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1 Introduction

In order to estimate the (latent) volatility of financial time series, like stock returns or ex-

change rates, it is quite common in the mainstream financial economics literature to use

squared or absolute returns.1 For example, in the popular ARCH-type volatility models, the

deterministic volatility process is based on these assumptions. Typically, the error distribution

is symmetric. When moving to stochastic volatility models the distributional assumptions on

the errors can lead to models that are more difficult to estimate. This is caused by the fact

that the joint distribution of the returns and the latent volatility is highly dimensional and

non-normal. Many different approaches have been undertaken to estimate stochastic volatil-

ity models. See Shephard (1993), Harvey, Ruiz, and Shephard (1994), Jacquier, Polson,

and Rossi (1994), Andersen and Sørensen (1996), and Mahieu and Schotman (1998), among

others. Many of these papers focus on the univariate case, whereas for practical financial

applications multivariate models are more appropriate.

In this paper the logarithmic range is used as the dependent variable in a multivariate

stochastic volatility model. The main advantage of the log range is that its distribution is

approximately normal. See Alizadeh, Brandt, and Diebold (2002) for a discussion on the

properties of the log range. Together with the fact that the log range is an accurate proxy for

volatility, the normality of the log range can be exploited for estimating stochastic volatility

models. More precisely, we can apply standard Kalman filter techniques to estimate the

parameters of stochastic volatility models very efficiently.

This paper extends the analysis in Alizadeh, Brandt, and Diebold (2002) along the lines set

out in Mahieu and Schotman (1994). In the latter paper a parsimonious multivariate volatility

model for exchange rates is presented that is built around the assumption that exchange rate

returns can be decomposed into independent currency-specific factors. As a result the variance

of the exchange rate returns is the sum of the two currency-specific variances. In this paper

we also split the log range of several exchange rates into two latent factors which will be

interpreted as currency-specific effects. These latent factors are assumed to be independent

1see for example Andersen (1992), and Bai, Russell, and Tiao (2001) for an exposition on measuring
volatilities.
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and follow AR(1) processes. The model is estimated using the EM-algorithm. Due to the

distinct properties of the log range compared with other volatility approximations we are able

to estimate a parsimonious multivariate stochastic volatility model.

The outline of this paper is as follows. In Section 2 some history and a motivation of

the range as an approximation of the volatility will be given. In Section 3 the multivariate

stochastic volatility model is presented. The exchange rate data is discussed in Section 4.

Section 5 documents the results of our empirical studies and Section 6 presents the news

decomposition results. Section 7 concludes.

2 Using the range as a measure for volatility

Many econometric models are built around having symmetry in the data-generating process.

Especially for multivariate models of volatility we would like to impose a symmetric dis-

tribution. The disadvantage of traditional return-based volatility proxies is that in general

a non-zero skewness is imposed on the volatility measure (Bai, Russell, and Tiao (2001)).

This hampers efficient estimation of, especially, stochastic volatility models. Moreover, a

higher excess kurtosis w.r.t. a normal distribution occurs as well. This could lead to inef-

ficient parameter estimates if there are normality restrictions imposed on the model, as is

the case for using quasi maximum likelihood methods, like in Harvey, Ruiz, and Shephard

(1994). New ways to approximate volatility has emanated from recent developments in em-

pirical finance. These approaches focus on the inputs needed to measure volatility. The most

promising volatility measures are presented in the papers of Andersen, Bollerslev, Diebold,

and Labys (2001) and Andersen, Bollerslev, Diebold, and Ebens (2001) and Alizadeh, Brandt,

and Diebold (2002).

Andersen, Bollerslev, Diebold, and Labys (2001) and Andersen, Bollerslev, Diebold, and

Ebens (2001) uses realized volatility, which deploys sums of squares and cross-products

of intra-day high-frequency returns to tackle the volatility estimation problem. Alizadeh,

Brandt, and Diebold (2002) make use of the range as a proxy for volatility. The range is

defined by the difference between the log high and log low of the security for a certain time
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period. The main difference between these two methods is the availability of the data. While

it can be quite difficult to obtain intra-day information of e.g. stocks, exchange rates etc.

needed to compute the realized volatility measure, it is relatively easy to acquire the high and

low. Alizadeh, Brandt, and Diebold (2002) mentions that

”...Despite the fact that the range is a less efficient volatility proxy than
realized volatility under ideal conditions, it may nevertheless prove su-
perior in real-world situations in which market microstructure biases
contaminate high-frequency prices and returns. ...”

One of these market microstructure biases is the bid-ask bounce which is the movement

in the price not due to news but merely caused by a non-zero spread of the security such that

the buys and the sells do not occur at the same price. Bai, Russell, and Tiao (2001) perform

an analysis of the benefits of using realized volatility as an indicator for measuring daily

volatility. They conclude that, even after accounting for some microstructural features of high-

frequency data, the benefits may be limited when the underlying returns are autocorrelated.

