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A Theoretical Analysis of Cooperative Behavior

in Multi-agent Q-learning

Ludo Waltman Uzay Kaymak
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Abstract

A number of experimental studies have investigated whether cooperative behavior may

emerge in multi-agent Q-learning. In some studies cooperative behavior did emerge, in oth-

ers it did not. This report provides a theoretical analysis of this issue. The analysis focuses

on multi-agent Q-learning in iterated prisoner’s dilemmas. It is shown that under certain as-

sumptions cooperative behavior may emerge when multi-agent Q-learning is applied in an

iterated prisoner’s dilemma. An important consequence of the analysis is that multi-agent

Q-learning may result in non-Nash behavior. It is found experimentally that the theoretical

results derived in this report are quite robust to violations of the underlying assumptions.

Keywords

Prisoner’s dilemma, cooperation, Nash equilibrium, multi-agent reinforcement learn-

ing, multi-agent Q-learning.

1 Introduction

Q-learning [22] is an algorithm for learning how to behave in an unknown environment. The

use of Q-learning is most appropriate if the environment is a Markov decision process. For such

an environment it has been proven that under certain assumptions Q-learning leads to optimal

behavior [23].
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Table 1: The payoffs in a one-shot prisoner’s dilemma game. The payoff to the agent using the

row (column) strategy is listed first (second). The payoffs must satisfy the inequalities in (1)

and (2).

cooperate defect

cooperate w, w u, z

defect z, u v, v

This report is concerned with multi-agent Q-learning. In multi-agent Q-learning there are

a number of agents that all use Q-learning to choose their actions. The payoff received by an

individual agent depends not only on the agent’s own behavior but also on the behavior of the

other agents. An individual agent in multi-agent Q-learning perceives its environment as non-

stationary because the behavior of the other agents changes over time due to learning. Since a

non-stationary environment does not have the properties of a Markov decision process, it is quite

difficult to analyze multi-agent Q-learning theoretically. In this report multi-agent Q-learning is

analyzed theoretically under certain simplifying assumptions. The analysis is performed using

Markov chain theory. It should be noted that attention focuses on the application of the standard

Q-learning algorithm in multi-agent settings. Some examples of this approach can be found in

[4, 14, 16, 17, 19, 20, 21]. Variants of the standard Q-learning algorithm specifically designed

for multi-agent settings (e.g. [3, 5, 7, 12, 13]) are not considered.

The theoretical analysis in this report aims to explain the emergence of cooperative behavior

in multi-agent Q-learning. The analysis is closely related to our earlier research described in [20,

21]. In [20, 21] we apply multi-agent Q-learning in a Cournot oligopoly model, which is a well-

known model in the field of microeconomics. We show experimentally that agents in a Cournot

oligopoly model learn to cooperate with each other by using Q-learning (although they usually

do not learn to cooperate to the largest extent possible). Somewhat similar experiments that are

described in [11] give the same result. The purpose of this report is to provide a theoretical

analysis that explains results like in [11, 20, 21].

Our analysis focuses on multi-agent Q-learning in iterated prisoner’s dilemmas. An iterated

prisoner’s dilemma has similar characteristics as a repeated Cournot oligopoly game but is

simpler to analyze. In an iterated prisoner’s dilemma there are two agents playing a repeated

game. In each period of the repeated game the agents play a one-shot prisoner’s dilemma game.
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The payoffs in a one-shot prisoner’s dilemma game are shown in Table 1, where u, v, w, and z

must satisfy

u < v < w < z (1)

and

2v < z + u < 2w. (2)

In a one-shot prisoner’s dilemma game defect is a dominant strategy for both agents. (defect,

defect) is therefore a dominant strategy equilibrium. It is also the only Nash equilibrium in

the game. The interesting property of the game is that (defect, defect) is Pareto dominated by

(cooperate, cooperate). In other words, if both agents use the dominant defect strategy, they

both receive a lower payoff than they would have received if they had both used the dominated

cooperate strategy.

One of the assumptions we make in our analysis is that agents in an iterated prisoner’s

dilemma do not have a memory for remembering what happened in the past (of course they do

have a memory for remembering estimates of Q values). An agent therefore does not know, for

example, which action was executed by its opponent in the previous period of the game. Making

this assumption simplifies our analysis considerably. The assumption also has the important

implication that there is only one Nash equilibrium in an iterated prisoner’s dilemma. In this

equilibrium both agents choose the defect action in each period of the game. Other, more

cooperative Nash equilibria do not exist because agents do not remember what happened in

the past and consequently do not have the ability to punish their opponent in case of defection.

