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How Feedback Can Improve Managerial Evaluations of Model-based Marketing Decision Support 
Systems  

 
 

Abstract  
 

Marketing managers often provide much poorer evaluations of model-based marketing decision support 

systems (MDSSs) than are warranted by the objective performance of those systems.  We show that a reason 

for this discrepant evaluation may be that MDSSs are often not designed to help users understand and 

internalize the underlying factors driving the MDSS results and related recommendations. Thus, there is likely 

to be a gap between a marketing manager’s mental model and the decision model embedded in the MDSS. 

We suggest that this gap is an important reason for the poor subjective evaluations of MDSSs, even when the 

MDSSs are of high objective quality, ultimately resulting in unreasonably low levels of MDSS adoption and 

use.  We propose that to have impact, an MDSS should not only be of high objective quality, but should also 

help reduce any mental model-MDSS model gap. We evaluate two design characteristics that together lead 

model-users to update their mental models and reduce the mental model-MDSS gap, resulting in better 

MDSS evaluations: providing feedback on the upside potential for performance improvement and providing 

specific suggestions for corrective actions to better align the user's mental model with the MDSS.  We 

hypothesize that, in tandem, these two types of MDSS feedback induce marketing managers to update their 

mental models, a process we call deep learning, whereas individually, these two types of feedback will have 

much smaller effects on deep learning. We validate our framework in an experimental setting, using a realistic 

MDSS in the context of a direct marketing decision problem. We then discuss how our findings can lead to 

design improvements and better returns on investments in MDSSs such as CRM systems, Revenue 

Management systems, pricing decision support systems, and the like. 

 

Key words: Marketing Decision Support Systems, Marketing Decision Models, Marketing Information 

Systems, Feedback, Learning 
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1.0 Introduction 
 
Technological and modeling advances have dramatically increased the availability and quality of 

model-based marketing decision support systems (Wierenga, Van Bruggen, and Staelin 1999). Many such 

systems (e.g., database marketing systems, customer relationship management systems, marketing dashboards, 

pricing decision support systems, sales territory alignment systems) are based on decision models, which have 

been shown to improve the objective quality of marketing decision making (e.g., McIntyre 1982, Lodish et al. 

1988, Hoch and Schkade 1996, Silva-Risso, Bucklin, and Morrison 1999, Eliashberg et al. 2000, Zoltners and 

Sinha 2005, Divakar, Ratchford, and Shankar 2005), thus improving managerial and organizational 

performance. However, such decision models and systems are not adopted by marketers to the extent that 

would be expected based on their objective quality (CMO Council Report, June 2006). For example, retail 

industry analysts report that retailers have been slow to adopt pricing decision models that are known to 

improve retail performance (Reda 2002, 2003). Sullivan (2005) reports that only 5 to 6% of retailers use price-

optimization models, while most prefer to use their gut-feel for making pricing decisions. As a consequence, 

“actual retail prices observed over time may differ greatly from model-recommended courses of action” (Nijs, 

Srinivasan, and Pauwels 2006). While there are likely many reasons for the slow and limited adoption of such 

model-based systems (interface complexity, high costs, etc.), the likelihood of adoption of any such system is 

negatively affected when those affected do not recognize its value. And researchers have indeed found that 

marketing managers often do not recognize the value of decision models or support systems, leading to 

increased resistance and impeding system adoption (e.g., McIntyre 1982, Davis 1989, Van Bruggen et al. 

1996).  

We investigate why subjective evaluations of model-based marketing decision support systems 

(hereafter called MDSSs) are often at odds with their known objective quality, and how one can improve 

those evaluations so that MDSSs are more likely to be adopted and used. We propose that marketing 

managers recognize the value of an MDSS when the MDSS is able to bring the marketing manager’s mental 

model of the decision environment closer to the decision model embedded in the MDSS (hereafter referred 

to as the MDSS model), i.e., by helping marketing managers update their mental models. By mental models we 

 2



mean an individual’s mental representation of the relative importance of the various determinants of market 

or individual behavior (see, for example, Day and Nedungadi 1994). We empirically demonstrate the 

effectiveness of two feedback mechanisms in reducing the incongruence between mental models and decision 

models, leading to better managerial evaluations of MDSSs.  

Our 3-Gap framework (Figure 1) summarizes our perspective on the MDSS evaluation problem 

(discussed in detail in Section 2.1). We hypothesize that the magnitude of the gaps between three models of 

the decision environment – the marketing manager’s mental model, the MDSS model, and the unknown true 

model (which generates data in the real world, but is only partially observed ex-post) – determines the 

marketing managers’ decisions, the consequent outcomes, and MDSS evaluations. As an example, consider 

the Recency-Frequency-Monetary Value model, a popular decision model used to select customers for direct 

marketing campaigns. This model can be parameterized by managers a priori (i.e., subjectively, based on their 

experience) or by using a variety of statistical techniques to determine the weights to be placed on each of the 

three factors in a customer selection task (Bult and Wansbeek 1995).  To provide high quality decision 

support, the gap between the MDSS model and the true model must be small (Gap 2 in Figure 1), which is 

the aim of researchers who develop better statistical techniques in marketing. A large marketing and 

management science literature is focused on reducing Gap 2.  

However, marketing managers' actions--reflecting their subjective weights noted above--often differ 

significantly from the recommendations of decision models (Van Bruggen et al. 1996).  Such differences 

induce a form of dissonance that can lead to discomfort with the MDSS and its recommendations. For an 

MDSS to be favorably evaluated (and hence, ceteris paribus, more likely to be adopted and used), we 

hypothesize that the MDSS should help marketing managers internalize the reasoning of the high-quality 

MDSS model, because that internalization will make users feel comfortable with the MDSS recommendations. 

This internalization will reduce the gap between the MDSS model and the mental model (Gap 1 in Figure 1). 

By definition, if Gap 2 is small, reducing Gap 1 helps users form a better understanding of the mechanism 

that drives the real world observations (reducing Gap 3). Therefore, what is required for improving subjective 
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evaluations of MDSSs is a mechanism to help marketing managers update their mental models to be more 

closely aligned with the MDSS model.  

In this paper, we show that a dual-feedback MDSS, one that incorporates feedback both about upside 

potential (i.e., how much more can be gained by internalizing the MDSS model) and feedback on corrective 

actions (i.e., guidance on how the marketing manager’s mental model should be corrected) produces 

significant mental model updating while single feedback MDSSs produce only marginal mental model 

updating. That mental model updating, in turn, leads to better subjective MDSS evaluations than when little 

or no mental model updating occurs, i.e. for MDSSs with only one type or no feedback. 

The paper is organized as follows. We first present a conceptual framework that identifies why the 

gap between the user’s mental model and the MDSS model influences MDSS evaluation. We also review 

previous research on how to improve the quality of decision support systems, and show that past research 

does not address the fundamental source of the MDSS evaluation problem. Then we develop a model of how 

dual feedback on upside potential and corrective actions helps in updating users’ mental models. We develop 

specific hypotheses and then test them in a realistic experimental setting. We conclude by discussing the 

theoretical and practical implications of our work. 