Furthermore, when using realized volatility the kurtosis may be large, thereby lowering the

precision with which the volatility can be estimated.

Given the aforementioned reasons we choose to use the logarithmic range, as suggested by

Alizadeh, Brandt, and Diebold (2002) as a proxy for volatility. Let St be the exchange rate,

and let Shigh
t and Slow

t be the high and low respectively. Consequently, the volatility measure

can be defined as

yt ≡ ln
(

ln(Shigh
t )− ln(Slow

t )
)

. (1)

Note that this measure is always positive, when high and low prices are not equal. Inter-

estingly, the log-range (1) turns out to have a distribution that is very close to a normal

distribution. This feature allows us to construct a multivariate stochastic volatility model for

exchange rates that does not have the drawbacks of traditional stochastic volatility models,

based purely on squared or absolute returns. Another advantage of using the logarithmic

range as a volatility estimate is that the measurement error of the estimate is much lower.

See, for example, Andersen and Bollerslev (1998), and the discussion in Alizadeh, Brandt,

and Diebold (2002).
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3 Multivariate stochastic volatility model

In this section a new multivariate stochastic volatility model for exchange rates is presented.

We impose a similar factor structure on the exchange rates as in Mahieu and Schotman

(1994). If sij(t) is the exchange rate return between currencies i and j, we assume that it can

be decomposed into two currency-specific components

sij(t) = ei(t)− ej(t), (2)

with ei(t) and ej(t) the news components of currencies i and j, respectively. We assume that

the news components are independent. If we define λi(t) as the variance of the news factor

ei(t) (λi(t) ≡ var(ei(t))) then the variance of the exchange rate can be written as

var (sij(t)) = var (ei(t))+var (ej(t)) = λi(t)+λj(t). (3)

We use this setup as the basis for our multivariate model. The range-based volatility measure

that we introduced in Section 2 applies to the logarithmic volatility. Let yij,t be the logarithmic

range for the exchange rate between currencies i and j, as defined in (1). We assume that

we can decompose the logarithmic range into two independent factors that relate to the two

currencies. Consequently, we assume that

yij,t = αit +αjt, (4)

with αit and αjt two latent factors. In our empirical application we focus on 4 currencies.

This implies that we can construct 6 exchange rates for which we can compute the logarithmic

ranges. The model is very flexible in the sense that the number of factors can be extended

to encompass different effects, e.g. a world effect, a region effect, and extreme events. Also a

larger number of currencies can be accommodated straightforwardly.

The model with only the currency-specific factors is presented below where the log range

of all possible exchange rates of the 4 countries under consideration are used. For notational

purposes we collect the log range at time t for all exchange rates in the vector yt. The model
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that we estimate is given by the following equations.

yt = c+Zαt+εt, εt ∼ N(0, H), t = 1, . . . , n (5)

αt+1 = Tαt+ηt, ηt ∼ N(0, Q), t = 1, . . . , n (6)

α1 ∼ N(0, I) (7)

where

yt =

















yUSD,GBPt

yUSD,JPYt

yUSD,EURt

yGBP,JPYt

yGBP,EURt

yJPY,EURt

















,

and

Z =

















1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

















,

αt =









αUSDt

αGBPt

αJPYt

αEURt









.

The idea behind the model is to split the log range of each exchange rate into a constant,

the corresponding currency-specific factors (using Z as selection matrix) and an error term.

There are no restrictions on H, the covariance matrix of the measurement errors. The factors

evolve over time according to 4 univariate autoregressions of order 1. Consequently, both

T (the autoregressive parameter matrix) and Q (covariance matrix of the errors) in the

transition equations are diagonal. The part α1 ∼ N(0, I) is needed to initialize the Kalman

filter. Because the distribution of the log range is closer to the normal distribution than the

distribution of the log absolute returns, standard Kalman filter techniques can be used to

estimate the parameters.
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It is not straightforward to estimate traditional stochastic volatility model (see for example

Jacquier, Polson, and Rossi (1994)). A problem with a standard Maximum Likelihood (ML)

approach lies in the fact that the factors are latent processes. This means that the likelihood

function is not tractable and therefore can not be optimized directly. One solution is to

integrate the latent factors out of the log likelihood by using simulation techniques.2

We apply the Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin

(1977) to obtain the parameters of the model (5)-(7). This method splits the estimation of the

parameters and the latent factors αt into two steps: an expectation and a maximization step.

By iterating these steps Dempster, Laird, and Rubin (1977) have shown that the likelihood

function increases. This iterative procedure can be continued until convergence takes place.

We restrict the discussion here to the essentials of the EM-algorithm. In the Appendix we

present a detailed derivation.

