
. Notice that d may be any

finite constant when φε̃ is supersmooth, which implies that we may have λn = O
(

1
n

)
.

This result implies that the model with a supersmooth classical error may be ill-

posed by Proposition 1 but we may transform the problem to a conditionally well-

posed one by combining an error-free sample of a fixed size according to Proposition

2. An interesting implication is that an error-free sample may make the problem

conditionally well-posed even if its sample size is relatively small compared with the

error-ridden sample.

Next, we discuss the well-posedness under condition 2. If the probability of truth-

reporting λ > 0 is fixed and does not change as sample size n increases, it is readily

to show that

φε(t) = λ + (1− λ) φε̃(t).

The ch.f. φε(t) is in fact bounded away from zero by a constant. Define the space of

all the bounded functions with a bounded Fourier transform as

L∞
bc =

{
f ∈ L∞ (R) : sup

t∈R
|φf (t)| < ∞

}
.
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We have the following results:

Proposition 3. i) Suppose conditions 1, 2, and Eq. (8) hold and the error distribu-

tion gε̃ satisfies ∫
|φε̃ (t)| dt < ∞.

Then problem (2) is well-posed with LX|X∗ : L∞
bc → L∞

bc .

ii) Suppose conditions 1 and 2 hold and the error distribution gε̃ satisfies

∫
R

∫
R

∣∣gε̃(x− x∗)
∣∣2dxdx∗ < ∞. (14)

Then problem (2) is well-posed with LX|X∗ : L2 (R) → L2 (R).

Proof See appendix. �

Proposition 3(i) shows that the compactness in condition 3 may not be necessary for

well-posedness. If the problem is defined on L2, the the compactness of Lg is satisfied

given the error distribution is square integrable. For a general Lp space on which the

problem is defined, the compactness of Lg need to be assumed directly as in condition

3.

Notice that we do not need prior information on fX∗ when the problem is well-

posed. The restrictions imposed on the error distribution is also weak compared to

Propositions 1 and 2. The reason is that if λ is fixed, the corollary is just a specific

case of Theorem 1. Even though it is not as general as Theorem 1, the corollary

might be very useful in applications since it assures us to solve a consistent estimator

of fX∗ with a desirable convergence rate from the sample {Xi} for a very general error

distribution.
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5 Simulation studies: deconvolution with normal

error

In this section, we conduct a simulation study to investigate the performance of

various deconvolution estimators when the distribution of errors has a mass point at

zero.

We consider

X = X∗ + ε,

where X∗ is distributed according to a truncated standard normal on the interval

[−1, 1]. In this study, we estimate the density of X∗ from of a sample of X, and the

known density of errors fε(·). Follow our discussions in previous sections, the density

fε(·) is assumed to be

λδ(x− x∗) + (1− λ)g(x− x∗),

where λ 6= 0, and g(x− x∗) is distributed according to a standard normal. We focus

on the deconvolution density estimator

f̂X∗(x∗) =
1

2π

∫
e−itx∗ φ̂X(t)

φε(t)
dt,

where φ̂X(t) = φ̂n(t)φK( t
Tn

) and φ̂n(t) = 1
n

∑n
i=1 eitXi . The kernel K is taken as the

the normalized sinc function:

sinc(x) =
sin(πx)

πx
,
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and its ch.f. φK(t) is the rectangular function

φK(t) =


0 if |t| > 1

2

1
2

if |t| = 1
2
.

1 if |t| < 1
2
.

(15)

We present simulation results for sample size n = 1000 in Figure 4, 5 and 6 where

Tn = 2.0, Tn = 2.2 and Tn = 2.3, respectively. In each figure, we pick three different

values of λ: 2%, 5% and 10%. In all graphs, “estimated density” is the deconvolution

estimator f̂X∗ given we model the error distribution correctly, while “näıve estimate”

is the counterpart given we model the error distribution mistakenly, i.e, λ = 0. We

also include in each plot the 5% and 95% pointwise confidence intervals calculated

using bootstrap resampling for both “estimated density” and “näıve estimate”.

