
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

ERIM REPO

ERIM Report
Publication  
Number of pa
Email addres
Address 

 
Bibliogra

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics
The distribution-free newsboy problem with resalable 
returns 

 
 

Julien Mostard, Rene de Koster and Ruud Teunter 
 

 
 

RT SERIES RESEARCH IN MANAGEMENT 
 Series reference number ERS-2003-068-LIS 

2003 
ges 23 
s corresponding author jmostard@fbk.eur.nl 

Erasmus Research Institute of Management (ERIM) 
Rotterdam School of Management / Faculteit Bedrijfskunde 
Rotterdam School of Economics / Faculteit 
Economische Wetenschappen 
Erasmus Universiteit Rotterdam 
P.O. Box 1738  
3000 DR Rotterdam, The Netherlands 
Phone:  +31 10 408 1182  
Fax: +31 10 408 9640 
Email:  info@erim.eur.nl 
Internet:  www.erim.eur.nl 

phic data and classifications of all the ERIM reports are also available on the ERIM website:  
www.erim.eur.nl 

https://core.ac.uk/display/6906252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.erim.eur.nl/


ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT 
 

REPORT SERIES 
RESEARCH IN MANAGEMENT 

 
 
 
 
 
 

BIBLIOGRAPHIC DATA AND CLASSIFICATIONS 
Abstract We study the case of a catalogue/internet mail order retailer selling seasonal products 

and receiving large numbers of commercial returns. Returned products arriving before 
the end of the selling season can be resold if there is sufficient demand. A single order 
is placed before the season starts. Excess inventory at the end of the season is salvaged 
and all demands not met directly are lost. Since little historical information is available, 
it is impossible to determine the shape of the distribution of demand. Therefore, we 
analyze the distribution-free newsboy problem with returns, in which only the mean and 
variance of demand are assumed to be known. We derive a simple closed-form expression 
for the distribution-free order quantity, which we compare to the optimal order quantities when 
gross demand is assumed to be normal, lognormal or uniform. We find that the distribution-free 
order rule performs well in most realistic cases. 
5001-6182 Business 
5201-5982 Business Science 

Library of Congress 
Classification  
(LCC) HD 30.27 Forecasting 

M Business Administration and Business Economics  
M 11 
R 4 

Production Management 
Transportation Systems 

Journal of Economic 
Literature  
(JEL) 

C 61 Optimization Techniques, Programming models, Dynamic Analysis 
85 A Business General 
260 K 
240 B 

Logistics 
Information Systems Management 

European Business Schools 
Library Group  
(EBSLG) 

250 E Forecasting 
Gemeenschappelijke Onderwerpsontsluiting (GOO) 

85.00 Bedrijfskunde, Organisatiekunde: algemeen 
85.34 
85.20 

Logistiek management 
Bestuurlijke informatie, informatieverzorging 

Classification GOO 

85.03 Methoden en technieken, Operations research 
Bedrijfskunde / Bedrijfseconomie 
Bedrijfsprocessen, logistiek, management informatiesystemen 

Keywords GOO 

 Voorraden, vraag en aanbod, producten, teruggave, wiskundige modellen  
Free keywords  Inventory, distribution-free newsboy problem, product returns 

 
 



The distribution-free newsboy problem with resalable

returns

Julien Mostard∗ René de Koster
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Abstract

We study the case of a catalogue/internet mail order retailer selling seasonal products

and receiving large numbers of commercial returns. Returned products arriving before

the end of the selling season can be resold if there is sufficient demand. A single order

is placed before the season starts. Excess inventory at the end of the season is salvaged

and all demands not met directly are lost. Since little historical information is available,

it is impossible to determine the shape of the distribution of demand. Therefore, we

analyze the distribution-free newsboy problem with returns, in which only the mean and

variance of demand are assumed to be known. We derive a simple closed-form expression

for the distribution-free order quantity, which we compare to the optimal order quantities

when gross demand is assumed to be normal, lognormal or uniform. We find that the

distribution-free order rule performs well in most realistic cases.
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1 Introduction

In many countries, customers have the legal right to return unused purchases within a specified

number of days after purchase, especially in the case of distant selling. The original purchase

cost is then partially or fully reimbursed. As a result of this right, retailers selling products via

mail order or over the internet generally have to deal with large volumes of returns. Because

the sales process is remote, customers cannot see, feel and try the actual product, which often

leads to a wrong decision. Common reasons for returning are a wrong size, a change of mind

(remorse) or the fact that the actual color differs slightly from the displayed one.

