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An Integrated Approach to Single-Leg Airline Revenue
Management: The Role of Robust Optimization

S.llker Birbil*  J.B.G.Frenk  Joaquim A.S. GromicHo  Shuzhong Zharig

ABSTRACT. In this paper we introduce robust versions of the classtalc and dynamic
single leg seat allocation models as analyzed by Wollmed, laautenbacher and Stidham,
respectively. These robust models take into account trezimate estimates of the underlying
probability distributions. As observed by simulation esipents it turns out that for these
robust versions the variability compared to their cladsioanter parts is considerably reduced
with a negligible decrease of average revenue.

Keywords: airline revenue management; single-leg problems; stabideis; dynamic models;
robust optimization

1 Introduction

Airline seat allocation problems on single legs or netwqley a prominent role within the revenue
management literature. This field expanded rapidly in regears and for an overview on revenue
management up tb999 we refer the reader to [11], while developments occurringrahis work
are discussed in the recent book by Talluri and Ryzin [15{hé&dgh many practical seat allocation
problems observed in the airline industry are network basiaedle leg seat allocation problems still
play an important role. This is mainly due to two reasonssthjirin general the network based air-
line seat allocation problems are extremely difficult toseolTherefore, different heuristics, which
required the solution of many single leg problems, were ldgpezl. Secondly, some small airline
companies, like charter flight companies commonly seen &) have special one-hub networks
with single legs. Therefore for those companies managieig eat allocation over the network re-
quires solving only single leg problems. Among the singtedeoblems, one may distinguish static
and dynamic models. Actually, the static models can be éurthtegorized into two types. The first
type assumes that only the distribution of the demand fodiffierent fare classes is known. Since
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2. Satic Models

the objective is to maximize the expected revenue, thissléadhe formulation of mathematical
programming models. Examples of such models are given infgd175]. The second type assumes
that the demands for different fare classes arrive in nonlaweing time periods in the order of in-
creasing fare class prices. Given a realization of a padatidare class demand, one needs to decide
how much of this demand is allocated to seats, under the pilt@ information on the demand
for the remaining higher priced fare classes. This modelbgagolved by dynamic programming,
where the stages correspond to fare classes. Exampleshofrsadels under different assumptions
are presented for two fare classes in [10, 12], and for mame two fare classes in [1] (a heuristic
approach generalizing the rule of Littlewood) and also i, [3, 13]. Finally, dynamic single leg
models take into account the actual order of arrival of déife fare class customers and so the de-
cision to accept or reject a specific fare class customertistatic, but may change over time. In
this case stages correspond to time periods. Examples lofrsadels under different assumptions
are givenin [9, 8, 16].

In this paper we first review, in the section on static modtile, mathematical programming
formulation of the static single leg problem already giverViiollmer [17] in a more complicated
network environment (see also [5, 15]). However, in thegeremces only a binary linear program-
ming formulation is given without any special purpose ailpons to solve those formulations. For
the more special single leg case considered here, we givediiog 1 a fast special purpose algo-
rithm to solve this model. Moreover, we present also in $ecti a new robust formulation of the
mathematical programming model, which takes into accdumiriaccurate estimate of the proba-
bility distributions of the total demand for the differemtré classes. As shown in Section 5 it will
turn out in our simulation experiments that the variabitifythe realized revenues is considerably
smaller for the robust version. At the same time due to thesewative behavior of the robust
model, the average revenues for the classical single staiite| are slightly higher. In Section 3 we
then review the standard classical dynamic single leg prolas discussed in [8] and propose, also
for this model, a new robust version. This robust versiomsakgain into account the inaccurate
estimates of the probabilities of the arrival process. mghme section we also propose, for the
classical dynamic model, an extension to batch arrivalagheeriod. Again from our simulation
results in section 5 we observe the same behavior as obdenthe static models. In Section 4 we
consider shortly which model we have to use in case of peifié@mtmation. Then we compare the
three different models (static, dynamic and complete mfttion) extensively by means of simula-
tion in Section 5. Our simulation results show that that thst ©f having incomplete information
is relatively small. Finally, in Section 6 we conclude thepea

We adopt a standard notation in our paper. The differencedsgt the vectors and scalars should
be clear from the text. The boldface letters are used to dahetrandom variables.

2 Static Models

In this section we are interested in the optimal allocatibthe seat capacity’ on a given flight
among themn different fare classes. If the demadgdfor each fare clasg 1 < i < m, is known
in advance, it is trivial to solve this allocation problem ialh can be modelled in the following
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2. Satic Models

way. Letz; denote the number of reserved seats for fare dlagghe beginning of the booking
period. We assume that fare classistomers do not consider the possibility of buying a ti¢ian

a different fare class. Thus, once no fare clasket is available, then it follows thahin{z;, d; }

will be the number of occupied fare classeats on the selected flight. To determine the optimal
allocation of the different fare classes over the given ciypa’, we need, therefore, to solve the
following optimization problem

v1(C) ;== max Y ., r;min{z;,d;}
st Y <G, 2.1)
x € 27,

wherer; denotes the price of a fare classeat. In case; < ry < ... < 1y, it is obvious that
an optimal allocation is given as follows: Consider demapdnd pricer; for each fare class,
and assign all the seats to the higher-priced customersigsakthe capacity is still available. To
formalize the algorithm, introducg,, := > ", d; with dy := 0 and N(C) = min{0 < n < m |
Sp < C}. Then, the optimal solution of optimization problem (2.4 piven by

d;, if i > N(C)
z; =49 C— Sy, ifi=N(C)-1 (2.2)
0, if i < N(C)—1.