2.0 Mental Model Changes, MDSS Evaluation, and MDSS Design 

2.1 The Effects of Mental Model Changes on MDSS Evaluation 

Users of high quality MDSSs often perform better by simply implementing MDSS recommendations 

in a mechanistic fashion, but without necessarily understanding the rationale behind the MDSS’s 

recommendations. We propose that this lack of understanding reflects a fundamental gap between the MDSS 

model and the user’s mental model of the decision environment. If the gap between the MDSS model and the 

mental model (Gap 1 in Figure 1) is large, the MDSS model’s recommended course of action and that implied 

by the user’s mental model are likely to vary, resulting in conflicting information about the appropriate 

decision. Such conflicting information results in high uncertainty (Einhorn and Hogarth 1980). In line with 

research on risk-adjusted preference (Keeney and Raiffa 1976, Roberts and Urban 1988, Rust et al. 1999), the 

objective quality of the MDSS is then likely to be discounted by a risk-averse marketing manager to account 
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for the high uncertainty, leading to poor subjective evaluations. Therefore, one potential source of the MDSS 

evaluation problem lies in the inability of current MDSS designs to change decision makers' mental models, 

i.e., to close the gap between the user’s mental model and the MDSS model (Gap 1 in Figure 1). As a 

consequence, we suggest that the greater the change of the mental model in the direction of the MDSS model, 

the better is the evaluation of the MDSS that is used to effect the change (formalized later as Hypothesis H1 

in Section 2.3). Note that this expected effect assumes that the MDSS model is of high objective quality 

(small Gap 2) and that it is much better in quality than the user’s mental model (large Gap 1). This 

assumption about a small Gap 2, consistent with much of the marketing science literature (see Eisenstein and 

Lodish, 2002, for example) is one we make throughout and control for explicitly in our empirical work below.    

As noted earlier, much of the work in marketing science and operations research focuses on 

developing decision models that accurately represent a real world data-generating process (small Gap 2). On 

the other hand, researchers interested in the design of decision support systems have explored factors that 

lead to greater system usage and/or better performance. These factors include “task-technology” fit (Lim and 

Benbasat 2000), tabular vs. graphical presentation format and color (e.g., Benbasat and Dexter 1985), fit 

between cognitive style and presentation format (Ramaprasad 1987), accessibility (e.g., Mawhinney and 

Lederer 1990), adaptability/flexibility (e.g., Udo and Davis 1992), perceived ease of use and usefulness (Kim 

and Malhotra 2005), information quality and systems quality (e.g., Delone and McLean 1992), and 

restrictiveness of the system guidance (Silver 1990).  

Although the DSS design literature helps identify the drivers of MDSS usage, there is much evidence 

that users do not appear to value MDSSs (Wierenga, Van Bruggen, and Staelin 1999; Lilien et al. 2004) and 

that users are slow to adopt high quality MDSSs (Montgomery 2005). Pauwels (2004) suggests that feedback 

loops are essential to improve the effectiveness of MDSSs. However, it appears that researchers have paid 

little attention to the different types of feedback and the central role that those types of feedback play in 

reducing the gap between mental model and the MDSS model, therefore enhancing MDSS acceptability.  

2.2 Effects of Feedback on Mental Model Changes (reducing Gap 1 in Figure 1) 
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To be recognized as valuable and providing an (expected) return on investment, MDSS design must 

incorporate characteristics that induce learning, i.e., a change in the user’s mental model that improves 

his/her performance. The change in mental models could be of at least two types – (i) a relatively permanent 

deep change, or (ii) a transient change that disappears when the MDSS is unavailable. We formally define 

these changes as follows: 

Deep learning is a change in an individual’s mental model that endures over time and/or 
over changes in conditions – in other words, a change that concerns “the relatively 
permanent acquisition of skills, understanding, and knowledge” (Goodman 1998, pg. 224). 
 
Shallow learning, in contrast, is a change in an individual’s mental model that occurs “only 
in the presence of external feedback or other conditions of practice, but disappears over 
time or when the supportive conditions are eliminated” (Goodman 1998 pg. 224; also see 
Kluger and Denisi 1996, pg. 278).   

 
A permanent change will tangibly reduce the uncertainty about the MDSS recommendations, i.e., 

reduce (cognitive) dissonance, resulting in improved MDSS evaluations, while a transient change, i.e., shallow 

learning, will not influence a marketing manager’s uncertainty about the MDSS recommendations. Our main 

interest, therefore, is in how deep learning comes about because we expect deep learning to affect MDSS 

evaluation. Goodman, Wood, and Hendrickx (2004) suggest that deep learning, i.e., a relatively permanent 

change in mental models, is most likely to occur when individuals (i) are motivated to, and actually exert 

effort, to change their mental model, and (ii) are provided guidance on how to modify that mental model. We 

formalize the joint effect of effort and guidance on deep learning as Hypothesis H2 in Section 2.3. We 

propose further that feedback on upside potential and corrective actions together provide the necessary levels 

of effort and guidance for users to significantly update their mental models. Next we describe how each type 

of feedback individually influences effort and guidance, and therefore affects learning.  

2.2.1 Effects of Upside Potential Feedback on Effort and Learning. Information about upside 

potential addresses the following question – how much better can the marketing manager perform relative to 

current performance? For example, the sales module of the Siebel CRM system provides a salesperson with 

information such as the sales achieved by the best performing salesperson, or the sales levels in the best 

performing sales territory, providing a proxy for upside potential. Upside potential feedback helps managers 

set specific (and challenging) goals, resulting in increased individual and collective effort to achieve those 
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goals (Locke et al. 1981, Bandura 1997). Chenoweth et al. (2004) show that users of decision support systems 

are willing to put in more effort to learn complex models when they know the upside potential of using 

complex models.  

However, several researchers have shown that while effort increases with more challenging goals, 

that increased effort does not necessarily lead to deep learning because such goal-oriented behavior can direct 

the individuals’ attention on the self, rather than on the task (Wood et al. 1990). As a result, task-learning 

processes are not activated (Kluger and Denisi 1996), leading to only shallow learning and poorer out-of-task 

performance. Upside potential feedback helps the marketing manager set specific and challenging goals (for 

e.g., match the best salesperson’s performance), but does not provide the feedback necessary to learn how to 

perform better. Earley et al. (1990) found that the relationship of goal-setting to learning and performance is 

greatly enhanced when individuals are provided with feedback about how to correct their strategies.  

In summary, upside potential feedback will induce increased effort, but may direct attention away 

from task-learning processes, resulting in increased effort without appropriate guidance. So if upside potential 

feedback were to be combined with feedback that focuses attention on the task, we would expect marketing 

managers to exert the increased levels of effort and obtain the guidance necessary to obtain a significant level 

of deep learning. The effect of upside potential feedback on learning is summarized in Figure 2a. 

2.2.2 Effects of Corrective Feedback on Guidance and Learning. Corrective feedback, also 

called process feedback (Earley et al. 1990), can improve decision making, particularly in complex tasks, by 

increasing attention to task-learning processes and improving the quality of decision making (Balzer et al. 

1992, Kluger and DeNisi 1996). This attention to task-learning processes improves performance. However, 

research also suggests that such feedback effects might only be transient – removal of the feedback can bring 

performance back to where it originally was (Goodman 1998, Denisis and Kluger 2000, Goodman, Wood, 

and Hendrickx 2004). Thus, corrective feedback might only lead to shallow learning, not deep learning, 

because individuals adjust behavior by using the feedback rather than by focusing on understanding the task. 

Atkins et al. (2002) find that if feedback is presented such that it is very easy for decision-makers to derive 

guidelines for action, that feedback may cause decision-makers to derive these guidelines from the 
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information presented and not exert the effort to understand the rationale underlying these guidelines. They 

argue further that learning should benefit from feedback to the extent that feedback promotes the exploration 

and information-processing activities, both of which require effort from individuals. Goodman, Wood, and 

Hendrickx (2004) state that, “Essentially, feedback does the work for the performers, making it seemingly 

unnecessary for them to engage in the exploration, information-processing, and recall activities essential for 

learning.” (pg. 249).  