The presence of return flows changes inventory control significantly (Fleischmann et al.,

1997). First, the retailer has little control over the return flow in terms of quantity, quality

and timing. Second, ordering decisions and processing of returned products have to be co-

ordinated, since returned products can be resold in most cases. The higher the return rates,

the more important these factors become. In the case of a mail order/internet retailer that

we consider, return rates are usually larger than 18% and can be as high as 74% for specific

products (Mostard and Teunter, 2002).

The management of return flows has received growing attention in the past decade. The whole

of logistic activities to collect, disassemble and recover (parts of) used products or materials

for the purpose of recapturing value or proper disposal is known as reverse logistics (Revlog

website, 1999 and Rogers and Tibben-Lembke, 1999).

Much research in this field has been dedicated to the implications of return flows for the areas

of distribution planning, inventory control and production planning. Fleischmann et al. (1997)

have performed a review of the mathematical models that have been proposed in this context.

However, the vast majority of the proposed inventory control models for reverse logistics con-

centrate either at returns that need extensive recovery (e.g. repair or remanufacturing) or at

end-of-life products destined for recycling. In our case, the returned products are generally in

an as-good-as-new condition and can be resold directly after testing and possibly repackaging

provided there is enough demand and they are returned before the end of the selling season (in

the case of seasonal products).

We consider the inventory control problem for the case of a mail order/internet retailer

selling fashion products. Besides the high return rates, seasonality, large supply lead times

and lack of data are three important factors in this case that complicate inventory control.

These are all related to the type of product, fashion clothing. We will next discuss each factor

separately.

Fashion products are seasonal. Fisher and Raman (1996) note that most fashion apparel
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companies introduce a completely new product line every season which must be designed and

produced in time to be sold during a concentrated retail selling season. They also point out

that the costs of excess inventory that must be sold below purchase cost at the end of the season

and of lost sales due to stockouts are high in the apparel industry because of unpredictable

demand and a complex supply chain.

The supply lead times of fashion products are usually long. Therefore, retailers have to set-

tle their entire season’s order quantities well before they have an opportunity to observe actual

sales performances (Mantrala and Raman, 1999). Because of this single order opportunity, it

is natural to use a newsboy type model for analyzing our problem. However, the standard

newsboy model (see Silver et al., 1998 and Khouja, 1999 for literature reviews) does not allow

for returns.

Only recently, Vlachos and Dekker (2003) first studied ordering policies for single-period prod-

ucts with returns. They extend the newsboy problem while making two simplifying assump-

tions. First, they assume that products can be resold only once. Second, they assume that

a fixed percentage of sold products is returned and resalable. Considering several different

return options, based on different handling of the returned products, they derive optimal order

quantities for the various models resulting from these options. By numerical experiments, they

show that the optimal classical newsboy quantity is far from optimal when return rates are

high.

In a following study, Mostard and Teunter (2002) argue that the two assumptions underlying

the model of Vlachos and Dekker lead to a suboptimal order quantity. In practice products can

be returned and resold several times during a season, which contradicts the first assumption.

Moreover, due to the second assumption, part of the variability in the number of (resalable)

returns, given gross demand, is ignored. Mostard and Teunter drop these assumptions. Taking

a net demand approach, they derive a simple closed-form equation that determines the optimal

order quantity given the gross demand distribution, the probability that a sold product is re-

turned, and all relevant revenues and costs. Using real data, they compare this optimal order

quantity to both the order quantity proposed by Vlachos and Dekker and to the company’s

order quantity. The former generally differs more than 10% from the optimal order quantity,

while the associated reduction in profit is generally small but can be large is specific cases. The

latter turns out to be far from optimal.

