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Abstract

This paper computes the semiparametric e¢ ciency bound for �nite dimensional parame-

ters identi�ed by models of sequential moment restrictions containing unknown functions. Our

results extend those of Chamberlain (1992b) and Ai and Chen (2003) for semiparametric con-

ditional moment restriction models with identical information sets to the case of nested infor-

mation sets, and those of Chamberlain (1992a) and Brown and Newey (1998) for models of

sequential moment restrictions without unknown functions to cases with unknown functions

of possibly endogenous variables. Our bound results are applicable to semiparametric panel

data models and semiparametric two stage plug-in problems. As an example, we compute the

e¢ ciency bound for a weighted average derivative of a nonparametric instrumental variables

(IV) regression, and �nd that the simple plug-in estimator is not e¢ cient. Finally, we present
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an optimally weighted, orthogonalized, sieve minimum distance estimator that achieves the

semiparametric e¢ ciency bound.

JEL Classi�cation: C14; C22

Keywords: Sequential moment models; Semiparametric e¢ ciency bounds; Optimally weighted

orthogonalized sieve minimum distance; Nonparametric IV regression; Weighted average deriv-

atives; Partially linear quantile IV

1 Introduction

Since the publication of Hansen�s (1982) seminal work on the Generalized Method of Moments

(GMM), moment restriction models have become a popular and useful framework for analyzing eco-

nomic data. See Hansen (2007) for an excellent review of the original GMM, its numerous extensions

and a wide range of applications.

Motivated by an ever expanding variety of applications, one important branch of extensions fo-

cuses on semiparametric e¢ ciency bounds and e¢ cient estimation of more general moment restriction

models.1 In this paper, we contribute to this line of research by characterizing the semiparametric

e¢ ciency bound for �nite dimensional parameters (�o) that are identi�ed by models of sequential

moment restrictions containing unknown functions:

E[�t(Z; �o; ho(�))jX(t)] = 0 for t = 1; :::; T almost surely, (1)

where Z = (Y 0; X 0)0 denotes a multivariate random variable with support Z and X � X(T ), and

�t(z; �; h(�)) denotes a d�t � 1 vector of residual functions whose functional forms are known up to
the unknown true parameter values (�o; ho), with ho(�) = (ho1(�); :::; hoq(�)) as the q � 1 vector of
real-valued measurable functions that may depend on endogenous variables Y and other unknown

parameters. E[�jX(t)] denotes the conditional expectation under the true (but unknown) conditional

distribution function FZjX(t) for t = 1; :::; T . The sigma-�eld generated by the conditioning variable

1See, for example, Hansen (1985, 1993), Hansen, Heaton and Ogaki (1988), Chamberlain (1987, 1992a, 1992b),
Newey (1993, 2004), Hahn (1997), Carrasco and Florens (2000), Ai and Chen (2003), Chernozhukov and Hong (2003),
Donald, Imbens and Newey (2003), Kitamura, Tripathi and Ahn (2004), Newey and Smith (2004), Antoine, Bonnal
and Renault (2007),to name only a few.
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X(t), �
��
X(t)

	�
, satis�es a nesting structure2

f1g � �
��
X(1)

	�
� �

��
X(2)

	�
� � � � � �

��
X(T )

	�
.

When X(1) is the constant 1, the conditional expectation E[�1(Z; �; h(�))jX(1)] is simply the uncon-

ditional expectation E[�1(Z; �; h(�))]. Thus model (1) includes unconditional moment restrictions as
a special case.

Model (1) includes many existing econometric models. First, it includes semiparametric and

nonparametric panel data models where the information set expands over time. Second, it nests

widely used semiparametric models that are estimated via two-stage plug-in procedures. For example,

with T = 2; � = (�01; �
0
2)
0, X(1) = 1 and X = X(2), model (1) becomes the following semiparametric

�plug-in�problem:

E[�1(Z; �o1; �o2; ho(�))] = 0 with dim(�1) = dim(�1); (2)

E[�2(Z; �o2; ho(�))jX(2)] = 0; (3)

where the unknown parameter �o2 and the unknown function ho(�) can be estimated using the con-
ditional moment restriction (3), and can then be plugged into the unconditional moment restriction

(2) to compute the parameter �o1. An example of the plug-in problem is the estimation of a weighted

average derivative of a possibly nonlinear nonparametric instrumental variables (IV) model:

�o = E[W (Y2)rho(Y2)]; E[�2(Z;ho(Y2))jX(2)] = 0;

where W () is a known positive weight function and rho() denotes the �rst derivative of ho. Leading
examples of the functional forms of �2(Z;h(Y2)) include �2(Z;h(Y2)) = Y1�h(Y2) for nonparametric
mean IV regression and �2(Z;h(Y2)) = 1fY1 � h(Y2)g � 0:5 for nonparametric median IV regres-

sion. Note that our model (1) allows for more general plug-in problems where the unconditional

moment restriction E[�1(Z; �o1; �o2; ho(�))] = 0 is overidenti�ed for �o1 (or dim(�1) > dim(�1)). Many
semiparametric program evaluation models, semiparametric missing data models, choice-based sam-

pling problems, some recent nonclassical measurement error models and some semiparametric control

function models could also �t into framework (1).

2This sequential restriction on the sigma-�elds allows us to gather all moment restrictions using the same set of
conditioning variables into the same group. This grouping is convenient for our calculation of the e¢ ciency bound.
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When T = 1 and X(1) = X, model (1) becomes the semiparametric conditional moment restric-

tion model with the same conditioning information set: E[�(Z; �o; ho(�))jX] = 0.3 For this model,

Chamberlain (1992b), Ai and Chen (2003) and Chen and Pouzo (2009) characterized the semipara-

metric e¢ ciency bound of �o; and Ai and Chen (2003), Otsu (2008) and Chen and Pouzo (2009)

considered e¢ cient estimation of �o. However, these e¢ ciency bound and e¢ cient estimation results

do not cover semiparametric models with sequential information sets like (1).

Without unknown functions ho(�), model (1) becomes the one studied by Chamberlain (1992a),
Hahn (1997) and Brown and Newey (1998). In particular, under the assumption that �o is identi�ed

by the model E[�t(Z; �o)jX(t)] = 0, t = 1; :::; T; where f1g � �
��
X(1)

	�
� � � � � �

��
X(T )

	�
,

Chamberlain (1992a) established the semiparametric e¢ ciency bound and Hahn (1997) obtained an

e¢ cient estimator of �o. Brown and Newey (1998) studied the semiparametric e¢ ciency bound and

suggested some e¢ cient estimators of parameters that are de�ned as unconditional expectations; one

of their models is �o1 = E[g(Z; �o2)]; E[�2(Z; �o2)jX(2)] = 0 with known functional forms of g and �2.

In this paper we extend their results to the general model (1) that contains unknown functions ho(�)
which may depend on endogenous variables.

Ai and Chen (2007) studied consistent estimation of (�o; ho) identi�ed by the general model (1)

with T � 2, and established the root-n asymptotic normality of their estimator of �o. But, to the

best of our knowledge, there is no published work on the semiparametric e¢ ciency bound or e¢ cient

estimation of �o for model (1), not even for the important special case of the semiparametric plug-

in problem (2)-(3) when ho(�) is an unknown function of endogenous variables. There are e¢ ciency
results for various special cases of the model (1) when the unknown function ho(�) does not depend on
endogenous variables. For example, Newey and Stoker (1993) computed the semiparametric e¢ ciency

bound and presented an e¢ cient estimator for the weighted average derivative when the unknown

ho(�) is a measurable function of conditioning variables (say X(2) in terms of our notation) only.

Our plug-in problem (2)-(3) extends their setup to allow for ho(�) to be a function of endogenous
variables. Since many economic structural models satisfy the sequential moment restrictions (1) with

ho(�) being an unknown function of Y , our extension is a useful one.
A key step in our calculation of the semiparametric e¢ ciency bound for the general model (1) is to

sequentially orthogonalize the residual functions �t(Z; �o; ho(�)) for t = 1; :::; T . The semiparametric
e¢ ciency bound is then obtained by optimally weighting the orthogonalized residual functions. When

3See Newey and Powell (2003), Chernozhukov, Imbens and Newey (2007), and Chen and Pouzo (2008a) for non-
parametric estimation of this model when unknown ho(�) depends on endogenous variables Y .
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specialized to the models considered by Chamberlain (1987, 1992a, b), Brown and Newey (1998), Ai

and Chen (2003) and Chen and Pouzo (2009), our semiparametric e¢ ciency bound coincides with

the bounds derived by these authors for their respective models. Although the e¢ ciency bounds do

not have explicit closed form expressions for general conditional moment models involving several

unknown functions with di¤erent arguments, these bounds can be computed analytically for many

speci�c sequential moment models containing only one unknown function. Our characterization of

the e¢ ciency bound is useful in evaluating and comparing di¤erent estimators for the general model

(1). It also sheds lights on how to construct new estimators that attain the e¢ ciency bound for �o.

Speci�cally, it clearly suggests that any e¢ cient estimation procedure has to account for both the

correlation between the residual functions �t(Z; �o; ho(�)) as well as their conditional heteroskedas-
ticity. For model (1) with nonsingular e¢ ciency bound for �o, we provide an optimally weighted,

orthogonalized, sieve minimum distance (SMD) estimator that is root-n asymptotically e¢ cient for

�o.

When applied to the semiparametric plug-in problem (2)-(3), our e¢ ciency bound result reveals

that one just needs to use the conditional moment model E[�2(Z; �o2; ho(�))jX(2)] = 0 alone to

construct an e¢ cient estimator of �o2. However, any e¢ cient estimator of �o1 has to account for the

correlation between the two residuals �1(Z; �o1; �o2; ho(�)) and �2(Z; �o2; ho(�)) conditional on X(2).

In particular, whenever E[�1(Z; �o1; �o2; ho(�))�2(Z; �o2; ho(�))jX(2)] 6= 0, any simple plug-in estimatorb�1, de�ned as a solution to 1
n

nP
i=1

�1(Zi;b�1;b�2;bh(�)) = 0, is not e¢ cient for �o1, regardless of how one
computes the �rst stage estimator (b�2;bh(�)). For example, to estimate the weighted average derivative
�o1 = E[W (Y2)rho(Y2)] of a NPIV regression E[Y1�ho(Y2)jX(2)] = 0, Ai and Chen (2007) presented

a simple plug-in estimator b�1 = 1
n

nP
i=1

W (Y2i)rbh(Y2i) where bh(�) is a SMD estimator of ho, and derived
the root-n asymptotic normality of this estimator b�1. To compute a simple plug-in estimator of �o1,
instead of using their SMD estimator of ho, one could use other existing NPIV estimators, such as

the estimators of Hall and Horowitz (2005), Darolles, Florens and Renault (2002), Blundell, Chen

and Kristensen (2007). Unfortunately, since E[W (Y2)rho(Y2)fY1 � ho(Y2)gjX(2)] 6= 0, none of these
simple plug-in estimators attain the semiparametric e¢ ciency bound for �o1.