In summary,  corrective feedback  directs attention to the task and task-learning process but also 

leads to less exploration and less effort, which are both  necessary to obtain deep learning. The result then is 

increased guidance without increased effort, resulting in low levels of deep learning. The effect of corrective feedback 

on learning is summarized in Figure 2b. 

2.2.3 Effects of Combining Upside Potential Feedback and Corrective Feedback. The 

arguments above suggest that these two types of feedback should be viewed as complementary mechanisms, 

each providing what is missing in the other; if the two feedback mechanisms are combined, the result should 

be an increase in guidance and effort, leading to deep learning The combined effects of upside potential and 

corrective feedback are summarized in Figure 2c.  

2.3 Theoretical Model and Hypotheses 

Figure 3 provides a summary of our theoretical framework, relating the two types of feedback in an MDSS to 

effort and guidance, deep learning, and MDSS evaluation, as well as a summary of the key results obtained 

from an empirical test, developed later. Our process model is as follows: 

(M1) 01 11β β ε= + ⋅ 1MDSS Evaluation DeepLearning+   

(M2) ( )02 12 22 32 2DeepLearning Effort Guidanc Effort×Guidanceeβ β β β= + ⋅ + ⋅ + ⋅ + ε  

(M3) 03 13 23 3UPSIDE POTENTIAL FEEDBACK CORRECTIVE FEEDBACKβ β β= + ⋅ + ⋅ +Effort ε  

(M4) 04 14 24 4UPSIDE POTENTIAL FEEDBACK CORRECTIVE FEEDBACKβ β β= + ⋅ + ⋅ +Guidance ε  
 
Our first hypothesis relates MDSS evaluation to the relatively permanent change in mental models:  

H1 An increase in deep learning leads users to provide more favorable evaluations of the MDSS. 
Therefore, we expect β11 > 0.  

We then hypothesize that it is the combination of increased effort and guidance that leads to deep learning. 
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H2 The interaction of effort and guidance will have a positive effect on deep learning. Therefore, we 
expect β32 > 0. 

We also hypothesize that neither effort nor guidance alone leads to deep learning: 

H2.1 An increase in effort without guidance does not lead to deep learning. 
 Therefore, we expect β12 = 0. 

H2.2 An increase in guidance without effort does not lead to deep learning. 
Therefore, we expect β22 = 0. 

Per our discussion in Section 2.2.1 and 2.2.2, effort increases when a marketing manager is provided with 

feedback on upside potential, but effort does not increase with corrective feedback. Accordingly, we expect 

β13 > 0, but β23 = 0. On the other hand, guidance is influenced by the presence of corrective feedback, but 

not by feedback on upside potential.  Accordingly, we expect β24 to be > 0, but β14 =0.  Our expectations 

about these parameters serve as manipulation checks in our empirical analysis. Models M1-M4 comprise a test 

of the process model proposed in Figure 3.  

3.0 Empirical Study 

 We designed our empirical study to incorporate a challenging set of criteria. We sought:  

(i) a decision environment comparable in realism to those faced by marketing managers,  
(ii) a decision environment sufficiently complex so that marketing managers would benefit from using a 

MDSS, but not so complex as to be outside the skill range of our research participants, 
(iii) an MDSS whose underlying model sufficiently captures the real-world phenomenon (i.e., a small Gap 

2 in Figure 1),  
(iv) a context that would allow us to measure the user’s mental model unobtrusively,  
(v) a task in which we would be able to embed the MDSS with each of the types of feedback (upside 

potential feedback and corrective feedback), both individually and jointly, 
(vi) a task that would allow us to measure deep and shallow learning unobtrusively, and 
(vii) a task that would allow us to measure the process variables of interest (effort and guidance). 
  

Criteria (i)-(iv) relate to design of the overall context of the study, while criteria (v)-(vii) relate to the 

design of the specific experiment to test our hypotheses. With respect to criterion (i), we note that to assess 

mental model changes (i.e., learning), we must provide immediate and accurate feedback to MDSS users 

about the relationship between the decisions they make and the corresponding market response. Tversky and 

Kahnemann (1987, p. 90) suggest that such feedback is often lacking in real world situations because, (1) 

outcomes are commonly delayed and not easily attributable to a particular decision/action; (2) variability in 
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the environment degrades the reliability of the feedback, especially where outcomes of low probability are 

involved, (3) there is often no information about what the outcome would have been if another decision had 

been taken; and (4) important decisions are often unique and provide little opportunity for learning. 

Therefore, to obtain both realism and control, we tested our hypotheses under controlled experimental 

conditions using a frequently occurring and realistic decision problem for which we could offer immediate 

feedback with known reliability. Such control is very difficult to effect in a field study.  

We now describe the design of the study context and the experimental procedure. 

3.1 Design of the context 

The solicitation of donations through direct mail for non-profit or charitable organizations provides a context 

that corresponds to the above criteria. In the US alone, direct mail is the medium that accounts for between 

$20 billion and $25 billion of the charitable educational and social change dollars contributed annually (Lister 

2001, p. 2). Direct marketing managers in charitable organizations typically solicit donations using large 

databases of potential donors. Each solicitation has a cost attached to it, and donation amount is donor-

specific, so that it is critical for the direct marketing manager to identify the most likely (and high value) 

donors. This situation, in turn, requires the marketing manager to have an understanding of the factors that 

influence the donor’s likelihood of donation – that is, a mental model of the drivers of donation. MDSSs are 

often used by direct marketing manager to assist them in selecting high potential donors, and “it is not 

uncommon for self-serve direct marketers to realize a 20% to 350% increase in response rates simply by 

using [direct marketing decision support] software” (MarketMiner AnalystTM website, 

www.modelingautomation.com). In our study, we asked participants to assume the role of a direct marketing 

manager of a large nonprofit charity, and we provided them with a MDSS to assist in their decision making. 

Their main task was to identify the most attractive donors from a database of past donors for solicitation in a 

direct marketing campaign. This context satisfies the ‘realism’ criterion (i).  

3.1.1 Decision Environment: To satisfy criterion (ii), we sought a decision environment that would 

be sufficiently complex, but not outside the skill range of our participants. A direct marketing decision 

environment that is complex enough to require the use of an MDSS to select customers involves a large 
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database (200,000 in our case) of  (hypothetical) donors, described on four characteristics – their recency of 

donation (the number of quarters since last donation), their frequency of donation (the number of donations 

the donor has made in the past 5 years), their amount of past donations (the average donation amount, in 

dollars, observed in the past for this particular donor), and the donor’s age. The first three characteristics are 

often used by direct marketing firms in targeting models, typically referred to as RFM (Recency-Frequency-

Monetary Value) models. We added age to the model to increase the complexity of the decision environment. 

In line with the most common models of purchase probability (Agresti, 2002) we modeled the probability 

that a particular donor would make a donation, if solicited, by a logit function as follows: 

(1)    ( )1/ 1 (5 ( / 20))expp X= + −

where X is called the donor's “attractiveness”, and is given by: 

(2)   ( ) ( ) ( ) ( )0 1 2 3 4recency frequency amount ageX β β β β β= + × + × + × + ×  

The parameters of the “true” data generating model were { }20, 20,40,10,30β = − . In line with these 

parameters, we informed participants at the start that donors were more likely to donate if they had donated 

more recently, donated more frequently in the past five years, donated  greater amounts, and if they were 

older. (To easily operationalize the weights for β above, we rescaled the variables to account for differences in 

units of measurement.). 