There is a lack of historical data of fashion products. In order to determine the order quan-

tity of a certain product, retailers need reasonable estimates of the return rate and the distri-

bution of demand. But for obtaining reliable estimates one needs historical data. Due to
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seasonality, only limited historical data of similar products are available. These are often at

most sufficient for estimating the return rate and the first two moments of demand. But since

the fashion goods market is characterized by high demand variability and highly unpredictable

consumer preferences (Jain and Paul, 2001), they are usually insufficient for determining the

shape of the demand distribution. This certainly holds for the specific case study that moti-

vates this research. We therefore explore the distribution-free newsboy model in this paper.

Distribution-free means that only the first two moments of demand are assumed to be known.

Gallego and Moon (1993) first studied the distribution-free newsboy problem. They prove the

optimality of Scarf’s ordering rule for this problem. This rule finds the order quantity that

maximizes expected profit against the worst possible demand distribution with a certain mean

and variance (Scarf, 1958). The maximum amount that can be gained by knowing the complete

demand distribution is shown to be negligible for most practical problems. This is shown for a

variety of cases: the recourse case, the fixed ordering cost case, the random yield case and the

multi-product case.

Since the paper of Gallego and Moon, the distribution-free approach has been adopted in sev-

eral other studies (see, e.g., Moon and Choi, 1995, 1998 and Silver and Moon, 2001). Numerical

examples in these papers all show that Scarf’s ordering rule is near optimal in a distribution-free

setting and that it is robust. Furthermore, it is computationally simple and easy to understand,

which makes it valuable in practice.

In this article, we apply the distribution-free approach to the single-period problem with

returns. We compare the resulting order quantity and corresponding expected profit to the

optimal order quantity and expected profit (in the case that the complete demand distribution

is known). In this way, we determine the value of additional demand information, i.e. the extra

profit that can be gained by knowing the complete distribution of demand instead of its first

two moments. We will do this for a wide range of parameter values and under the assumption

that gross demand is either normal, lognormal or uniform.

The remainder of this paper is organized as follows. In section 2, we introduce the no-

tation and the assumptions underlying underlying our distribution-free newsboy model. The

distribution-free order quantity is derived in section 2.1. In section 4, we compare the distribution-

free order quantity and expected profit to the optimal order quantity and expected profit for a

wide range of parameters. But in order to compute the optimal order quantity and associated

expected profit we need to know the distribution of net demand. Therefore, in section 3, we

will first examine the shape of the net demand distribution under the assumption that gross

demand is normal, lognormal or uniform, to see whether net demand follows the same type of
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distribution. Finally, we present our main findings and conclusions in section 5.

2 Model and assumptions

There is a single order opportunity. The order of size Q arrives before the start of the season.

The retailer pays a cost c per ordered product and receives a sales price p for every sold product.

A product that has been delivered to a customer has a probability r of being returned. The

retailer incurs a collection cost d for every returned product. There is no return fee for the

customer.

An returned product is resalable if it is undamaged and if there is still enough demand to

resell it (so it has to be back before the end of the selling season). We thereby assume priority

of resales over first sales. Note that this assumption is only necessary for defining the notion of

a resalable return, since returned products are of the same quality and sold against the same

price as first sales.

We assume that every return is resalable with probability k and that this probability is

fixed and known. This probability can be estimated well in practice (De Koster and Zuidema,

2002).

Over the whole season, the total number of gross demanded products is G, with mean µG

and standard deviation σG. In case of a stockout, every demand that cannot be met results in

a shortage cost g. Every unsold product at the end of the season is sold in a secondary market,

yielding a salvage value v.

The objective is to determine the order quantity Q that maximizes expected profit.

The optimal order decision has to account for returns, so we should consider net demand

rather than gross demand. Therefore, as in Mostard and Teunter (2002), we will base our

analysis on net demand rather than gross demand. We need some additional notation for this.

Every gross demanded product results in a net demand if it is either not returned or returned

but not resalable, assuming that there is sufficient stock to meet gross demand. Thus, net

demand N follows from the number of gross demands by subtracting the number of times that

a product is both returned and resalable during the season. Note that returned products which

are damaged or which arrive after the end of the season are also included in the net demand.

This is to ascertain that, with a reasonable probability, there is enough stock to meet all gross

demands. Net demand has mean µN and standard deviation σN , which can be computed from

the expectation and standard deviation of gross demand as follows (see, e.g., Kelle and Silver,
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1989 or Mostard and Teunter, 2002).