The graphs show that the “estimated density” tracks the true density fX∗ much closer

than the “naive estimate” does for all the values of λ. We also observe from the graphs

that for given Tn the performance of näıve estimator is getting worse when λ increases,

which is natural since the larger λ is, the less accurate of the approximation by λ = 0

to the true value of λ. For a given λ, the naive estimator is more sensitive to Tn than

our consistent estimator because deconvolution with a normal is an ill-posed problem.

6 Empirical Illustration

In this section, we illustrate our method empirically by using the data-set we analyzed

in Section 3. Besides in Chen, Hong, and Tarozzi (2008) and Bollinger (1998), the

data-set has also been used in Bound and Krueger (1991) to study the extent of
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measurement error in earnings, and in Chen, Hong, and Tamer (2005) to study the

problem of parameter inference in econometric models when the data are measured

with error. A full description of the data-set can be found in Bound and Krueger

(1991).

For this data-set, Chen, Hong, and Tarozzi (2008) argued that the error densities

are different for different income levels and low income individuals tend to overreport

their earnings. In order to reduce bias of estimation, we divide the data into four

sub-samples based on SSR: sub-sample 1, 2, 3, 4 contain observations with SSR below

the first quartile, between the first and the second quartile, between the second and

the third quartile, and above the third quartile, respectively. We also drop those

observations with SSR being the topcoded values $16500 to reduce bias may caused

by the topcoding.7 Follow the literature we introduced above, we assume that the

error ε, which is defined as ε = log X− log X∗ is distributed according to the density8

fε(ε) = λδ(ε) + (1− λ)
1√
2πσ

e−
(ε−µ)2

2σ2 . (16)

To conduct our analysis, we employ a two-step estimation procedure. First, we es-

timate parameters λ, µ, and σ for each sub-sample: λ is estimated as the relative

frequency of ε = 0; while µ and σ are estimated by maximum likelihood estimation

with those observation ε = 0 dropped from the sample. The estimated results are

presented in Table 1.9

With the estimated parameters, we employ the method of deconvolution to estimate

7See Chen, Hong, and Tarozzi (2008) for detailed description of the topcoding.
8Variable X denotes sel-reported earnings, and X∗ denotes SSR earnings, which we treat as

“true” earnings. We drop those 85 observations with X = 0 (3 of them with X∗ = 16500, too).
9Standard errors of estimated parameters are computed by bootstrap resampling (200 times).
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the density of SSR, fX∗ in the second step. Our estimated results are presented in

Figure 7. In each of the four subplots, we present the “true” density of SSR (kernel

estimate of the density), “näıve density”, the “estimated density”, and the 5%-95%

pointwise confidence intervals of the last two, where our estimated density uses the

estimates of the parameters in the error distribution presented in the third column of

Table 1, while the naive density estimator uses the estimates in the fourth column of

the table. The kernel function we used in the estimation is the same as the one in the

section of simulation. Because of the sample differences, we utilize different Tn for

four sub-samples: Tn = 1.9, 3.4, 5.1 and 6.6 for sub-sample 1, 2, 3, and 4, respectively.

In accordance with the distinct values of Tn, the bandwidths were taken to be 0.4,

0.36, 0.48, and 0.18 for the estimation in four sub-samples (in order of 1, 2, 3, 4).

The results show that our estimates track the true kernel densities very close and

outperform the näıve estimates for all four sub-samples. Although neither the 5%-

95% confidence intervals of our estimated densities nor that of the naive densities are

able to contain the entire true densities, our estimates have much smaller bias than

the näıve ones. The estimated results imply that failing to account for the property

we discussed in section 3.1 can lead to significant bias of fX∗ .