We generated a database of customers to satisfy two criteria: first, the probabilities of donation in our 

database should be similar to those observed in actual not-for-profit databases and second, the characteristics 

should be generated so that the each donor could be described on a 0 to 100 attractiveness scale with an 

average at the midpoint, so that we could subsequently ask participants to rate each donor on the same scale. 

To satisfy these criteria, we generated donor characteristics from uniform distributions between 0 and 1, 

(accounting for the rescaling noted above) independent of one another, and incorporated these values within 

the functional form of the logit function described in equations (1) and (2). As a result, a donor's true 

attractiveness varied between 0 and 100 with an average of 50, and donors' probability of donation varied 

between 0.67% and 50% with an average of 7.6%. Although average response rates, in practice, vary widely 
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for different charities, an average response rate of 7.6% falls within industry averages for “warm” donors (see 

http://www.fundraising.co.uk/forum/thread.php?id=500 ). 

As per criterion (iii) for the design of our empirical study, we wanted an MDSS model that would be 

sufficiently close to the true data-generating model. Therefore, we designed Gap 2 to be small by constructing 

an MDSS model that was identical to the true model in terms of the weights of each factor. To obtain a 

sufficient level of realism, we added random error to the true model in equation (1) so that the actual 

donations from donors could be predicted only approximately. In expectation, the true model and MDSS 

model were identical. 

3.1.2 Calibrating Participants’ Mental Models: To satisfy criterion (iv), we devised an unobtrusive 

and unbiased mechanism to calibrate the participant’s mental model. We designed our study so that 

participants made a sufficient number of decisions at one time to allow us to unobtrusively calibrate their 

mental models, similar to Kunreuther’s (1969) work on estimating managerial decision coefficients. Such a 

process allowed us to infer their mental model without having to actually ask the participants to reflect on 

their mental processes. The latter method suffers from significant biases (Rowe and Cook 1995) that our 

unobtrusive method avoids. We asked each participant to rate 20 donors from the database on how attractive 

each of the donors was for selection in a marketing campaign, using a 0 to 100-point sliding scale. These 20 

donors were described along the four drivers of donation behavior – recency, frequency, donation amount, 

and age. We provide a screen shot of the participant’s task in Figure 4.    This rating process (after rescaling 

and sorting) corresponds to the typical scoring mechanism that emerges in most direct marketing DSSs (see 

David Shephard Associates, 1999) who sort a prospect list for an offer from most to least attractive.   

To obtain an unobtrusive measure of the participant’s mental model, we related their donor ratings 

statistically to the descriptions of the 20 donors and thus inferred the implicit weights participants placed on 

the four factors. To estimate this relationship, there must be sufficient variation in the description of the 

donors on each of the four factors and the factors must not be multicollinear, allowing for independent 

estimation of each weight. While a fractional factorial design is typically the design choice in such cases, the 

number of profiles that our participants would have to rate made that approach infeasible. Therefore, we 
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generated donors’ characteristics (recency, frequency, etc.) so that extreme values were represented more 

often in the sample than in the population, while spanning the entire parameter space. To avoid 

multicollinearity, we randomly permuted donors’ characteristics in the participant's rating sample, until no 

inter-item correlation was higher than 0.15. 

Once a participant submitted his or her ratings, we estimated a linear regression model to determine 

the implicit weights (β 0', β 1'… β 4') that participant placed on recency, frequency, donation amount and age. 

We then applied this calibrated mental model to the larger database of 200,000 donors to determine who to 

solicit and who not to solicit. We told participants that each solicitation costs $2 and, if successful, would 

generate a constant $20 donation (to keep the task within participant skill range, criteria ii), yielding a 

profitability threshold of 10% probability of donation. We applied the estimated mental model to the entire 

database, computing X' and p' for each of the 200,000 donors, and soliciting those donors with p'>0.1. In 

addition to the marginal costs of solicitation, the fundraising campaign was subject to fixed costs of $10,000. 

To determine whether a solicited donor actually made a donation, we drew a random number z from a 

uniform distribution [0,1] for each donor, and each solicited donor made a donation of $20 if z  was less than 

the true probability of donation (p). Note that if participants provided perfectly accurate scores (X=X'), 

mental model parameters would be equal to true parameters (β = β'), and the solicitation strategy would be 

optimal.  

To assist the participants in their decision-making, we provided them an MDSS to select attractive 

customers from a database. We addressed the issue of  incentive alignment by informing participants in all 

conditions that the amount of money they earned would be directly proportional to their financial 

performance. Participants were paid 0.015% of their financial performance on Task 1 and Task 2 (described 

more fully in the next section), in addition to a $15 participation payment. .  

3.2 Design of the experiment (manipulations and measurements) 

We summarize the sequence of steps in our experiment in Box A of Figure 5. Our experiment consisted of 

three main parts, addressing study design criteria (v), (vi), and (vii) respectively. 

 13



3.2.1 Part 1 of the Study: Using the MDSS. In Part 1 of the study, we asked participants to rate the 

same 20 donors in each of ten simulations. The participants had access to an MDSS to help them determine 

the best possible ratings. In each simulation, participants rated the 20 donors, submitted those ratings to the 

MDSS simulator, and obtained the MDSS’s prediction of the performance of the campaign based on the 

participants' donor ratings. In the background, we calibrated the regression relationship between the 

participants' ratings and the description of the 20 donors on the four factors. The MDSS was therefore both a 

support tool for users to make decisions, and also a research tool to measure users’ mental models.  

We varied the feedback provided by the MDSS to reflect the two types of feedback under study.  We 

varied upside potential feedback at two levels (present or absent) and corrective feedback at two levels 

(present or absent), for a design with four cells. Both types of feedback were absent in the control condition, 

in which we only provided participants with information about the expected performance of the donor 

ratings. Our four conditions were: 

1. “CONTROL CONDITION”: The participant was only informed of the expected performance of the 

donor ratings. For example:  

The MDSS predicts that a marketing campaign based on your ratings 
would generate $76,654 in revenue. 

 
2. “UPSIDE POTENTIAL FEEDBACK”: In addition to information about the expected performance, the 

participants in this condition were also informed of the maximum financial performance they could 

have achieved if they had been able to uncover the 'true' attractiveness scores of the 20 donors. For 

example:  

The MDSS predicts that a marketing campaign based on your ratings 
would generate $76,654 in revenue. 
The MDSS predicts that it would be possible to generate up to 
$99,934 in revenue from this database. 
 

3. “CORRECTIVE FEEDBACK”: In addition to information about the expected performance of the donor 

rating strategy, participants in this condition were given feedback on whether they were placing too 

much or too little weight on each of the four factors. To operationalize this feedback, we compared 

the participants' mental model parameters to the parameters of the MDSS model. For example: 
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The MDSS predicts that a marketing campaign based on your ratings 
would generate $76,654 in revenue. 
Here is some corrective feedback that will help you improve your 
ratings. In developing your ratings for these donors: 
- you assume a relationship between recency and donating 

behavior that is opposite to what is known.  
- you are greatly overestimating the importance of frequency. 
- you are underestimating the importance of age.  
 