µN = (1− rk)µG and (σN)2 = (1− rk)2(σG)2 + rk(1− rk)µG .

The unit expected revenue of satisfying a gross demand equals pG = (1− r)p− rd + r(1− k)v.

This can be seen as follows. The retailer incurs the sales price p for every product which is

not returned, resulting in a per unit expected revenue of (1 − r)p. For every product that is

returned by a customer, the retailer pays collection cost d, resulting in a per unit expected cost

of rd. There is a probability r(1− k) that a returned product is not resalable, in which case it

yields salvage value v. Thus, the per unit expected revenue in this case is r(1− k)v.

If a product is sold repeatedly until it is either not returned or not resalable, then the unit

expected revenue of satisfying this net demand is pN = pG[1 + rk + (rk)2 + . . .] = pG/(1− rk).

Similarly, the expected shortage cost of not satisfying a net demand is gN = g/(1− rk). Note

that the number of times that a single product can be returned and resold is only restricted by

the length of the season.

All notations that have been introduced above and some additional notations that will be

used in the remainder are summarized in Table 1.

INSERT TABLE 1 ABOUT HERE

2.1 The distribution-free order quantity

Every net demand that can be met from the stock of Q purchased products yields expected

revenue pN . Recall that this includes the salvage value if a product is returned but not resalable.

Every unit in stock that is never delivered to a customer (i.e. for which there is no gross

demand) also yields salvage value v. In case total net demand is larger than the initial stock

Q, the shortage of stock costs gN per unit. Hence, the total expected net profit is

EP (Q) = pN(µN − ESN(Q))− cQ− gNESN(Q) + v(Q− (µN − ESN(Q)))

= (pN − v)µN − (c− v)Q− (pN − v + gN)ESN(Q) . (1)

Here, ESN denotes the expected net shortage, i.e., the expected number of net demands not

met.

The expected profit function in (1) is the same as the classical newsboy expected profit

function, but the parameters have been rewritten to represent the net demand case. A difference

is that the profit function in the classical newsboy problem is based on gross demand, while we

use a net demand approach.
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As is shown in Mostard and Teunter (2002), the optimal order quantity Q? for this problem

that maximizes the expected profit in (1) is

Q? = F−1
N

(
(pN − s + gN)− (c− s)

(pN − s + gN)

)
, (2)

where FN(·) denotes the cumulative distribution function (cdf) of net demand.

Since no more than Q net demands can be satisfied, the expected net shortage is

ESN(Q) = E[N −Q]+ .

Clearly, maximizing EP (Q) is equivalent to minimizing

(c− v)Q + (pN − v + gN)E[N −Q]+ .

Similar to the analysis in Gallego (1992) it can be shown that

E[N −Q)]+ ≤
√

σ2
N + (Q− µN)2 − (Q− µN)

2

and that, for every Q, there exists a unique distribution in G for which this upper bound is

tight.

The distribution-free approach is based on this ’worst case’ distribution and thus minimizes

(c− v)Q + (pN − v + gN)

√
σ2

N + (Q− µN)2 − (Q− µN)

2
. (3)

The optimal order quantity of the distribution-free approach follows by setting the derivative

of (3) to zero and solving for Q, yielding (see appendix A for the derivation)

Q̃ = µN +
σN

2

1− 2x√
x(1− x)

, (4)

where x = (c − v)/(pN − v + gN). The distribution-free order quantity, Q̃, is equivalent to

Scarf’s order quantity (Scarf, 1958), adjusted for the case with returns and a penalty cost for

lost sales. We remark that when k = 0 or r = 0, (4) reduces to the order quantity for the

distribution-free case derived by Gallego and Moon (1993).

Let e = Q−µN and f = pN −v+gN . The second derivative of (3) equals (see the Appendix

for the derivation)

fσ2
N

2(σ2
N + e2)

√
σ2

N + e2
. (5)

The sign of this expression clearly depends on f . We may assume that pN ≥ c, since otherwise

it would be impossible to make a positive profit and the order quantity would be zero. Since

c > v, we get pN > v and thus f > 0. Hence, the expression in (5) is strictly positive. Therefore,

(3) is strictly convex in Q and the optimal order quantity given by (4) is unique.
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3 Comparing the shapes of gross and net demand

In section 4, we will compare the distribution-free order quantity Q̃ to the optimal order quantity

Q?, assuming that gross demand is either normal, lognormal, or uniform. As (2) shows, the

cdf of net demand is needed to determine Q?. But an exact expression for this function is

not available and cannot (easily) be derived from the cdf of gross demand. However, it seems

reasonable to assume that net demand follows the same type of distribution as gross demand,

i.e., net demand is assumed to be normal if gross demand is normal. In this section, we show

that this is indeed a reasonable assumption.

