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Abstract

The objective of this paper is to introduce fuzzy set theory and develop fuzzy mathematical
models to assess sustainable development based on context-dependent economic, ecological,
and societal sustainability indicators. Membership functions are at the core of fuzzy models,
and define the degree to which indicators contribute to development. Although a decision-
making process regarding sustainable development is subjective, fuzzy set theory links human
expectations about development, expressed in linguistic propositions, to numerical data,
expressed in measurements of sustainability indicators. In the future, practical
implementation of such models will be based on elicitation of expert knowledge to construct a
membership function. The fuzzy models developed in this paper provide a novel approach to
support decisions regarding sustainable development.
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1. Introduction

The impact of “sustainability” on development of national and international policy
has increased over the last decade. Sustainability is now a core element of government
policies, of university research projects, and of corporate strategies (Spedding, 1995;
WRR, 1995; Graaf and Musters, 1998; Mebratu, 1998).

Despite the variety of definitions and interpretations, sustainability consistently
means, either explicitly or implicitly, “continuity through time.” Rather than referring
to continuity per se, sustainability associates continuity to context-dependent
economic, ecological and societal (EES) issues (e.g., Shearman, 1990; Brklacich et
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al., 1991; Neher, 1992; Heinen, 1994; Clayton and Radcliffe, 1996; Hansen, 1996;
Vavra, 1996; Becker, 1997; Giampietro et al., 1997; Mebratu, 1998).

“Agricultural sustainability,” which is sustainability in reference to agricultural
production systems, invokes concern that in the future, also in the near future, current
agricultural activities might endanger the continuity of agricultural production
systems (WRR, 1995). This concern is expressed through EES issues, which can
range from meeting a need for sufficient, safe, and inexpensive food products to
achieving agricultural production practices without undesirable side effects. Possible
undesirable side effects include erosion of the soil, nutrient emission to the
environment, exhaustion of non-renewable resources, decline of rural communities,
and a negative impact on the welfare of animals (e.g., Ikerd, 1993; Stockle et al.,
1994; Steinfeld et al., 1997; Kelly, 1998).

Sustainability does not represent the endpoint of a process; rather, it represents the
process itself (Shearman, 1990; WRR, 1995). Sustainability implies an ongoing
dynamic development, driven by human expectations about future opportunities, and
is based on present EES issues and information. Sustainability is “sustainable
development” (Bossel, 1999).

As a consequence of the impact of sustainability on agricultural production
systems, a standardized framework to initiate and monitor sustainable development
(SD) would have great practical utility (Heinen, 1994; Vavra, 1996; Becker, 1997).
Such a framework requires a four-phased methodology to: (1) describe the problem in
a defined context, (2) determine context-dependent EES issues, (3) translate EES
issues into measurable context-dependent sustainability indicators (SI), and (4) assess
the contribution of SI to overall SD. Phases (1) through (3) have been dealt with in the
literature (e.g., Verbruggen and Kuik, 1991; Ikerd, 1993; Stockle et al., 1994;
Mitchell et al., 1995; Rennings and Wiggering, 1997; Kelly, 1998; Udo and
Cornelissen, 1998; Bell and Morse, 1999; Bossel, 1999; Callens and Tyteca, 1999).
Phase (4), however, has not been investigated. To assess the contribution of SI to
overall SD requires a formal mathematical basis. This paper, therefore, introduces the
mathematical theory of fuzzy sets, which enables assessment of overall SD based on
the contribution of SI information.

2. Methodology

2.1. Uncertainty regarding sustainable development

To decide upon a mathematical theory to model sustainable development, we must
consider the type of uncertainty related to SD. Because SD will be assessed using
selected SI, this selection determines how much we know about SD, i.e., how much
information is available; and how much we do not know about SD, i.e., how much
information is missing. Certainty about SD requires complete and consistent
information. To reduce the description of SD to a manageable level and to obtain a
feasible model, it is necessary to reduce the amount of information. Incomplete
information, therefore, is a fundamental characteristic of complex concepts (Klir,
1991; WRR, 1995).