7 Conclusions

In this paper, we consider the widely admitted ill-posed inverse problem for measure-

ment error models. We show that measurement error models for self-reporting data

are well-posed under the assumption that the probability of reporting truthfully is

nonzero, which is supported by empirical evidences. This optimistic result suggests
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that researchers should not ignore the point mass at zero in the measurement error

distribution when they model measurement errors in self-reported data. In fact, this

discontinuity in the error distribution implies desirable properties of estimators of

the latent model. Moreover, we illustrate that the ill-posedness of models for classi-

cal measurement errors may be fixed and the models may actually be conditionally

well-posed, which is sufficient enough for many economic applications. An interesting

result is that an error-free sample may make the classical error model, especially with

a supersmooth error distribution, conditionally well-posed even if its sample size is rel-

atively small compared to the error-ridden sample. Furthermore, the well-posedness

of our measurement error models also implies that of certain instrumental variable

models. We will explore this possibility in our future research.
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Appendix

Proof of Theorem 1. The result is an application of Theorem 3.4 in Kress (1999).

The theorem states that if C : Φ → Φ is a compact operator defined on a normed

space Φ, and (I −C) is injective, then the inverse operator (I −C)−1 : Φ → Φ exists

and is bounded, i.e., the problem (I − C)φ = f, for all f ∈ Φ is well-posed.

To prove our theorem using this result, we work on Eq.(7). First we show fX ∈ Lp

implies D−1
λ fX ∈ Lp. According to the definition of D−1

λ , we have

(
D−1

λ fX

)
(x) =

fX(x)

λ(x)
.
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Recall that λ(x) is bounded below, then 1/λ(x) has an upper bound, denoted by Mλ.

Therefore we have

∣∣∣∣D−1
λ fX

∣∣∣∣
p

=

(∫ +∞

−∞

∣∣∣fX(x)

λ(x)

∣∣∣pdx

) 1
p

≤ Mλ

(∫ +∞

−∞

∣∣∣fX(x)
∣∣∣pdx

) 1
p

= Mλ

∣∣∣∣fX(x)
∣∣∣∣

p

< ∞,

where in the last step we use the fact that fX ∈ Lp. The inequality implies that

D−1
λ fX ∈ Lp, and the operator D−1

λ is bounded. Similarly, it is readily to prove
∣∣∣∣(I−

Dλ)fX∗
∣∣∣∣

p
≤ M1−λ

∣∣∣∣fX∗
∣∣∣∣

p
, where M1−λ is the upper bound of 1−λ(x). Consequently,

(I −Dλ)fX∗ ∈ Lp.

Next, we prove the operator D−1
λ Lg (I −Dλ) is compact on Lp under Condition 3.

The proof is a direct application of Theorem 2.16 in Kress (1999). This theorem

states that if two operators A : X → Y and B : Y → Z are both bounded and

linear, and one of the operators is compact, then BA : X → Z is compact. Let

X = Y = Z = Lp, A = I −Dλ, and B = Lg, then Lg is compact by assumption and

hence bounded. Moreover, we conclude that (I−Dλ) is also bounded from the result∣∣∣∣(I −Dλ)fX∗
∣∣∣∣

p
≤ M1−λ

∣∣∣∣fX∗
∣∣∣∣

p
. Therefore, Theorem 2.16 applies and we know that

Lg(I−Dλ) is compact. If we apply the theorem again by letting A = Lg(I−Dλ) and

B = D−1
λ , we can show that D−1

λ Lg (I −Dλ) is compact.

To complete the proof, it remains to show that I + D−1
λ Lg (I −Dλ) is injective.

By condition 1, LX|X∗ = Dλ

(
I + D−1

λ Lg (I −Dλ)
)

is injective. Therefore, for any

two distinct functions f1, f2 ∈ Lp, we have LX|X∗f1 6= LX|X∗f2. Because of the
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boundedness of the operator D−1
λ , we can drive that D−1

λ LX|X∗f1 6= D−1
λ LX|X∗f2, or

equivalently
(
I + D−1

λ Lg (I −Dλ)
)
f1 6=

(
I + D−1

λ Lg (I −Dλ)
)
f2. The result means

I + D−1
λ Lg (I −Dλ) is injective.