The associated optimal objective function value as a fanatif the capacity”' is given by

m

vi(C)= Y ridi+ (C = Sn(e)) rve)-1s
i=N(C)
which is, clearly, a piecewise linear concave function.

However, usually the demand for fare class a random variabl®; and we do not know in
advance its realization. We may, however, estimate thellison of the demand. LdD;(w) be a
realization of the demanD; andz; be the number of reserved seats for fare clagonsequently,
the total revenue is given By, | ; min{x;, D;(w)}. This shows that the expected revenue equals
Yoty rE (min{x;, D;}), and so, oustatic decision model for random demand is given by

v2(C) := max Yy . r;E (min{z;, D;})
x € L.

This static model was first formulated by Wollmer [17] in a rhunore complicated network
environment and became a classical model in this field. Simeeimpler single-leg version is a
standard separable problem, it can be solved by dynamicgroging. Introduce for every < m
andy € {0, ..., C} the valueR,(y) as the maximal expected revenue for fare clagsgstom if at
most capacity is reserved for those fare classes, i.e.,

m m
Ry(y) = max ZriE(min{xi,Di}) | Z% Sy, x; €Lyi=p,---,m
1=p 1=p
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2.1 AnlImproved Algorithm

By the optimality principle of Bellman it now follows for emey € {0,--- ,C}andp+1 < m
that

Ry(y) = max {Rp1(y — xp) + rpE(min{z,,Dy})}.

0<zp=<y
Since clearlyR,,(y) = rpE (min{y,D,,}), v € {0,1,...,C}, we can recursively compute the
optimal objective valug?; (C'). The computational complexity of this dynamic programmangy
proach is of the order ab(mC?).
Clearly, to apply this approach we need an efficient algoritb compute the function values
E(min{z;,D;}). This can be done in a direct way for some simple distribgtionusing the so-
called Fast Fourier Transform (FFT) approach [7].

2.1 AnImproved Algorithm

The key idea behind our approach is to rewrite the separdijetive function of problem (2.3).
We introduce the functiod; : Z — R given by

Fi(n) := E(min{n,D;}) (2.4)
and observe for given € Z_ that
Fi(n) =) P{D; > j}.
j=1

Using this, it is obvious that; is a discrete concave function; i.e., the differe¢e:) — F;(n — 1)
is non-increasing im. By relation (2.4), problem (2.3) can be rewritten as

v2(C) = max Y . riF(x;)
s.t. Z:ll z; < C,
x € L.

Clearly,z; < C'in this problem. Introduce now far < j < C, the values
o0
aji=Fi(j) = F(i—1) =Y pu,
k=j
wherep;, = P{D; = k}. Notice that the objective function is separable. Theesfor;; gives

themarginal value of increasing:; from j — 1 to j. After this observation, we can solve problem
(2.3) very fast. To explain the algorithm, we first introduhe followingm x C matrix

r1oa1 102 e Moo
o2 To022 18 e}

(2.5)
TmQm1l TmQm2 - TmQmC

Then, the optimal objective function valug(C) can be found by sorting thea;; values, and
adding up the first terms. Consequently, the number of times ind@ppears among these
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2.2 A Robust Optimization Approach

terms gives the optimal solutiari. Notice that since; is discrete concave, the marginal values
in each rowi are in descending order; i.e;a;1 > 1040 > -+ > ryoic. Thereforewy(C) can
be evaluated by taking the maximumrefelements” times. The computational complexity of the
proposed approach reduces to the ordep phC').

2.2 A Robust Optimization Approach

To evaluate the objective function of problem (2.3), we neeknow the probability distribution
of the customer demand. These probabilities are usuallpatsd by analyzing the historical data,
and hence, they are prone to inaccuracies. A reasonablédecatton would be: How can we
immunize the model from the inaccurate data? To answer théstgpn, we propose next a robust
modeling approach.

We assume that random varialilg, representing the total demand for fare clasis concen-
trated on{0, --- , K'}, and this demand has an estimated probability vegtoe= (pio,- - - , pik)-
To compensate for possible estimation errors, we consotdr £ ¢ < m the probability vectorp;
belonging to the uncertainty sé} given by

P ={p; e RET 1 p, € + A, ple =1},

where
K /g \2
A= {di = (dio, -+ dirc)T € RFF| Z <%k> < 512}
o \Pik
with §; € [0, 1]. Itis easy to verify by the positivity of;; and the definition of\; thatp;, + A; C
Rf“. The total demand then depends on its probability disiobut;, and hence we denote this
random variable b¥D;(p;). Thus, the robust counterpart of problem (2.3) is given by

v3(C) = max Y ", rming,ecp, {E (min{z;, Di(pi)})}
st. Y e <C, (2.6)
T € ZT.

We introduce then the functio®; : Z, — R given by

Gi(n) := min {E (min{n, Di(p)})} (2.7)

Notice for everyp; € P; that the function
n — I (min{n, D;(p;))

is discrete concave oA, . Since the point wise infimum of a collection of concave fiots is
again concave, the functidg; is also discrete concave @, . Then problem (2.6) can be rewritten

as
v3(C) = max >0 riGi(xy)
s.t. ZZZI x; < C,
T € ZT.
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3. Dynamic Models

Observe for givem; € P, that

z;—1 K
E (min{z;, Di(p)) = Y kpix + 20 Y pir = (i) ps,
k=0 k=x;
where
c(xi)T = (Co(w’i)7cl(w’i)7 e JCK(xi)) - (07 17 Ty — 17‘%.2'7'%7;7 e ,fL'Z').