In addition to incompleteness, information regarding SD is inconsistent. Human
expectations about future opportunities for agriculture may change over time. If so,
EES issues and, consequently, context-dependent SI will change.
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Further, SD involves trade-offs among issues that cannot be resolved
simultaneously (WRR, 1995). An increasing number of Dutch consumers, for
example, object to battery housing systems that interfere with the natural behavior of
laying hens. Keeping laying hens in floor housing systems instead of in battery
housing, therefore, is a societal issue in the Netherlands. There is a trade-off,
however, because floor housing tends to have higher ammonia emissions than battery
housing, and high emissions conflict with ecological issues for Dutch agriculture
(Groot Koerkamp, 1994).

Due to incomplete and inconsistent information, SD has no well-defined meaning.
The type of uncertainty regarding an assessment of the contribution of SI to SD,
therefore, essentially concerns the meaning of SD. In mathematical terms, this type of
uncertainty is known as fuzzy uncertainty (Klir and Folger, 1988).

2.2. Probabilistic and fuzzy uncertainty

Probabilistic uncertainty relates to events that have a well-defined, unambiguous
meaning. Probability theory is based on classical set theory and on two-valued logic,
e.g., true-or-false or yes-or-no statements; probability theory assesses whether an
event will occur (Batschelet, 1975; Bethea et al., 1985; Kosko, 1992). Because SD
cannot be well-defined, it is impossible to assess unambiguously whether
development of an agricultural production system is two-valued: sustainable or
unsustainable. Two-valued logic, therefore, yields an unsatisfactory conclusion (Klir
and Folger, 1988; Fresco and Kroonenberg, 1992; Pelt et al., 1995).

Fuzzy uncertainty, in contrast, relates to events that have no well-defined,
unambiguous meaning (Kosko, 1992). Fuzzy set theory is based on multi-valued logic
(McNeill and Freiberger, 1993; Pedrycz, 1993; Klir and Yuan, 1995; Zimmermann,
1996). Multi-valued logic enables intermediate assessment between strictly
sustainable and strictly unsustainable; i.e., fuzziness describes the degree to which an
event occurs, not whether it occurs (Kosko, 1990; Kosko, 1992). We propose,
therefore, that fuzzy set theory offers a formal mathematical framework to assess SD.

2.3. Basic definitions of set theory

Classical set theory is based on two-valued logic. Let the universe of discourse
define a set U that consists of elements x (x ∈ U). If A is a subset of U (A ⊂ U), then
each element x is either a member of A (x ∈ A) or a nonmember of A (x ∉ A). In set
theory, “subset” and “event” are interchangeable, i.e., x ∈ A means that for element x
event A has occurred (Hogg and Tanis, 1997). A characteristic function µA defines an
unambiguous distinction between members of A and nonmembers of A. Thus,
characteristic function µA assigns to each x one of two values: µA(x) = 1 iff (if and
only if) x ∈ A, or µA(x) = 0 iff x ∉ A (Figure 1A).

Recall the example of housing systems for laying hens. Let USI be the universe of
discourse for the SI “Ammonia Emission,” where x is the amount of ammonia
emission (kg NH3/hen), and let A be the subset “Acceptable” (A ⊂ USI). Further,
assume that the Dutch government determines as acceptable a maximum (threshold)
amount of ammonia emission xT . If x ≤ xT , then the amount of ammonia emission is
acceptable, so µA(x) = 1. If x > xT , however, then the amount of ammonia emission is
unacceptable, so µA(x) = 0 (Figure 1A).
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Classical set theory, therefore, requires a hard threshold xT  to determine an
unambiguous distinction between acceptable amounts of ammonia emission (x ≤ xT)
and unacceptable amounts (x > xT). A hard threshold is often unrealistic in practice,
however, because two nearly indistinguishable measurements x of SI on either side of
xT  will be placed in complementary subsets (Bosserman and Ragade, 1982; George et
al., 1997; Silvert, 1997).