For a large number of examples with normal, lognormal or uniform demand, we approximate

the cdf of net demand using simulation and compare it to the normal, lognormal and uniform

cdf with the same mean and variance. It will turn out that the two functions are nearly identical

in almost all realistic cases.

We compare the approximate cdf of net demand to the cdf of gross demand for different

combinations of the mean of gross demand, µG, the coefficient of variation (CV) of gross

demand, σG/µG, and the return percentage, r. These parameters influence the shape of the

net demand distribution and can cause it to differ from that of the gross demand distribution.

The parameter values that we use are shown in the first three rows of Table 2. All possible

combinations of these parameters are explored.

INSERT TABLE 2 ABOUT HERE

The procedure for constructing the distribution of net demand is as follows. We take 5000

random drawings, gi, i = 1, 2, . . . , 5000, from the gross demand distribution. For each gi > 1,

the corresponding number of resalable returns ri is drawn (once) from a binomial distribution

with gi (rounded to the nearest integer) repetitions and probability of success kr. Computing

ni = gi − ri then gives 5000 random values of net demand per product (parameter setting).

The net demand distribution is obtained by assigning probability 1/5000 to each of these.

Before the drawings from the uniform and lognormal distributions of gross demand can be

taken, the parameters of these distributions have to be computed. They follow from the mean

and standard deviation of gross demand as follows (see appendix B for the derivations).

The parameters a and b of the uniform distribution can be computed as

a = µG −
√

3σG and b = µG +
√

3σG .

The parameters m and s of the lognormal distribution follow from

m = ln µG − 0.5 ln(1 + (σG/µG)2) and s =
√

ln(1 + (σG/µG)2) .
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The cumulative distribution function (cdf) of net demand resulting from the above procedure

is then plotted against the cdf of the normal, uniform or lognormal distribution with mean µN

and standard deviation σN to see whether they coincide.

We remark that for the normal and uniform distributions, a coefficient of variation greater

than 0.5, especially in combination with a high return rate, allows for negative drawings. There-

fore, we only use CV ≤ 0.5 with these distributions.

The experiments show that the cdf of net demand almost coincides with that of the normal,

lognormal or uniform distribution with mean µN and standard deviation σN for most realistic

parameter settings. Figures 1(a) through 1(k) depict a number of examples showing this.

For all return rates up to 0.75 (and thus all realistic parameter values), the two curves coincide

nearly perfectly for both the lognormal and normal distributions. Figures 1(a) and 1(b) show

two examples of this. Only in the case of a return percentage larger than 80% there can be a

gap between the curves, which is only considerable when r ≥ 0.95 and CV = 0.1, as is shown

by Figures 1(c) through 1(f). These figures also show that the gap decreases when either µG or

the coefficient of variation increases. Figures 1(g) and 1(h) show that the same holds for the

normal distribution.

For the uniform distribution, Figures 1(i) through 1(k) show a slightly different situation.

Figure 1(i) shows that already when r = 0.5, the net demand curve clearly deviates from the

uniform cdf with mean µN and standard deviation σN . When r = 0.95, the gap between the

two curves is rather large. As can be seen, net demand is not uniformly distributed in these

cases. In fact, additionally plotting the normal cdf in Figures 1(i) and 1(j) showed that the net

demand curve exactly coincides with the N(µN , σN)-distributed cdf.

Thus, when gross demand is normal or lognormal, we can safely assume net demand to

follow the same type of distribution with mean µN and standard deviation σN in all realistic

cases. When gross demand is uniform, the same holds for most realistic cases.