The expectation step consists of finding the expectation of the log likelihood function

conditional on the data and the parameters. In other words, given the data y, where y =

{y1, ..., yn}, and given a value for the parameter set of the model, which is denoted by ψ =

{c,H, T,Q}, the expression E(−2lnL|y, ψ) is calculated. An estimate of the latent factors

αt, E(αt|y), is obtained by the standard Kalman filter and smoother given the parameters

(see for example Shumway and Stoffer (2000) and Durbin and Koopman (2001)). These filter

and smoother recursions are also given in the Appendix. Also an estimate of the expected

cross-products of the latent factors, E(αtα
′
t|y), which appears in the expected log likelihood,

can be expressed using the output of the Kalman filter and smoother.

The maximization step consists of maximizing the expected log likelihood given the ap-

proximation of the latent factors and the cross-products. This maximization can be done

analytically instead of numerically because the expressions for the optimal parameters given

an expectation of the factors are straightforward. The derivation of the analytical solutions

follow Shumway and Stoffer (2000). Our model differs slightly from their exposition in the

sense that our multivariate volatility model prescribes that T and Q are diagonal. All deriva-

2See, for example, Jacquier, Polson, and Rossi (1994) and Shephard (1993).
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tions are presented in the Appendix. The estimates of the parameters are given by

c = n−1
n
∑

t=1

{yt − Zα̂t} (8)

H = n−1
n
∑

t=1

{

(yt − c− Zα̂t)(yt − c− Zα̂t)
′ + Zcov(αt|y)Z

′
}

(9)

Tkk = (S10)kk/(S00)kkfor k = 1, ..., 4 (10)

Qkk = n−1
[

(S11)kk − (S10)
2
kk/(S00)kk

]

for k = 1, ..., 4 (11)

where

S11 =
n
∑

t=1

{

α̂t+1α̂
′
t+1 + Pt+1(Im −NtPt+1)

}

S10 =
n
∑

t=1

{

α̂t+1α̂
′
t + PtL

′
t(Im −NtPt+1)

}

S00 =
n
∑

t=1

{

α̂tα̂
′
t + Pt(Im −Nt−1Pt)

}

The algorithm can be started by setting the following initial values:

c0 = ȳt

H0 = cov(yt)

T0 = 0mxm

Q0 =
1

m

m
∑

k=1

H0,kk

In Section 5 we present the results for the multivariate volatility model on a set of exchange

rate data.

8



4 Exchange rate data

The daily high, low and close prices of six exchange rates were collected from Moneyline

Telerate. The high and low values are computed over a 24-hour period which starts at 10pm

GMT, 5pm US Eastern Time. The exchange rate set consists of all possible combinations of

the following currencies: US Dollar (USD), UK Sterling (GBP), Japanese yen (JPY) and euro

(EUR). The sample runs from September 1, 1989 until July 22, 2002. The observations where

the high is lower than the low are considered to be typos and these values are swapped. This

occurs 2 times for the USD/GBP, and 9 times for the JPY/EUR exchange rate and it does

not occur for the other rates. Furthermore, the missing values are replaced with data from

the previous (working) day. The USD/EUR and JPY/EUR have a total of 7 missing values

which are on the same dates. The USD/GBP, GBP/JPY and GBP/EUR have a total of 6

missing values, also on the same dates, which form a subset of the dates of the aforementioned

7 missing values. All these days can be linked to holidays. Finally, the USD/JPY has no

missing values. After deleting the 11 observations for which the high equals the low (for these

observations the log range is not defined) for at least one exchange rate a data set consisting

of a total of 3351 observations is obtained. Then the log range for each exchange rate is

constructed according to the definition. These time series are presented in Figure 1 and

some descriptive statistics are reported in Table 1. The covariance and correlation matrices

appear in Table 2. As was already noticed in Mahieu and Schotman (1994) the covariance

structure of exchange rates expressed in a common numeraire has a very distinct feature. The

covariances of all dollar exchange rate returns are all in the same order of magnitude. This

motivates Mahieu and Schotman (1994) to present a multivariate exchange rate model that

exploits this feature. In this paper we follow this approach again.

From Figure 1 it seems that the log range shows mean-reverting behavior and is quite

volatile. Also substantial correlation between the several log range series seems to be present.

Furthermore, the skewness and kurtosis is rather high for some exchange rates. A QQ-plot

is constructed to see whether the log range is close to the normal distribution. Figure 2

shows the results. The data look quite normal except for the tails where some outliers can
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be detected.3

Alizadeh, Brandt, and Diebold (2002) use prices of currency futures contracts and for

these series the distributions for the logarithmic range are closer to the Gaussian distribution

than the ones computed on the logarithm of the absolute returns. To check this for our data

set, the logarithmic absolute return of the exchange rates is calculated using the closing price.

The days for which the return is zero are thrown out of the sample. In Table 3 some descriptive

statistics are reported. The QQ-plots are also made for these series and are shown in Figure

3. It is clear that the log absolute returns deviate rather substantially from normality. The

logarithmic range performs better and therefore this volatility proxy is used to estimate our

multivariate stochastic volatility model.