Now, let the operator C in Kress’s Theorem 3.4 be −D−1
λ Lg (I −Dλ). Then all our

arguments before in this proof hold, hence we demonstrated that C is compact and

I − C is injective. This completes our proof. �

Proof of Proposition 1. First, we specify the operator LX|X∗ and L−1
X|X∗ in the

deconvolution case

(
LX|X∗fX∗

)
(x) =

∫
fε (x− x∗) fX∗ (x∗) dx∗,

and

(
L−1

X|X∗fX

)
(x∗) =

1

2π

∫
e−itx∗ φX(t)

φε(t)
dt

=

∫ (
1

2π

∫
eit(x−x∗)

φε(t)
dt

)
fX (x) dx.

By condition 1, the operator LX|X∗ : Υ → Ψ is injective. Thus, in order to prove

the bijectivity of the operator, it is sufficient to show LX|X∗ is also surjective, i.e.,

L−1
X|X∗fX ∈ Υ for any fX ∈ Ψ. Recall that

(
L−1

X|X∗fX

)
(x∗) =

1

2π

∫
e−itx∗ φX(t)

φε(t)
dt.

Then the Fourier transform, i.e., the ch.f. of L−1
X|X∗fX is φX(t)

φε(t)
. Notice that condition

1 guarantees that φε(t) is bounded away from zero, and therefore,
∣∣∣φX(t)

φε(t)

∣∣∣ is finite. As
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|t| → ∞, we have
∣∣∣φX(t)

φε(t)

∣∣∣ = O (|t|−τ ) with τ > 1 for fX ∈ Ψ.

We now examine
∣∣∣∣ L−1

X|X∗fX

∣∣∣∣
∞.

∣∣∣∣ L−1
X|X∗fX

∣∣∣∣
∞ = sup

x∗

∣∣∣∣ 1

2π

∫
e−itx∗ φX(t)

φε(t)
dt

∣∣∣∣
≤

∫ ∣∣∣∣ 1

2π

φX(t)

φε(t)

∣∣∣∣ dt

≤
∫ t0

−t0

∣∣∣∣ 1

2π

φX(t)

φε(t)

∣∣∣∣ dt +

∫ ∞

t0

2

2π
M |t|−τdt

< ∞,

where t0 and M are some positive constants and τ > 1. The second inequality holds

because
∣∣∣φX(t)

φε(t)

∣∣∣ = O (|t|−τ ) implies that there exist some positive t0 and M such that∣∣∣φX(t)
φε(t)

∣∣∣ ≤ M |t|−τ when t > t0.

Thus, we conclude that L−1
X|X∗fX ∈ Υ. Because for any fX ∈ Ψ, both

∣∣∣∣ L−1
X|X∗fX

∣∣∣∣
∞

and
∣∣∣∣ fX

∣∣∣∣
∞ are finite, there must exist a constant N > 0 such that

∣∣∣∣ L−1
X|X∗fX

∣∣∣∣
∞<

N
∣∣∣∣ fX

∣∣∣∣
∞, i.e., L−1

X|X∗ : Ψ → Υ is bounded and continuous on Ψ. The first part of

our proposition is now proved.

We then consider the estimator f̂X of fX in Eq. (9) with ch.f.

φ̂X(t) = φ̂n(t)φK(
t

Tn

).

Since φ̂X(t) is associated with φX (t) according to the relationship as follows:

|φX̂(t)| = |φX (t)|
[
1 + Op

(
|φX̂(t)− φX (t)|

|φX (t)|

)]
,
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a sufficient and necessary condition for f̂X ∈ Ψ is that

|φX̂(t)| = Op (|φX (t)|) ,

or equivalently,

Op

(
|φX̂(t)− φX (t)|

|φX (t)|

)
= Op(1).

Recall that φ̂X(t) = φ̂n(t)φK( t
Tn

). It follows that for any |t| > Tn, φ̂X(t) = 0 so

that the condition above holds. However, we demonstrate that when |t| ≤ Tn, the

condition above can’t hold. For this purpose, we examine

Op

(
|φX̂(t)− φX (t)|

|φX (t)|

)
, |t| ≤ Tn.