The rest of the paper is organized as follows: Section 2 �rst computes the semiparametric e¢ ciency

bound for �o in the general model (1), and then applies the bound result to the plug-in problem (2)-

(3). Section 3 applies the e¢ ciency bound result to several non-trivial examples, including estimating

the weighted average derivative of ho(Y2) in the NPIV regression E[Y1 � ho(Y2)jX(2)] = 0 or in the

partially linear �quantile IV regression E[1fY1 � Y 02�o2 + ho(X1)gjX(2)] =  2 (0; 1). Section 4
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�rst discusses semiparametric e¢ cient estimation of �o for the general model (1) and then presents a

small Monte Carlo study to compare the ine¢ cient simple plug-in estimator versus several e¢ cient

estimators of the average derivative of a NPIV regression. Section 5 concludes with suggestions of

other e¢ cient estimation procedures. All proofs are contained in the appendix.

2 Semiparametric E¢ ciency Bound

We begin by computing the semiparametric e¢ ciency bound of �o. Our calculation of the bound

closely follows the approach of Stein (1956), Newey (1990), Chamberlain (1992a, b) and others (see

the appendix for details). We �rst sequentially orthogonalize the original sets of residual functions

�t(Z; �o; ho(�)) for t = 1; :::; T . This procedure is called forward �ltering by Hayashi and Sims (1983)
in their study of linear time series rational expectation models, and has been used in Hansen, Heaton

and Ogaki (1988), Chamberlain (1992a) and others in time series and panel data models without an

unknown function ho(�). In the following we denote� � Rd� as an open, �nite-dimensional parameter

space with �o 2 �. Let (H; jj� jjH) denote an in�nite-dimensional metric space withH = H1�����Hq

and ho = (ho1; :::; hoq) 2 H, where ho1,..., hoq are real-valued measurable functions. Let A = ��H
and �o = (�

0
o; ho) 2 A. For any � = (�0; h) 2 A, we de�ne

"T (Z; �) � �T (Z; �);

"s(Z; �) � �s(Z; �)�
TX

t=s+1

�s;t(X
(t))"t(Z; �) for s = T � 1; :::; 1;

where

�s;t(X
(t)) � E[�s(Z; �o)"t(Z; �o)0jX(t)]f�ot(X(t))g�1 for s < t

and

�ot(X
(t)) � E["t(Z; �o)"t(Z; �o)0jX(t)]:

For any � = (�0; h) 2 A, we denote

ms(X
(s); �) � Ef"s(Z; �)jX(s)g for s = 1; :::; T:

We note that by construction

mt(X
(t); �o) = E["t(Z; �o)jX(t)] = 0 for t = 1; :::; T ,
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and

E["s(Z; �o)"t(Z; �o)
0jX(t)] = 0 for any s < t:

This implies that

Ef"s(Z; �o)"t(Z; �o)v(X(s))q(X(t))g = 0 for any s 6= t and any measurable functions v and q.

Also, "s(Z; �) = �s(Z; �) (or �s;t(X
(t)) = 0 for all s < t) if �s(Z; �o) is measurable with respect to

the sigma �eld generated by X(s+1). Throughout the paper we assume the following conditions hold:

Assumption 1: (i) The data fZi = (Y 0i ; X 0
i)
0gni=1 is a random sample from an unknown distribution

of Z on Z; (ii) �o = (�0o; ho) 2 A satis�es model (1).

Let f�(�) = (�(�); h(�)) : 0 � � � 1g � A be an arbitrarily smooth path in � satisfying �(0) = �o,

�(1) = �, d�(�)
d�
j�=0 = � � �o, and dh(�)

d�
j�=0 = h� ho � �h.

Assumption 2: For t = 1; :::; T , dmt(X(t);�(�))
d�

j�=0 is well-de�ned and has �nite second moment.

For t = 1; :::; T denote

dmt(X
(t); �o)

d�
[�� �o] =

dEf"t(Z; �(�))jX(t)g
d�

j�=0 =
dmt(X

(t); �o)

d�0
(� � �o) +

dmt(X
(t); �o)

dh
[h� ho]

where

dmt(X
(t); �o)

d�
=
dEf"t(Z; �; ho)jX(t)g

d�
j�=�o ,

dmt(X
(t); �o)

dh
[h� ho] =

dEf"t(Z; �o; h(�))jX(t)g
d�

j�=0:

Assumption 3: For all t = 1; :::; T , (i) �ot(X(t)) is non-singular with probability one and (ii)

E

�h
dmt(X(t);�o)

d�0

i0
�ot(X

(t))�1
h
dmt(X(t);�o)

d�0

i�
<1.

For any h 2 H, de�ne a pseudo-metric jjh� hojj as

jjh� hojj2 �
TX
t=1

E

�
fdmt(X

(t); �o)

dh
[h� ho]g0�ot(X(t))�1fdmt(X

(t); �o)

dh
[h� ho]g

�
: (4)

LetW denote the closed linear completion of H�fhog under jj � jj. Denote jjxjj2e � x0x for any vector
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x. For each component �j (of �), j = 1; :::; d�, let rjo 2 W denote one solution to

inf
rj2W

TX
t=1

E

(f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�j
� dmt(X

(t); �o)

dh
[rj]

�2
e

)
; (5)

which solves: for all rj 2 W,

TX
t=1

E

(�
dmt(X

(t); �o)

d�j
� dmt(X

(t); �o)

dh
[rjo]

�0
�ot(X

(t))�1
�
dmt(X

(t); �o)

dh
[rj]

�)
= 0 (6)

Let ro � (r1o; :::; r
d�
o ) 2

Qd�
j=1W, and

dmt(X(t);�o)
dh

[ro] � (dmt(X(t);�o)
dh

[r1o]; :::;
dmt(X(t);�o)

dh
[rd�o ]) be a d�t �

d��matrix valued measurable function of X(t). Denote

Jo �
TX
t=1

E

(f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�0
� dmt(X

(t); �o)

dh
[ro]

�2
e

)
:

Without further assumptions, the minimization problem (5) (or its normal equation (6)) may have

several solutions in W. Nevertheless, the minimized criterion value is unique. Therefore Jo is

always well-de�ned and unique. As shown in the appendix, Jo is actually the semiparametric Fisher

information bound for �o.

Theorem 2.1 Let Assumptions 1-3 and Assumption A in the appendix hold. (1) If Jo is singular,

then �o can not be estimated at
p
n�rate. (2) If Jo is non-singular, then the semiparametric e¢ cient

variance bound for �o in model (1) is 
�� = (Jo)
�1.

It is worth noting that Theorem 2.1 remains valid even if �t(Z;�) is not pathwise di¤erentiable

but mt(X
(t);�) is pathwise di¤erentiable in �o. Thus our e¢ ciency bound result applies to some

nonsmooth problems such as a semi/nonparametric quantile regression with or without endogeneity.

Remark 2.1. (1). When specializing Theorem 2.1 to the case without unknown ho() in model (1):

E[�t(Z; �o)jX(t)] = 0 for t = 1; :::; T ,

the semiparametric e¢ cient variance bound for �o becomes 
�� = (Jo)
�1, where

Jo =

TX
t=1

E

(�
dmt(X

(t); �o)

d�0

�0
�ot(X

(t))�1
�
dmt(X

(t); �o)

d�0

�)
;
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which is the bound obtained in Chamberlain (1992a). If we further restrict the result to the original

conditional moment restriction model: E[�1(Z; �o)jX] = 0 (i.e., the case of T = 1 and X(T ) = X),

the semiparametric e¢ cient variance bound for �o becomes�
E

��
dm1(X; �o)

d�0

�0
�o1(X)

�1
�
dm1(X; �o)

d�0

����1
with m1(X; �) = Ef�1(Z; �)jXg;

which is the bound derived in Chamberlain (1987). For the unconditional moment restriction model

(i.e., T = 1 and X1 = 1): E[�1(Z; �o)] = 0, the semiparametric e¢ cient variance bound for �o
becomes �

E

��
dm1(�o)

d�0

�0
��1o1

�
dm1(�o)

d�0

����1
with m1(�) = Ef�1(Z; �)g,

which is the bound obtained in Hansen (1982) (specialized to i.i.d. data).

(2). When specializing Theorem 2.1 to the case of T = 1 and X(T ) = X in model (1):

E[�1(Z; �o; ho())jX] = 0;

the semiparametric e¢ cient variance bound for �o becomes 
�� = (Jo)
�1, where

Jo = E

��
dm1(X;�o)

d�0
� dm1(X;�o)

dh
[ro]

�0
�o1(X)

�1
�
dm1(X;�o)

d�0
� dm1(X;�o)

dh
[ro]

��
with m1(X;�) = E[�1(Z; �; h())jX] and �o1(X) = V arf�1(Z; �o; ho())jXg. This recovers the semi-
parametric e¢ ciency bound obtained by Chamberlain (1992b) and Ai and Chen (2003) for pathwise

di¤erentiable �1(Z; �; h()) in �o, and by Chen and Pouzo (2009) for possible non-pathwise di¤eren-

tiable �1(Z; �; h()) in �o.

2.1 Plug-in problem

We now apply Theorem 2.1 to the plug-in problem. We shall replace Assumption 1 by

Assumption 1s: (i) Assumption 1(i) holds; (ii) �o = (�0o; ho(�)) satis�es model (2)-(3) and
dEf�1(Z;�o)g

d�1

has full rank d�1 � dim(�1).

We �rst present the semiparametric e¢ ciency bound of �o2 for model (2)-(3). Recall that for this

model m2(X
(2); �) = E[�2(Z; �)jX(2)] and �o2(X(2)) = E[�2(Z; �o)�2(Z; �o)

0jX(2)]. For each compo-
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nent �j2 (of �2), j = 1; :::; d�2, let w
j
o2 2 W denote one solution to

inf
wj2W

E

(f�o2(X(2))g� 1
2

�
dm2(X

(2); �o)

d�j2
� dm2(X

(2); �o)

dh
[wj]

�2
e

)
; (7)

which solves for all wj 2 W:

E

(�
dm2(X

(2); �o)

d�j2
� dm2(X

(2); �o)

dh
[wjo2]

�0
�o2(X

(2))�1
�
dm2(X

(2); �o)

dh
[wj]

�)
= 0:

Let wo2 � (w1o2; :::; w
d�2
o2 ) 2

Qd�2
j=1W, and

dm2(X(2);�o)
dh

[wo2] � (dm2(X(2);�o)
dh

[w1o2]; :::;
dm2(X(2);�o)

dh
[w
d�2
o2 ]) be

a d�2 � d�2�matrix valued measurable function of X(2). Denote

Jo�2 � E
(f�o2(X(2))g� 1

2

�
dm2(X

(2); �o)

d�02
� dm2(X

(2); �o)

dh
[wo2]

�2
e

)
:

As shown in the appendix, Jo�2 is the semiparametric Fisher information bound for �o2 in model

(2)-(3).