5 Results

In this section the results of the model will be presented and evaluated.4 The optimal pa-

rameters and the value of the log likelihood are given in Table 4. The estimated currency

components are displayed in Figure 4. The elements of Ĥ are smaller than the correspond-

ing elements in the covariance matrix of the data (Table 2) as is expected because part of

the variability in the data is absorbed by the latent state variables. The correlation matrix

constructed from Ĥ in Table 4 shows that, on average, the correlations have decreased with

respect to the original data. The T̂ matrix shows a rather high persistence in the latent log

volatilities, which is a well-known feature in daily financial time series.

Looking at the estimated latent factors in Figure 4 it is clear that the Yen component is

the most volatile of all. For the Pound component it seems that after a sudden increase in log

volatility there is a period in which it decreases again until a new shock arrives. Furthermore,

for some periods the movements in the components are comparable to each other which shows

that the states might be dependent.

In tables 5 and 6 some diagnostics for the estimated measurement errors, transition errors

3Our empirical results do not change considerably after removal of some of these outliers. These results are
available from the authors upon request.

4All calculations needed for construction of the graphs and tables are done with the software package
Matlab, version 6.
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and currency-specific components are given. It is clear that for the transition errors and

latent factors there is considerable autocorrelation present while this is less severe for the

measurement errors.

5.1 Adding a world factor

In this section a fifth factor, a so-called world component, is added to the model. Therefore

the log range of each exchange rate is now split into two currency-specific components and

one world component which is the same across all exchange rates. The new selection matrix

Z and the state vector αt can then be written as

Z =

















1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1

















,

αt =













αUSDt

αGBPt

αJPYt

αDEMt

αWORLDt













The rest of the model remains unchanged. The model is initialized with the optimal values

of the four state model and T0,55 = 0 and Q0,55 =
4
∑

k=1

Q0,kk. The optimal parameters and

the value of the log likelihood is given in Table 7. The estimated currency components are

displayed in Figure 5. Note that the states do not seem to alter much graphically.

The elements of Ĥ have decreased somewhat compared to the former results. Also the

correlation between the errors is lower than before. There is a bit more persistence in the

transition equation because of the higher values on the diagonal of T̂ and the variances of the

currency-specific components (in Q̂) are lower, while the world component variance is quite

high compared to the aforementioned variances.

Because the four-state model is a restricted version of the five state model, a Likelihood

11



Ratio (LR) test can be performed to evaluate whether the former model can be rejected in

favor of the extended model. There are 2 restrictions on the unrestricted model (the fifth

element of both T and Q are set to 0) therefore the LR test statistic has an asymptotic

distribution of χ2
2. The test statistic is equal to LR = 2(logLunrestricted-logLrestricted) =

2(-8499.492-(-8567.818)) = 136.65 ≥ 9.21 = χ2
2,0.99 so the four state model is too restrictive

compared to the five state model.

6 News factors

In this section news factors for the several countries are extracted from the multivariate

stochastic volatility model including a world component. Remember that every exchange

rate can be decomposed into two currency specific factors as stated in Equation (2). Mahieu

and Schotman (1994) have shown that such a currency-specific news factor is a weighted

average over the exchange rates returns containing that currency. The weights are constructed

from the (conditional) variances of the news factors. The intuition behind this is that the

currency specific news can be extracted from all exchange rates that can be constructed

with the same currency. The higher the variance of the exchange rate, the less informative

and therefore the corresponding exchange rate has less weight in the news factor. Following

Mahieu and Schotman (1994), the news factor at time t, ê(t), for currency i with i ∈ I =

{USD,GBP, JPY,EUR} can be written as

êi(t) =

∑

j∈I,j 6=i

λj(t)
−1sij(t)

∑

j∈I

λj(t)−1
(12)

where sij(t) is the log return of the exchange rate.5 Also note that sji(t) = −sij(t). To apply

this we again note that in our model the logarithmic volatility is modelled instead of the

variance itself. So to obtain the equivalent quantity of the λ(t)’s in the above equation we

5Note that the formulation of the news factors (12) is the same for both the models with and without world
component and that there is no separate world news factor. The news factor is calculated using a numeraire
currency. Therefore it is impossible to identify a world news component which has the same impact on each
exchange rate because it is indistinguishable with the numeraire currency. However, adding a world component
has an impact on the estimated parameters and latent currency components and therefore also has influence
on the news factors for the several currencies.
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have to transform the time-varying α̂t that we obtain from the multivariate volatility model.

Note that α̂t = E(αt|y). Then using the fact that when X ∼ N(µ, σ2) it holds that the

moment generating function equals E(exp(tX)) = exp(tµ+ t2σ2/2). Consequently we obtain

λj(t) = E(exp(αj,t)
2|y) = exp(2α̂j,t+2Vj,t) (13)

where

Vj,t = V ar(αj,t|y)

The smoother which is used in the optimization process (see also the Appendix) delivers Vj,t.