Since there are no cooperative Nash equilibria under the assumption that agents do not have a

memory, it turns out that by making this assumption we focus our attention on the setting in

which cooperative behavior seems most difficult to achieve.

Multi-agent Q-learning in an iterated prisoner’s dilemma is studied experimentally in [16].

In one of the experiments in [16] agents without a memory are considered. It turns out that

these agents always learn the defect strategy, which means that their behavior always converges

to the Nash equilibrium. Cooperative behavior between the agents never emerges. A similar

result is reported in [14]. The results in [14, 16] may not seem to be very surprising. Using

the following reasoning, which can also be found in [2], it may be argued that if multi-agent

Q-learning converges it must converge to a (pure strategy) Nash equilibrium. When multi-agent

Q-learning has converged, agents no longer perceive their environment as non-stationary, since
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non-stationarity is caused by learning. Q-learning in a stationary environment is guaranteed to

converge to optimal behavior under certain assumptions [23]. In a multi-agent setting optimal

behavior means that an agent gives a best response to the strategies of its opponents. Therefore,

when multi-agent Q-learning has converged, it must be the case that each agent’s strategy has

converged to a best response to the opponent strategies and, as a consequence, that a Nash

equilibrium has been reached.

This reasoning may seem to explain the non-cooperative behavior reported in [14, 16]. How-

ever, it also seems that according to this reasoning the emergence of cooperative behavior (i.e.

non-Nash behavior) in the experiments described in [20, 21] should not have been possible. In

this report we investigate in detail the possibility that cooperative behavior emerges in multi-

agent Q-learning. We focus our attention on cooperative behavior in iterated prisoner’s dilem-

mas. Using a specific definition of convergence we show that it is possible for multi-agent

Q-learning to converge to cooperative behavior. Whether convergence to cooperative behav-

ior takes place turns out to depend on the exploration strategy that is used in the Q-learning

algorithm and on the values of the payoffs in the one-shot prisoner’s dilemma game. As we

already noted above, the theoretical analysis that we provide is based on certain simplifying as-

sumptions. In this report we also present the results of a number of experiments in which these

assumptions were relaxed. The experimental results indicate that the results of our theoretical

analysis are quite robust to violations of the underlying assumptions.

Before we present our analysis some other papers in which cooperative behavior in multi-

agent Q-learning is studied should be mentioned. In these papers a number of experimental

results are reported. In [1] a game similar to a prisoner’s dilemma is considered. It is found

that cooperative behavior almost never emerges in this game. The agents in [1] do not use

the standard Q-learning algorithm but use a variant of this algorithm specifically designed for

multi-agent settings. In [4] an experiment is described in which agents with a memory learn to

cooperate with each other most of the time. However, the game that is studied in [4] does not

have all the characteristics of a prisoner’s dilemma. Finally, in [17] a game is studied that is a

generalization of a prisoner’s dilemma. It is found that in this game non-cooperative behavior

emerges most of the time although agents also occasionally learn to cooperate.

This report is organized as follows. We first give an introduction to Q-learning in Section 2.

We then present a theoretical analysis of cooperative behavior in multi-agent Q-learning in
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Section 3. The robustness of our theoretical results is tested experimentally in Section 4. Finally

a discussion is provided in Section 5.

2 Q-learning

In this section we give an introduction to Q-learning. The terminology that we use is somewhat

adapted to the terminology in the game theoretic literature. Instead of the terms ‘reward’ and

‘policy’, which are typically used in the literature on Q-learning, we use the terms ‘payoff’ and

‘strategy’.

Q-learning is an algorithm from the artificial intelligence literature that belongs to the class

of reinforcement learning algorithms [8, 18]. In the field of artificial intelligence, reinforcement

learning is concerned with the problem how an agent can learn to behave optimally from in-

teractions with its environment. The general idea of reinforcement learning is as follows. An

agent interacts repeatedly with its environment. During each interaction the agent first observes

the state of the environment s ∈ S. The agent then decides to execute an action a ∈ A. This

results in a payoff r that is received by the agent and in a transition of the state of the envi-

ronment from the old state s to the new state s′. Because the state of the environment changes

as a result of the action that was executed by the agent, the choice of an action may not only

influence the agent’s immediate payoff r but also its payoffs in future periods. The environment