Hence, by relation (2.7), we have
Gi(z;) = min{c(z;)Tp; | pi € P} = c(2)Tp; + min{c(z;)7d; | d; € A, dJe =0}.  (2.8)

Using standard nonlinear programming techniques [2] ntlmaeasily shown that

(e71Q1e)?

EToE (2.9)

min{cTy | yTQy < 62, eTy = 0} = —5\/CTQ_1C —

where(@ is symmetric and positive definite. This shows that the kasttin relation (2.8) has an
analytic expression. Therefore, usiagz;) = 0 we have

K52 e (x:))2
Gi(w;) = c(xi)pi — 6 J PNREACD) (Z’f—iﬁ“‘f ;2( ). (2.10)
k=0 ik

Itis clear thatr; < C'in problem (2.6). Introduce now fdr< j < C, the values
Bij == Gi(§) — Gi(j — 1).

Similar to the discussion in Section 2.1, we first introduee followingm x C matrix

rifun rife - ribic
roflar T2l -+ Tafac (2.11)
Tmﬁml Tmﬁm2 ce TmﬁmC

Then, sinceG; is discrete concave, the marginal values in each 1@we in descending order,
i.e., 01 > rifia > -+ > riBic. Therefore, the optimal objective function valug(C') can be
evaluated by taking the maximum of elementsC times. The computational complexity of the
approach to solve (2.6) is of the ord@(mC).

3 Dynamic Models

Before discussing a robust version of the dynamic singiepl®blem we first review the classical
dynamic single-leg problem as proposed by LautenbacheSadidam [8]. Suppose that there are
m different fare classes with the prices

O<ri<rg<- -+ <rpy.
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3. Dynamic Models

The no-sales class is simply represented lwith »; = 0. The total number of available seats is
denoted byz, and the ticket sales period is partitioned into periods, --- ;7. We assume that
in each period either no customer is observed or at most oeecfassi customer arrives. I§;
denotes this random demand in perigdve may assume thdt may takem + 1 different values
ro,71,..., Ty @nd its discrete density is given by

P{ft = Ti} = Dit

withi = 0,1,...,m andt = 1,...,T. Itis also assumed that the random varialgles = 1,...,T

are independent. Introducing now the optimal random ree@y(>) that is generated from period

t to T, before a request shows up in perigdvhile the number of available seats at the beginning
of periodt is z we denote by/;(z) := E(R;(z)) the associated expected optimal value function.
Clearly J;(z) = E¢, (E(R¢(2)|&;)) and by the principle of dynamic programming it follows that

E(Ry(2)|&) = max{& + Jp1(z — 1), Jey1(2)}-
The above equation also yields an optimal policy: Acceptréugiest if
& 2> Jir1(2) — Jipa(z — 1),

Therefore,
Ji(z) = E (max{&§ + Jir1(2 — 1), Jir1(2)}),

with
E(gT), if 2z>0
J —
7(2) { 0, if 2=0.

For the above optimal value function, the following resusHteen shown [8].

Theorem 3.1 For every given ¢, the function
Ap1(2) = Jip1(2) = Jea(z — 1)
is nonnegative and non-increasing in z.

To compute the value$ (z) knowing the values/;,;(z) we observe

Ji(2) = Jep1(2) + B (max{&; — Asy1(2),0}) -

If we denote(x)+ = max{z,0}, then we have
E (max{¢ — Ay (2 szt — Bp1(2))+-
This yields due ta\,;(z) > 0 andry = 0 that
Jo(2) = Jip1(2) + szt — Avp1(2))+ (3.1)

A backward recursive solving requires an overall compaiteti complexity of the orde® (mT'C'),
where(C' is the total number of seats available. It is possible to owerthis computational com-
plexity if a careful study of the data structures is conddcte
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3.1 A Robust Optimization Approach

3.1 A Robust Optimization Approach

In this case, the uncertain data in question are the estirpatbability vector®] = (P11, -+ , Dm1),
t=1,---,T. We consider the probability vectopg belonging to the uncertainty sé} given by

P, ={p € R™ tept+Atapt6_1}
where

AtZ{dtZ(dlt,“ dmt) €Rm\2<pt> <5t2}

with é; € [0, 1]. The dynamic programming formulation then becomes

m

Ti(2) = Jip1(2) + Y Pulri = (Jegr(2) = Jipa(z = 1) + Hi(2)
=1

with
= min {Z dig(r; — (Je31(2) — Jep1(z2 — 1)) 4 1 dy € Ay el d, = 0} .
To simplify the notation, let
cit = (ri = (Ji31(2) = Jipa(z = 1)))4, i=1,--- ,m.

Then by using relation (2.9), we have

~9 2
§ : z 1p2tclt)
pztczt Zm =2 :

i=1Pit

Therefore, the robust counterpart of the dynamic progrargrformulation becomes

9 2
DiCi
J ( Jt+1 ‘|’ sztczt - 5t Zpltclt %7 (32)
> ic1 Py
wherel < ¢t < T and0 < z < (. Since the last term in (3.2) has an analytic solution, the
computational complexity of the robust approach remaiessttme withO (m7'C).