Theorem 2.2 Let Assumptions 1s, 2, 3 and assumption A in the appendix hold. (1) If Jo�2 is singu-

lar, then �o2 can not be estimated at
p
n�rate. (2) If Jo�2 is non-singular, then the semiparametric

e¢ cient variance bound for �o2 in model (2)-(3) is 
��2 = (Jo�2)
�1.

The next result provides the e¢ ciency bound of �o1. Recall that for model (2)-(3), "1(Z; �) =

�1(Z;�) � �1;2(X(2))�2(Z;�) where �1;2(X
(2)) = E[�1(Z;�o)�2(Z;�o)

0jX(2)]f�o2(X(2))g�1. When
X(1) = 1 we denotem1(�) = E["1(Z; �)],

dm1(�o)
d�

= dEf"1(Z;�;ho)g
d�

j�=�o ,
dm1(�o)
dh

[h�ho] = dEf"1(Z;�o;h(�))g
d�

j�=0
and �o1 = E["1(Z; �o)"1(Z; �o)0]. For each component �

k
1 (of �1), k = 1; :::; d�1, let r

k
o1 2 W denote

one solution to

inf
rk2W

E

(f�o1g� 1
2

�
dm1(�o)

d�k1
� dm1(�o)

dh
[rk]

�2
e

+

f�o2(X(2))g� 1
2
dm2(X

(2); �o)

dh
[rk]

2
e

)
: (8)

Let ro�1 � (r1o1; :::; r
d�1
o1 ) 2

Qd�1
k=1W, and

dm1(�o)
dh

[ro�1 ] � (dm1(�o)
dh

[r1o1]; :::;
dm1(�o)
dh

[r
d�1
o1 ]) be a d�1 �

10



d�1�matrix of constants. Denote

E[S��1S
�0
�1
] � E

(f�o1g� 1
2

�
dm1(�o)

d�01
� dm1(�o)

dh
[ro�1 ]

�2
e

+

f�o2(X(2))g� 1
2
dm2(X

(2); �o)

dh
[ro�1 ]

2
e

)
:

Similarly we de�ne

Jo�1 � inf
(b;w)2

Qd�1
j=1(R

d�2�W)

E

8><>:
f�o1g� 1

2

h
dm1(�o)
d�01

� dm1(�o)
d�02

b� dm1(�o)
dh

[w]
i2

e

+
f�o2(X(2))g� 1

2

h
dm2(X(2);�o)

d�02
b+ dm2(X(2);�o)

dh
[w]
i2

e

9>=>; :
Theorem 2.3 Let Assumptions 1s, 2, 3 and Assumption A in the appendix hold. (1) If Jo�1 is

singular, then �o1 can not be estimated at
p
n�rate. (2) If Jo�1 is non-singular, then the semipara-

metric e¢ cient variance bound for �o1 in model (2)-(3) is 
��1 = (Jo�1)
�1. (3) If both Jo�1 and Jo�2

are non-singular, then another expression for the semiparametric e¢ cient variance bound for �o1 in

model (2)-(3) is 
��1 =
�
E[S��1S

�0
�1
]
��1

+ a�
��2a
�0, with

a� =

�
dm1(�o)

d�01

��1 �
dm1(�o)

d�02
� dm1(�o)

dh
[wo2]

�
(9)

where wo2 � (w1o2; :::; w
d�2
o2 ) 2

Qd�2
j=1W solves (7).

Remark 2.2: When applying Theorems 2.2 and 2.3 to the special case

�o1 = E[g(Z; �o2)]; E[�2(Z; �o2)jX(2)] = 0;

where the functional forms of g() and �2() are known up to an unknown �o2, we obtain


��2 =

 
E

(�
dE[�2(Z; �o2)jX(2)]

d�02

�0
�o2(X

(2))�1
�
dE[�2(Z; �o2)jX(2)]

d�02

�)!�1
;

and

"1(Z; �) = g(Z; �2)� E[g(Z; �o2)�2(Z; �o2)0jX(2)]f�o2(X(2))g�1�2(Z; �2)� �1;


��1 = E["1(Z; �o)"1(Z; �o)
0] +

dEf"1(Z; �o)g
d�02


��2
dEf"1(Z; �o)g0

d�2
:

We note that the semiparametric e¢ ciency bound for �o1 = E[g(Z; �o2)] coincides with that derived

11



in Brown and Newey (1998).

3 Examples

For the general model (1) involving several unknown functions hoj(�); j = 1; :::; q with di¤erent

arguments, our e¢ ciency bound is characterized in a variational form,4 however it can be solved

explicitly for many examples of model (1) involving only one unknown function (q = 1). In this

section we present several such examples.

Example 3.1: Weighted average derivatives in a partially linear IV regression:

�o1 = E[W (X1)frsho(X1)g]; E[Y1 � Y 02�o2 � ho(X1)jX(2)] = 0; X1 � X(2);

where X(1) = 1, W (X1) is a known scalar positive weight function, and Y1 is a scalar. For this

example, we have "2(Z; �) = �2(Z; �) = Y1�Y 02�2�h(X1), �o2(X(2)) = E[fY1�Y 02�o2�ho(X1)g2jX(2)],

m2(X
(2); �) = E[Y1 � Y 02�2jX(2)] � h(X1),

dm2(X(2);�o)
d�02

= �E[Y 02 jX(2)] and dm2(X(2);�o)
dh

[r] = �r(X1).

Denote

wo2(X1) =
�
E[�o2(X

(2))�1jX1]
��1

E
�
f�o2(X(2))�1E[Y 02 jX(2)]gjX1

�
:

We impose the following condition:

Condition 3.1: (i) 0 < �o2(X(2)) = E[fY1� Y 02�o2� ho(X1)g2jX(2)] <1, 0 < E[�o2(X(2))�1jX1] <

1; (ii) E
�
E[Y2jX(2)]f�o2(X(2))g�1E[Y 02 jX(2)]

	
<1, E

�
wo2(X1)

0f�o2(X(2))g�1wo2(X1)
	
<1; (iii)

E[Y2jX(2)] is not a measurable function of X1.

Under Condition 3.1(i)(ii)(iii), the semiparametric Fisher information bound for �o2, as given by

Jo�2 = inf
w
E
n�
�E[Y 02 jX(2)] + w(X1)

�0 f�o2(X(2))g�1
�
�E[Y 02 jX(2)] + w(X1)

�o
;

is nonsingular, and has a unique minimizer wo2(X1). Applying Theorem 2.2, we immediately obtain:

Proposition 3.1 (1) Under Condition 3.1(i)(ii)(iii), Jo�2 is non-singular, and the semiparametric

4This is not a defect associated with our method of deriving e¢ ciency bounds, but is due to the complexity of
the model involving multiple unknown functions of di¤erent (and possibly endogenous) arguments. Even for the
special case of the conditional moment model of common conditioning set: E[�(Z; �o; ho1(X1); :::; hoq(Xq))jX] = 0
with pointwise smooth �() and fX1; :::; Xqg � fXg, Chamberlain (1992b) points out that, when q > 1, the bound in
an explicit form is no longer available and only characterizes his bound in a variational form.
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e¢ cient variance bound for �o2 of Example 3.1 model is: 
��2 = (Jo�2)
�1 =

�
E

�f�o2(X(2))g� 1
2

h
E[Y 02 jX(2)]�

�
E[�o2(X

(2))�1jX1]
��1

E
�
f�o2(X(2))�1E[Y 02 jX(2)]gjX1

�i2
e

���1
:

Next since �1(Z; �) =W (X1)rsh(X1)��1 and X1 � X(2), we have Ef�1(Z; �o)�2(Z; �o)jX(2)g =
0. Thus �1;2(X(2)) = 0, "1(Z; �) = �1(Z; �), �o1 = V arfW (X1)rsho(X1) � �o1g, m1(�) =

E[W (X1)rsh(X1)� �1], dm1(�o)
d�01

= �I�1,
dm1(�o)
d�02

= 0 and dm1(�o)
dh

[wo2] = E[W (X1)rswo2(X1)]. Hence

a� = E[W (X1)rswo2(X1)].

Suppose that X1 has a probability density f1(X1) such that W (x1)f1(x1) goes to zero smoothly

at the boundary of the support of X1. Denote ls(X1) � rs[W (X1)f1(X1)]
f1(X1)

. We impose the following

condition:

Condition 3.1: (iv) [W (x1)f1(x1)] is s�times continuously di¤erentiable and is zero on the boundary
of the support ofX1; (v)�o1 = V ar (fW (X1)rsho(X1)� �o1g) andE[ls(X1)ls(X1)

0(E[�o2(X
(2))�1jX1])

�1]

are �nite, positive de�nite; (vi) E[W (X1)rswo2(X1)] = (�1)sEfls(X1)wo2(X1)g exists.

We next compute one solution ro�1 � (r1o1; :::; r
d�1
o1 ) to

E[S��1S
�0
�1
]

= inf
r

�
[I�1 + EfW (X1)rsr(X1)g]0��1o1 [I�1 + EfW (X1)rsr(X1)g] + E

�
r(X1)

0�o2(X
(2))�1r(X1)

	�
= [I�1 + EfW (X1)rsro�1(X1)g]0��1o1 :

Applying integration-by-parts, EfW (X1)rsr(X1)g = (�1)sEfls(X1)r(X1)g. Then by calculus vari-
ation, any solution ro�1 should satisfy

[I�1 + (�1)sEfls(X1)ro�1(X1)g]0��1o1 Ef(�1)sls(X1)r(X1)g = �E[ro�1(X1)
0�o2(X

(2))�1r(X1)]

for all square measurable functions r(X1) such that all the expectations in the above equation are

de�ned. This implies that ro�1(X1) solves

[I�1 + (�1)sEfls(X1)ro�1(X1)g]0��1o1 (�1)sls(X1) + ro�1(X1)
0E[�o2(X

(2))�1jX1] = 0;

and thus

fE[S��1S
�0
�1
]g�1 = �o1 + E[ls(X1)ls(X1)

0(E[�o2(X
(2))�1jX1])

�1]:
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Applying Theorem 2.3, we immediately obtain:

Proposition 3.1 (2) Under Condition 3.1(i)(ii)(iii)(iv)(v), Jo�1 is non-singular, and the semipara-

metric e¢ cient variance bound for �o1 of Example 3.1 model is:


��1 = fE[S
�
�1
S�0�1 ]g

�1 + E[W (X1)rswo2(X1)]

�
�2
E[W (X1)rswo2(X1)]

0:

Remark 3.1: When we specialize Example 3.1 to the case

�o1 = E[W (X1)rsho(X1)]; E[Y1 � ho(X1)jX1] = 0;

we have X(2) = X1, and the semiparametric e¢ cient variance bound of �o1 becomes


��1 = fE[S
�
�1
S�0�1 ]g

�1 = �o1 + E[ls(X1)ls(X1)
0�o2(X1)];

which coincides with the e¢ cient variance bound of the weighted average �rst-derivative (s = 1)

parameter in Newey and Stoker (1993, p.1205, equation (3.8)).