is usually assumed to be a Markov decision process, which means that the agent’s payoff and

the new state of the environment only depend (either deterministically or stochastically) on the

old state of the environment and on the action that was executed by the agent, i.e. r = r(s, a)

and s′ = δ(s, a). In reinforcement learning it is assumed that the agent has no prior knowledge

of the payoff function r(s, a) and the state transition function δ(s, a), so the agent has no model

of its environment. The goal of the agent is to find an optimal strategy π∗ : S → A for choosing

actions. A strategy π(s) is optimal if in each state s ∈ S it selects an action a ∈ A that max-

imizes the agent’s cumulative payoff, which is the sum of its immediate payoff and its future

payoffs. The future payoffs are usually discounted.

Q-learning, introduced in [22], finds an optimal strategy by learning the values of a so-

called Q function. The function Q(s, a) is defined as the expected discounted cumulative payoff

that is received by executing action a in state s and following an optimal strategy thereafter.
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Recursively the Q function can be defined as follows

Q(s, a) = E

(
r(s, a) + γ max

a′∈A
Q(δ(s, a), a′)

)
, (3)

where 0 ≤ γ < 1 denotes the discount factor. If the values of the Q function are known, an

optimal strategy is given by

π∗(s) = argmax
a∈A

Q(s, a). (4)

Q-learning approximates the Q values iteratively. After each interaction of an agent with its

environment, the agent’s estimated Q values, denoted by Q̂, are updated using the update rule

Q̂(s, a) ← (1− α)Q̂(s, a) + α

(
r + γ max

a′∈A
Q̂(s′, a′)

)
. (5)

The parameter 0 ≤ α < 1 is called the learning rate and may be decreased over time. The update

rule allows an agent that does not know the functions r(s, a) and δ(s, a) to learn the values of

the Q function and, consequently, to find an optimal strategy for choosing actions. It is proven

in [23] that the values Q̂(s, a) estimated using Q-learning converge to the correct values Q(s, a)

with probability 1 if the environment is a Markov decision process, the values Q̂(s, a) are stored

in a lookup table, all state-action pairs continue to be visited, and the learning rate α is decreased

in an appropriate way. In deterministic Markov decision processes convergence of Q̂ values can

also be proven if a fixed value is used for α [15].

In the special case that the environment is a Markov decision process that has only one state,

the action that is executed in the current period cannot influence the payoffs that are received in

future periods. This means that future payoffs need not be considered in the Q function. The

discount factor γ can therefore be set to 0 in (3) and (5). Denoting the Q function and the payoff

function by Q(a) and r(a) respectively, (3) then reduces to

Q(a) = E(r(a)). (6)

Therefore, in the case of an environment with only one state, the Q value of an action is simply

defined as the expected payoff from that action. In the same way, the update rule in (5) reduces

to

Q̂(a) ← (1− α)Q̂(a) + αr. (7)

In this report we refer to Q-learning using this update rule as ‘single-state Q-learning’.

In reinforcement learning an agent usually faces a trade-off between exploration and ex-

ploitation when choosing an action. On the one hand, an agent may want to explore unknown
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states and actions to collect new information about its environment. On the other hand, an agent

may want to exploit its current knowledge of the environment by executing the action that is ex-

pected to maximize the cumulative payoff. In this report we consider agents that use either the

Boltzmann strategy or the ε-greedy strategy for choosing between exploration and exploitation.

In the Boltzmann strategy the probability of selecting action a in state s is given by

Pr(a|s) =
exp

(
Q̂(s, a)/T

)

∑
a′∈A exp

(
Q̂(s, a′)/T

) . (8)

In the case of single-state Q-learning this reduces to

Pr(a) =
exp

(
Q̂(a)/T

)

∑
a′∈A exp

(
Q̂(a′)/T

) . (9)

Although the Boltzmann strategy favors actions with high Q̂ values, all actions have a positive

probability of being selected. The temperature parameter T > 0 determines how exploration

and exploitation are balanced. The probability of exploration may be decreased over time by

gradually decreasing T . As T approaches 0, the Boltzmann strategy approaches the greedy

strategy of always selecting the action with the highest Q̂ value.

In the ε-greedy strategy the action (or one of the actions) with the highest Q̂ value is selected

with probability 1 − ε. With probability ε an action is selected randomly using a uniform

distribution over all actions. The ε-greedy strategy is less sensitive to the exact Q̂ values than

the Boltzmann strategy. In the Boltzmann strategy the probability of exploration depends on

the difference between the highest Q̂ value and the other Q̂ values. This is not the case in the

ε-greedy strategy. Also, when exploration takes place, the Boltzmann strategy favors actions

with higher Q̂ values whereas the ε-greedy strategy gives equal probability to all actions.