4. “ALL”: In this condition, we provided participants with feedback on expected outcome, upside 

potential, and corrective actions (conditions 1-3 above), in that order. For example:  

The MDSS predicts that a marketing campaign based on your ratings 
would generate $76,654 in revenues. 
The MDSS predicts that it would be possible to generate up to 
$99,934 in revenue from this database. 
Here is some corrective feedback that will help you improve your 
ratings. In developing your ratings for these donors: 
- you assume a relationship between recency and donating 

behavior that is opposite to what is known.  
- you are greatly overestimating the importance of frequency. 
- you are underestimating the importance of age.  

(Note that all feedback was dynamically generated and customized, based on the actual ratings 

provided by each participant).   

Participants were randomly assigned to one of the four feedback conditions. To provide an incentive 

for participants to focus on the task during the simulations, we informed them that they would be required, 

after completing the ten simulations, to rate the same donors for a real direct mail campaign that we refer to as 

Task 1. We calibrated their mental model based on their Task 1 ratings.  

3.2.2 Part 2 of the Study: Measuring Learning. Our goal in Part 2 is to measure deep and shallow 

learning. Per our definition of deep learning, we sought a measure of mental model change that survives 

when feedback is removed and the task is changed. Therefore, in Task 2, we asked participants to rate 20 

donors who were different from those in Part 1. To ensure they applied their (updated) mental model of 

donor behavior to this task, we told them that the 20 new donors were from the same database used in Task 

1, so the extent to which each factor impacted donor behavior was the same for these new donors as it was 

for the donors in Task 1. Because we were only interested in measuring their mental model at this stage, we 

did not provide the participants access to an MDSS, i.e., there was no feedback for this set of ratings. 
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We then constructed a measure of mental model accuracy – the distance between the true model 

(which in our study is identical, on average, to the MDSS model) and the mental model. We sought a measure 

of mental model accuracy that reflects the participant’s ability to judge the relative importance of those 

factors. A measure that satisfies this criterion is as follows: 

(3) , ( )
0.5

2
t j jt j

j
ω β β⎡ ⎤′= ⋅ −∑⎢ ⎥⎣ ⎦

WED

where t is the task (t=1, 2), is the tWED Weighted Euclidian Distance between the mental model and the true 

model in task t, jω is the true importance of the jth (j=1 - 4 in our study) driver of donation behavior, jtβ′  is 

the mental model parameter associated with the jth driver of donation behavior in task t, and jβ  is the true 

parameter associated with the jth driver of donation behavior.  is a measure of mental model accuracy 

(Gap 3) in our study (we note here that accuracy increases as decreases). Weighting the distance between 

coefficients by

tWED

tWED

jω implies that a mental model that is close to the true model on the most important drivers is 

better than a mental model that is close to the true model on the less important drivers. Note that per our 

study design, if the mental model were to converge to the MDSS model, then, on average, Gap 3 is identical 

to Gap 1 and j jω β= . (We obtained substantially equivalent empirical results with an equally weighted, 

simple Euclidean distance measure, suggesting that our results are not sensitive to our choice of this metric).  

 We provide a graphical explanation of our learning measures in Box B of Figure 5, relating those 

measures to each step of the experiment. The participant’s initial mental model accuracy is measured by 

, calibrated using the mental model parameters from the first simulation in the same manner as . 

The difference between and  is a measure of the change in mental model accuracy that is due 

to the participant’s use of the MDSS. Part of this change is a result of an internalization of the MDSS model, 

i.e., deep learning, and part is a transient change that will disappear with the removal of the feedback, i.e., 

shallow learning. Asking participants to complete Task 2 gives us the ability to independently calibrate each 

part, explained next.  

0WED tWED

0WED 1WED
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A rather persistent change in the mental model would be reflected in the extent to which the mental 

model in Task 2 is more accurate than that in the initial simulation. Therefore, we construct our measure of 

deep learning by taking the difference between , mental model accuracy in Task 2, and , the 

accuracy of the initial mental model. We define deep learning (DL) as, 

2WED 0WED

(4)  ( )0 2= −DL WED WED . 

In contrast to deep learning in equation (4), if mental model accuracy in Task 1 is much greater than 

that in Task 2, it indicates that the accuracy of the mental model in Task 1 was a result of the participant 

being mechanistic in their approach to the task – an approach that would lead to decision quality 

deterioration if conditions were changed, as in Task 2, with a new set of donors. We define shallow learning 

(SL) as: 

(5)  ( )2 1= −SL WED WED . 

While Parts 1 and 2 of our study allowed us to manipulate feedback provided by the MDSS and 

measure participants’ mental models, we also needed to measure process variables and MDSS evaluation, 

which are described next.  

3.2.3 Part 3 of the Study: Subjective Construct Assessment. The main process variables of 

interest here were effort and guidance. After participants completed Tasks 1 and 2, but before they were 

informed of the financial performance results, we asked them to complete a questionnaire measuring effort 

(four items adopted from Lilien et al. 2004: “I was totally immersed in addressing this problem”, “I took this 

task seriously”, “I put in a lot of effort”, and “I wanted to do as good a job as possible no matter how much 

effort it took”), and guidance (“The MDSS gave clear guidance on how I could do better”). As a proxy 

measure of effort, we also recorded the time spent by each participant on the simulations and the two tasks. 

After being informed of their results, participants evaluated the MDSS (“I would definitely recommend an 

MDSS like the one I had available to direct marketers”). All items were 5-point Likert scale questions, with 

1=completely disagree, and 5=completely agree. Additionally, participants were asked to respond to multi-

item scales on perceived usefulness of the MDSS, perceived ease of use of the MDSS, perceived enjoyment of 

the task, decision confidence, and decision style.  
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3.3 Sample and Experimental Procedure 

We sought participants who would be appropriate surrogates for direct marketing managers. Such 

participants had to have well-formed mental models of the drivers of donor attractiveness prior to the 

experimental study. Hence, we recruited 81 MBA students at a large northeastern U.S. university, who had 

been exposed to RFM models in at least one of their courses, to assume the role of the direct marketing 

fundraising manager. We randomly assigned participants to one of the four conditions. We sought a measure 

to determine whether our participants’ mental models were well-formed (i.e., not random).  One such 

measure is the R–Square associated with the calibration of each participant’s initial mental model (simulation 

1). The R-Square measure captures the consistency of the model used by the participant to rate each donor, 

indicating whether the initial mental model was well-formed (high R-Square) or poorly-formed (low R-

Square). The R-Square for our participants ranged from 0.13 to 0.99, with a tri-modal distribution. A group of 

three participants had R-Squares between 0.13 and 0.20, a second group (6 participants) between 0.34 and 

0.49, and a final group (72 participants) between 0.58 and 0.99. Based on the structure of the empirical 

distribution, we classified those participants with R-Squares under 0.58 as having ill formed mental models 

and excluded them, leaving us with 72 participants for analysis. The final sample resulted in 16-20 participants 

per condition. Participants earned between $23 and $46, with the average payment being $37. They took an 

average of 35 minutes to complete the two tasks, with times ranging from 14 to 77 minutes. 

3.4 Analysis 

Figure 3 and Models (M1)-(M4) sketch the process model of the effect of MDSS design characteristics on 

deep learning and MDSS evaluation. There are several sub-models embedded within this framework, with 

errors that are likely to be correlated. For the empirical analysis, we included two additional terms in Model 

M1 to control for shallow learning and their individual financial compensation, as follows: 

(6) 01 11 21 31β β β β= + ⋅ ⋅ ⋅ 1MDSS Evaluation DeepLearning+ ShallowLearning+ Financial compensation+ε  . 