It is the variance of factor j conditional on all available information. The graphs of the λ(t)’s

for the model including the world component are shown in Figure 6.6 To investigate the

influence of the news factors on the underlying exchange rate, an indexed exchange rate is

constructed from each of the news series êi(t). The news indices are defined by

Ii,news(t) = 100(1+
t
∑

i=1

êi(t))

Figures 7 show the indexed exchange rates together with the accompanying news indices for

the model including the world factor. From the figure it can be seen that shocks to the

exchange rates can be assigned to specific currencies in several periods. Nevertheless, many

shocks to the exchange rate occur simultaneously in both currencies.

7 Concluding remarks

In this paper we have presented a new approach to estimate multivariate stochastic volatil-

ity models for exchange rate volatilities. The model exploits the convenient distributional

characteristics of logarithmic high-low ranges. Also, the logarithmic range has been shown

to be a very efficient estimate of volatility compared to return-based volatility proxies, like

6The latent variances of the model excluding the world factor are very similar to the variance presented in
the figure. They are available upon request.
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the absolute or squared return. Furthermore, the model draws upon the decomposition of

exchange rates into currency-specific factors. Taken together these characteristics allow us

to estimate a parsimonious multivariate model for exchange rate volatility in a very efficient

way.

Our results show that the model can be estimated efficiently through standard Kalman

filter techniques within an EM-algorithm. We find that the currency-specific volatilities are

substantially different from each other. Adding a world factor to the model does not change

the values of the news factors considerably, although we can reject the initial 4-factor model

in favor of the model that adds the world factor.

The analysis in this paper can be extended in several ways. First, the specific factor that

we imposed can be investigated. For example, each currency-specific could be split into a

persistent and a stationary component.7 Secondly, a further analysis of the news series could

be pursued in order to find relationships with economic variables, like interest rates, and

monetary variables. Lastly, the multivariate model could be used for analyzing the prices of

options.

7See also Alizadeh, Brandt, and Diebold (2002), who perform this analysis for univariate stochastic volatility
models.
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Appendix

The Kalman filter and smoother recursions

The Kalman filter and smoother are given for the sake of completeness. These equations are
taken from Durbin and Koopman (2001) and the same notation will be used. Because there
appears a constant in the measurement equation which is not present in the standard filter,
one adjustment to the recursions is made. Note however that the smoother does not need
to be changed because the effect of the constant is fully captured by vt which also appears
in the smoother. Furthermore, note that compared to Durbin and Koopman (2001) for the
state space model used in this paper Z is constant, H, T , Q are non-time-varying parameter
matrices and Rt is equal to the unity matrix. First the model is given again for reference
purposes:

yt = c+Zαt+εt, εt ∼ N(0, H), t = 1, ..., n

αt+1 = Tαt+ηt, ηt ∼ N(0, Q), t = 1, ..., n

α1 ∼ N(a1, P1)

Then the Kalman filter is given as follows: If there are m states, a1 = 0m and P1 = Im then
for t = 1, ..., n

vt = yt− c−Zat

Ft = ZPtZ
′+H

Kt = TPtZ
′F−1

t

Lt = T −KtZ

at+1 = E(αt+1|Yt) = Tat+Ktvt

Pt+1 = cov(αt+1|Yt) = TPtL
′
t+Q

Next the output of the Kalman filter is used in the smoother to construct a proxy for the
latent factors. The smoother equations are as follows: If rn = 0m and Nn = 0m×m then for
t = 1, ..., n

rt−1 = Z ′F−1
t vt +L

′
trt

Nt−1 = Z ′F−1
t Z+L′tNtLt

α̂t = E(αt|y) = at +Ptrt−1

Vt = Pt−PtNt−1Pt

Given the parameters of the model an estimation for the latent factors is then α̂t. Furthermore
the disturbance smoother equations from Durbin and Koopman (2001) are used to obtain the
estimated errors for the measurement and transition equation, ε̂t and η̂t.
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The disturbance smoother

ut = F−1
t vt−K

′
trt

Dt = F−1
t +K ′

tNtKt

ε̂t = E(εt|y) = Hut

cov(εt|y) = H−HDtH

η̂t = E(ηt|y) = Qrt

cov(ηt|y) = Q−QNtQ

Also in the estimation of the parameters of the model, the (inter temporal) covariance between
smoothed states is needed. These expressions (see also Table 4.4 of Durbin and Koopman
(2001)) are given by

cov(αt|y) = Pt(Im−Nt−1Pt)

cov(αt, αt+1|y) = PtL
′
t(Im−NtPt+1)

The EM-algorithm (Dempster, Laird, and Rubin (1977)) consists of an estimation step and
a maximization step. We follow the discussion in Shumway and Stoffer (2000) (Chapter 4,
paragraph 3).