Fuzzy set theory, in contrast, is based on multi-valued logic. Analogous to classical
set theory, Ã is a fuzzy subset of U (Ã ⊂ U), and a membership function µÃ defines
the partial membership in a set. Transition between membership and nonmembership,

Figure 1
USI is the universe of discourse for the sustainability indicator “Ammonia Emission,” and x
is the amount of ammonia emission (kg NH3/hen): x ∈ USI.
(1A) A is the classical subset “Acceptable” (A ⊂ USI), and characteristic function µA defines
a hard threshold xT between acceptable amounts of ammonia emission (x ≤ xT) and
unacceptable amounts (x > xT): µA assigns to each x one of two values: µA(x) = 1 iff x ≤ xT,
or µA(x) = 0 iff x > xT.
(1B) Ã is the fuzzy subset “Acceptable” (Ã ⊂ USI), and membership function µÃ defines a
soft threshold between acceptable amounts of ammonia emission and unacceptable
amounts: µÃ assigns to each x a value µÃ(x) decreasing from 1 to 0 with increasing x.

therefore, is gradual rather than abrupt. Thus, membership function µÃ assigns to each
x a value from 0 through 1, indicating the degree of membership µÃ(x) of x in Ã.
Membership functions, therefore, are functions that map x from U into the interval
[0,1] (Figure 1B).

Recall again the example of housing systems for laying hens, and the universe of
discourse for “Ammonia Emission” USI. Let Ã be the fuzzy subset “Acceptable” (Ã ⊂
USI). Membership function µÃ is assumed to have a nonlinear form, with degree of
membership µÃ(x) for ammonia emission decreasing from 1 to 0 with increasing x
(Figure 1B).

Fuzzy set theory, therefore, requires a soft threshold to determine an intermediate
assessment µÃ(x) between acceptable amounts of ammonia emission and unacceptable
amounts. A membership function µÃ defines a soft threshold, which enables a smooth
and practical assessment of measurements x of SI (Bosserman and Ragade, 1982;
George et al., 1997; Silvert, 1997).
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2.4. Fuzzy models and linguistic variables

Membership functions are fundamental to fuzzy models, which use such functions
to operate “linguistic variables.” In fuzzy set theory, a linguistic variable Ã is
characterized by: (1) base variable x of Ã, (2) name of Ã, (3) linguistic value Ãi of Ã
(i = 1,…,n), and (4) membership function µÃi of Ãi (adopted from: Zadeh, 1975a;
Zadeh, 1975b; Klir and Yuan, 1995). Characteristics of a linguistic variable are in
Figure 2.

Consider the example of housing systems for laying hens. The amount of ammonia
emission x, which is a measurement of the SI “Ammonia Emission,” defines USI;
hence, x is the base variable of Ã. If the contribution of “Ammonia Emission” to SD
is expressed in terms of “Acceptability” of base variable x, then the name of Ã is
“Acceptability.”

Figure 2

Linguistic variable Ã is characterized by: (1) base variable x of Ã, (2) name of Ã, (3)
linguistic value Ãi of Ã, and (4) membership function µÃi of Ãi (based on Zadeh, 1975a;
Zadeh, 1975b; Klir and Yuan, 1995).

Three linguistic values Ãi (Ã1,  Ã2, and Ã3) define the contribution of x to SD in
linguistic terms (Figure 2): Ã1 = “Acceptable,” Ã2 = “Moderately Acceptable,” and Ã3
= “Unacceptable.” A linguistic value, therefore, is a fuzzy subset of USI (Ãi ⊂ USI). A
membership function µÃi defines each linguistic value Ãi by determining to what
degree µÃi(x) a base variable x is “Acceptable,” µÃ1(x); “Moderately Acceptable,”
µÃ2(x); or “Unacceptable,” µÃ3(x).

In the standardized framework, human expectations about SD are expressed as
EES issues, for which SI provide numerical data. Use of linguistic variables in fuzzy
models enables one to link expectations about SD, expressed in linguistic
propositions, to numerical data, expressed in measurements of SI (Dubois and Prade,
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1998). Use of “Acceptability,” for example, enables one to link the proposition
“Ammonia Emission is Acceptable” to amount of ammonia emission (x kg NH3 per
hen).

3. Fuzzy models to assess sustainable development

3.1. Notation

Two fuzzy models are explored to assess SD: one model that applies fuzzy set
aggregation operations, and another that applies approximate reasoning. Input for
fuzzy models includes m sustainability indicators SIk (k = 1,…,m) and base variable
xk. Associated with each SIk is a membership function µik that defines a linguistic
value Ãi by mapping xk into the interval [0,1]. Associating xk with µik results in m
degrees of membership µik(xk). Numerical assessment of SD, µSD, is the output of a
fuzzy model; i.e., µSD is in the universe of discourse USD (µSD ∈ USD), which is
defined as the interval [0,1].