3 Theoretical analysis of cooperative behavior

In this section we present a theoretical analysis that aims to explain the emergence of cooper-

ative behavior in multi-agent Q-learning. The analysis also provides insight into factors that

influence whether cooperative behavior emerges. The focus of the analysis is on multi-agent

Q-learning in iterated prisoner’s dilemmas.

In the analysis the following assumption is made.
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Assumption 1 Agents do not have a memory for remembering what happened in the past and

therefore operate in an environment that has only one state.

Because of this assumption agents use single-state Q-learning to choose their actions. As we

discussed in Section 1, the above assumption implies that there is only one Nash equilibrium

in an iterated prisoner’s dilemma, namely mutual defection in each period of the game. Other,

more cooperative Nash equilibria are ruled out by the assumption. By making Assumption 1 we

therefore focus our attention on the setting in which cooperative behavior seems most difficult

to achieve.

In addition to Assumption 1 the analysis in this section is also based on the following two

assumptions.

Assumption 2 The learning rate α in the Q-learning algorithm has a fixed value of 1.

Assumption 3 Agents almost never explore, i.e. the limit case in which the probability of explo-

ration approaches 0 is considered. If the Boltzmann strategy is used, this is achieved by setting

the temperature parameter T to a fixed value that approaches 0. If the ε-greedy strategy is used,

this is achieved by setting ε to a fixed value that approaches 0.

These assumptions match to a limited extent the way in which Q-learning is typically applied

in experimental studies. Similarly to Assumption 2 many experimental studies use a fixed value

for the learning rate α. Although in these studies α typically has a value that is less than 1,

for example 0.2 in [11, 16, 17] and 0.5 in [20, 21], we assume a value of 1 in order to make a

theoretical analysis feasible. We also assume that agents almost never explore. This is fairly

similar to experimental studies in which the probability of exploration is quite high initially and

is decreased over time in such a way that it approaches 0 (e.g. [4, 16, 21]). Although Assumption

2 and 3 are usually not completely satisfied in experimental studies, we do not consider this to

be problematic for the purpose of our analysis, which is to explain the emergence of cooperative

behavior in multi-agent Q-learning. First of all the analysis shows (see Theorem 1 below) that

convergence of multi-agent Q-learning to cooperative behavior (i.e. non-Nash behavior) is not

fundamentally impossible. This is an important result on its own. In addition, the results of a

number of experiments that we performed indicate that our theoretical results are quite robust

to violations of Assumption 2 and 3. We discuss the experiments in Section 4.

The notion of convergence of an agent’s strategy is defined as follows in this report.
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Definition 1 Let π denote a pure strategy. In an environment that has only one state, the strat-

egy of an agent is said to converge to strategy π if and only if

lim
t→∞

Pr(at = π) = 1, (10)

where at denotes the action that is executed by the agent in period t.

Note that this definition is restricted to pure strategies and to environments with only one state.

This is sufficient for the purpose of this report. Definition 1 corresponds closely to the way

in which empirical convergence is typically established in experimental studies on Q-learning.

In a multi-agent setting one may also be interested in the collective behavior of agents. The

following definition can then be used.

Definition 2 Let π1, . . . , πn denote pure strategies. In an environment that has only one state

and that is populated by n agents, the strategy profile of the agents is said to converge to strategy

profile (π1, . . . , πn) if and only if for k = 1, . . . , n the strategy of agent k converges to strategy

πk according to Definition 1.

It should be emphasized that the convergence results derived in this section make use of the

above two definitions and need not be valid for alternative definitions of convergence.

The following theorem states that cooperative behavior may emerge in an iterated prisoner’s

dilemma if the assumptions mentioned above are satisfied and agents use the Boltzmann strategy

to choose their actions.

Theorem 1 Consider an iterated prisoner’s dilemma with an infinite number of periods. Let

Assumption 1, 2, and 3 be satisfied. Let both agents use single-state Q-learning combined

with the Boltzmann strategy. The strategy profile of the agents then converges to (cooperate,

cooperate) if and only if the payoffs in the one-shot prisoner’s dilemma game satisfy

w − v > 2(v − u). (11)

It converges to (defect, defect) if and only if the payoffs in the one-shot prisoner’s dilemma

game satisfy

w − v < 2(v − u). (12)

Proof: For k = 1, 2 and t = 1, 2, . . . we use akt ∈ {cooperate, defect} to denote the action

that is executed by agent k in period t. We use Q̂c
kt and Q̂d

kt to denote respectively agent k’s

9



Table 2: The states of the Markov chains that are used in the proofs of Theorem 1 and 2.