Let Tn = O( n
log n

)γ, γ ∈ (0, 1
2
). According to Lemma 1 in Hu and Ridder (2008), the

rate of convergence for |φ̂X(t)− φX(t)| is at most ( log n
n

)
1
2
−γ for |t| ≤ Tn. This result

suggests a geometric convergence rate of |φ̂X(t)− φX(t)| equals to ( log n
n

)
1
2
−γ−η for an

arbitrary η > 0.

Recall that φX(t) = Op(|t|−τ exp(−|t|β/ρ)). By employing Tn = O( n
log n

)γ, γ ∈ (0, 1
2
),

we have φX(Tn) = Op

(
( n

log n
)−τγ exp

(
− (n/ log n)β /ρ

))
as n →∞. Consequently,

Op

(
|φX̂(Tn)− φX (Tn)|

|φX (Tn)|

)
= Op

 ( log n
n

)
1
2
−γ−η

( n
log n

)−τγ exp
(
− (n/ log n)β /ρ

)


= Op

(
(
log n

n
)

1
2
−(1+τ)γ−η exp

(
(n/ log n)β /ρ

))
.

Notice that given β, ρ > 0 the term ( log n
n

)
1
2
−(1+τ)γ−η exp

(
(n/ log n)β /ρ

)
diverges for

any τ, γ, and η. Therefore, the density estimator f̂X in Eq. (9) is not in Ψ. Notice
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that it is possible to make f̂X in Ψ by taking Tn = O((log n)δ) for some suitable

δ. But such an estimator f̂X is not useful for most empirical applications because it

converges very slowly to fX . �

Proof of Proposition 2. The proof of the bijectivity of LX|X∗ is similar to the

proof in Proposition 1, we omit it here. It remains to show the existence of an

estimator f̂X ∈ Ψ for fX . According to the argument in proof Proposition 1, it is

sufficient to show that

Op

(
|φX̂(t)− φX (t)|

|φX (t)|

)
= op(1)

holds for |t| ≤ Tn.

Follow what we did previously, let Tn = O( n
log n

)γ, γ ∈ (0, 1
2
),

Op

(
|φX̂(Tn)− φX (Tn)|

|φX (Tn)|

)
= op

(
( log n

n
)

1
2
−γ

( n
log n

)−τγ

)

= op

(
(
log n

n
)

1
2
−(1+τ)γ

)
.

In order for op

(
( log n

n
)

1
2
−(1+τ)γ

)
to be equal to Op(1), we may take

γ ≤ 1

2 (1 + τ)
∈ (0, 1/4).

Therefore, the density estimator f̂X in Eq. (9) may be in Ψ. �
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Proof of Lemma 1. Eq.(13) implies that

φε(t) =

∫
fε(x)eit(x)dx

= λn

∫
δ(x)eitxdx + (1− λn)

∫
gε̃(x)eitxdx

= λn + (1− λn) φε̃(t).

Then, φε(Tn) satisfies the inequality:

∣∣∣ λn − (1− λn)|φε̃(Tn)|
∣∣∣≤ |φε(Tn)| ≤ λn + (1− λn)|φε̃(Tn)|.

Since (1−λn) is bounded as n →∞, we have (1−λn)|φε̃(Tn)| = o(|Tn|−β). Condition

4 implies that |φε̃(Tn)| is dominated by λn, i.e.,

O
(∣∣∣ λn − (1− λn)|φε̃(Tn)|

∣∣∣) = O
(
λn + (1− λn)|φε̃(Tn)|

)
= O(λn),

which leads to the relationship |φε(Tn)| = O(λn) = O
(
|Tn|−d

)
. Therefore, φε(t) is

ordinary smooth of order d. The results then directly follow from Proposition 2. �

Proof of Proposition 3. According to the proof of Proposition 1, we know that

ch.f. of LX|X∗fX is φX(t)/φε(t). Notice that the injectivity in condition 1 implies

that the ch.f. φε(t) is bounded away from zero. Therefore, φX(t)/φε(t) is bounded if
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φX(t) is bounded for all t. Furthermore, φε(t) = λ + (1− λ) φε̃(t). Therefore we have