3.2 Batch Arrivals

To introduce the general case we assume in the classicaiilyiteg problem that there is only one
arrival at most during each time interval. That assumptiay ive considered restrictive. To account
for multi-entry during a given time interval, let us intrathia random vectay; € Z', wheren;
denotes the number of customers arriving during the timevmt[t,t+1),¢ = 1,...,7 — 1. Hence,
by the dynamic programming principle we have

E(Rt('z) ’ N = (xlﬂ T 7xm)T)
=max (Y yiri+ S (2 — 2 yi) | 0<y; < i=1,..,m, >y < 2,y € ZT).
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3.2 Batch Arrivals

Let us denote the value on the right hand side of the abovetiegu#e R(z, z; J;11). That is

Rz, 2 Jpp1) = max 30 yiri + Jeva (2 — 2200 i)
st. Yty <z
0<y; <z;Ht=1,...,m,
y € 2.

Using Theorem 3.1 it is easy to compute the valud¢f, z; J,.,1) for each givere € Z and
z € Z7 with e’z < z. Computeg(j) := Jip1(z —j+ 1) — Jipa(z — j) for j = 1, ,ela.
Clearly, we obtain by Theorem 3.1 that — g(p) > rr — g(q) for ¢ > p. Notice also that
rr —g(4) > m — g(j) for k > 1. Therefore, the optimal objective function value can beaivted
as follows: Lets, = >, x;. Findk = m,m — 1,---,1 such thatr;41 — g(sx+1) > 0 and
rr — g(sk) < 0. Then, findl = 1,- -,z such that, — g(sp — 1) > 0andry —g(sx — 1 +1) <O0.
The optimal solution then becomes = z; fori = k+ 1,--- ;m, y, = [, andy; = 0 for
i=1,--- ,k— 1. This yields the optimal objective function value

m si—1
Rz, z i) = Y rwi+ g — > g(h)-
i=k+1 j=1

The above procedure is illustrated in Figure 1 and sumnuhiizédlgorithm 3.1. Notice that the
marginal gain decreases @s 1 < k < m increases and the procedure starts with the most prof-
itable fare classn.

R@J? Jr,+1) Tk T g(sk -l 1>

Figure 1: The calculation ak(z, z; Ji11).

The dynamic programming recursion is

Jt(z) = En (R(% z; Jt—i—l)) ) (33)
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4. The Solution with Perfect Information

Algorithm 3.1 The algorithm for calculatind?(z, z; J;11)

1. Initialize: y; = 0,1 <i <m, andk = m.

2. Setsy, = Z:ik Zi.

3. If ry — g(sk) > O then sety, = =y, k = k — 1 and go to Step 2; otherwise, get 0.
4. Whilery, — g(sp — 1) < 0setl =1+ 1andy; = L.
5. Output: z
R(x,2z;Jiy1) = Z rix; + lry — i g(J).
i=k+1 j=1

wheret = 1,2,...,7, andz = 0,1,...,C. In case the number of the fare classes, is rel-
atively small, then a straightforward computation yieldsaution at the complexity bound of
O(mTC™*1).

Clearly, R(x, z; Ji+1) is monotonic in z for fixed z andt + 1; i.e., if 2/, 2" € Z7 satisfying
o' <2 thenR(2', z; Jy11) < R(2”, z; Ji41). It also has the followindexicographic property: if
2’ 2" € Z7 with e”'2’ = eT'2”" < z differ only in two components, say;, > z} andz} < z} with
[ > k, then it holds thaR(z/, z; Ji+1) < R(2”, z; Ji41).

To reduce the computational complexity, we may consideirfstance a two-point distribution
for each fare class customers. That is, welletind u;; be respectively the minimum and the
maximum amount of arriving customers for the fare clagsring the time intervat. The dynamic
programming then requires a computational complexityOd¢fn7'C2™). In the case of airline
revenue management, typically < 16, and so for a flight with 400 seats and decision period
T = 12, the computation complexity is in the orderiéf basic operations: a large but manageable
number. Ifm falls in a reasonable range, say= 5, then we may afford to consider a finer grid of
scenarios, say we may consider a 10-point distributiondohdare class without losing tractability.

4 The Solution with Perfect | nformation

A useful concept in decision analysisperfect information. Although this type of information
rarely exists, it provides an upper bound on the value ofirdafmation since it pictures the “best
case” scenario [4]. In our static problem setting, perfeébrimation implies elimination of un-
certainty about the total demand for each fare class. Theesuient model focuses on the perfect
information from this “a priori” perspective. In SectionWwe solve the perfect information model
approximately and compare our results with the resultstieaibtain after solving the other models
of the previous sections.

Suppose that we decide on the allocation after knowing allrdalized demands. Then, we
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5. Smulation Experiments

obtain the following optimization model

v4(C) :=E (max {f: r; min{x;, D;} | f:ml <C,z; € Z+}> . 4.1)

i=1 i=1

It is obvious thats(C') < v4(C). We may consider the positive differencg(C) — v2(C) as the
expected cost of havinpcomplete information. We now introduce both the partial su#y, :=
> ien, Dj with Dy := 0 and the stochastic proceB& (') := min{0 < n <m | S, < C}. Then
by relation (2.2), the random optimal soluti¢r})?_, for the random demandd;, 1 < i < mis

given by
D,, if i > N(C)
x; =9 C—Sn(), fi=N(C)-1
0, if i <N(C)—1.

The associated random optimal objective value equals

m

vi(C) = Z riD; + (C — Sn(e)) rN(C)-1-
i=N(C)

As in the deterministic case, for each realization this isrgcave function irC'. This shows that

U4(C) =K Z T‘Z'DZ' + (C — SN(C)) TN(C’)—l . (42)
i=N(C)
In general, it seems to be difficult to give an analytical esgion for this expectation and so we
might approximate the above expectation by means of the &Gatlo method [14].