4 Performance of the distribution-free order quantity

Several studies (e.g., Gallego and Moon, 1993, Moon and Choi, 1995, 1998 and Silver and

Moon, 2001) have shown that the distribution-free order rule is a good alternative to the

classical newsboy rule when the exact form of the distribution function is unknown. For several

types of demand distributions (normal, uniform, t and triangle), these studies have shown

for a number of randomly generated parameter ranges that the expected value of additional

information (the largest amount that one would be willing to pay for complete knowledge of
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the demand distribution) is very small.

In section 2.1, we have rewritten the classical newsboy expected profit function to represent

the net demand case with product returns, yielding the profit function in (1). This function has

the same form as the classical newsboy expected profit function that has been used in previous

studies on the distribution-free order rule, the only difference being that it uses the distribution

of net demand rather than gross demand. Based on the explorations of demand shapes in the

previous section, we assume that net demand follows the same type of distribution as gross

demand. Therefore, we expect the same sort of result as in the previous studies.

In this section, we will perform extensive numerical investigations using a wide range of

examples to verify whether the distribution-free order rule indeed performs well for all realistic

parameter settings. Moreover, we will explore which, if any, extreme parameter values cause

the distribution-free order rule to be far from optimal. We remark that in previous studies the

distribution-free order rule has never been tested for the lognormal distribution, which is one

of the three standard distributions that we use here.

We assume that the gross demand distribution is normal, uniform or lognormal with mean

µG and standard deviation σG. We compare the distribution-free order quantity Q̃ in (4) to

the optimal order quantity Q? in (2). We also compare the associated expected profits, which

are computed using equation (1). There, µN is replaced by the mean of the 5000 ‘net drawings’

ni that are constructed as explained in the previous section and the expected net shortage is

computed as ESN(Q) =
∑

i 1/5000[ni − Q]+. The parameter values that we have used in our

computations are shown in Table 2. We have used all possible combinations of these values.

Tables 3a and 3b display the results for µG = 150. The results for higher values of the

expected gross demand are similar in pattern and size of the percentage differences in order

quantities and expected profits. When the return percentage rises above 80%, it is impossible to

make a profit unless the relative profit margin (RPM) is very high. Thus, the order quantities

are zero in this case. Therefore, we can only show the results for return percentages up to 75%.

As the tables show, it is already impossible to make a profit when r = 0.75 and RPM = 0.5.

We first look at the results for all 3 distributions for coefficient of variation (CV) equal to 0.1

and 0.5 (Table 3a). Then we discuss the results for the lognormal distribution for higher values

of the CV (Table 3b).

For CV = 0.1, the distribution free order rule performs excellent for all 3 distributions.

The distribution-free order quantity differs slightly, up to -3% or +1%, from the optimal order

quantity. However, this difference does not lead to a considerable loss in expected profit (less

than 1%).
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For CV = 0.5, the performance of the distribution free order rule is well in most cases

for all 3 distributions, but there are cases where the loss in expected profit is 3 or 4 percent.

For the lognormal distribution, the percentage deviation of Q̃ from Q? is always positive and

significantly rises when the relative profit margin decreases. When the relative profit margin

is 0.5, the maximum deviation is 14%, leading to a loss in expected profit of 3%. For the

normal distribution, a low relative profit margin leads to a positive deviation of Q̃ from Q? of

at most 7%, while this deviation is negative (around -4%) for larger relative profit margins.

Contrary to the lognormal case, this deviation increases with the return rate, though only when

the deviation is positive. The same holds for the uniform distribution, which however shows

significantly larger differences between the order quantities. Q̃ is 6% to 20% larger than Q?

when RPM = 0.5, while it is on average 8% lower for higher relative profit margins. The loss

in expected profit is at most 1%, except when the return rate is high and the relative profit

margin low, in which case the loss is 4%.

The distribution-free order rule performs poor when the coefficient of variation of gross

demand is 1 or larger. For CV = 1, the distribution-free order quantity is on average 27%

larger than the optimal order quantity given lognormal gross demand. Unless the relative

profit margin is very high, this leads to significant losses in expected profit of up to 14%. These

differences grow even larger when uncertainty is very high (CV= 2). In that case, the differences

in order quantities are huge (up to 135%) and the average loss in expected profit from using

the distribution-free order rule is 38%. Given RPM = 0.5, the percentual deviation of Q̃ from

Q? falls sharply when r rises, from +110% for r = 0.01 to -41% for r = 0.5. For larger relative

profit margins, this effect is opposite: the positive deviation of Q̃ from Q? rises with r.