3.2. Fuzzy model applying fuzzy set aggregation operations

3.2.1. Scheme of fuzzy model
The scheme of a fuzzy model applying aggregation operations to assess SD is in

Figure 3. Five steps are involved: Step 1 defines model input, sustainability indicator
SIk and base variable xk; Step 2 defines linguistic variable Ã and linguistic value Ãi;
Step 3 constructs membership function µik; Step 4 computes degree of membership
µik(xk); and Step 5 selects a fuzzy set aggregation operation for µik(xk) so as to assess
model output µSD.

3.2.2. Selection of aggregation operation
An aggregation operation expresses an attitude toward SD. A meaningful

assessment µSD, therefore, requires careful selection of an aggregation operation
(Dubois and Prade, 1988; Munda, 1995; Silvert, 1997).

Assume that Step 2 defines linguistic variable “Acceptability” and linguistic value
“Acceptable” (Ã1). A conservative attitude toward SD means that µSD cannot be larger
than the smallest degree of membership µ11(x1),…,µ1m(xm). In fuzzy set theory, the
standard fuzzy intersection enables a conservative attitude toward SD by applying the
minimum operator (Dubois and Prade, 1985; Dubois and Prade, 1988):

µSD = min[µ11(x1),…,µ1m(xm)]

where min denotes the minimum operator. Consequently, if one degree of
membership µ1k(xk) is 0, then assessment µSD is 0.

A liberal attitude toward SD, in contrast, means that µSD cannot be smaller than the
largest degree of membership µ11(x1),…,µ1m(xm). In fuzzy set theory, the standard
fuzzy union enables a liberal attitude toward SD by applying the maximum operator
(Dubois and Prade, 1985; Dubois and Prade, 1988):

µSD = max[µ11(x1),…,µ1m(xm)]
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where max denotes the maximum operator. Consequently, if one degree of
membership µ1k(xk) is 1, then assessment µSD is 1.

Figure 3
The scheme of a fuzzy model applying fuzzy set aggregation operations to assess the
contribution of sustainability indicators (SI) to sustainable development (SD).

In political reality, economic, ecological, and societal issues inevitably will be
balanced against each other (Silvert, 1997). Averaging operations allow a degree of
compromise among the m degrees of membership µ11(x1),…,µ1m(xm) and determine a
value for µSD between min[µ11(x1),…,µ1m(xm)] and max[µ11(x1), …, µ1m(xm)] (Dubois
and Prade, 1985; Dubois and Prade, 1988; Klir and Yuan, 1995; Munda, 1995). In
addition, if the relative importance of SIk with respect to SD is considered to be
unequal, then it is necessary to weight the contribution of SIk, e.g., in proportion to its
importance (Silvert, 1997).

If α denotes the degree of compromise among m degrees of membership and wk

denotes the relative importance of SIk, then a generalized formulation of weighted
averaging operations is
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where α > 0, in this model.

In the special case when the relative importance of each SIk is equal, equation (1)
reduces to

Equation (1), generally, includes special cases for specific values of α : (i) if α →
−∞, then µSD is the standard fuzzy intersection; (ii) if α → 0, then µSD is the geometric
mean; (iii) if α = 1, then µSD is the arithmetic mean; and (iv) if α → +∞, then µSD is
the standard fuzzy union (Dubois and Prade, 1985).

In the example of housing systems for laying hens, assume SD is to be assessed
based on three SI: SI1 is “Farm Continuity” (x1, costs per hen), SI2 is “Ammonia
Emission” (x2, kg NH3 per hen), and SI3 is “Total Dust in Air” (x3, mg per m3) (de
Boer et al., 2000). Further, assume that associating xk with µ1k results in three degrees
of membership µ11(x1) = 0.2, µ12(x2) = 0.3, and µ13(x3) = 0.9.

In Equation (1) the smallest degree of membership determines µSD to an
increasingly lesser extent with increasing degree of compromise α. Using the specific
values of α above results in special cases: (i) µSD = 0.2, (ii) µSD = 0.4, (iii) µSD = 0.5,
and (iv) µSD = 0.9.