Example 3.2: Weighted average derivatives in a partially linear quantile IV regression:

�o1 = E[W (X1)frsho(X1)g]; E[1fY1 � Y 02�o2 + ho(X1)gjX(2)] =  2 (0; 1); X1 � X(2):

For this example, we have "2(Z; �) = �2(Z; �) = 1fY1 � Y 02�2 + h(X1)g � , �o2(X(2)) = (1 � )
and m2(X

(2); �) = E[FY1jY2;X(2)(Y 02�2 + h(X1))jX(2)]. Denote U = Y1 � Y 02�o2 � ho(X1) and

wo2(X1) =
EfE[fU jY2;X(2)(0)Y 02 jX(2)]E[fU jY2;X(2)(0)jX(2)]jX1g

Ef(E[fU jY2;X(2)(0)jX(2)])2jX1g
:

We impose the following condition:

Condition 3.2: (i) E
�
E[fU jY2;X(2)(0)Y2jX(2)]E[fU jY2;X(2)(0)Y 02 jX(2)]

�
< 1, E fwo2(X1)

0wo2(X1)g <
1; (ii) if E[fU jY2;X(2)(0)[Y 02 � wo2(X1)]jX(2)]� a = 0 a.s. then a = 0:
Then

Jo�2 = inf
w
E
�
E[fU jY2;X(2)(0)[Y 02 � w(X1)]jX(2)]0E[fU jY2;X(2)(0)[Y 02 � w(X1)]jX(2)]

	
[(1� )]�1;

is nonsingular, and has a unique minimizer wo2(X1). Applying Theorem 2.2, we immediately obtain
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that the e¢ cient variance bound for �o2 is 
��2 = (Jo�2)
�1.

Condition 3.2: (iii) [W (x1)f1(x1)] is s�times continuously di¤erentiable and is zero on the bound-
ary of the support of X1; (iv) E[W (X1)rswo2(X1)] = (�1)sEfls(X1)wo2(X1)g exists; (v) �o1 =
V ar (fW (X1)rsho(X1)� �o1g) andE[ls(X1)ls(X1)

0(E[fE[fU jY2;X(2)(0)jX(2)]g2jX1])
�1] are �nite, pos-

itive de�nite.

Under Condition 3.2,

E[S��1S
�0
�1
]

= inf
r

 
[I�1 + EfW (X1)rsr(X1)g]0��1o1 [I�1 + EfW (X1)rsr(X1)g]
+[(1� )]�1E

�
r(X1)

0fE[fU jY2;X(2)(0)jX(2)]g2r(X1)
	 !

= [I�1 + EfW (X1)rsro�1(X1)g]0��1o1 :

is nonsingular, and has a unique minimizer ro�1(X1). Applying Theorem 2.3, the e¢ cient variance

bound for �o1 is


��1 = fE[S
�
�1
S�0�1 ]g

�1 + E[W (X1)rswo2(X1)]

�
�2
E[W (X1)rswo2(X1)]

0;

where now

fE[S��1S
�0
�1
]g�1 = �o1 + (1� )E[ls(X1)ls(X1)

0(E[fE[fU jY2;X(2)(0)jX(2)]g2jX1])
�1]:

Example 3.3: Weighted average derivatives of a nonparametric IV regression

�o = E fW (Y2)rsho(Y2)g ; EfY1 � ho(Y2)jXg = 0;

where Y1, Y2 and X are scalars, X(1) = 1, X(2) = X, and W (Y2) is a known positive weight function.

For this example, we have "2(Z; �) = �2(Z; �) = Y1 � h(Y2) and m2(X
(2); �) = E[Y1 � h(Y2)jX].

Also, �1(Z; �) = W (Y2)rsh(Y2) � �, �1;2(X) = E[W (Y2)rsho(Y2)fY1 � ho(Y2)gjX]f�o2(X)g�1 and
m1(�) = E[fW (Y2)rsh(Y2)� �g � �1;2(X)fY1 � h(Y2)g].
Let f(X;Y2) denote the joint density of (X; Y2), and f2(Y2) denote the marginal density of Y2. Let

K be the conditional expectation operator of Y2 given X (i.e., Kh � E[h(Y2)jX] for any measurable
function h with Ef[h(Y2)]2g <1), and K� be the adjoint of K (i.e., K�g � E[g(X)jY2] for any mea-
surable function g with Ef[g(X)]2g <1). Denote khkY2 �

p
Efh(Y2)g2 and ls(Y2) � rs[W (Y2)f2(Y2)]

f2(Y2)
.
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We impose the following condition:

Condition 3.3: (i) [W (Y2)f2(Y2)] is s�times continuously di¤erentiable and is zero on the boundary
of the support of Y2; (ii) Kh � E[h(Y2)jX] = 0 implies h � 0;
(iii) 0 < �o1 = V ar (fW (Y2)rsho(Y2)� �og � �1;2(X)fY1 � ho(Y2)g) < 1; (iv) 0 < �o2(X) =

Ef[Y1 � ho(Y2)]2jXg <1; (v) E
�
f[K���1o2 K]

�1=2[(�1)sls +K��1;2](Y2)g2
�
<1.

Then:

Jo = inf
r2W

E

(
[1 + EfW (Y2)rsr(Y2) + �1;2(X)r(Y2)g]2 f�o1g�1

+ffE[r(Y2)jX]g2��1o2 (X)g

)
= [1 + Ef[(�1)sls + �1;2(X)]ro(Y2)g] f�o1g�1;

Condition 3.3(iv)(v) can be replaced by the following su¢ cient assumptions:

Condition 3.3s: (i) K is compact with a singular-value system f�j; qj(Y2); pj(X)g1j=1 (i.e., 1 = �1 �
�j � �j+1 & 0, K�Kqj = �

2
jqj and KK

�pj = �
2
jpj for all j � 1); (ii) �o2(X) = �o2 a positive �nite

constant; (iii) Ef[�1;2(X)]2g <1,
1X
j=1

�
Efls(Y2)qj(Y2)g

�j

�2
<1.

Applying Theorem 2.1 (the veri�cation is very similar to that of example 2.2 in Ai and Chen

(2007); hence we omit it), we obtain:

Proposition 3.3 Under Condition 3.3, the semiparametric e¢ cient variance bound for �o of Example

3.3 model is: 
�� = (Jo)
�1, with

Jo =
f�o1g�1

1 +
[K���1o2 K]

�1=2f[(�1)sls +K��1;2]g
2
Y2
��1o1

> 0:

Under Condition 3.3(i)(ii)(iii) and condition 3.3s, we have:


�� = �o1 + �o2

1X
j=1

�
(�1)sEfls(Y2)qj(Y2)g

�j
+ Ef�1;2(X)pj(X)g

�2
<1:

Remark 3.2: Notice that under condition 3.3(v), solutions ro(Y2) are not unique, but the Fisher

information bound Jo is unique and non-singular. If we strengthen condition 3.3(v) to condition

3.3(v)�:

E
�
f[K���1o2 K]

�1[(�1)sls +K��1;2](Y2)g2
�
<1
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then we obtain a unique solution ro(Y2):

ro(Y2) = �
[K���1o2 K]

�1[(�1)sls +K��1;2](Y2)�
�1
o1

1 +
[K���1o2 K]

�1=2f[(�1)sls +K��1;2]g
2
Y2
��1o1

:

Remark 3.3: Condition 3.3(v) or Condition 3.3s(iii) imposes smoothness restrictions on ls(Y2)

relative to the smoothness of the operator K�K. If Condition 3.3(v) is not satis�ed, or under

conditional homoskedastic error (i.e., Condition 3.3s(ii)), if Condition 3.3s(iii) is not satis�ed, then

Vo will be singular, and �o can not be estimated at the
p
n�rate. Ai and Chen (2007) discuss

Condition 3.3s(iii), and point out that Condition 3.3s(iii) can still be satis�ed even when the singular

values �j of the conditional expectation operator K decay to zero exponentially fast. For example,

consider the special case of �o = E[rho(Y2)] and assume that the conditional density of Y2 given X
is normal. For this case ls(Y2) = rflog f2(Y2)g and �j � exp(�j), Condition 3.3s(iii) is satis�ed.

Remark 3.4: When we specialize this example 3.3 to the case of no endogeneity (i.e., Y2 = X):

�o = E[W (Y2)rsho(Y2)]; E[Y1 � ho(Y2)jY2] = 0;

we have �1;2(X) = 0 and K = K� = identity, and the semiparametrically e¢ cient variance bound

of �o becomes


�� = V ar (fW (X)rsho(X)� �og) + E[ls(X)ls(X)0�o2(X)]:

4 Optimally Weighted Orthogonalized SMD Estimation

Our e¢ ciency bound characterization for model (1) suggests that any e¢ cient estimator has to

account for both the correlation between the residual functions �t(Z; �o; ho(�)) as well as their condi-
tional heteroskedasticity. In this section we propose an optimally weighted SMD procedure that is

based on orthogonalized moment conditions. This procedure automatically leads to semiparametric

e¢ ciency regardless of whether or not the e¢ ciency bound can be solved for analytically. We discuss

alternative e¢ cient procedures in the concluding section.

Let � = (�0; h) 2 A = ��H. Recall that �o = (�0o; ho) 2 A is the unique solution to

inf
�2��H

TX
t=1

E
�
mt(X

(t); �)0�ot(X
(t))�1mt(X

(t); �)
	
; (10)
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where mt(X
(t); �) � Ef"t(Z; �)jX(t)g, �ot(X(t)) � E["t(Z; �o)"t(Z; �o)

0jX(t)], and "t(Z; �), t =

1; :::; T are the sequentially orthogonalized residual functions that were introduced in section 2. Then,

the optimally weighted orthogonalized SMD estimator e�n = (e�0n;ehn) 2 � �Hk(n) is the solution to

the following minimization problem:

(e�0n;ehn) = arg min
�2��Hk(n)

TX
t=1

1

n

nX
i=1

bmt(X
(t)
i ; �)

0fb�ot(X(t)
i )g�1 bmt(X

(t)
i ; �); (11)

where fHk(n) : k(n) = 1; 2; :::g is a sequence of approximation spaces (sieves) whose union becomes
dense in the in�nite dimensional parameter space H as k(n) ! 1, and bmt(X

(t); �), b�ot(X(t)) are

consistent nonparametric estimators of mt(X
(t); �), �ot(X(t)) respectively. Note that the sample

criterion function (11) corrects both the unknown correlation among the original sets of residual

functions �t(Z; �; h(�)) for t = 1; :::; T , and the unknown heteroskedasticity.
In most applications, the sieve spacesHk(n) are compact sets of series approximations truncated to

a �nite number of terms. Familiar series approximations include splines, power series, Fourier series,

Hermite polynomials, wavelets; see, e.g., Chen (2007) for a review. The orthogonalized conditional

means mt(X
(t); �) and the conditional variances �ot(X(t)) can be consistently estimated by many

nonparametric regression methods such as kernel, local linear regression and series least squares (LS)

regression. See, e.g., Andrews (1991), Newey (1997), Ai and Chen (2003) and Chen and Pouzo

(2008b) for series LS regression estimators of bmt(X
(t); �) and b�ot(X(t)).