We estimated the parameters of the four models simultaneously with a full information maximum likelihood 

(FIML) routine in SAS. This procedure simultaneously estimates all models in a system, assuming correlated 

errors across those models.  
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3.5 Results 

Results of estimating models (M1)-(M4) are shown in Table 1. We hypothesized that users’ evaluations of the 

MDSS depend on the extent to which they had internalized the MDSS model (Hypothesis H1; Part A of 

Table 1). We find strong support for H1 (β11= 0.045, p<0.01). We also find that shallow learning is not a 

significant driver of MDSS evaluation (β21= -0.001, ns), further supporting our theory that MDSS evaluation 

depends on a significant updating of mental models. We also find that financial compensation is not a 

significant driver of evaluation (β31= 0.01, ns). These results show that deep learning is a significant driver of 

MDSS evaluation, after controlling for shallow learning and financial compensation, supporting H1. 

 Next, we tested Hypothesis H2, i.e., whether deep learning is affected by the combination of effort 

and guidance. The results (Part B of Table 1), support H2 (β32= 3.39, p<0.05)1. This result shows that the 

combination of effort and guidance is a significant driver of deep learning. The intercept term is not 

significant, indicating that deep learning does not occur without effort and guidance. The coefficients for 

effort and guidance are not significant, indicating that neither of these process variables alone is capable of 

obtaining deep learning. These results support hypotheses H2.1 and H2.2.  

Process effects (i.e., manipulation checks) are shown in Part C of Table 1. Effort was significantly 

increased by the presence of upside potential feedback (β13= 0.29, p<0.01). In contrast, effort decreased with 

corrective feedback (supporting H4.1; β24= -0.23, p<0.05). While we did not expect this significant negative 

effect, it is not entirely surprising considering the findings in the literature that corrective feedback leads to 

less inclination to exert effort (Atkins et al. 2002). Guidance, the other process variable, significantly increased 

in the presence of corrective feedback (β24= 0.88, p<0.01). As expected, guidance was not affected by the 

presence of upside potential feedback (β14= 0.21, ns).   (We also estimated Models (M1)-(M4) using “time 

taken to complete the simulations and tasks” as a proxy measure of effort, with similar results).  

Our Model (M2) results show that the interaction of effort and guidance produces deep learning. In 

other words, effort and guidance combine in complementary ways to help marketing managers update their 

mental models. But what is not clear is whether the combination of effort and guidance (i.e., 
                                                 
1 We controlled for the time taken by the participant in Model (M2), obtaining substantively similar results.  
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Effort×Guidance) is significantly greater in the ALL condition than in the other conditions. In Table 2, we 

show that the combination was significantly greater in the ALL condition than in the UPSIDE POTENTIAL 

FEEDBACK (difference =2.98, p<0.01, two-tailed) or CORRECTIVE FEEDBACK (difference = 1.76, p<0.05, two-

tailed) conditions. These aggregate results are consistent with our process model (see Figure 3).  

Table 3 (Column A) summarizes the tests of whether there was significant deep learning in each of 

the four conditions. We find that deep learning is significantly different from zero in the ALL condition 

(mean = 12.45, p<0.01, one -tailed). There is evidence that deep learning in the UPSIDE POTENTIAL 

FEEDBACK condition (mean = 5.34, p<0.05, one-tailed) and the CORRECTIVE FEEDBACK condition (mean = 

5.40, p<0.05, one-tailed) are both significantly different from zero. However, deep learning in both these 

conditions is significantly less than that in the ALL condition, consistent with our hypotheses (results shown 

under Column B of Table 2).  

Table 4 presents the analysis of whether significant shallow learning occurred in each of the 

conditions. We find that a significant level of shallow learning occurred in all the feedback conditions, but 

that it was significantly greater in the UPSIDE POTENTIAL FEEDBACK condition (mean = 4.97) and the 

CORRECTIVE FEEDBACK condition (mean = 6.33) than in the ALL condition (mean = 2.41). The presence of 

shallow learning and deep learning in each of the conditions indicates that the observed mental model 

accuracy in Task 1 is partly based on a mechanistic approach specific to the 20 donors in the simulations and 

partly based on a real change in their mental model. 

In Table 5, we report the financial performance and compensation of participants in each condition. 

Participants in the ALL condition performed significantly better than those in the other conditions. This result 

shows that participants provided with both types of feedback are more likely to perform better as well.  

To validate our theoretical model, we sought to test it against two alternatives: a model specifying 

both direct and indirect effects of feedback on deep learning and an alternate model specification without 

process variables.  We show the results of our validation in Table 6. To assess the first alternative, we 

compared the fit of our model system (AIC=1087.53) with that of a system with additional direct effects of 

the two types of feedback on deep learning (called the full model in Table 6; AIC=1090.73). To assess the 
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second alternative, we compared the fit of our equation system (M1-M4) (AIC=1087.53 again) against an 

alternate model system without process variables (called the restricted model in Table 6; AIC=1100.70). Our 

proposed model passed both these validity tests.  

4.0 Discussion, Future Research, and MDSS Design Implications 

4.1 Discussion and Contributions 

We proposed and empirically demonstrated that deep learning is crucial for marketing managers to form a 

favorable MDSS evaluation. Our study shows that an MDSS that provides upside potential feedback can 

motivate managers to perform better, resulting in greater effort. However, increased effort alone is not 

sufficient to generate deep learning; the MDSS must also provide clear guidance about how and why a 

modification of a mental model leads to a superior outcome. Our results also show that mere shallow learning 

does not lead to better evaluations of the MDSS, implying that MDSSs that offer no opportunity to 

understand their recommendations are likely to be poorly evaluated by users and hence, used less frequently. 

We found, hence, that a dual-feedback approach, combining upside potential and specific guidance is required 

to help managers internalize the MDSS model.  

Our results show that MDSS feedback influences users' underlying learning process, which in turn, 

helps users internalize the relationship between decisions and outcomes. While much prior research has 

examined decision outcomes, our study enriches the story by showing why objectively superior MDSSs are 

often not evaluated more positively.  

In summary, the main contributions of our research are: (1) the development of the “3-Gap 

framework to understand MDSS Evaluation” (Figure 1); (2) the specification of the role of deep learning (i.e., 

mental model changes) on managerial evaluations of MDSSs (Figure 3); and (3) the assessment of the 

individual and joint effects of two types of feedback, corrective and upside, on deep learning in the MDSS 

context. We have also conceptualized and employed an unobtrusive mechanism to assess MDSS users' mental 

models and their changes, an approach we hope other researchers will find useful.  

4.2 Limitations and future research 
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 Our work suggests several avenues for fruitful future research. In situations more realistic than our 

study, participants are likely to have much stronger a priori beliefs, which may be harder to overcome through 

MDSS-based learning. This is an empirical issue that is worth exploring, especially for understanding the role 

of MDSSs in bringing about enduring changes to how decisions are made in organizations. We also focused 

more on the evaluation process and did not include a direct measure of adoption in our study, a measure best 

obtained in a field study.   

Our study focused only on different types of feedback. It may also be worthwhile to explore how 

different types of problem-solving modes of users (e.g., optimizing, reasoning, analogizing, and creating) 

influence deep learning and evaluation of MDSS (Wierenga and Van Bruggen, 1997), and to explore how 

MDSSs influence different types of learning (e.g. learning about the MDSS itself and its constraints, learning 

about markets, and learning about their own problem-solving modes).  