3.3. Fuzzy model applying approximate reasoning

3.3.1. Scheme of fuzzy model
The scheme of a fuzzy model applying approximate reasoning to assess SD is in

Figure 4 (on the next page). Six steps are involved: Step 1 defines model input,
sustainability indicator SIk and base variable xk; Step 2 defines linguistic variable Ã
and n linguistic values Ãi, and also defines linguistic variable Õ and q linguistic
values Õp (p = 1,…,q) regarding assessment µSD; Step 3 constructs membership
function µik and µÕp; Step 4 computes degree of membership µik(xk); Step 5
determines a fuzzy conclusion Ñ; and Step 6 draws a numerical assessment µSD. In
approximate reasoning, Step 4 is known as fuzzification, Step 5 as fuzzy inference, and
Step 6 as defuzzification (Bezdek, 1993; Klir and Yuan, 1995; Cox, 1998).

3.3.2. Fuzzy rule base
Reasoning is the process of infering a conclusion regarding a problem that cannot

be observed directly (viz, SD), from aspects of the problem that can be observed
directly (viz, SI) (Bhatnagar and Kanal, 1992). In a fuzzy model applying
approximate reasoning, the reasoning process is based on a series of r fuzzy rules Rj (j
= 1,..,r), which together is refered to as the fuzzy rule base of the model. A fuzzy rule
presents the contribution of SIk to SD by way of linguistic if-then propositions.

 (2)
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A proposition contains a premise, the if-part, and a conclusion, the then-part
(Boixader and Godo, 1998; Dubois and Prade, 1998). The premise contains one or
more facts “SIk is Ãi.” The conclusion contains a single fact “SD is Õp,” where
linguistic value Õp defines a fuzzy assessment regarding SD (Õp ⊂ USD). Fuzzy rule
Rj, therefore, reads

if “SIk is Ãi” then “SD is Õp”.

Figure 4
The scheme of a fuzzy model applying approximate reasoning to assess the contribution of
sustainability indicators (SI) to sustainable development (SD).
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If, for example, SIk is “Ammonia Emission,” Ãi is linguistic value “Acceptable,” SD
is “Sustainable Development,” Õ is linguistic variable “Achievement,” and Õp is
linguistic value “Very Good,” then fuzzy rule Rj reads

if  Ammonia Emission is Acceptable then Sustainable Development is Very Good.
Recall assessing the SD of housing systems for laying hens: SI1 is “Farm

Continuity” (x1, costs per hen), SI2 is “Ammonia Emission” (x2, kg NH3 per hen), and
SI3 is “Total Dust in Air” (x3, mg per m3). Further, linguistic value Ã1 is “Acceptable”
and Ã2 is “Unacceptable;” and linguistic value Õ1 is “Very Good,” Õ2 is “Good,” Õ3
is “Poor,” and Õ4 is “Very Poor.” A fuzzy rule base comprising four fuzzy rules could
read

R1 if  SI1 is Ã1 AND SI2 is Ã1 AND SI3 is Ã1 then SD is Õ1,

R2 if  SI1 is Ã1 AND SI2 is Ã1 AND SI3 is Ã2 then SD is Õ2,
R3 if  SI1 is Ã1 AND SI2 is Ã2 AND SI3 is Ã2 then SD is Õ3,
R4 if  SI1 is Ã2 AND SI2 is Ã2 AND SI3 is Ã2 then SD is Õ4.

where “AND” denotes a logical connective (Klir and Yuan, 1995). Rule R1, for
example, reads “if Farm Continuity is Acceptable AND Ammonia Emission is
Acceptable AND Total Dust in Air is Acceptable then Sustainable Development is
Very Good.” Steps 4 (fuzzification), 5 (fuzzy inference), and 6 (defuzzification) will
be illustrated based on the fuzzy rule base above.

3.3.3. Fuzzification
Fuzzification of model input refers to computing the degree of membership µik(xk).

In the example of assessing SD of housing systems for laying hens, fuzzification of
SI1 results in µ11(x1) = 0.2; of SI2, µ12(x2) = 0.3; and of SI3, µ13(x3) = 0.9. Further, Ã2

(“Unacceptable”) is the fuzzy complement of Ã1 (“Acceptable”), so that µ2k(xk) = 1 -
µ1k(xk) (Klir and Yuan, 1995): µ21(x1) = 0.8, µ22(x2) = 0.7, and µ23(x3) = 0.1 (Figure 5).