5 Simulation Experiments

To support our theoretical study, we conduct simulationeexpents and report our observations
in this section. We first compare, in the first subsection,nihie-robust static model (2.3) with its
robust counterpart (2.6). In the second subsection, aasirsildy is carried out to compare the
non-robust dynamic model (3.1) with its counterpart (312) see the differences between the static
and the dynamic modeling approaches, we conduct additsamallation experiments in the final
subsection. Using the same data, we also approximate thleetation in the perfect information
model (4.1). We give then the comparison among static, dimand perfect information models.
In all our simulation experiments we have used MATLAB 7.0 greasonal computer with 1.5 GHz
Intel Celeron M processor and 256 MB of RAM.

5.1 Static Models: Non-robust vs. Robust

We have implemented the algorithm given in Section 2.1. Réeat the same algorithm can
also be applied to solve the robust version given in Secti@n As shown in relation (2.10) the
convex subproblem has an analytic solution. Thereforeptihedifference between the non-robust
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5.1 Satic Models: Non-robust vs. Robust

and robust implementations is the calculation of thex C' matrices given by (2.5) and (2.11),
respectively.

We takeM simulation runs with different seeds. In each simulation, ne first generate the
estimated probability vectorg;, € REX+1 1 < i < m. Then we use the algorithm discussed in
Section 2.1 to find the optimal seat allocations of diffefané classes for both the non-robust and
the robust models. We next generateaealizations of the probability vectogs € R+ uniformly
from P;, 1 < i < m. Notice that to find thesg; vectors, one needs to generate uniform samples
from the intersection of an ellipsoid and a hyperplane. T8sge is discussed in Appendix A. After
generating the probability vectogs, 1 < i < m, by Algorithm A.1, we simulate the demand for
each fare class according to these probabilities. The tetahues are then evaluated according to
the non-robust and the robust seat allocations. As ousttati we store the mean and the standard
deviation of the/V realized revenues.

We assume thaf; = 1,1 < i < m. This reflects the “conservative” choice of the decision
maker, where the estimation errors can be large. The distiib of the demand for each fare
classi, 1 < i < m is assumed to be a truncated Poisson distribution with patens)\; > 0
and K. Consequently, the total demand for fare clagsconcentrated of0, - - - , K }. Moreover,
the distribution parameters are sorted in descending oxrdes X\ > --- > ), to reflect the
higher demand for relatively cheaper fare class seats.dm ean, the parameters are uniformly
generated from the intervals;, i;], 1 < ¢ < m. The actual values of the parameters that we use in
our simulation are given in Table 1.

Table 1: The parameters used in the simulation of static teode

Parameters Values
[M,N,K,C,m] [25,250, 100, 100, 4]
(r1,m2,73,74) (2,3, 4,6)
(K1, K2, K3, Ka) (40, 20,10 ,1)
(p1, pi2, 13, pia) (70, 40 ,30,10)

Table 2 shows the simulation results. The first column of #idet gives the run numbers. The
averages ovelN realized revenues for non-robust and robust models aretegpim columns two
and three, respectively. The fourth column gives the redatifferences between the non-robust and
robust revenues in percentages. Similarly, the standatdtans overV realized revenues for non-
robust and robust models are reported in columns five andesigectively. The last column shows
the relative differences in percentages. The runs 7, 8 arib2#bt show any difference between
the corresponding non-robust and robust models becaudmfiormodels the optimal allocations
turned out to be the same. It is clear from the fourth colummatfle 2 that the non-robust model
yields slightly better revenue than the robust version. elmv, as shown in the last column the
solution found by the robust model has, in most cases, signifly less deviation than the non-
robust version. Therefore, we find a stable solution at tipeese of a small decrease in the revenue.
The small difference in the total revenues does not come agase, since it can be easily shown
that the conservative solution found by the robust approaéekls a revenue less than the value
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5.2 Dynamic Models. Non-robust vs. Robust

found by solving the non-robust model.

Table 2: The simulation results for the static models.

Mean Standard Deviation
Run | Robust™  Non-robust® % 100(b — a)/b || Robust®  Non-robust® % 100(d — ¢)/d
1 278.3200 278.4000 0.0287 17.8700 19.0900 6.3939
2 292.5200 292.6300 0.0383 15.8350 18.2530 13.2480
3 263.8100 263.8900 0.0318 11.9040 13.5140 11.9130
4 289.4200 290.1200 0.2413 16.6830 19.6300 15.0120
5 268.8000 269.0000 0.0744 13.1890 15.5750 15.3140
6 286.9000 287.5200 0.2170 17.9980 19.5710 8.0349
7 260.3300 260.3300 0.0000 20.5020 20.5020 0.0000
8 234.9700 234.9700 0.0000 22.5590 22.5590 0.0000
9 286.8700 287.5800 0.2462 15.6510 18.2360 14.1760
10 273.5900 273.8400 0.0906 14.3170 15.5240 7.7740
11 275.3300 275.6800 0.1291 15.6000 16.5110 5.5180
12 285.4900 286.1900 0.2432 12.9710 15.8860 18.3550
13 259.9800 260.0200 0.0154 18.0090 18.7750 4.0777
14 275.6000 276.5600 0.3500 12.8040 14.9030 14.0810
15 277.1200 277.7400 0.2218 11.9320 14.0740 15.2160
16 287.7000 288.2400 0.1887 13.1010 15.2410 14.0350
17 283.8500 284.5100 0.2334 13.1380 15.3610 14.4730
18 299.5600 299.7600 0.0681 17.5140 17.6740 0.9024
19 304.3500 305.3700 0.3340 16.9290 19.6080 13.6630
20 285.9600 286.3300 0.1313 13.2190 15.7330 15.9770
21 289.0400 289.6900 0.2237 15.5990 18.5220 15.7780
22 268.0600 268.1600 0.0403 15.2080 15.5560 2.2364
23 291.6600 292.1000 0.1506 14.8070 17.3390 14.6020
24 264.7100 264.7100 0.0000 23.4670 23.4670 0.0000
25 261.2900 261.4400 0.0581 15.1350 15.4880 2.2761