Symbol a1 a2 Q̂c
1 Q̂d

1 Q̂c
2 Q̂d

2

m1 cooperate cooperate w v w v

m2 cooperate cooperate w v w z

m3 cooperate cooperate w z w v

m4 cooperate cooperate w z w z

m5 cooperate defect u v w z

m6 cooperate defect u v u z

m7 cooperate defect u z w z

m8 cooperate defect u z u z

m9 defect cooperate w z u v

m10 defect cooperate w z u z

m11 defect cooperate u z u v

m12 defect cooperate u z u z

m13 defect defect w v w v

m14 defect defect w v u v

m15 defect defect u v w v

m16 defect defect u v u v
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Q̂ value of the cooperate action and agent k’s Q̂ value of the defect action immediately after

the actions a1t and a2t have been executed and the update rule of Q-learning has been applied.

Since in each period the cooperate action and the defect action both have a positive probability

of being executed by an agent, after some time both actions will have been executed at least once

by each agent. Let t′ denote the first period in which this is the case. Using Assumption 2 it can

be seen that for k = 1, 2 and t = t′, t′ + 1, . . . Q̂c
kt ∈ {u,w} and Q̂d

kt ∈ {v, z}. We define Xt =

(a1t, a2t, Q̂
c
1t, Q̂

d
1t, Q̂

c
2t, Q̂

d
2t). Note that Xt is a random variable. We use xt to denote a particular

value that Xt may take. {Xt|t = t′, t′ + 1, . . .} is a Markov chain because for t = t′, t′ + 1, . . .

Pr(Xt+1 = xt+1|Xt′ = xt′ , . . . , Xt = xt) = Pr(Xt+1 = xt+1|Xt = xt). The Markov chain

has sixteen states, which we denote by m1, . . . , m16. These states are shown in Table 2. From

each state four state transitions are possible, which correspond to the four action profiles in the

one-shot prisoner’s dilemma game. Since agents independently choose their actions using the

Boltzmann strategy, the probability of a state transition can be calculated by multiplying each

agent’s probability of choosing an action as given by (9). Transition probabilities are stationary

because according to Assumption 3 the temperature parameter T has a fixed value. We use

pi→j to denote the transition probability from state mi to state mj , i.e. for t = t′, t′ + 1, . . .

pi→j = Pr(Xt+1 = mj|Xt = mi). Obviously, transition probabilities satisfy

16∑
j=1

pi→j = 1. (13)

Because the Markov chain {Xt|t = t′, t′ + 1, . . .} is irreducible and ergodic, limt→∞ Pr(Xt =

mj) exists and does not depend on the initial state Xt′ (e.g. [6]). Pj = limt→∞ Pr(Xt = mj) is

referred to as a stationary probability of the Markov chain. The stationary probabilities of the

Markov chain can be found by solving

Pj =
16∑
i=1

Pipi→j for j = 1, . . . , 16 (14)

and
16∑

j=1

Pj = 1. (15)

Equation (14) can be written as

Pj =
1

1− pj→j

16∑
i=1
i6=j

Pipi→j. (16)
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Assumption 3 states that T → 0+. Using (9) it can be seen that the probability of an agent

choosing a particular action approaches either 0 or 1 as T → 0+. Since the probability of a state

transition is calculated by multiplying each agent’s probability of choosing a particular action, it

follows that for each transition probability pi→j either limT→0+ pi→j = 0 or limT→0+ pi→j = 1.

Note especially that limT→0+ pj→j = 0 for j = 2, . . . , 15. Using (16) we now obtain for

j = 2, . . . , 15

lim
T→0+

Pj = lim
T→0+

16∑
i=1
i 6=j

Pipi→j. (17)

It follows from (17) that limT→0+ Pj = 0 for j = 2, . . . , 15. This result can be derived in an

incremental way, first for j = 2, 3, 4, 7, 8, 10, 12, then for j = 5, 9, 13, then for j = 14, 15, and

finally for j = 6, 11. Equation (15) subsequently implies that limT→0+(P1 + P16) = 1.