3.3.4. Fuzzy inference
Fuzzy inference is a two-step process: the implication process and the aggregation

process (Yager, 1994; Anonymous, 1998). The implication process defines a fuzzy
conclusion Ñj for each rule Rj. The aggregation process then defines an overall fuzzy
conclusion Ñ for the entire fuzzy rule base.

The implication process first defines a truth value τj for the premise of the
proposition in Rj. If the premise contains a single fact “SIk is Ãi,” then τj is defined by
the degree of membership µik(xk). If the premise contains more than one fact,
however, then τj is defined by a logical connective (Zadeh, 1975b; Boixader and
Godo, 1998).

Consider the example that assesses the SD of housing systems for laying hens. For
Rj, the logical connective “AND” defines a fuzzy intersection operator to compute τj

based on degrees of memberships. Applying the min-operator for R1, for example,
results in τ1 = min[0.2, 0.3, 0.9] = 0.2 (Figure 5).

The implication process then defines how τj implies a fuzzy conclusion Ñj based
on the fact “SD is Õp.” The operator defined to implement the implication process in
Rj modifies membership function µÕp, constructed in Step 3, to the degree specified
by τj. Applying the min-operator for R1, for example, modifies the membership
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function µÕ1 by truncation at τ1 = 0.2. The fuzzy conclusion Ñ1 is the area under the
truncated membership function (Figure 5).

Figure 5
Graphical illustration of a fuzzy model applying approximate reasoning to assess the
sustainable development of housing systems for laying hens. A fuzzy rule base comprising
four fuzzy if-then rules presents the contribution of three sustainability indicators (Farm
Continuity, Ammonia Emission, and Total Dust in Air) to sustainable development.
Approximate reasoning starts with fuzzification of model input x1 (costs per hen), x2 (kg NH3
per hen), and x3 (mg per m3). Next, fuzzy inference, a two-step process comprising the
implication process and the aggregation process, determines an overall fuzzy conclusion Ñ
based on fuzzy conclusions Ñ1 through Ñ4 for each rule (based on Anonymous, 1998).

The aggregation process defines an overall fuzzy conclusion Ñ by selecting an
operator to aggregate the Ñj. In a fuzzy rule base, rules are connected by the logical
connective “ELSE” (Watanabe et al., 1992). In the example, the fuzzy rule base then
reads

      IF      Farm Continuity is Acceptable     AND       Ammonia Emission is Acceptable           AND         Total Dust in Air is Acceptable                 THEN         Sustainable Development is  Very Good
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R1 if SI1 is Ã1 AND SI2 is Ã1 AND SI3 is Ã1 then SD is Õ1, ELSE
R2 if SI1 is Ã1 AND SI2 is Ã1 AND SI3 is Ã2 then SD is Õ2, ELSE
R3 if SI1 is Ã1 AND SI2 is Ã2 AND SI3 is Ã2 then SD is Õ3, ELSE
R4 if SI1 is Ã2 AND SI2 is Ã2 AND SI3 is Ã2 then SD is Õ4.

Each fuzzy rule above expresses a situation regarding the contribution of three SI to
SD. In approximate reasoning, rules R1 through R4 are true to a certain degree, as
expressed by τ1 through τ4, which means that all rules contribute partly to the overall
fuzzy conclusion Ñ. If one rule is completely true (e.g., τ1 = 1), then all other rules
must be completely false (i.e., τ2 through τ4 = 0) and should not contribute to Ñ. The
logical connective “ELSE” is defined, therefore, by the max-operator to enable a
fuzzy union of Ñj (Yager, 1994; Türksen, 1999). The fuzzy conclusion Ñ is the area
under the curve (Figure 5).