Suppose that the semiparametric e¢ ciency bound for �o is nonsingular. Then, by proofs very

similar to those in Ai and Chen (2003) for smooth �t() and those in Chen and Pouzo (2009) for

nonsmooth �t(), we can establish that
p
n(e�n � �o) ) N (0;
��), where 
�� is the e¢ cient variance

bound derived in Theorem 2.1. If the semiparametric e¢ ciency bound for �o is singular, then e�n
converges to �o at a slower than root-n rate. See Chen and Pouzo (2008b) for details.

4.1 E¢ cient estimation for the Plug-in problem

For the semiparametric plug-in problem (2)-(3), the optimally weighted orthogonalized SMD estima-

tor (e�0n;ehn) given in (11) becomes the solution to:
min

�2��Hk(n)

8<:
b�� 1

2
o1

1

n

nX
i=1

b"1(Zi; �1; �2; h)

2

e

+
1

n

nX
i=1

b�o2(X(2)
i )

� 1
2 bE[�2(Z; �2; h)jX(2)

i ]
2
e

9=; ; (12)
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which achieves the e¢ ciency bound for �0o = (�
0
o1; �

0
o2)

0 in the model (2)-(3).

According to Theorems 2.2 and 2.3, when �o1 is exactly identi�ed by unconditional moment (2),

the joint e¢ cient estimator (e�0n;ehn) given in (12) is numerically equivalent to the following two stage
e¢ cient estimator:

First stage, estimate �o2 e¢ ciently by applying the optimally weighted SMD procedure to the

original conditional moment restriction model (3):

(e�02n;ehn) = arg min
(�02;h)2�2�Hk(n)

nX
i=1

bE[�2(Z; �2; h)jX(2)
i ]

0fb�o2(X(2)
i )g�1 bE[�2(Z; �2; h)jX(2)

i ]; (13)

where bE[�2(Z; �2; h)jX(2)] and b�o2(X(2)) are consistent nonparametric estimators ofE[�2(Z; �2; h)jX(2)]

and �o2(X(2)) respectively. By the results of Ai and Chen (2003) for smooth �2() and of Chen and

Pouzo (2009) for nonsmooth �2(), one immediately obtains
p
n(e�2n � �o2) ) N (0;
��2) hence the

semiparametric e¢ ciency of e�2n.
Second stage, estimate �o1 e¢ ciently by plugging the �rst stage optimally weighted SMD es-

timator (e�02n;ehn) into a consistently estimated, orthogonalized residual function "1(Z; �1; �2; h) �
�1(Z; �1; �2; h)� �1;2(X(2))�2(Z; �2; h):

e�1n solves 1

n

nX
i=1

b"1(Zi; �1;e�2n;ehn) = 0; (14)

where b"1(Z; �1; �2; h) � �1(Z; �1; �2; h)� b�1;2(X(2))�2(Z; �2; h);

and b�1;2(X(2)) is some consistent nonparametric estimator of

�1;2(X
(2)) � E[�1(Z; �o1; �o2; ho)�2(Z; �o2; ho)0jX(2)]f�o2(X(2))g�1:

For example, b�1;2(X(2)) could be

b�1;2(X(2)) = bE[�1(Z;b�1n;e�2n;ehn)�2(Z;e�2n;ehn)0jX(2)]
�b�o2(X(2))

��1
;

where b�o2(X(2)) is a consistent nonparametric estimator of �o2(X(2)), b�1n is a consistent estimator
of �o1 (say a solution to 1

n

Pn
i=1 �1(Zi; �1;

e�2n;ehn) = 0) and bE[�1(Z;b�1n;e�2n;ehn)�2(Z;e�2n;ehn)0jX(2)] is

a consistent nonparametric estimator of E[�1(Z; �o1; �o2; ho)�2(Z; �o2; ho)
0jX(2)], such as a series LS
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estimator:

bE[�1(Z;b�1n;e�2n;ehn)�2(Z;e�2n;ehn)0jX(2)]

= p
k2;n
2 (X(2))0(P 02P2)

�1
nX
i=1

p
k2;n
2 (X

(2)
i )�1(Zi;

b�1n;e�2n;ehn)�2(Zi;e�2n;ehn)0;
where pk2;n2 (X(2)) = (p2;1(X

(2)); : : : ; p2;k2;n(X
(2)))0 is a series basis that can approximate any square

integrable function of X(2) well as k2;n ! 1. Instead of using b�o2(X(2)) to compute b�1;2(X(2)) one

could use the following consistent series LS estimator of �o2(X(2)):

e�o2(X(2)) = p
k2;n
2 (X(2))0(P 02P2)

�1
nX
i=1

p
k2;n
2 (X

(2)
i )�2(Zi;

e�2n;ehn)�2(Zi;e�2n;ehn)0:
The semiparametric e¢ ciency of e�1n and pn(e�1n� �o1)) N (0;
��1) can be established using proofs
similar to those of Ai and Chen (2007) for smooth �() and of Chen and Pouzo (2009) for nonsmooth

�().

Remark 4.1: Theorems 2.2 and 2.3 suggest many alternative asymptotically e¢ cient estimators of

�o1. In fact, one can use any e¢ cient criterion based on the conditional moment restriction model

(3) to construct an asymptotically e¢ cient estimator (e�02n;ehn) in the �rst stage. Then, in the second
stage one can estimate �o1 e¢ ciently by plugging (e�02n;ehn) into the sample moment based on any
consistently estimated orthogonalized residual function "1(Z; �1; �2; h). For example, a simple e¢ cient

estimator ee�1n of �o1 can be computed as
ee�1n solves 1

n

nX
i=1

e"1(Zi; �1;e�2n;ehn) = 0; (15)

where e"1(Zi; �1; �2; h) � �1(Zi; �1; �2; h)� e�1;2(X(2)
i ; �1)�2(Zi; �2; h);

and e�1;2(X(2); �1) is some consistent nonparametric estimator of

�1;2(X
(2); �1) � E[�1(Z; �1; �o2; ho)�2(Z; �o2; ho)0jX(2)]f�o2(X(2))g�1:
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For example, e�1;2(X(2); �1) could be

e�1;2(X(2); �1) = bE[�1(Z; �1;e�2n;ehn)�2(Z;e�2n;ehn)0jX(2)]
�e�o2(X(2))

��1
;

while bE[�1(Z; �1;e�2n;ehn)�2(Z;e�2n;ehn)0jX(2)] and e�o2(X(2)) could be series LS, kernel, or local linear

regression estimators of E[�1(Z; �1; �o2; ho)�2(Z; �o2; ho)
0jX(2)] and �o2(X(2)) respectively.

4.2 Example: weighted average derivative of a NPIV model

For Example 3.3 E[Y1 � ho(Y2)jX] = 0 (the NPIV model), it is known that the nonparametric

estimation of ho is a di¢ cult ill-posed inverse problem; see, e.g., Newey and Powell (2003) and

Carrasco, Florens and Renault (2007) for a detailed review. Let bhn be any consistent estimator of
ho in the NPIV model, such as the estimators of Hall and Horowitz (2005), Darolles, Florens and

Renault (2002) or Blundell, Chen and Kristensen (2007). An ine¢ cient simple plug-in estimator of

�o = E[W (Y2)rsh(Y2)] is: b�n = 1

n

nX
i=1

W (Y2i)rsbhn(Y2i):
Ai and Chen (2007) obtained root-n asymptotic normality of the ine¢ cient simple plug-in estimatorb�n when bhn is the original SMD estimator proposed in Newey and Powell (2003) and Ai and Chen
(2003): bhn = min

h2Hk(n)

1

n

nX
i=1

� bE[Y1 � h(Y2)jXi]
�2
; (16)

with bE[Y1 � h(Y2)jXi] = p
k2;n
2 (Xi)

0(P 02P2)
�1

nX
j=1

p
k2;n
2 (Xj)fY1j � h(Y2j)g;

where the conditional mean function m2(X; h) = E[Y1�h(Y2)jX] is approximated by the series basis
functions pk2;n2 (X) = (p2;1(X); : : : ; p2;k2;n(X))

0. The sieve space Hk(n) is a �nite dimensional linear

space generated by some spline basis functions qkh;n(Y2) = (q1(Y2); : : : ; qkh;n(Y2))
0, with k2;n � kh;n.

The identity weighted SMD estimator bhn is a simple two stage least squares estimator of regressing
Y1i on qkh;n(Y2i) with p

k2;n
2 (Xi) as instruments.

We present two semiparametric e¢ cient estimators of �o = E fW (Y2)rsho(Y2)g. Both estimators
can be computed in closed-form based on an orthogonalized (or transformed) residual function and
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an �e¢ cient��rst stage NPIV estimator:

ehn = min
h2Hk(n)

1

n

nX
i=1

� bE[Y1 � h(Y2)jXi]
�2 �b�o2(Xi)

��1
; (17)

b�o2(Xi) = p
k2;n
2 (Xi)

0(P 02P2)
�1

nX
i=1

p
k2;n
2 (Xi)fY1i � bhn(Y2i)g2:

E¢ cient estimator 1: e�n solves (14), that is,
e�n = 1

n

nX
i=1

�
W (Y2i)rsehn(Y2i)� b�1;2(Xi)fY1i � ehn(Y2i)g� ; (18)

with

b�1;2(Xi) = p
k2n
2 (Xi)

0(P 02P2)
�1

nX
i=1

pk2n2 (Xi)[W (Y2i)rsbhn(Y2i)� b�n]fY1i � bhn(Y2i)g�b�o2(Xi)
��1

:

E¢ cient estimator 2: ee�n solves (15), that is,
1

n

nX
i=1

�
W (Y2i)rsehn(Y2i)� � � e�12(Xi; �)fY1i � ehn(Y2i)g� = 0; (19)

with

e�12(Xi; �) = p
k2;n
2 (Xi)

0(P 02P2)
�1

nX
i=1

p
k2;n
2 (Xi)[W (Y2i)rsehn(Y2i)� �]fY1i � ehn(Y2i)g�e�o2(Xi)

��1
;

e�o2(Xi) = p
k2;n
2 (Xi)

0(P 02P2)
�1

nX
i=1

p
k2;n
2 (Xi)fY1i � ehn(Y2i)g2:

4.2.1 A Small Monte Carlo Study

We assess the �nite sample performance of our estimators in a small simulation study. The pa-

rameter of interest is �o = E[rho(Y2)], and the model from which we simulate a random sample

f(Y1i; Y2i; Xi)0gni=1 is given by

Y1i = ho (Y2i) +
p
2Ui; Ui =

p
!
E [ho (Y2) jXi]� ho (Y2i)

�o
+
p
1� !p"i; (20)
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where �o =
p
V ar (E [ho (Y2) jX]� ho (Y2)) and " � 1

1+expf�"=ag with a chosen such that V ar(") = 1.