There may be organizational constraints to learning such as budgets and hierarchical management 

structures. Given a strong budget constraint, a marketing manager might ignore MDSS recommendations and 

not learn because implementing MDSS recommendations might require an increased budget. Also, if a senior 

manager has very strongly held beliefs that are contrary to the MDSS model, a subordinate manager making 

decisions might simply ignore MDSS recommendations to be consistent with what the senior manager 

believes. An interesting research question is whether and how a MDSS can overcome such organizational 

constraints to learning. Finally, we assumed the functional form (linear additive) of our participants’ mental 

models to be the same as that of the decision model. Functional forms might be non-linear and might vary 

across managers.  

4.3 MDSS Design and Managerial Implications 

Our research offers managerial insights about design aspects of MDSSs that increase the likelihood 

of their adoption and use, thereby increasing the return on investments in such systems. Specifically, for firms 

that develop and market decision support systems (e.g., Siebel, Salesforce.com, DemandTec), our results 

reinforce the importance of incorporating two types of feedback mechanisms that boost the value that 

managers find in an MDSS, thereby likely increasing its adoption and use. Similarly, organizations that invest 
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in MDSSs can benefit from this research by understanding the importance of specific design characteristics 

they should ask their MDSS vendors to incorporate.   

Many commercial MDSSs do not embed any feedback, offering recommendations without providing 

substantiating reasons. For example, many of the MDSS templates for a “best practice” marketing plan 

simply tell users the sequence of steps to follow in developing the plan, without indicating how or why that 

plan will impact performance in the situation at hand. Although such a MDSS may promote better decisions, 

and those decisions may lead to improved performance, users are unlikely to recognize the role the MDSS 

played, hampering future use. In the context of retail pricing, Montgomery (2005) suggests that retailers are 

likely to reject MDSSs that do not provide some intuition of the underlying decision model.  

Many sophisticated commercial MDSSs do provide upside potential feedback. For example, 

salesforce.com (http://www.salesforce.com/products/analytics.jsp) provides a salesperson with information 

about the sales achieved by the top-performing salesperson. Such feedback might motivate salespeople to try 

to do better, but does not suggest what they should do. Our research suggests that just providing feedback in 

the form of upside potential is not sufficient to obtain the maximum improvement in performance, especially 

in out-of task situations (e.g., for selling a new product introduced by the firm). On the other hand, providing 

only guidance through corrective feedback is also insufficient.  

By designing an MDSS that combines upside potential feedback with corrective feedback, we can 

induce deep learning that both improves out-of-task performance and increases the likelihood of MDSS 

adoption (because of its effect on MDSS evaluation). For example, in a prize-winning application, Lembersky 

and Chi (1986) present an example of how combining upside potential and corrective feedback can change 

users’ mental models, leading to overwhelming support for a MDSS in a firm’s activities. In their application, 

a decision simulator based on a sophisticated dynamic programming model provided guidance and upside 

potential feedback to users (foremen) on how to cut timber stems to maximize profit. Our paper provides a 

theoretical explanation for the success of their application. We quote from their paper (p. 12): 

“We had to gain the understanding and acceptance of the woods foremen. The foremen used 
VISION to see the results of cutting and allocating a sample of stems from their region using 
their old instructions.  Then, they were given the new instructions and asked to re-cut the same 
set of stems. They were also encouraged to experiment with any other cutting patterns of their 

 23

http://www.salesforce.com/products/analytics.jsp


own invention.  The experienced field expert sponsored and participated in these foreman 
activities. With their value demonstrated, the foremen readily embraced the new instructions and 
saw the implications of the dynamic programming algorithm.” 

 
We note here that marketing managers who have internalized the MDSS model might not necessarily be able 

to articulate the weights or functional form of the MDSS model. For example, the foremen in the timber-

cutting company do not need to “know” the dynamic programming algorithm; rather what is required is that 

they internalize the underlying rationale of the model in such a way that their actions are consistent with those 

recommended by the decision model.  

Our research has the potential to help obtain a better return on investment for firms that have been 

heavily investing in MDSSs such as CRM (Customer Relationship Management) and marketing dashboards. 

The global market for on-line analytical processing (OLAP) software, which assists in active decision-support 

applications such as marketing and sales analysis, direct marketing, and profitability analysis, was estimated to 

be worth about $4.3bn in 2004 (OLAP Report 2005). However, it is not clear that these investments have 

been successful. For example, Kale (2004) suggests that 60-80% of CRM investments produce returns much 

below expectations. Industry analysts suggest that line managers do not necessarily recognize the benefits of 

systems, leading to increased resistance to adopt, which eventually proves costly for the firm (Petouhoff 

2006). Roach (2002, as quoted in the IDC report) suggests that sustained enhancement in performance results 

less from technological breakthroughs and more from substantial changes in the “cerebral production function” of 

the knowledge worker. Our results provide direct evidence that investments in MDSSs that help transform 

the mental models (i.e., cerebral production functions) of marketing knowledge workers are more likely to 

have substantial payoffs.  

On net, we hope we have taken a significant step toward better understanding the mental model 

barriers to MDSS acceptance and how those barriers might be overcome. 
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Figure 1: The 3-Gap Framework: The Effect of Gaps between Mental Model, MDSS model, and 
True Model 
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Figure 2: Theoretical Framework Relating Feedback to Learning and Evaluation  
(dotted lines indicate expectations of non-significant links) 
 
a. Effect of Upside Potential Feedback on Learning (Upside Potential condition) 
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b. Effect of Corrective Feedback on Learning (Corrective condition)  
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c. Effect of Combining Upside Potential and Corrective Feedback on Learning (ALL condition) 
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Figure 3: Connecting MDSS Design Characteristics, Deep Learning, and MDSS Evaluation 
(models M1-M4; dotted lines indicate expectations of non-significant links) 
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Figure 4: MDSS Interface, Illustrating the Respondent Task  
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Figure 5: Experimental Sequence (Box A) and Measures of Learning (Box B) 
(dotted arrows indicate the mapping of tasks to measures) 
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Table 1: Relationship between MDSS Evaluation, Deep Learning, Effort, and Guidance 
 
Part A: Effect of Deep Learning on MDSS Evaluation (Model M1) 
 

Variable Coefficient Beta t-stat Hypothesis 
Intercept β01 3.351 4.01a  

Deep learning β11 0.045 6.10a H1 
Shallow Learning β21 -0.001 -0.01  

Financial compensation β31 0.010 0.43  
 
Part B: Effect of Effort and Guidance on Deep Learning (Model M2) 
 

Variable Coefficient Beta t-stat Hypotheses 
Intercept β02 -19.79 -0.93  

Effort β12 -0.45 -0.09 H2.1 
Guidance β22 -6.67 -1.13 H2.2 

Effort×Guidance β32 3.39 2.40b H2 
 
Part C: Effect of Feedback Type on Effort and Guidance 
 
1. Effort (Model M3) 

Variable Coefficient Beta t-stat 
Intercept β03 4.43 39.86a

UPSIDE POTENTIAL FEEDBACK β13 0.29 2.70a

CORRECTIVE FEEDBACK β23 -0.23 -2.13b

 
2. Guidance (Model M4) 

Variable Coefficient Beta t-stat 
Intercept β04 2.94 15.04a

UPSIDE POTENTIAL FEEDBACK β14 0.21 1.03 
CORRECTIVE FEEDBACK β24 0.88 4.24a

Notes:  
1. Significant at: ap<0.01, bp<0.05 (two-tailed) 
2. Deep learning is the most significant driver of MDSS evaluation, supports H1. 
3. The interaction of effort and guidance significantly affects deep learning, supports H2.  
5. Effort increases significantly when upside potential feedback is provided, supporting the manipulation of effort with upside 
potential feedback.  
6. Effort decreases significantly when corrective feedback is provided. 
6. Guidance increases with corrective feedback, but not with upside potential feedback, supporting the manipulation of guidance 
with corrective feedback.  
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Table 2: Effect of Upside Potential Feedback and Corrective Feedback on the Combination of Effort 
and Guidance1