Transitions to state m1 are only possible from the states m1, m13, m14, m15, and m16. From

state m1 transitions are only possible to the states m1, m5, m9, and m13. Using (13) and (16)

we can therefore write

P1 =
16∑

i=13

Pipi→1

p1→5 + p1→9 + p1→13

. (18)

It turns out that for i = 13, 14, 15

lim
T→0+

Pipi→1

p1→5 + p1→9 + p1→13

= 0. (19)

The left-hand side of (19) has the form 0/0. To prove (19) it must be shown that the numerator

in the left-hand side approaches 0 faster than the denominator. This can be shown by substi-

tuting an upper bound for limT→0+ Pi into (19). We only work out a proof for i = 13. Since

limT→0+ Pi ≤ 1 for all i, it follows from (17) that

lim
T→0+

P2 ≤ lim
T→0+

(p5→2 + p6→2), (20)

lim
T→0+

P3 ≤ lim
T→0+

(p9→3 + p11→3), (21)

and

lim
T→0+

P4 ≤ lim
T→0+

(p7→4 + p8→4 + p10→4 + p12→4). (22)

Using these inequalities and limT→0+ P1 ≤ 1 the following upper bound for limT→0+ P13 results

from (17)

lim
T→0+

P13 ≤ lim
T→0+

(p1→13 + (p5→2 + p6→2)p2→13 + (p9→3 + p11→3)p3→13

+ (p7→4 + p8→4 + p10→4 + p12→4)p4→13). (23)
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For i = 13 the correctness of (19) can be verified by substituting this upper bound into (19) and

by taking into account the inequalities in (1). The proof of (19) for i = 14, 15 is similar to the

proof for i = 13.

Using limT→0+(P1 + P16) = 1 it follows from (18) and (19) that

lim
T→0+

P1 = lim
T→0+

p16→1

p16→1 + p1→5 + p1→9 + p1→13

. (24)

This expression has the form 0/0. It can be seen that, depending on the payoffs u, v, and w,

either the numerator in (24) approaches 0 faster than the denominator or the numerator and the

denominator approach 0 equally fast. This results in

lim
T→0+

P1 =





1 if w − v > 2(v − u)

1
3

if w − v = 2(v − u)

0 if w − v < 2(v − u).

(25)

According to Definition 1 and 2 the strategy profile of agents in an iterated prisoner’s dilemma

converges to (cooperate, cooperate) if and only if limt→∞ Pr(akt = cooperate) = 1 for k =

1, 2. Note that

lim
T→0+

t→∞
Pr(a1t = cooperate) = lim

T→0+

8∑
j=1

Pj = lim
T→0+

P1 (26)

and similarly that

lim
T→0+

t→∞
Pr(a2t = cooperate) = lim

T→0+

(
4∑

j=1

Pj +
12∑

j=9

Pj

)
= lim

T→0+
P1. (27)

By combining (25), (26), and (27) it turns out that the condition w− v > 2(v − u) is necessary

and sufficient for convergence to the (cooperate, cooperate) strategy profile. In a similar way it

can be shown that the condition w − v < 2(v − u) is necessary and sufficient for convergence

to the (defect, defect) strategy profile. This completes the proof of Theorem 1.

Theorem 1 assumes that agents use the Boltzmann strategy to choose their actions. The

following theorem states that cooperative behavior does not emerge in an iterated prisoner’s

dilemma if instead of the Boltzmann strategy agents use the ε-greedy strategy to choose their

actions.

Theorem 2 Consider an iterated prisoner’s dilemma with an infinite number of periods. Let

Assumption 1, 2, and 3 be satisfied. Let both agents use single-state Q-learning combined with

the ε-greedy strategy. The strategy profile of the agents then converges to (defect, defect) for all

possible values of the payoffs in the one-shot prisoner’s dilemma game.
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Proof: Theorem 2 can largely be proven in a similar way as Theorem 1. Using a Markov

chain with the states that are shown in Table 2 and following a similar reasoning as in the proof

of Theorem 1, it can be derived that

lim
ε→0

P1 = lim
ε→0

p16→1

p16→1 + p1→5 + p1→9 + p1→13

. (28)

Note that this expression resembles the expression given by (24) in the proof of Theorem 1. In

the ε-greedy strategy exploration takes place with probability ε. In case of exploration each

action has the same probability of being chosen. As we already discussed in the proof of

Theorem 1, the probability of a state transition can be calculated by multiplying each agent’s

probability of choosing a particular action. It can now be seen that the transition probabilities

in (28) are given by p16→1 = p1→13 = ε2/4 and p1→5 = p1→9 = ε/2 − ε2/4. Equation (28)

therefore has the form 0/0 and the numerator in (28) approaches 0 faster than the denominator.