Following Blundell, Chen and Kristensen (2007), we generate our Monte Carlo (MC) experiment

from the 1995 British Family Expenditure Survey (FES) data set using the subsample of families

with no children. In particular, Y2 is log-total expenditure (the endogenous regressor), eX is log-

gross earnings and X = �( eX) is the instrument. We simulate (Y2i; eXi) jointly from a bivariate

Gaussian density f , with �rst and second moments estimated from the FES data set. Denote

Br (x) =
1

(r�1)!
Pr

j=0 (�1)
j

 
r

j

!
(max fx� j; 0g)r�1 as the B-spline of order r � 1. We set the

true function ho (y2) = B6 (y2 � c) where c is the highest integer less than the minimum value of the

Y2 series in the FES data set. We then draw "i independently from " � 1
1+expf�"=ag , and generate

Ui and then Y1i according to model (20). We consider two cases: a �mid-endogeneity�case wherep
1� ! = 0:5, and a �high-endogeneity� case where

p
1� ! = 0:001. We let  = 0:1 for the

�mid-endogeneity� case, and for the �high-endogeneity� case we choose  in such a way that the

unconditional variance of U remains the same as for the �mid-endogeneity�case.

In this simulation study, we consider three di¤erent sample sizes: n = 250; 500; 1500. For

each sample size we compute 4 di¤erent estimators: (a) b�n = 1
n

nX
i=1

rbhn(Y2i), the ine¢ cient simple
plug-in estimator; (b) eb�n = 1

n

nX
i=1

�
rbhn(Y2i)� b�1;2(Xi)fY1i � bhn(Y2i)g�, a modi�ed plug-in estimator

based on bh; (c) ee�n given in (19), an e¢ cient estimator based on eh; (d) e�sn is an iterative solution to
(12), similar to continuously updated optimally weighted SMD. This estimator is computationally

costly; hence is only computed for n = 250. To compute the two ine¢ cient estimators b�n and eb�n
we used the SMD estimator bh given in (16), where bE[Y1 � h(Y2)jXi] is a series LS estimator (say

cosine polynomials basis with 10 coe¢ cients) for E[Y1�h(Y2)jXi], and Hk(n) is a �fth-order B-spline

basis (1; B5 (� � 2) ; B5 (� � 3) ; B5 (� � 4)). The MC results reported below actually correspond to

the SMD estimator bh of Blundell, Chen and Kristensen (2007), which includes the L2�norm of the

second derivative of h as a smoothness penalty with a small tuning parameter �n = 0:075. To

compute the e¢ cient estimator ee�n given in (19) we used the SMD estimator eh given in (17), whereb�o2(Xi) is a Gaussian kernel (with bandwidth n�1=5) estimator of �o2(X), with bh as the initial
consistent estimator of ho. To compute estimators (b), (c) and (d), we also need to compute a

consistent estimate of the correlation correction term �1;2(X). We used a series LS estimator with

polynomial splines of order 2 and 2 equally spaced knots to estimate �1;2(X).

For each sample size we perform 1000 Monte Carlo (MC) repetitions. Tables 1 and 2 present
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the results for the di¤erent estimators of �o for the �high-endogeneity�(
p
1� ! = 0:001) case and

the �mid-endogeneity� (
p
1� ! = 0:5) case respectively. In each table, the MC Bias is computed

against the sample mean of the derivative of the true function. EMC stands for the mean of the MC

sample, V arMC and MSEMC are de�ned analogously. In the last column, V arMC=V arMC;a is the

ratio of the MC variance of each estimator, (b), (c) and (d), over the simple plug-in estimator (a).

Table 1: Monte Carlo Results for �high-endogeneity�case.
BIAS2MC � 103 V arMC � 103 MSEMC � 103 V arMC

V arMC;ab�n(a) 1.7600 86.832 88.596 -

n = 250
eb�n(b) 1.5900 84.707 86.292 0.9755ee�n(c) 0.0330 68.441 68.473 0.7882e�sn(d) 0.0780 66.322 66.330 0.7638b�n(a) 0.3220 47.360 47.682 -

n = 500
eb�n(b) 0.3500 46.222 46.573 0.9759ee�n(c) 1.8210 38.232 40.067 0.8072b�n(a) 0.4650 10.512 10.938 -

n = 1500
eb�n(b) 0.4028 10.327 10.752 0.9799ee�n(c) 1.4327 9.512 10.918 0.8943

A brief summary of MC results: First, the MC variances of all the estimators (a), (b), (c)

and (d) decrease approximately linearly as the sample size increases. The QQ plots, which are not

reported here for length considerations, indicate that all the four estimators are root-n asymptotically

normal. Second, the e¢ cient estimators, (c) and (d), have lower MC variances than the ine¢ cient

simple plug-in estimator (a). Third, the MC variance gap between the estimators (or the �nite

sample e¢ ciency gain) is bigger for the �high-endogeneity�case.5 Lastly, the variance gap decreases

as the sample size n increases. All of these �ndings are consistent with our theoretical results.

5The particular magnitude of the �nite sample e¢ ciency gain directly depends on the value of  (the exogenous
noise level). In MC studies that are not reported here, we discover that smaller  values lead to smaller biases and
smaller variances in the e¢ cient estimators; hence bigger MC variance gaps.
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Table 2: Monte Carlo Results for �mid-endogeneity�case.
BIAS2MC � 103 V arMC � 103 MSEMC � 103 V arMC

V arMC;ab�n(a) 0.3420 79.246 79.590 -

n = 250
eb�n(b) 0.2751 77.164 77.433 0.9716ee�n(c) 0.1810 70.005 70.186 0.8717e�sn(d) 0.3110 67.700 68.011 0.8530b�n(a) 0.2010 37.503 37.704 -

n = 500
eb�n(b) 0.1860 36.951 37.137 0.9853ee�n(c) 0.2200 33.794 33.974 0.9064b�n(a) 0.0200 9.2042 9.2244 -

n = 1500
eb�n(b) 0.0201 9.1928 9.2132 0.9987ee�n(c) 0.1062 8.6932 8.7996 0.9444

5 Conclusion

In this paper we computed the semiparametric e¢ ciency bound for �nite dimensional parameters

of sequential moment restriction models (1) containing unknown functions that may depend on

endogenous variables. The results extend those of Chamberlain (1992b), Ai and Chen (2003) and

Chen and Pouzo (2009) to the case of semi/nonparametric conditional moment restriction with nested

information sets. The results also extend those of Chamberlain (1992a), and Brown and Newey (1998)

to the case of sequential moment restrictions involving unknown functions. Our characterization

of the e¢ ciency bound is useful in evaluating and comparing several competing estimators that

are typically proposed for a particular semiparametric econometric model. Although we can only

characterize the e¢ ciency bounds for conditional moment models involving several unknown functions

when they depend on di¤erent arguments, these bounds can be computed analytically for many

speci�c models containing only one unknown function. In terms of semiparametric e¢ ciency bound

calculation, our approach carries over to allow for T to increase to in�nity. However, any e¢ cient

estimation method would face the �curse-of-dimensionality�when T is very large.

We present an optimally weighted, orthogonalized SMD estimation procedure for (�o; ho) identi-

�ed by the sequential moment restriction model (1). When the semiparametric e¢ ciency bound for

�o is non-singular, we note that this estimator is root-n asymptotically normal and e¢ cient for �o.

There are many alternative procedures that can also achieve the semiparametric e¢ ciency bound

for �o in model (1). For instance, one could extend the constrained sieve MLE approach of Gallant
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and Tauchen (1989), Gallant, Hansen and Tauchen (1990) and Ai (2007) to estimate �o e¢ ciently.

Notice that (�o; ho) in model (1) is the unique solution to

E[�t(Z; �o; ho(�))
 p
kt;n
t (X(t))] = 0 for t = 1; :::; T , (21)

where pkt;nt (X(t)) = (pt;1(X
(t)); : : : ; pt;kt;n(X

(t)))0 is a series of basis functions that can approximate

any square integrable function of X(t) arbitrarily well as kt;n ! 1. One could also estimate �o in
(21) by extending the GMM with increasing number of unconditional moments of Hahn (1997), or

the continuum GMM of Carrasco and Florens (2000), or the empirical likelihood with increasing

number of unconditional moments of Donald, Imbens and Newey (2003). We shall investigate these

alternative e¢ cient procedures in another paper.
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Mathematical Appendix

We follow the approach of Stein (1956), Begun, Huang and Wellner (1983), Bickel, et al. (1993),

Newey (1990), Chamberlain (1992a, b), and van der Vaart (1991) on semiparametric e¢ ciency bound

calculation. Recall the following notation for any � 2 A:

"T (Z; �) � �T (Z; �); "s(Z; �) � �s(Z; �)�
TX

t=s+1

�s;t(X
(t))"t(Z; �) for s = T � 1; :::; 1;

�s;t(X
(t)) � E[�s(Z; �o)"t(Z; �o)0jX(t)]f�ot(X(t))g�1 for s < t and�ot(X(t)) � E["t(Z; �o)"t(Z; �o)0jX(t)].

Also, recall that

Ef"s(Z; �o)"t(Z; �o)v(X(s))q(X(t))g = 0 (22)

holds for any s 6= t and for any measurable functions v and q. Finally we denote mt(X
(t); �) �

E["t(Z; �)jX(t)] for t = 1; :::; T .

Denote dz = dim(Z). Let po(�) be the true probability density of Z = (Y 0; X 0)0 with respect to

a sigma-�nite measure � on Z � Rdz that satis�es model (1), which is equivalent to the following

model:

E["t(Z; �o)jX(t)] = 0 for t = 1; :::; T and �o 2 A; (23)

where E denotes expectation taken with respect to the true density function po(z). Let Ep denote ex-

pectation taken with respect to arbitrary density function p(z). For arbitrary � 2 A, the conditional
moment restrictions

Ep["t(Z; �; h)jX(t)] = 0 for t = 1; :::; T (24)

do not uniquely determine p(z). For any � 2 A, let F� denote all probability density functions that
satisfy (24):

F� =
�
p(�) :

Z
z2Z

p(z)d�(z) = 1; p(�) � 0; Ep["t(Z; �; h)jX(t)] = 0 for t = 1; :::; T
�
:

For any p(�) 2 F�, we can always write p(z) � f(zj�; g) with po(z) � f(zj�o; go), where p is of a
known functional form up to unknown parameters � and g, with g being an unknown measurable

function of z (see Ai (2007) for an example). g(z) can be viewed as the remainder of the probability

density function p(z) � f(zj�; g) that is not determined by (24), and is unrestricted except for
satisfying f(�j�; g) 2 F� and f(�j�o; go) 2 F�o . Let G denote a class of real valued measurable
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functions of Z satisfying (i) for each � 2 A, ff(zj�; g) : g 2 Gg = F�; (ii) there is a go in the interior
of G such that po(z) � f(zj�o; go).
The following condition shall be imposed throughout the paper.