 

Condition
 

Mean 
Difference from 
ALL condition t-stat 

CONTROL condition 12.842 -4.48 -3.75a

UPSIDE POTENTIAL FEEDBACK condition 14.342 -2.98 -3.44a 
CORRECTIVE FEEDBACK condition 15.563 -1.76 -2.13b 

ALL condition 17.32   
Notes:  
1. We test here whether (Effort×Guidance) is greater in the ALL condition than in each of the other conditions.  
2. Mean in this condition is significantly less that for the ALL condition at  ap<0.01 (two-tailed).  
3. Mean in this condition is significantly less that for the ALL condition at  bp<0.05 (two-tailed).  
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Table 3: Effect of Upside Potential Feedback and Corrective Feedback on Deep Learning1

 

 

A. 
Is deep learning 

significantly 
different from 0? 

 B. 
Is deep learning 
significantly less 
than that in ALL 

condition? 

Condition N 

Average 
Deep 

Learning t-stat  Difference t-stat 
CONTROL condition 16 0.25 0.09  -12.20 -3.03a

UPSIDE POTENTIAL FEEDBACK condition 18 5.34 2.00b  -7.11 -1.90b

CORRECTIVE FEEDBACK condition 20 5.40 1.92b  -7.05 -1.84b

ALL condition 18 12.45 4.42a  
Notes:  
1. We test here whether (A) deep learning is significantly different from 0 in each of the conditions, and (B) deep learning is 
significantly less than that in the ALL condition.  
2. Deep learning in UPSIDE POTENTIAL FEEDBACK condition is significantly different from 0 at  bp<0.05, and is 
significantly less than that in the ALL condition at: bp<0.05 (both are one tailed tests).  
3. Deep learning in CORRECTIVE FEEDBACK condition is significantly different from 0 at  bp<0.05, and is significantly less 
than that in the ALL condition at:  bp<0.05 (both are one tailed tests).  
4. Deep learning in ALL condition is significantly different from 0 at:  ap<0.01 (one tailed).  
5. Indicates that deep learning in ALL condition is significantly greater than that in other conditions.  
 
Table 4: Effect of Upside Potential Feedback and Corrective Feedback on Shallow Learning1

 

 

A. 
Is shallow 
learning 

significantly 
different from 0? 

 B. 
Is shallow learning 
significantly more 
than that in ALL 

condition? 

Condition N 

Average 
Shallow 
Learning t-stat  Difference t-stat 

CONTROL condition 16 4.52 3.27a  2.11 1.21 
UPSIDE POTENTIAL FEEDBACK condition 18 4.97 3.99a  2.56 1.59c

CORRECTIVE FEEDBACK condition 20 6.33 4.86a  3.92 2.38b

ALL condition 18 2.41 1.84b  
Notes:  
1. We test here whether (A) shallow learning is significantly different from 0 in each of the conditions, and (B) shallow learning 
is significantly more than that in the ALL condition.  
2. Shallow learning in UPSIDE POTENTIAL FEEDBACK condition is significantly different from 0 at  ap<0.01, and is 
significantly more than that in the ALL condition at: cp<0.10 (both are one tailed tests).  
3. Shallow learning in CORRECTIVE FEEDBACK condition is significantly different from 0 at  ap<0.01, and is significantly 
more than that in the ALL condition at:  bp<0.05 (both are one tailed tests).  
 

 36



 37

Table 5: Effect of Upside Potential Feedback and Corrective Feedback on Financial Performance 
and Compensation1

 

Condition 

Average 
financial 

performance
in Task 1 

Average 
financial 

performance
in Task 2 

Average 
financial 

compensation 

Difference 
from ALL 
condition t-stat 

CONTROL  $ 76,328   $ 61,583  35.982 -3.46 -2.50a

UPSIDE POTENTIAL FEEDBACK   $ 77,860   $ 62,301  36.182 -3.26 -2.60a

CORRECTIVE FEEDBACK   $ 84,226   $ 62,778  36.673 -2.77 -2.16b

ALL   $ 85,118   $ 76,402  39.44   
Notes:  
1. We test here whether financial compensation of participants is greater in the ALL condition than in each of the other 
conditions.  
2. Mean compensation in this condition is significantly less that for the ALL condition at  ap<0.01 (two-tailed).  
3. Mean compensation in this condition is significantly less that for the ALL condition at  bp<0.05 (two-tailed). 
4. We note that financial compensation is directly proportional to financial performance (participants were paid 0.015% of 
financial performance, plus $15 participation fee). The maximum financial performance possible in each task is about 
$100,000.   



Table 6: Validation results 
 
MODEL SPECIFICATION LL AIC 
Full model (with 
direct and 
indirect links) 

(M1) 01 11 21 31β β β β ε= + ⋅ ⋅ ⋅ 1MDSS Evaluation DeepLearning+ ShallowLearning+ Financial compensation+   

(M2) ( )02 12 22 32eβ β β β= + ⋅ + ⋅ + ⋅ +DeepLearning Effort Guidanc Effort×Guidance  

                                 42 52 2UPSIDE POTENTIAL FEEDBACK CORRECTIVE FEEDBACKβ β ε+ ⋅ + ⋅ +  

(M3) 03 13 23 3UPSIDE POTENTIAL FEEDBACK CORRECTIVE FEEDBACKβ β β ε= + ⋅ + ⋅ +Effort  

(M4) 04 14 24 4UPSIDE POTENTIAL FEEDBACK CORRECTIVE FEEDBACKβ β β ε= + ⋅ + ⋅ +Guidance  

-529.36 1090.73 

Our Model (M1) 01 11 21 31β β β β ε= + ⋅ ⋅ ⋅ 1MDSS Evaluation DeepLearning+ ShallowLearning+ Financial compensation+   

(M2) ( )02 12 22 32 2DeepLearning Effort Guidanc Effort×Guidanceeβ β β β ε= + ⋅ + ⋅ + ⋅ +  

(M3) 03 13 23 3UPSIDE POTENTIAL FEEDBACK CORRECTIVE FEEDBACKβ β β ε= + ⋅ + ⋅ +Effort  

(M4) 04 14 24 4UPSIDE POTENTIAL FEEDBACK CORRECTIVE FEEDBACKβ β β ε= + ⋅ + ⋅ +Guidance  

-529.76 1087.53 

Restricted Model  
(without process 
variables) 

(M1) 01 11 21 31β β β β ε= + ⋅ ⋅ ⋅ 1MDSS Evaluation DeepLearning+ ShallowLearning+ Financial compensation+   

(M2) 02 42 52 2UPSIDE POTENTIAL FEEDBACK CORRECTIVE FEEDBACKβ β β ε= + ⋅ + ⋅ +DeepLearning  

(M3) 03 3β ε= +Effort  

(M4) 04 4β ε= +Guidance  

-545.35 1110.70 

 
Notes: Based on the AIC criterion, our model has a better fit than the competing alternatives.  
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