The Expectation-step of EM

In this step the expectation of the log likelihood is taken given the data and the parameters.
The log likelihood in this case is

−2 lnL = ln |Q|+

n
∑

t=1

(αt+1−Tαt)
′Q−1(αt+1−Tαt)+

+ ln |H|+
n
∑

t=1

(yt−c−Zαt)
′H−1(yt−c−Zαt)

which is similar to equation (4.69) in Shumway and Stoffer (2000). Taking the expectation
of this expression gives something similar to equation (4.71) of this reference.

−2 lnL = ln |Q|+trace
{

Q−1
[

S11 − S10T
′ − TS′10 + TS00T

′
]}

+

+ ln |H|+trace

{

H−1
n
∑

t=1

{

(yt − c− Zα̂t)(yt − c− Zα̂t)
′ + Zcov(αt|y)Z

′
}

}

with

S11 =
n
∑

t=1

{

α̂t+1α̂
′
t+1 + cov(αt+1|y)

}

=
n
∑

t=1

{

α̂t+1α̂
′
t+1 + Pt+1(Im −NtPt+1)

}
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S10 =
n
∑

t=1

{

α̂t+1α̂
′
t + cov(αt+1, αt|y)

}

=
n
∑

t=1

{

α̂t+1α̂
′
t + PtL

′
t(Im −NtPt+1)

}

S00 =
n
∑

t=1

{

α̂tα̂
′
t + cov(αt|y)

}

=
n
∑

t=1

{

α̂tα̂
′
t + Pt(Im −Nt−1Pt)

}

In the above analysis some of the properties of the trace-operator are used. Also in the
derivation they use that

E(αtα
′
t|y) = α̂tα̂

′
t+ cov(αt|y)

E(αt+1α
′
t|y) = α̂t+1α̂

′
t+cov(αt+1, αt|y)

The P n
t and Pn

t,t−1 defined in Shumway and Stoffer (2000) are equivalent to respectively
cov(αt|y) and cov(αt, αt−1|y). The Kalman filter and smoother are applied to obtain α̂t.

The maximization step of EM

Here an estimate of the parameters are given. The log likelihood function after the expectation
step is given above. Because T and Q are assumed diagonal this expression can be simplified.

ln |Q|+trace
{

Q−1
[

S11 − S10T
′ − TS′10 + TS00T

′
]}

=

m
∑

k=1

lnQkk+

m
∑

k=1

Q−1
kk

[

(S11)kk − 2(S10)kkTkk + (S00)kkT
2
kk

]

+ ln |H|+trace

{

H−1
n
∑

t=1

{

(yt − c− Zα̂t)(yt − c− Zα̂t)
′ + Zcov(αt|y)Z

′
}

}

where is used that

1. if matrices A and B are diagonal then so is AB,

2. if matrix A is diagonal then trace(AB) =
∑

aiibii,

3. trace(AB) = trace(BA),

4. and trace(A+B) = trace(A) + trace(B).

Then the estimates of the parameters are given by

c = n−1
n
∑

t=1

{yt − Zα̂t}

H = n−1
n
∑

t=1

{

(yt − c− Zα̂t)(yt − c− Zα̂t)
′ + Zcov(αt|y)Z

′
}

Tkk = (S10)kk/(S00)kkfor k = 1, ..., 4

Qkk = n−1
[

(S11)kk − (S10)
2
kk/(S00)kk

]

for k = 1, ..., 4
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Ex. Rate Mean St. dev. Skewness Kurtosis Min Max

Dollar/Pound -5.052 0.610 -0.317 3.814 -8.128 -3.012
Dollar/Yen -4.764 0.534 0.034 4.074 -8.333 -2.307
Dollar/Euro -4.743 0.471 0.064 3.223 -6.801 -2.972
Pound/Yen -4.603 0.473 0.164 3.266 -6.529 -2.497
Pound/Euro -4.923 0.458 0.080 3.162 -6.599 -3.281
Yen/Euro -4.682 0.520 -0.471 6.186 -8.348 -2.406

Table 1: Some characteristics, as the mean, standard deviation, skewness, kurtosis, minimum
and maximum, of the log range of the exchange rates Dollar/Pound, Dollar/Yen, Dollar/Euro,
Pound/Yen, Pound/Euro and Yen/Euro are reported for the period September the 1st, 1989
until July the 22nd, 2002 (3351 observations). See Section 4 for further details.

covariance matrix

Dollar/Pound 0.372 0.067 0.176 0.111 0.093 0.095
Dollar/Yen 0.285 0.100 0.170 0.075 0.166
Dollar/Euro 0.222 0.086 0.107 0.124
Pound/Yen 0.224 0.113 0.173
Pound/Euro 0.210 0.106
Yen/Euro 0.270

correlation matrix

Dollar/Pound 1 0.205 0.614 0.386 0.333 0.300
Dollar/Yen 1 0.399 0.674 0.309 0.597
Dollar/Euro 1 0.384 0.497 0.507
Pound/Yen 1 0.519 0.701
Pound/Euro 1 0.443
Yen/Euro 1

Table 2: The covariance and correlation matrix of the log range of the exchange rates Dol-
lar/Pound, Dollar/Yen, Dollar/Euro, Pound/Yen, Pound/Euro and Yen/Euro are reported
for the period September the 1st, 1989 until July the 22nd, 2002 (3351 observations).