Assumption A: Let f(�(�); g(�)) : � 2 [0; 1]g denote a family of parametric speci�cations in the
parameter space A � G satisfying: (1) f(�j�(�); g(�)) 2 F�(�); f(Zj�(0); g(0)) = f(Zj�o; go) �
po(Z) holds with probability one; � !

p
f(�j�(�); g(�)) is mean-square di¤erentiable. (2) For all

j = 1; :::; T , with probability one, "j(Z; �(�)) is continuous at �(�) in a small neighborhood of

� = 0, dE["j(Z;�(�))jX(j)]

d�
j�=0 and dE["j(Z;�o;h(�))jX(j)]

d�
j�=0 exist and have �nite second moments, and

E[j"j(Z; �o)j2jX(j)] is bounded.

Proof. (Theorem 2.1) Let f(�(�); g(�)) : � 2 [0; 1]g be any parametric path in A � G satisfying
assumption A. Denote the log-likelihood function (of one observation) of a parametric submodel by

`(z; �(�); g(�)) = log f(zj�(�); g(�)). Under assumption A, we can write the pathwise derivative of
`(z; �(�); g(�)) at (�o; go) as

r`(z; �o; go) = lim
�!0

`(z; �(�); g(�))� `(z; �o; go)
�

= `�(z; �o; go)
d�(�)

d�
j�=0 + `h(z; �o; go)

dh(�)

d�
j�=0 + `g(z; �o; go)

dg(�)

d�
j�=0

= `�(z; �o; go)�� + `h(z; �o; go) [�h] + `g(z; �o; go)�g;

where the second and the third term on the right-hand side denote the pathwise derivative with

respect to h and g respectively. To simplify notation we denote `�(z) � `�(z; �o; go), `h(z)[�h] �
`h(z; �o; go)[

dh(�)
d�
j�=0] and `g(z)�g(z) � `g(z; �o; go)dg(�)d�

j�=0. Notice that any p(z) = f(zj�(�); g(�)) 2
F�(�) satis�es restrictions (24). By di¤erentiating both sides of (24), we obtain:

dE["j(Z; �o)jX(j)]

d�
+ E["j(Z; �o)`�(Z)jX(j)] = 0 for j = 1; :::; T ; (25)

dE["j(Z; �o; h(�))jX(j)]

d�
j�=0 + E["j(Z; �o)`h(Z) [�h] jX(j)] = 0 for j = 1; :::; T ; (26)

E["j(Z; �o)`g(Z)�g(Z)jX(j)] = 0 for j = 1; :::; T: (27)

Denote

Th =
�
ah(�) = `h(�)[�h] : E[ah(Z)] = 0; E[fah(Z)g2] <1;�h 2 H � fhog; (26) holds

	
:
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Tg =
�
ag(�) = `g(�)�g(�) : E[ag(Z)] = 0; E[fag(Z)g2] <1; (27) holds

	
:

Let Th and Tg respectively denote the closed linear completions of Th and Tg under the mean
squared norm kv(�)k22 = Efv(Z)2g. Then Th and Tg are the tangent spaces for the nonparametric
parameters h and g respectively. Denote T = Th + Tg. Let Proj(�jT) denote the population least
square projection of � onto the space T. The semiparametric e¢ cient score of �o is given by S�� �
`�(Z)�proj(`�(Z)jT) (see, e.g., Bickel et al. 1993). Denote Jo � E[S��S

�0
� ] as the semiparametric

Fisher information bound. If Jo is non-singular, then the semiparametric e¢ cient variance bound for

�o is 
�� � (Jo)�1 � (E[S��S�0� ])
�1.

To compute the least squares projections, note that, for each component �k (of �), k = 1; :::; d�,

the projection proj(`�k(Z)jT) solves the following minimization problem:

E
��
`�k(Z)� proj(`�k(Z)jT)

�2� � E ��`�k(Z)� a�h(Z)�a�g(Z)�2�
= min

ah2Th;ag2Tg
E
�
[`�k(Z)� ah(Z)�ag(Z)]

2�
= min

ah2Th

�
min
ag2Tg

E
�
[`�k(Z)� ah(Z)� ag(Z)]

2��
= min

ah2Th

n
E
��
`�k(Z)� ah(Z)� proj(`�k(Z)� ah(Z)jTg)

�2�o
;

where a�h 2 Th; a�g �proj(`�k(Z)� ah(Z)jTg) 2 Tg denote a pair of solutions.
For any ah = `h(�)[�h] 2 Th (with�h 2 H�fhog), to compute a solution proj(`�k(Z)�ah(Z)jTg)

to the problem minag2Tg E [`�k(Z)� ah(Z)� ag(Z)]
2, we write the Lagrangian expression as

E

(
[`�k(Z)� ah(Z)� ag(Z)]2 + 2

TX
j=1

�j(X
(j))0"j(Z; �o)ag(Z)

)
; (28)

where �j(X(j)) is the Lagrangian multiplier for the constraint (27). Applying calculus of variation,

any solution ag to the unconstrained minimization problem (28) should satisfy the following �rst

order condition:

`�k(Z)� ah(Z)� ag(Z) =
TX
j=1

�j(X
(j))0"j(Z; �o); (29)

E["j(Z; �o)� ag(Z)jX(j)] = 0 for j = 1; 2; :::; T:

Note that ag(Z) given by equation (29) satis�es Efag(Z)g = 0. Under constraints (25) and (26),
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de�nition of "j(Z; �o); j = 1; 2; :::; T and relation (22), it is straightforward to show that

�t(X
(t))0 = �

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[�h]

�0
�ot(X

(t))�1; t = 1; 2; :::; T

solves (29). Hence

ag(Z) = `�k(Z)� ah(Z)�
TX
t=1

�t(X
(t))0"t(Z; �o)

solves the unconstrained minimization problem (28). Moreover, becauseEf[`�k(Z)]2g <1, Ef[ah(Z)]2g <
1, E

n�t(X(t))0"t(Z; �o)
2
e

o
<1, we have Ef[ag(Z)]2g <1 and ag 2 Tg. Thus

proj(`�k(Z)� ah(Z)jTg) = ag(Z) = `�k(Z)� ah(Z)�
TX
t=1

�t(X
(t))0"t(Z; �o):

That is, for any ah = `h(�)[�h] 2 Th (with �h 2 H � fhog), we have:

`�k(Z)� ah(Z)� proj(`�k(Z)� ah(Z)jTg) (30)

= �
TX
t=1

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[�h]

�0
�ot(X

(t))�1"t(Z; �o):

Recall that the space W is the closed linear completion of H�fhog under the pseudo-norm jj � jj

k�hk2 � E
"

TX
t=1

�
dmt(X

(t); �o)

dh
[�h]

�0
�ot(X

(t))�1
�
dmt(X

(t); �o)

dh
[�h]

�#
<1:

For any direction�h 2 H�fhog with ah = `h(�)[�h] 2 Th, given assumptions 2, 3 and A and relation
(30), we have k�hk2 <1 hence this direction �h belongs toW. Conversely, for any �eh 2 H�fhog
with

�eh2 <1 (so that �eh 2 W), de�ne
eah(z) = � TX

t=1

�
dmt(X

(t); �o)

dh
[�eh]�0�ot(X(t))�1"t(z; �o):

It is obvious thatE[eah(Z)] = 0. By de�nition ofW and�eh 2 W we haveE[feah(Z)g2] = �eh2 <1.
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Also relation (22) implies that

dmj(X
(j); �o)

dh
[�eh] + E[eah(Z)"j(Z; �o)0jX(j)] = 0 for j = 1; :::; T;

thus eah(�) 2 Th.
By de�nitions of Th, Th and a�h(), there exists a sequence fwh;j 2 H�fhog; j = 1; 2; :::g such that

ah;j(�) = `h(�) [wh;j] 2 Th converges to a�h(�) 2 Th under the mean-squared norm. Since the projection
is a bounded linear functional, ag;j(Z) �proj(`�k(Z)�ah;j(Z)jTg) converges to a�g(Z) 2 Tg under the
mean-squared norm. By de�nition of W, such a sequence fwh;j 2 H � fhog; j = 1; 2; :::g belongs to
W. By relation (30), we have:

1 > E
�
`�k(Z)� ah;j(Z)� proj(`�k(Z)� ah;j(Z)jTg)

�2
= E

"
TX
t=1

f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[wh;j]

�2
e

#

� E

"
TX
t=1

f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[rko ]

�2
e

#
; (31)

where the last inequality is due to the fact that rko is a solution to

inf
w2W

E

"
TX
t=1

f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[w]

�2
e

#
:

Taking limit as j !1 in both sides of inequality (31), we obtain:

E
��
`�k(Z)� a�h(Z)�a�g(Z)

�2� � E " TX
t=1

f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[rko ]

�2
e

#
:

(32)

On the other hand, by de�nitions of W and rko , there exists a subsequence f ewh;j 2 H � fhog; j =
1; 2; :::g in W such that

1 > E

"
TX
t=1

f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[ ewh;j]�2

e

#
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converges to

E

"
TX
t=1

f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[rko ]

�2
e

#
as j !1:

Let

eah;j(z) = � TX
t=1

�
dmt(X

(t); �o)

dh
[ ewh;j]�0�ot(X(t))�1"t(z; �o):

Then eah;j(�) 2 Th and hence eag;j(z) �proj(`�k(Z)� eah;j(Z)jTg) 2 Tg, we have
E

"
TX
t=1

f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[ ewh;j]�2

e

#
= E

�
`�k(Z)� eah;j(Z)� proj(`�k(Z)� eah;j(Z)jTg)�2 � E �`�k(Z)� a�h(Z)�a�g(Z)�2 : (33)

Taking limit (as j !1), and combining with the previous inequality (32), we obtain

E
��
`�k(Z)� proj(`�k(Z)jT)

�2� � E ��`�k(Z)� a�h(Z)�a�g(Z)�2�
= E

"
TX
t=1

f�ot(X(t))g� 1
2

�
dmt(X

(t); �o)

d�k
� dmt(X

(t); �o)

dh
[rko ]

�2
e

#
:

Denote ro = (r1o; :::; r
d�
o ) and

dmt(X
(t); �o)

dh
[ro] =

�
dmt(X

(t); �o)

dh
[r1o];

dmt(X
(t); �o)

dh
[r2o]; :::;

dmt(X
(t); �o)

dh
[rd�o ]

�
:

Then, an e¢ cient score S�� for �o is

S�� � `�(Z)� proj(`�(Z)jT)

= �
TX
t=1

�
dmt(X

(t); �o)

d�0
� dmt(X

(t); �o)

dh
[ro]

�0
�ot(X

(t))�1"t(Z; �o):

The semiparametric Fisher information bound for �o is Jo � E[S��S�0� ], and if Jo is non-singular, then
the semiparametric e¢ cient variance bound for �o is 
�� � (Jo)�1 � (E[S��S�0� ])

�1.