∥∥∥(L−1
X|X∗fX

)∥∥∥
∞

= sup
x∗

∣∣∣∣ 1

2π

∫
e−itx∗ φX(t)

φε(t)
dt

∣∣∣∣
≤ sup

x∗

1

λ

∣∣∣∣ 1

2π

∫
e−itx∗φX(t)dt

∣∣∣∣
+ sup

x∗

∣∣∣∣ 1

2π

∫
e−itx∗

(
φX(t)

λ + (1− λ) φε̃(t)
− φX(t)

λ

)
dt

∣∣∣∣
≤ O (‖fX‖∞) + O

(∫ ∣∣∣∣∣φX(t)

(
1−λ

λ
φε̃(t)

λ + (1− λ) φε̃(t)

)∣∣∣∣∣ dt

)

= O (‖fX‖∞) + O

(∫
|φX(t)| |φε̃(t)| dt

)

Since |φX(t)| is always bounded in L∞
bc , we have

∥∥∥(L−1
X|X∗fX

)∥∥∥
∞

= O (‖fX‖∞) + O

(∫
|φε̃(t)| dt

)
.

The condition
∫
|φε̃(t)|dt < ∞ implies that L−1

X|X∗fX ∈ L∞
bc if fX ∈ L∞, i.e., L−1

X|X∗ :

L∞
bc → L∞

bc is surjective, hence bijective since the injectivity holds by condition 1.

Following the argument in proof of Proposition 1, we can also conclude that L−1
X|X∗ is

continuous. This completes the proof of the first part.

In the second part of the proposition, Eq.(14) implies that the operator Lg with the

kernel gε̃(x−x∗) is a Hilbert-Schmidt operator, and it is compact. A direct application

of Theorem 1 completes the proof of this part. �
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     Figure 1: Histograms of measurement error in earnings, by quartile of true (Social Security) earnings 
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Figure 2: Measurement Error in Earnings as a function of true (Social Security) Earnings

48

Figure 1: Histograms of measurement error in earnings, by quartile of true (Social Security)
earnings. The figure was excerpted from Chen, Hong, and Tarozzi (2008), p.50. The link of the
paper is: http://cowles.econ.yale.edu/P/cd/d16a/d1644.pdf.
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Figure 2: Histogram of X∗ given X∗ = X
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Figure 4: Simulation results: Tn = 2.0
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Figure 5: Simulation results: Tn = 2.2
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Figure 6: Simulation results: Tn = 2.3

39



0 1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

X*

de
ns

iti
es

subplot 1

 

 

true den.
est. den.
naive est.
est. 5th perct
est. 95th perct
naive 5th perct
naive 95th perct

7.6 7.8 8 8.2 8.4 8.6 8.8 9
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

X*

de
ns

iti
es

subplot 2

 

 

8.7 8.8 8.9 9 9.1 9.2 9.3
1

1.5

2

2.5

X*

de
ns

iti
es

subplot 3

 

 

9.2 9.3 9.4 9.5 9.6 9.7 9.8
1

1.5

2

2.5

3

3.5

X*

de
ns

iti
es

subplot 4

 

 

Figure 7: Estimation results: densities

40



Table 1: Estimation Results of Parameters

Data Parameters Estimates with λ 6= 0 Estimates with λ = 0
for our density estimator for näıve estimator

sub-sample 1 µ 0.4733 (0.0148) 0.4315(0.0131)
σ 1.2467 (0.0186) 1.1979 (0.0160)
λ 0.0883 (0.0033) —

sub-sample 2 µ 0.0229 (0.0069) 0.0248(0.0061)
σ 0.5734 (0.0145) 0.5326 (0.0100)
λ 0.0965 (0.0033) —

sub-sample 3 µ -0.0136 (0.0041) -0.0113(0.0035)
σ 0.3334 (0.0091) 0.3124(0.0074)
λ 0.0958 (0.0031) —

sub-sample 4 µ -0.0361 (0.0036) -0.0313(0.0028)
σ 0.2758 (0.0069) 0.2582 (0.0068)
λ 0.0940 (0.0033) —
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