This implies that limε→0 P1 = 0 for all possible values of the payoffs in the one-shot prisoner’s

dilemma game. It follows from limε→0 P1 = 0 that the strategy profile of the agents converges

to (defect, defect). This completes the proof of Theorem 2.

4 Experimental results

The theoretical results derived in the previous section are based on certain simplifying assump-

tions. In this section we test experimentally to what extent these results remain valid if some

of the underlying assumptions are relaxed. We focus on Assumption 2 and 3, which state, re-

spectively, that the learning rate α has a fixed value of 1 and that agents almost never explore.

Assumption 2 is relaxed by experimenting with fixed values of α that are lower than 1. As-

sumption 3 is relaxed by experimenting with exploration strategies in which the probability of

exploration is quite high initially and is gradually decreased over time in such a way that it

approaches 0.

The setup of the experiments that we performed was as follows. In an experiment an iterated

prisoner’s dilemma was played by two agents that both chose their actions using single-state

Q-learning. A game lasted 500,000 periods. Such a large number of periods turned out to

be necessary in order to obtain reliable results. The agents in an experiment used either the

Boltzmann strategy or the ε-greedy strategy. In both strategies the probability of exploration

was gradually decreased over time in such a way that it approached 0. In the Boltzmann strategy

14



this was achieved by decreasing the temperature parameter T as follows

T = 10 · 0.999994t, (29)

where t denotes the current period in an iterated prisoner’s dilemma. In the ε-greedy strategy ε

was decreased according to

ε = 0.99999t. (30)

In an experiment a fixed value was used for the learning rate α. The following values for α were

considered: 0.05, 0.20, 0.50, and 1.00. We also used a number of different values for the payoffs

in the one-shot prisoner’s dilemma game. For each combination of an exploration strategy, a

value of α, and values of the prisoner’s dilemma payoffs, we performed 50 experiments. In

each experiment different random numbers were used.

We are interested in the number of experiments in which the agents learned to cooperate

with each other. For various values of the prisoner’s dilemma payoffs and of the learning rate

α, the number of experiments in which both agents cooperated in period 500,000 is reported

in Table 3 for the Boltzmann strategy and in Table 4 for the ε-greedy strategy. In experiments

in which the agents did not both cooperate in period 500,000 it was almost always found that

both agents defected. It should be noted that in some experiments the agents required a lot of

time to learn to cooperate with each other. This was the case in, for example, the experiments

in which u = 0, v = 1, w = 9, z = 10, and α = 0.05 and in which the agents used the

Boltzmann strategy. In Figure 1 it is shown how the behavior of the agents changed during

these experiments.

We first discuss the results of the experiments in which the learning rate α was equal to 1.

These results agree quite well with the theoretical predictions derived in Section 3. Of course,

the setup of the experiments differed somewhat from the assumptions of the theoretical analysis.

The theoretical analysis considered the limit case in which the number of periods in an iterated

prisoner’s dilemma approaches infinity and the probability of exploration approaches 0. In the

experiments, on the other hand, it was only possible to simulate a finite number of periods and a

very small probability of exploration. These deviations from the assumptions of the theoretical

analysis provide an explanation for small differences between the experimental results and the

theoretical predictions. Such a difference was found in the experiments in which u = 0, v = 2,

w = 9, and z = 10 and in which the agents used the Boltzmann strategy. As can be seen in
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Table 3: The number of experiments in which both agents cooperated in period 500,000. The

agents used the Boltzmann strategy. The total number of experiments was 50.

u v w z α = 0.05 α = 0.20 α = 0.50 α = 1.00

0 1 9 10 48 50 50 50

0 2 9 10 1 50 49 49

0 2 6 10 0 0 9 10

0 3 6 10 0 0 0 0

Table 4: The number of experiments in which both agents cooperated in period 500,000. The

agents used the ε-greedy strategy. The total number of experiments was 50.

u v w z α = 0.05 α = 0.20 α = 0.50 α = 1.00

0 1 9 10 48 30 1 0

0 2 9 10 13 2 0 0

0 2 6 10 0 0 0 0

0 3 6 10 0 0 0 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

10

20

30

40

50

period

Figure 1: The number of experiments in which both agents cooperated as a function of the

period in the iterated prisoner’s dilemma. The following parameter settings were used: u = 0,

v = 1, w = 9, z = 10, and α = 0.05. The agents used the Boltzmann strategy. The graph was

smoothed by taking a moving average over 25 periods. The total number of experiments was

50.
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Table 3, in one of these experiments cooperative behavior did not emerge, even though it was

predicted by the theoretical analysis.