When we partition � into (�01; �
0
2)
0 with d�i = dim(�i) and d� = d�1 + d�2 for i = 1; 2, we let ro�1 �

(r1o; :::; r
d�1
o ) 2

Qd�1
j=1W, ro�2 � (r

d�1+1
o ; :::; rd�o ) 2

Qd�2
j=1W,

dm1(X;�o)
dh

[ro�1 ] � (
dm1(X;�o)

dh
[r1o]; :::;

dm1(X;�o)
dh

[r
d�1
o ])
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be d�1�d�1, and
dm2(X2;�o)

dh
[ro�1 ] � (

dm2(X2;�o)
dh

[r1o]; :::;
dm2(X2;�o)

dh
[r
d�1
o ]) be d�2�d�1. De�ne

dm1(X;�o)
dh

[ro�2 ]

and dm2(X(2);�o)
dh

[ro�2 ] accordingly. We have S
�
� = (S

�0
�1
; S�0�2)

0. Then the semiparametric e¢ cient vari-

ance bound of �o1, denoted as 
��1, is simply the inverse of the covariance matrix of the least squares

projection residual of S��1 on S
�
�2
:


��1 �
�
Ef(S��1 � b

�0S��2)(S
�
�1
� b�0S��2)

0g
��1

=
�
E[S��1S

�0
�1
]
��1

+ a�
��2a
�0 (34)

with b� � fE[S��2S
�0
�2
]g�1E[S��2S

�0
�1
] and a� � fE[S��1S

�0
�1
]g�1E[S��1S

�0
�2
]. Then the semiparametric

e¢ cient variance bound of �o2 is:


��2 �
�
Ef(S��2 � a

�0S��1)(S
�
�2
� a�0S��1)

0g
��1

: (35)

Proof. (Theorem 2.2) Since the semiparametric e¢ cient variance bound of �o2 is 
��2 given by

(35). We now show that 
��2 = (Jo�2)
�1 for the plug-in model (2)-(3).

First we notice that for the plug-in model (2)-(3), the general expression of S�� = (S
�0
�1
; S�0�2)

0 will

take the following form: with T = 2; X = X(2); " = "1(Z; �o),

S��2 = `�2(Z)� proj(`�2(Z)jT)

= �
�
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[ro�2 ]

�0
�o2(X)

�1�2(Z; �o)

�
�
dm1(�o)

d�02
� dm1(�o)

dh
[ro�2 ]

�0
(Ef""0g)�1 ";

S��1 = `�1(Z)� proj(`�1(Z)jT)

=

�
dm2(X;�o)

dh
[ro�1 ]

�0
�o2(X)

�1�2(Z; �o)

�
�
dm1(�o)

d�01
� dm1(�o)

dh
[ro�1 ]

�0
(Ef""0g)�1 ";
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where ro�2 is such that, for all r�2 2
Qd�2
j=1W

E

8<:
h
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[ro�2 ]

i0
�o2(X)

�1
h
dm2(X;�o)

dh
[r�2 ]

i
+h

dm1(�o)
d�02

� dm1(�o)
dh

[ro�2 ]
i0
(E[""0])�1

h
dm1(�o)
dh

[r�2 ]
i

9=; = 0: (36)

and ro�1 is such that, for all r�1 2
Qd�1
j=1W

E

8<: �
h
dm2(X;�o)

dh
[ro�1 ]

i0
�o2(X)

�1
h
dm2(X;�o)

dh
[r�1 ]

i
+h

dm1(�o)
d�01

� dm1(�o)
dh

[ro�1 ]
i0
(E[""0])�1

h
dm1(�o)
dh

[r�1 ]
i
9=; = 0: (37)

Denote w�2 � ro�2 � ro�1a� 2
Qd�2
j=1W and compute �(36) � a�0�(37)�. Then we obtain: for all

r 2
Qd�2
j=1W,

E

8<:
h
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[w�2]

i0
�o2(X)

�1
h
dm2(X;�o)

dh
[r]
i
+h

dm1(�o)
d�02

� dm1(�o)
d�01

a� � dm1(�o)
dh

[w�2]
i0
(E[""0])�1

h
dm1(�o)
dh

[r]
i
9=; = 0:

Next by de�nition of a�, we have for any non-zero d�1 � d�2�matrix a,

0 = E
��
S��2 � a

�0S��1
�
S�0�1a

�
= �

�
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[w�2]

�0
�o2(X)

�1
�
dm2(X;�o)

dh
[ro�1a]

�
+

�
dm1(�o)

d�02
� dm1(�o)

d�01
a� � dm1(�o)

dh
[w�2]

�0
(Ef""0g)�1

�
dm1(�o)

d�01
a� dm1(�o)

dh
[ro�1a]

�
:

Hence

0 =

�
dm1(�o)

d�02
� dm1(�o)

d�01
a� � dm1(�o)

dh
[w�2]

�0
(Ef""0g)�1

�
dm1(�o)

d�01

�
:

Using the condition that dm1(�o)
d�01

is invertible, we obtain that a� satis�es (9) and

�
dm1(�o)

d�02
� dm1(�o)

d�01
a� � dm1(�o)

dh
[w�2]

�
= 0:
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Thus

E

��
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[w�2]

�0
�o2(X)

�1
�
dm2(X;�o)

dh
[r]

��
= 0 for all r 2

d�2Y
j=1

W :

Hence w�2 2
Qd�2
j=1W solves

inf
w2
Qd�2
j=1W

E

��
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[w]

�0
�o2(X)

�1
�
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[w]

��
:

Recall that wo2 2
Qd�
j=1W de�ned in (7) also solves the above minimization problem. Under As-

sumptions 1s, 2 and 3, we have wo2 = w�2 � ro�2 � ro�1a�,

Jo�2 = E

��
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[wo2]

�0
�o2(X)

�1
�
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[wo2]

��
;

and

S��2 � a
�0S��1 =

�
dm2(X;�o)

d�02
� dm2(X;�o)

dh
[wo2]

�0
�o2(X)

�1�2(Z; �o);

Hence 
��2 �
�
Ef(S��2 � a

�0S��1)(S
�
�2
� a�0S��1)

0g
��1

= (Jo�2)
�1.

Proof. (Theorem 2.3) Since the semiparametric e¢ cient variance bound of �o1 is 
��1 given

by (34). We now show that 
��1 = (Jo�1)
�1 for the plug-in model (2)-(3). Recall that b� �

fE[S��2S
�0
�2
]g�1E[S��2S

�0
�1
]. Denote w�1 � ro�1 � ro�2b� 2

Qd�1
j=1W and compute �(37) � b�0�(36)�.

Then we obtain: for all r 2
Qd�1
j=1W,

E

8<:
h
�dm2(X;�o)

d�02
b� � dm2(X;�o)

dh
[w�1]

i0
�o2(X)

�1
h
dm2(X;�o)

dh
[r]
i
+h

dm1(�o)
d�01

� dm1(�o)
d�02

b� � dm1(�o)
dh

[w�1]
i0
(E[""0])�1

h
dm1(�o)
dh

[r]
i
9=; = 0: (38)

Also w�1 � ro�1 � ro�2b� implies:

S��1 � b
�0S��2

=

�
dm2(X;�o)

d�02
b� +

dm2(X;�o)

dh
[w�2]

�0
�o2(X)

�1�2(Z; �o)

�
�
dm1(�o)

d�01
� dm1(�o)

d�02
b� � dm1(�o)

dh
[w�1]

�0
(E[""0])

�1
":
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By de�nition of b� we have for any non-zero d�2 � d�1�matrix,

0 = Ef(S��1 � b
�0S��2)S

�0
�1
bg

= E

8<: �
h
dm2(X;�o)

d�02
b� + dm2(X;�o)

dh
[w�1]

i0
�o2(X)

�1
h
dm2(X;�o)

d�02
b� dm2(X;�o)

dh
[ro�2b]

i
+h

dm1(�o)
d�01

� dm1(�o)
d�02

b� � dm1(�o)
dh

[w�1]
i0
E[""0]�1

h
dm1(�o)
d�02

b� dm1(�o)
dh

[ro�2b]
i

9=; :
This and equation (38) imply that

E

8<: �
h
dm2(X;�o)

d�02
b� + dm2(X;�o)

dh
[w�1]

i0
�o2(X)

�1
h
dm2(X;�o)

d�02

i
+h

dm1(�o)
d�01

� dm1(�o)
d�02

b� � dm1(�o)
dh

[w�1]
i0
E[""0]�1

h
dm1(�o)
d�02

i
9=; = 0: (39)

Equations (38) and (39) imply that

E

8<: �
h
dm2(X;�o)

d�02
b� + dm2(X;�o)

dh
[w�1]

i0
�o2(X)

�1
h
dm2(X;�o)

d�02
b� + dm2(X;�o)

dh
[w�1]

i
+h

dm1(�o)
d�01

� dm1(�o)
d�02

b� � dm1(�o)
dh

[w�1]
i0
E[""0]�1

h
dm1(�o)
d�02

b� + dm1(�o)
dh

[w�1]
i

9=; = 0;

hence

Ef(S��1 � b
�0S��2)(S

�
�1
� b�0S��2)

0g

= E

8<:
h
dm2(X;�o)

d�02
b� + dm2(X;�o)

dh
[w�1]

i0
�o2(X)

�1
h
dm2(X;�o)

d�02
b� + dm2(X;�o)

dh
[w�1]

i
+
fE(""0)g� 1

2

h
dm1(�o)
d�01

� dm1(�o)
d�02

b� � dm1(�o)
dh

[w�1]
i2

e

9=;
=

�
dm1(�o)

d�01
� dm1(�o)

d�02
b� � dm1(�o)

dh
[w�1]

�0
E[""0]�1

dm1(�o)

d�01
:

Equations (38) and (39) also imply that (b�; w�1) 2
Qd�1
j=1(Rd�2 �W) solves

Jo�1 � inf
(b;r)2

Qd�1
j=1(R

d�2�W)

E

8<:
h
dm2(X;�o)

d�02
b+ dm2(X;�o)

dh
[r]
i0
�o2(X)

�1
h
dm2(X;�o)

d�02
b+ dm2(X;�o)

dh
[r]
i

+
fE(""0)g� 1

2

h
dm1(�o)
d�01

� dm1(�o)
d�02

b� dm1(�o)
dh

[r]
i2

e

9=; :
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Thus with b� � fE[S��2S
�0
�2
]g�1E[S��2S

�0
�1
] and w�1 � ro�1 � ro�2b�, we have:

Jo�1 =

�
dm1(�o)

d�01
� dm1(�o)

d�02
b� � dm1(�o)

dh
[w�1]

�0
E[""0]�1

dm1(�o)

d�01
= Ef(S��1 � b

�0S��2)(S
�
�1
� b�0S��2)

0g:
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