Since the convex subproblem has an analytic solution, thgpatational time between solving
the robust and the non-robust models is insignificant. Mageathe simulation with the above
parameters (for 25 runs) takes on average less than 3 mintitesrefore, we do not report our
computation times separately. This remark is valid fortedl subsequent results that we report.

5.2 Dynamic Models: Non-robust vs. Robust

We have implemented a dynamic programming algorithm toes(@vl). Since the convex subprob-
lem of the robust model (3.2) has an analytic solution, ohby ¢alculation of the return at each
stage is changed, and hence, the dynamic programming thlgoirnplemented for the non-robust
model (3.1) is slightly modified to solve the robust versi8r2j.

As in the previous subsection, we také simulation runs with different seeds. In each simula-
tion run, we first generate the estimated probability vegipie R™, 1 < ¢t < T. Then we compute
the non-robust and the robust optimal policies by the cpomeding dynamic programming algo-
rithms. Using Algorithm A in Appendix A, we generaf€ realizations of the probability vectors
pe € R™ uniformly from P, 1 < ¢t < T. Given a realizatiorp;, we simulateS times the arrival
process, and then, using the non-robust and robust optintieigs, we compute the corresponding
optimal seat allocations. As our statistics, we store thamaad the standard deviation of tNe< S
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5.3 Cost of Incomplete Information

realized revenues.

Again, we taked; = 1forall 1 < ¢ < T. The probability vectop; of periodt is assumed to
be Dirichlet distributed with parametess;, 0 < ¢ < m. This distribution allows us to generate
realizations that add up to 1, and therefore, we have valtidaaiprobabilities at each periodfor
the fare classes. Notice also that, the parameters of thehl2ir distribution change at every period
t. We assume, as the departure timapproaches, that the requests for cheaper fare classegredu
whereas the requests for the more expensive fare classeasec The details of this implementation
are given in Appendix B. The actual values of the paramel@tsie use in our simulation are given
in Table 3.

Table 3: The parameters used in the simulation of dynamicetsod

Parameters Values
[M,N,S,C,T,m] [25, 25, 10, 100, 200, 4]
(7‘1,7“277'3,7'4) (2,3, 4, 6)
[1_)0,’[_),1)0,1)1,’02,’03,’04]* [1, 2,3,5,4,1, 05]

*See Appendix B for details.

Similar to previous subsection, we report our results inlda@b The columns have the same
meaning as in Table 2. The figures, however, are reported Bver S realized revenues. Our
results with the dynamic model intensify our observatioriththe static model. Again the non-
robust model yields slightly better revenues than the robeision. Nevertheless, as shown in the
last column the solution found by the non-robust model Weldubstantial deviation.

5.3 Cost of Incomplete I nformation

In this subsection we conduct simulation experiments topammthe static model (2.3), the dynamic
model (3.1) and the perfect information model (4.1). Themmadtivation of these experiments is to
check the effect of having additional information as onerhase information in the dynamic model
than the static model, and similarly, as the perfect infagiomamodel includes more information
than the dynamic model.

We takeM simulation runs with different seeds. In each simulation, nre first generate for
1 <t < T the arrival probability vectop; € R’ from a Dirichlet distribution with parameters
vit, 0 < i < m. As we discussed in Section 4, it is difficult to computgC') and solve (4.1)
to optimality. Therefore, we implemented a Monte Carlo athm, which generate®y demand
realizations according te;, 1 < ¢t < T', and then gives a point estimate of (4.2). Next, we compute
the expected optimal revenue by the dynamic model (3.1). dkena fair comparison between the
static and the other two models, we need to compute the deprabdbilitiesp;, = P{D; = k},
1 < k < T, by using the arrival probabilities;, 1 < t < T'. Sincep;; = P{& =r;},0<1i < m,
1<t<T, wehave

T
D; = Z Lig=rs}-
t=1
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Table 4: The simulation results for the dynamic models.

Mean Standard Deviation
Run | Robust  Non-robust® % 100(b — a)/b || Robust®  Non-robust® % 100(d — ¢)/d
1 432.6600 437.3400 1.0692 13.0110 13.7500 5.3766
2 438.1000 443.0200 1.1088 11.8790 15.3450 22.5850
3 425.0600 427.3000 0.5252 12.8420 14.9320 13.9940
4 437.3300 444.0200 1.5071 11.8860 13.7100 13.3050
5 430.9800 435.9200 1.1314 12.3960 14.5080 14.5550
6 427.4600 432.5900 1.1854 11.5500 14.9910 22.9550
7 425.1600 430.3700 1.2092 12.7460 15.4330 17.4100
8 429.7400 436.3800 1.5198 12.0690 14.7410 18.1240
9 424.4900 428.8000 1.0047 12.2520 13.7000 10.5710
10 436.9900 441.6200 1.0480 12.4890 15.5960 19.9190
11 432.2000 438.5200 1.4412 13.1890 14.9990 12.0700
12 439.3000 445.0900 1.3013 12.3520 15.3690 19.6310
13 429.7000 432.5800 0.6658 12.5240 15.2760 18.0190
14 422.6300 425.8800 0.7627 12.4780 13.3760 6.7065
15 435.7100 439.6200 0.8899 11.8290 15.1270 21.8030
16 433.0700 439.2400 1.4061 12.0510 14.2880 15.6600
17 435.6600 439.6900 0.9170 13.4070 14.6110 8.2456
18 426.5100 431.5600 1.1688 11.9030 13.9600 14.7340
19 432.2600 436.7400 1.0240 11.3040 14.2460 20.6540
20 428.3600 431.8700 0.8114 12.7750 13.3550 4.3444
21 426.9800 431.8800 1.1364 11.8540 15.1900 21.9600
22 439.4600 444.4500 1.1232 12.9070 15.4250 16.3230
23 426.9400 430.7400 0.8804 12.9640 14.9580 13.3320
24 432.3400 437.7300 1.2309 12.3330 14.5600 15.2960
25 429.2500 436.4500 1.6488 12.6650 14.1260 10.3490