3.3.5. Defuzzification
Defuzzification converts the fuzzy conclusion Ñ from an area under the curve to a

numerical assessment µSD. Various methods of defuzzification are available (e.g.,
Filev and Yager, 1991; Yager and Filev, 1993; Bárdossy and Duckstein, 1995; Klir
and Yuan, 1995; Dubois and Prade, 1998; Leekwijck and Kerre, 1999). The method
used most often is the center of gravity method, which defines µSD as a value that
divides the area under the curve into two equal subareas. In the example that assesses
SD of housing systems for laying hens, the center of gravity is computed as µSD = 0.6
(Figure 6).

Figure 6
Graphical illustration of defuzzification of the overall fuzzy conclusion Ñ in a fuzzy model applying
approximate reasoning to assess the sustainable development of housing systems for laying hens. The
center of gravity method divides the area under the curve Ñ into two equal subareas and thus
determines µSD.

1

0
10 0.5
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4. Discussion

4.1. Fuzzy models to assess sustainable development
The impact of sustainability on agricultural production systems emphasizes the

need for a standardized framework to initiate and monitor sustainable development
(Shearman, 1990; Hansen, 1996; Becker, 1997). A numerical assessment of SD in
such a framework is based on context-dependent economic, ecological, and societal
sustainability indicators. The objective of this paper was to introduce fuzzy set theory
as a mathematical basis to enable a numerical assessment of SD. For this reason, we
developed two fuzzy models: one model that applies fuzzy set aggregation operations
and another that applies approximate reasoning. The approach was limited to
exploring each model using a hypothetical example of housing systems for laying
hens.

The first fuzzy model constitutes a robust application of fuzzy set theory and
enables a general approach to human reasoning. Fuzzy set aggregation operations
allow a continuum of (political) attitudes toward SD, ranging from conservative to
liberal.

The second fuzzy model constitutes a refined application of fuzzy set theory and
enables a specific approach to human reasoning. Fuzzy if-then rules allow human
expectations about SD to be expressed in linguistic propositions that present the
contribution of SI to SD. A numerical assessment µSD can then be “fine-tuned” by
selected fuzzy operators used in the approximate reasoning process to draw a
conclusion regarding SD. Various fuzzy operators are available to implement fine-
tuning of the reasoning process (Klir and Yuan, 1995; Rojas et al., 1999). The choice
of operators, therefore, needs careful consideration.

4.2. Practical implementation of fuzzy models
Membership functions are at the core of fuzzy models. The membership function is

considered to be both the strongest and the weakest point of fuzzy set theory (Munda
et al., 1992). It is the strongest, because a membership function defines a soft
threshold, which allows a smooth and practical assessment of the contribution of SI to
SD, in contrast with a characteristic function, which defines a hard threshold in
classical set theory (Bosserman and Ragade, 1982; George et al., 1997; Silvert, 1997).
It is the weakest, because the membership function is regarded as too subjective in
relation to its construction. In industrial engineering applications of fuzzy set theory,
construction of membership functions is realized mostly by trial and error (McNeill
and Freiberger, 1993; Bárdossy and Duckstein, 1995; Klir and Yuan, 1995;
Zimmerman, 1996). Trial-and-error methods to construct membership functions to
assess SD, however, are not possible and are considered unacceptable.

Several studies discuss empirical methods to construct a membership function
based on expert knowledge (e.g., Norwich and Türksen, 1984; Chameau and
Santamarina, 1987; Santamarina and Chameau, 1987; Türksen, 1991; Bárdossy and
Duckstein, 1995; Ruspini et al., 1998; Türksen, 1999). Three aspects regarding use of
expert knowledge must be considered in practical implementation of fuzzy models to
assess SD: (1) criteria that determine necessary qualifications of experts, (2) proper
elicitation of expert knowledge to construct a membership function, and (3) methods
to test reliability of a membership function. Reliability of a membership function is
also important with regard to verification and validation of the fuzzy model (Chang
and Hall, 1992).
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4.3. Conclusions
A decision-making process regarding SD is first and foremost a political and,

therefore, a subjective issue (Bockstaller et al., 1997; Silvert, 1997; Graaf and
Musters, 1998). Although the attitude toward SD might be a subjective one, fuzzy set
theory enables a formal mathematical framework to link human expectations about
SD, expressed in linguistic propositions, to numerical data, expressed in
measurements of SI. The fuzzy models developed in this paper, therefore, provide a
novel approach to support decision-making regarding sustainable development.
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