5 Conclusion

We derived a simple closed-form formula that determines the order quantity for the distribution-

free single-period (newsboy) inventory problem with returns in which only the mean and vari-

ance of gross demand are known. In order to account for the returns, the distribution-free order

quantity was derived using a net demand approach. We compared the distribution-free order

quantity to the optimal order quantity under the assumption that the gross demand distribu-

tion is either normal, lognormal or uniform. In order to be able to determine the optimal order

quantity, we assumed that net demand follows the same type of distribution as gross demand.

This assumption was validated in section 3 by comparing the simulated cdf of net demand to

the normal, lognormal and uniform cdf with the same mean and standard deviation for a large
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number of examples.

Using wide ranges of the relevant parameters, we compared the distribution-free and optimal

order quantities and their respective expected profits. It turned out that for a small coefficient

of variation (CV = 0.1), the distribution-free order quantity differs around 1% (positive or

negative) from the optimal order quantity in most cases, while the associated differences in

expected profits are negligible for all three distributions. When the coefficient of variation is

0.5, the distribution-free order quantity is often far from optimal (up to +20% from the optimal

order quantity), especially for the lognormal and uniform distribution and when the relative

profit margin is small. However, the loss in expected profit is still small, around 1% on average

for the lognormal and uniform distributions and even less for the normal distribution. When

the coefficient of variation is greater than or equal to 1, the distribution-free order quantity is

far from optimal and often also results in a considerable loss in expected profit (of up to 72%).

Based on these results, we recommend the following to firms that face returns and have to

determine single period order quantities based on limited available data. For products with

a coefficient of variation of gross demand (CV) of at most 0.5, just estimate the mean and

standard deviation of gross demand and apply the distribution free order rule in (4). For

products with a CV of more than 0.5, try to estimate the entire distribution function and

determine the optimal order quantity using (2).
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A Derivation and uniqueness of the optimal distribution-

free order quantity

Let x = c−v
pN−v+gN

. Setting the derivative of (3) to zero and solving for Q gives

0 = c− v +
1

4

(
pN − v + gN

)(
σ2

N + (Q− µN)2
)− 1

2 · 2(Q− µN)

−1

2
(pN − v + gN) .

Thus,

Q− µN√
σ2

N + (Q− µN)2
= 1− 2(c− v)

pN − v + gN

= 1− 2x .

This gives

(Q− µN)2(1− (1− 2x)2) = σ2
N(1− 2x)2

and therefore

Q = µN +
(1− 2x)σN√

1− (1− 4x + 4x2)
= µN +

(1− 2x)σN√
4x(1− x)

= µN +
σN

2

1− 2x√
x(1− x)

,

which yields (4).

Let e = Q− µN and f = pN − v + gN . The second derivative of (3) equals

−1
4

f

(σ2
N+e2)

√
σ2

N+e2
· 2e · e + f

2
√

σ2
N+e2

= f

2
√

σ2
N+e2

− fe2

2(σ2
N+e2)

√
σ2

N+e2

=
fσ2

N

2(σ2
N+e2)

√
σ2

N+e2
.

B Parameter calculation for different demand distribu-

tions

Given mean µG and variance σ2
G of gross demand and assuming that gross demand follows a

lognormal or uniform distribution, the parameters of the lognormal and uniform distributions

can be computed as described below.

B.1 Lognormal distribution

The pdf of the lognormal distribution is

f(x) =


exp(−1/2((ln x−m)/s)2)

xs
√

2π
if x > 0

0 otherwise

15



The mean and variance of the lognormal distribution are

e(2m+s2)/2 and e2m + 2s2 − e2m+s2

.

We need those values of m and s for which the lognormal mean and variance equal µG and σ2
G

respectively, i.e. those values for which

e(2m+s2)/2 = µG (6)

and

e2m+2s2 − e2m+s2

= σ2
G . (7)

From (6), we get

2 ln µG = 2m + s2 . (8)

Substituting this in (7) gives

µ2
G(es2 − 1) = σ2

G ,

and therefore,

s =
√

ln(1 + CV 2) . (9)

Substituting (9) into (8) yields

m = ln µG −
1

2
ln(1 + CV 2) . (10)

B.2 Uniform distribution

The uniform distribution has pdf

g(x) =


1

b−a
if a < x < b

0 otherwise

and mean and variance

(a + b)/2 and (b− a)2/12 .