Since it is assumed that the random varialflesl < ¢ < T', are independent it follows that the
Bernoulli random variables{&:m}, 1 <t < T, are also independent. This shows for every
a € (0,2n) that the discrete Fourier transforR(a) = E(exp(iaD;)) has the form

Pl0) = E(exp(ia(Y",_ L)) = T E(exp(iolie, —,,y)).

Consequently,
E(exp(ialyg,—r,})) = pirexp(ia) + (1 —pir) = 1 — pi(1 — exp(iar))
and so, we obtain
Pla) =TI, (1 — pi(1 — exp(iar)).

It is well known that

T .
1 2mn —2mink
Pik =71 ;P(T 1Pl )

By using the FFT algorithm of the ordéX(T log T'), one can easily recover the probabilitigs [7].

After recovering these probabilities, we compute the etqeoptimal revenue by the static model
(2.3). As our statistics, we store the estimated total regesf the perfect information model and
the expected optimal revenues found by dynamic and statdelsprespectively. The parameters
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6. Conclusion

we use in our experiments are the same as in Table 3 excepatameterS is not required and
N = 1000.

Table 5 shows the simulation results. The second columrs giygoint estimate of the optimal
value of the perfect information model ovér trials. The third and fourth columns include the
revenues found by the dynamic and static models, respctiMee fifth column shows the relative
differences between the perfect information model and thechic model in percentages. Simi-
larly, the last column gives the relative differences bemvehe perfect information model and the
static model. As expected, the model with the perfect infdiam yields higher revenues than both
the dynamic and the static models. However, as the fifth colgshows, the cost of incomplete
information is rather insignificant when the dynamic modetonsidered. On the other hand, the
cost of incomplete information increases as one prefersttte model over the dynamic version.

Table 5: The simulation results for the perfect informatistatic and dynamic models.

Run | Perfect Dynamic®  Static’® [ 100(a —b)/a 100(a —c¢)/a
1 429.0100 427.0300 410.7100 0.4622 4.2666
2 434.2700 432.5000 416.0400 0.4068 4.1983
3 432.2200 430.4100 413.6400 0.4179 4.2990
4 436.5800 434.9000 417.8100 0.3852 4.3001
5 438.1600 436.1400 419.4700 0.4612 4.2660
6 443.5300 441.5500 424.5700 0.4484 4.2762
7 431.6700 430.5000 413.7800 0.2701 4.1437
8 435.7300 434.6000 417.3700 0.2607 4.2145
9 433.0000 431.0500 414.3100 0.4495 4.3152
10 439.1600 437.5400 420.3800 0.3689 4.2776
11 439.1100 437.3000 420.3500 0.4122 4.2723
12 433.9600 432.8600 416.0800 0.2528 4.1208
13 433.0600 431.9100 415.2600 0.2665 4.1104
14 437.8800 437.2700 420.4100 0.1376 3.9897
15 435.7800 435.4300 418.6100 0.0807 3.9400
16 438.0900 436.6900 419.8000 0.3203 4.1761
17 433.6800 432.1600 415.5000 0.3502 4.1921
18 442.6800 440.4200 423.2100 0.5096 4.3969
19 436.7900 435.0000 418.2700 0.4095 4.2407
20 440.7800 439.2500 422.2800 0.3482 4.1968
21 433.7500 431.7600 415.2800 0.4592 4.2579
22 439.8400 438.1700 421.1800 0.3796 4.2412
23 432.9500 431.7200 415.4000 0.2855 4.0547
24 433.6200 432.4200 415.1600 0.2766 4.2556
25 439.3300 436.7800 420.0900 0.5801 4.3810

6 Conclusion

In this study we have shown by means of simulation that theofisgbust versions of the classical
static and dynamic single leg seat allocation problemgiimairevenue management may be worth-
while due to the reduction in variability of the generatederaies. This reduction is much larger as
the reduction in average revenue due to the conservativevimetof the considered robust models.
In a subsequent paper we will consider extensions of the lm@dée network environment.
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A. Uniform Sampling from The Uncertainty Set

APPENDIX

A Uniform Sampling from The Uncertainty Set

Notice that in both static and dynamic model simulation rums need to generate sample vectors
pi, 1 < i< mandp, 1 <t < T, from the intersection of an ellipsoid and a hyperplane of
appropriate dimensions. In our subsequent discussionmitefar ease of notation the subindices
7 andt.