Ex. Rate Mean St. dev. Skewness Kurtosis Min Max

Dollar/Pound -5.906 1.074 -0.570 3.034 -8.864 -3.155
Dollar/Yen -5.725 1.100 -0.794 3.661 -9.500 -2.588
Dollar/Euro -5.722 1.096 -0.866 3.770 -9.748 -3.389
Pound/Yen -5.633 1.129 -0.976 4.197 -10.176 -2.771
Pound/Euro -5.962 0.994 -0.567 3.296 -10.241 -3.439
Yen/Euro -5.621 1.086 -0.853 3.694 -9.741 -2.640

Table 3: Some characteristics, as the mean, standard deviation, skewness, kurtosis, minimum
and maximum, of the log absolute return of the exchange rates Dollar/Pound, Dollar/Yen,
Dollar/Euro, Pound/Yen, Pound/Euro and Yen/Euro are reported for the period September
the 1st, 1989 until July the 22nd, 2002 (3050 observations).
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ĉ -5.0506
-4.7631
-4.7416
-4.6002
-4.9200
-4.6800

Ĥ 0.2669 0.0299 0.1091 0.0845 0.0524 0.0831
0.1816 0.0586 0.0852 0.0390 0.0726

0.1571 0.0516 0.0583 0.0781
0.1345 0.0428 0.0883

0.1176 0.0289
0.1731

Correlation matrix constructed from Ĥ
1 0.1359 0.5330 0.4458 0.2960 0.3868

1 0.3472 0.5452 0.2669 0.4096
1 0.3547 0.4293 0.4739

1 0.3405 0.5790
1 0.2027

1

diag(T̂ ) 0.9628
0.9671
0.9586
0.9428

diag(Q̂) 0.0022
0.0016
0.0051
0.0036

logL -8567.818

Table 4: The optimal parameter values together with the value of the log likelihood function
after estimating model (5)-(7) are given above. Also the correlation matrix of the measure-
ment errors is constructed using Ĥ. Estimation takes place over the period September the
1st, 1989 until July the 22nd, 2002 (3351 observations).
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Mean St. dev. Skewness Kurtosis Min Max

ε̂t

Dollar-Pound 0.000 0.505 -0.353 4.278 -3.119 1.636
Dollar-Yen 0.000 0.406 0.052 4.053 -2.757 1.502
Dollar-Euro 0.000 0.380 0.159 3.382 -1.815 1.496
Pound-Yen 0.000 0.347 0.196 3.283 -1.577 1.389
Pound-Euro 0.000 0.326 0.177 3.348 -1.153 1.413
Yen-Euro 0.000 0.395 -0.688 8.249 -3.075 1.635

η̂t

Dollar component 0.000 0.014 0.442 3.577 -0.043 0.064
Pound component 0.000 0.012 0.856 5.789 -0.033 0.084
Yen component 0.000 0.024 0.387 3.708 -0.081 0.126
Euro component 0.000 0.021 0.201 4.414 -0.107 0.114

Table 5: Some characteristics, as the mean, standard deviation, skewness, kurtosis, mini-
mum and maximum, of the estimated errors, ε̂t and η̂t, of model (5)-(7) are reported. The
model is estimated for the period September the 1st, 1989 until July the 22nd, 2002 (3351
observations).
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Autocorrelation Ljung-Box(30) test ARCH(1) test ARCH(10) test

ε̂t 0.251 3557.759 66.297 85.108
(0.000) (0.000) (0.000)

0.042 267.713 1.475 14.664
(0.000) (0.225) (0.145)

0.009 145.543 5.924 28.336
(0.000) (0.015) (0.002)

0.014 51.681 2.834 16.965
(0.008) (0.092) (0.075)

0.044 135.840 15.514 40.790
(0.000) (0.000) (0.000)

0.075 812.786 185.073 348.075
(0.000) (0.000) (0.000)

η̂t 0.781 5566.740 1256.347 1241.970
(0.000) (0.000) (0.000)

0.819 6098.786 2145.762 2152.774
(0.000) (0.000) (0.000)

0.734 4072.146 1212.641 1228.535
(0.000) (0.000) (0.000)

0.694 3809.306 1052.801 1101.687
(0.000) (0.000) (0.000)

α̂t 0.996 61275.862 3304.500 3319.003
(0.000) (0.000) (0.000)

0.996 63439.700 3310.952 3327.527
(0.000) (0.000) (0.000)

0.995 61099.448 3283.760 3307.060
(0.000) (0.000) (0.000)