We need those values of m and s for which the uniform mean and variance equal µG and σ2
G

respectively, i.e. those values for which

(a + b)/2 = µG (11)

16



and

(b− a)2/12 = σ2
G . (12)

Rewriting (11) gives

a = 2µG − b . (13)

Substituting this into (12) gives

σ2
G = (2(b− µG))2/12 = 1/3(b− µG)2 ,

and thus

b = µG +
√

3σG . (14)

Now, (13) and (14) together yield

a = µG −
√

3σG . (15)

C Tables and figures
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G gross demand

µG mean of gross demand

σG standard deviation of gross demand

CV coefficient of variation of gross demand, σG/µG

r expected probability that a sold product is returned

k expected probability that a returned product is resalable

N net demand

µN mean of net demand, µN = (1− rk)µG

σN standard deviation of net demand, σN =
√

(1− rk)2(σG)2 + rk(1− rk)µG

p sales price

v salvage value, v < c

c purchase cost, v < c < p

g (gross) shortage/loss of goodwill cost

gN net shortage cost, gN = g/(1− rk)

d return collection cost

pN expected net revenue, pN = ((1− r)p− rd + r(1− k)v)/(1− rk)

Q order quantity

Q̃ optimal order quantity of the distribution-free approach

Q? order quantity resulting from the exact analysis using the distribution of net demand

EP (Q) expected profit for order quantity Q

Table 1: Notations.

used parameter values

expected gross demand, µG 150, 500, 2000

CV of gross demand, σG/µG 0.1, 0.5, 1, 2

return rate, r 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.97, 0.99

relative profit margin, (p− c)/c 0.5, 1.5, 4

Table 2: Parameter values that are used in the computational experiments. c = 20, v =

c/3, d = 4.25 and g = 0 for all products.
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pro- Lognormal, CV=1 pro- Lognormal, CV=2

duct RPM r Q̃ Q? EP (Q̃) EP (Q?) duct Q̃ Q? EP (Q̃) EP (Q?)

µG = 150 , CV = 1 µG = 150 , CV = 2

25 0.5 0.01 127 90 (+41%) 460 533 (-14%) 37 105 50 (+110%) 66 238 (-72%)

26 1.5 0.01 210 159 (+32%) 2238 2365 (-5%) 38 272 129 (+111%) 802 1443 (-44%)

27 4 0.01 300 264 (+14%) 8304 8360 (-1%) 39 452 264 (+71%) 5057 5863 (-14%)

28 0.5 0.25 87 65 (+34%) 298 334 (-11%) 40 63 34 (+85%) 86 150 (-43%)

29 1.5 0.25 156 118 (+32%) 1611 1703 (-5%) 41 200 91 (+120%) 515 997 (-48%)

30 4 0.25 226 196 (+15%) 6064 6113 (-1%) 42 339 193 (+76%) 3666 4285 (-14%)

31 0.5 0.5 42 35 (+20%) 119 124 (-4%) 43 10 17 (-41%) 43 52 (-17%)

32 1.5 0.5 100 76 (+32%) 928 982 (-5%) 44 125 55 (+127%) 256 569 (-55%)

33 4 0.5 149 126 (+18%) 3832 3873 (-1%) 45 222 126 (+76%) 2320 2728 (-15%)

34 0.5 0.75 0 0 (-0%) 0 0 (-0%) 46 0 0 (-0%) 0 0 (-0%)

35 1.5 0.75 42 30 (+40%) 257 284 (-10%) 47 47 20 (+135%) 38 149 (-74%)

36 4 0.75 72 60 (+20%) 1653 1675 (-1%) 48 105 57 (+84%) 932 1140 (-18%)

Table 3b: Results for products with µG = 150 and CV greater than or equal to 1. RPM denotes

the relative profit margin. The percentual deviations are relative to the optimal order quantity

Q? and to the associated optimal profit EP (Q?).
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