To conduct our simulation experiments, we need to genesaaiple vectorp from the set

P={peRy|pep+Aple=1},

where
4/ \2
A= xequz<7J> <4’
j=1 \Pi

Notice thatpTe = 1. Therefore, if we generate uniform samples from the set

q 2

S = mGRq|Z<2> <6, zTe=0y,
— \DPj
7j=1

then we can set = p + x. Notice thatS defines an ellipsoid on @ — 1 dimensional subspace
(see Figure 2). It is not straightforward to generate unifsamples fromb. However, it is shown
by Fang. et. al. that uniform samples can be easily genefeded unit hyper-spheres [6, Sec-
tion 3.1.5]. Therefore, we next apply two transformationglsat we can transforn§ to aq — 1
dimensional unit hypersphere.

Lety = Az, whereA is aq x ¢ diagonal matrix with nonzero elemertts/ (6p1)),--- ,1/(6pg))-
Using this transformation, the sétbecomes

Sy={yeR?|yTy <1, yTp =0}

Since we want to focus only on the unit hypersphere, we fuiipply a transformation to reflect
the vectoru := (p/||pl|) — 11, wherel; is the unit vector corresponding to the first column of the
identity matrixZ. This transformation is called Householder reflection &nfd it is applied by using
the orthonormal matrix

B=1- iuuT.
uTu

Using nowz = By, the setS, becomes
S, ={2z€R?| 2Tz <1, 2z =0}

Notice that it is now enough to generate a realization of #®@orZ = (Z,,Z», - - - , Z,) uniformly
from S.. Then, usingB~—! = BT and the Jacobian transformation theorén= A~'B~'Z =
A~'BT7Z yields a uniformly distributed vector frorfi as desired.
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A. Uniform Sampling from The Uncertainty Set

Figure 2: A set of uniform samples from the ellipsoid cerdes&p™ = (0.5,0.2,0.3) with § = 1.

To generate a realization of the vectifrom S,, observe that we can equivalently generate a
realization of the vectoZ = (Zo, - - - , Z,) uniformly from theq — 1 dimensional unit hypersphere

S.={z= (20, ,2) ERT | 2Tz < 1}.

It is given on pagd’5 of [6] that the random vectd = RQ is uniformly distributed orf., where
Qis aq — 1 dimensional random vector distributed on the boundar§.ofR. is a random variable
with the distribution function

]P{Rgr}:rq_l,Ogrgl,

and the random variabld?® andQ are independent. Clearly by the inverse transformatiorhatet
we obtain thaR =¢ U@~1"" with U uniform distributed or(0,1). To generate a realization of
the random vecto = (Qq,--- ,Q4—1), we can generate for the compone@s 1 < i < ¢ — 1,
independent standard normal variates and then normakzeetulting vector [6]. The following
algorithm summarizes the steps to generate uniform sarfrplesthe setS. An illustrative set of
samples generated by this algorithm is given in Figure 2.
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B. Generating Arrival Probabilities for The Dynamic Models

Algorithm A.1 Generating uniform samples frof

1. Generate standard normal varialés - - - , N,—; and a random numbér.

2. LetN = (Nl,Ng, s >Nq—1) and set

_ A U@DTN,
NI IVl

0
3. Setz := ( 3 ) and returnc = A~ BTz,
z

B Generating Arrival Probabilities for The Dynamic M odels

In our simulation of the dynamic models, we generate theatwidity vectorsp] = (Dot Dits - Dmt),
1 <t < Tinthe following way:

1. Generate some numbers0 < ¢ < m andug, v satisfying0 < 79 < v < vg, 0 < v, <
V1 < ... < 01 @andu,, < v < vy.

2. Introduce the functions; : R, — R, 0 < ¢ < m given by

Yi(t) =vi + (0 —v;)(1 — exp(—m?t))7 1<i<m

and
mt

70(t) = vo + (Fo — vo)(1 — exp(——7)).

3. Introduce the random vect®® = (Xy,...,X7) € RS:”H)XT consisting of the random vec-
tors
X = (Xoty ooy Xpnt), 1 <t <T

with the random variabl&;;, 0 < i < m, 1 < ¢t < T independent, and for ea¢h, ¢), the
random variableX;; has a gamma distribution with scale paramétand shape parameter
Yi(t).
4. Introduce now for eacfy, t)

Xy

b= Z;'n:o th.
It can be shown that the above procedure generates reatigati of a Dirichlet distributed
random vectop; with parameters(t), - - - , v, (t) [6]. This yields that

7i(t)
> i(t)

Introducing nowi* = min{1 < i < m | v; > v} it follows by the definition of the function
~; that the functiony; is increasing fori > i* and decreasing for < i*. This modeling

E(pir) =
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B. Generating Arrival Probabilities for The Dynamic Models

approach tries the capture the practical assumption tkadrttival intensities are decreasing
for the cheaper fare classes< i* in the total remaining time before departure of the plane
(but always above the arrival intensities of the more experfare classes > i*), while for

the more expensive fare clasges i* are increasing in the remaining time before departure.
Figure 3 illustrates the change of the distribution paramsepver time. Observe farlarge

enough and < i < m that -
Uy

Z;'n:o Uj

andt — IE(p;) is increasing irt for i > ¢* and decreasing far< i*.

]E(@t) ~

'
o v
° A
4L e
i ° LAV
| | [ ]
. o Ay,
" * * Y,
3 r '..“. 0
** .'l.‘Q
* ""anCe,
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Figure 3: The change of distribution parameters over tigie=£ 3, m = 4, T = 30 and
[607671)0a1)171)2a1)371)4]* = [1,273,5,4, 1,05])
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