0.992 57449.170 3226.471 3263.822
(0.000) (0.000) (0.000)

Table 6: Some diagnostics of the estimated measurement errors, ε̂t, transition errors, η̂t, and
currency components, α̂t, of model (5)-(7) are reported as the first order autocorrelation, the
Ljung-Box test on autocorrelation up to order 30 (with χ2

30 as asymptotic distribution), and
the ARCH LM test to test for first and tenth order ARCH (with respectively χ2

1 and χ2
10

as asymptotic distribution). The model is estimated for the period September the 1st, 1989
until July the 22nd, 2002 (3351 observations).
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Parameter

ĉ -5.0510
-4.7640
-4.7423
-4.6006
-4.9201
-4.6806

Ĥ 0.2437 0.0067 0.0863 0.0621 0.0304 0.0615
0.1611 0.0368 0.0644 0.0168 0.0537

0.1363 0.0297 0.0374 0.0588
0.1143 0.0214 0.0689

0.0974 0.0091
0.1564

Correlation matrix constructed from Ĥ
1 0.0336 0.4735 0.3723 0.1972 0.3151

1 0.2486 0.4748 0.1340 0.3383
1 0.2380 0.3350 0.4029

1 0.2029 0.5154
1 0.0736

1

diag(T̂ ) 0.9603
0.9782
0.9680
0.9544
0.6097

diag(Q̂) 0.0022
0.0009
0.0036
0.0026
0.0206

logL -8498.7213

Table 7: The optimal parameter values together with the value of the log likelihood function
after estimating model (5)-(7) including a world factor are given above. Also the correlation
matrix of the measurement errors is constructed using Ĥ. Estimation takes place over the
period September the 1st, 1989 until July the 22nd, 2002 (3351 observations).
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Figure 1: These graphs show the log range of the exchange rates Dollar/Pound, Dollar/Yen,
Dollar/Euro, Pound/Yen, Pound/Euro, Yen/Euro for the period September the 1st, 1989
until July the 22nd, 2002 (3351 observations). See Section 4 for further details.
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Figure 2: These graphs show the QQ-plot for the log range of the exchange rates Dol-
lar/Pound, Dollar/Yen, Dollar/Euro, Pound/Yen, Pound/Euro, Yen/Euro for the period
September the 1st, 1989 until July the 22nd, 2002 (3351 observations).

25



−4 −3 −2 −1 0 1 2 3 4
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Standard Normal Quantiles

Q
ua

nt
ile

s 
Lo

g 
Ab

so
lu

te
 R

et
ur

n

Dollar/Pound

−4 −3 −2 −1 0 1 2 3 4
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Standard Normal Quantiles

Q
ua

nt
ile

s 
Lo

g 
Ab

so
lu

te
 R

et
ur

n

Dollar/Yen

−4 −3 −2 −1 0 1 2 3 4
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Standard Normal Quantiles

Q
ua

nt
ile

s 
Lo

g 
Ab

so
lu

te
 R

et
ur

n

Dollar/Euro

−4 −3 −2 −1 0 1 2 3 4
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Standard Normal Quantiles

Q
ua

nt
ile

s 
Lo

g 
Ab

so
lu

te
 R

et
ur

n

Pound/Yen

−4 −3 −2 −1 0 1 2 3 4
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Standard Normal Quantiles

Q
ua

nt
ile

s 
Lo

g 
Ab

so
lu

te
 R

et
ur

n

Pound/Euro

−4 −3 −2 −1 0 1 2 3 4
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

Standard Normal Quantiles

Q
ua

nt
ile

s 
Lo

g 
Ab

so
lu

te
 R

et
ur

n

Yen/Euro

Figure 3: These graphs show the QQ-plot for the log absolute returns of the exchange rates
Dollar/Pound, Dollar/Yen, Dollar/Euro, Pound/Yen, Pound/Euro, Yen/Euro for the period
September the 1st, 1989 until July the 22nd, 2002 (3050 observations).
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Figure 4: The graphs of the 4 estimated latent factors of model (5)-(7) which are interpreted
as the Dollar, Pound, Yen and Euro component respectively. Estimation takes place over the
period September the 1st, 1989 until July the 22nd, 2002 (3351 observations).
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Figure 5: The graphs of the 5 estimated latent factors of model (5)-(7) which are interpreted
as the Dollar, Pound, Yen, Euro and World component respectively. Estimation takes place
over the period September the 1st, 1989 until July the 22nd, 2002 (3351 observations).
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Figure 6: The graphs of the λ’s as defined in equation (13) are shown. Estimation of model
(5)-(7) including a world factor takes place over the period September the 1st, 1989 until July
the 22nd, 2002 (3351 observations).
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Figure 7: These graphs show the indexed exchange rate together with the accompanying news
indices. Estimation of model (5)-(7) takes place over the period September the 1st, 1989 until
July the 22nd, 2002 (3351 observations).
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