The results of the experiments in which the learning rate α had a value lower than 1 indicate

that the theoretical predictions derived in Section 3 are quite robust. The results show that

Assumption 2, which states that α has a fixed value of 1, can be relaxed without affecting Q-

learning’s ability to cooperate in an essential way. In the experiments in which the agents used

the Boltzmann strategy, cooperative behavior was also observed when α had a fixed value lower

than 1 (see Table 3). To obtain cooperative behavior it seems that for lower values of α a more

restrictive condition on the payoffs in the one-shot prisoner’s dilemma game has to be imposed.

In a similar way the results of the experiments in which the agents used the ε-greedy strategy

indicate that the theoretical predictions for this strategy are quite robust. In these experiments

cooperative behavior did not emerge for most values of α and most values of the payoffs in the

one-shot prisoner’s dilemma game (see Table 4). Only when the difference between the payoff

of mutual cooperation (w) and the payoff of mutual defection (v) was large and at the same time

the value of α was low, cooperative behavior sometimes emerged in the experiments.

5 Discussion

The theoretical analysis presented in Section 3 shows that under certain simplifying assump-

tions multi-agent Q-learning in an iterated prisoner’s dilemma may converge to cooperative be-

havior. Under the assumptions of the analysis convergence to cooperative behavior takes place

if the Boltzmann strategy is used in the Q-learning algorithm and the payoffs in the one-shot

prisoner’s dilemma game satisfy the condition in (11). Convergence to cooperative behavior

does not take place if the ε-greedy strategy is used or if the Boltzmann strategy is used and

the condition in (11) is not satisfied. It should be emphasized that these results were derived

for the specific definition of convergence provided in Section 3. Since in the analysis agents

were assumed not to have a memory for remembering what happened in the past, cooperative

behavior did not constitute a Nash equilibrium. It therefore follows from the results obtained in

Section 3 that it is possible for multi-agent Q-learning to converge to a strategy profile that is

not a Nash equilibrium.

Some of the assumptions on which the theoretical analysis in this report is based are rather
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strong. However, the experimental results reported in Section 4 indicate that the results of the

analysis are quite robust to violations of the underlying assumptions. Most importantly, the

experimental results show that the assumption of a learning rate α with a fixed value of 1 can

be relaxed without affecting Q-learning’s ability to cooperate in an essential way. It turns out

that as the value of α is decreased cooperation between agents that use the Boltzmann strategy

becomes somewhat more difficult whereas cooperation between agents that use the ε-greedy

strategy becomes somewhat easier.

In addition to explaining the emergence of cooperative behavior in multi-agent Q-learning,

the theoretical and experimental results in this report also draw attention to a more general

issue, namely the influence on the behavior of the Q-learning algorithm of such factors as the

exploration strategy, the value of the learning rate α, and the payoff values. The results show

that in an iterated prisoner’s dilemma multi-agent Q-learning may converge to either mutual

cooperation or mutual defection, which are two completely opposite outcomes. Which of these

outcomes is realized depends on the exploration strategy, the value of α, and the values of the

payoffs in the one-shot prisoner’s dilemma game. The strong influence of these factors on the

behavior of the Q-learning algorithm is likely to be a more general phenomenon that also occurs

in other settings than prisoner’s dilemmas. It is important to take this phenomenon into account

in experimental studies on (multi-agent) Q-learning. The results of studies that do not consider

the influence of factors like those mentioned above may in many cases not be very robust.

Finally it may be interesting to note that Theorem 1 and 2 can also be proven using mathe-

matical techniques from the field of evolutionary game theory. These techniques are discussed

in, for example, [9, 10, 24]. Although the use of mathematical techniques from the field of

evolutionary game theory may result in proofs that are intuitively easier to understand than the

proofs in this report, we have chosen not to use these techniques because most readers are prob-

ably not familiar with them. However, the techniques may be useful for constructing proofs

similar to the ones in this report. In that way one may, for example, extend the analysis in this

report to other games than prisoner’s dilemmas.
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