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Abstract

In this paper the well-known minimax theorems of Wald, Ville and
Von Neumann are generalized under weaker topological conditions on
the payoff functionf and/or extended to the larger set of the Borel prob-
ability measures instead of the set of mixed strategies.

1 Introduction.

In this paper we will generalize the classical minimax theorems of von Neu-
mann (cf.[18]), Ville (cf.[17]) and Wald (cf.[20]) in game theory under weaker
topological conditions on the payoff functigh Also these results are ex-
tended to a larger class of strategies than the so-called class of mixed strate-
gies (cf.[19]). Before presenting those results and the generalizations, we first
need to introduce the following notations. Létand B, unless stated other-
wise, be nonempty Haussdorff spaces with BereallgebrasA, respectively

B, and consider a payoff functiofi: A x B — R. Denote now byPr(A),
respectivelyPr(B), the set of all finite discrete Borel probability measures
on (A, A), respectively(B, B). If ¢, represents the Borel probability measure
concentrated on € A then by definition\ belongs toPr(A) if and only if

there exists some finite s¢t,...,a,} C A and a finite sef{ Ay, ..., \,,} of



positive numbers satisfyiny ;" ; \; = 1 such that

A= ijl Aica, - 1)

A similar observation applies t®»(B), and sou belongs toPr(B) if and
only if there exists some finite sé¢b,,...,b,,} C B and a finite sequence
{1, .., pn} Of positive numbers satisfyiny_7" | 1; = 1 such that

p= i @

In noncooperative game theory (cf.[9], [19]) the sBtS A), respectivelyPr (B)

are called the set of mixed strategies of playerespectively playe2 and

these strategies have a clear probabilistic interpretation. To measure the payoff
for both players using mixed strategies we need to extend the payoff function
f: A x B — R from the cartesian set of pure strategies to the cartesian set of
mixed strategies. This extensigh: Pr(A) x Pr(B) — Ris defined by

fe(\, 1) == Z:Zl Z;n:l Ainj f(as, by) ®3)

with A € Pr(A),u € Pr(B) given by relations (1), respectively (2). In-
troducing the seP(A), respectivelyP(B) of all Borel probability measures
on (A, A), respectively(B, B) it follows for A a finite set consisting of the
elementsay, ..., a,} thatP(A) = Pr(A) and

Pr(A) ={\: )= Z; Ai€a, Z; A=1,)\>0forl<i<n}

A similar observation also applies f@ a finite set. In1928 von Neumann
(cf.[18]) published his famous minimax result for finite zero sum noncoopera-
tive games and this result in listed in the following theorem.

Theorem 1 If A and B are finite sets, then it follows that
maxyep(4) Min,ep(p) fe(A, 1) = mingeppy maxyep(ay fe(A, 1)

The next minimax result due to Ville (cf.[17]) and published1988 is
a generalization of the result of von Neumann and plays an important role in
infinite zero sum noncooperative game theory (cf.[19]). In this theorem we
need to assume that the pure strategy dedsid B are metric spaces.

Theorem 2 If A and B are compact metric spaces and the functjon A x
B — R is continuous, then

SUP APy (A) Milyuep,(B) fe(As 1) = Inf ep, () maxyep,(a) fe(A, 1)



Another generalization of von Neumann'’s result is due to Wald (cf.[20])
and published il 945. This result plays a fundamental role in the theory of
statistical decision functions (cf.[21]).

Theorem 3 If B is a finite andA an arbitrary set, then it follows that

SUP AP, (4) Milep(B) fe(As 1) = minyep(B) SUPAep,(a) fe(A 1)

Although the above results seem different it is possible to show that all
these results and some other results proved more recently in the literature by
sometimes different proofs can be easily deduced from each other and are
equivalent to the well known separation result of a closed convex set and a
point outside this set in a finite dimensional vector space (cf.[6]). This means
that all these results are based on elementary mathematics. One of those equiv-
alent results which plays an important role in this paper for the verification
of the generalizations is given by a minimax result due to Kneser (cf.[11])
and proved in1952. The proof of this result is very elementary, ingenious,
and depends only on simple computations and the well known result (cf.[1])
that any upper semicontinuous function on a compact set attains its maximum
(Weierstrass-Lebesgue lemma). Before mentioning this result we introduce
for the functionf : A x B — R the associated functiong : B — R and

fv : A — Rgiven byfa(b) = fb(a) = f(a7 b)

Theorem 4 If B is a nonempty convex, compact subset of a topological vector
space,A is a nonempty convex subset of a vector space and the furftion

A x B — R is affine in both variables and, is lower semicontinuous oB

for everya € A then it follows that

SUPge 4 Minge g f(a,b) = minge g sup,e 4 f(a, b).

In this paper we will generalize the above results by weakening the topo-
logical conditions on the payoff functiofiand/or extending the set of mixed
strategies. In particular, the Fubini-Tonelli theorem, the Riesz representation
theorem, the separation theorem between disjoint convex set in normed lin-
ear spaces and the Banach-Alaoglu theorem play an important role in proving
those generalizations. The first generalization under the strongest conditions is
given by the following result.

Theorem 5 Let f : A x B — R be either bounded from above or below and
measurable with respect to the Borel produetlgebraA ® B. If A and B
are compact Hausdorff spaces afidis lower semicontinuous for evetiyc A
and f; is upper semicontinous for evelye B, then it follows that

SUP\ePp(A) Milyep,(B) fe(As 1) = Infep, () maxyep,(a) fe(A, 1)



Since every finite set is clearly compact this result is a generalization of the
minimax result of Von Neumann. Also, since the topological conditions on the
function f are weaker, it is a generalization of the minimax theorem of Ville.
To give an interpretation within game theory we observe that Theorem 5 shows
that playerl, respectively playe2, using the mixed strategy seB-(A), re-
spectivelyPr(B) with A and B compact Hausdorff spaces can achieve under
some topological properties on the payoff functiban e-equilibrium for any
e > 0. Moreover, if the value of the game is positive (this can be assumed
without loss of generality by scaling the payoff functjdhis value is equal to
the optimal objective value of the primal problem

sup || l| o
Jpfadu <1 acA
p € Mrp(B)

to be solved by playe2. In this optimization problem\ »(B) denotes the
set of all finite discrete Borel measure®n (B, 5) with (finite) total variation
norm ||u||. The same value can be determind by playesolving the dual
problem

inf || A]lt
[y fodp>1 beB
A€ Mp(A)

and so Theorem 5 generalizes the duality theorem of linear programming. Both
the optimal objective value of the primal and dual problem are the same but the
above problems might not have an optimal solution within the 8dis(B),
respectivelyM r(A). It can be shown that the optimal solution for both players
exists in the larger set of Borel measures with a finite total variation norm
and by scaling these solutions we obtain the optimal strategies belonging to
the set of Borel probability measures A, .A), respectively(B, B). In the

next result the topological conditions on the functiprare weaker than the
conditions presented in Theorem 5. Under these conditions the extension of
the payoff function to the domaiR(A) x P(B) is well defined and given by
fe\ 1) := [ 4, g fd(Ax ) with X x 1 the Borel probability product measure
on(A x B, A® B).

Theorem 6 Let f : A x B — R be either bounded from above or below and
measurable with respect to the Borel produealgebrad © B. If the setB is

a compact Hausdorff spacd,an arbitrary set andf, is lower semicontinuous
for everya € A then it follows that

SUP\ep(4) Wil ep(B) fe(A 1) = minyep ) SUPAcp(a) fe(A, 1)



This result can be seen as a generalization of the minimax result of Ville.
Again it shows that the two players can achieveeagquilibrium for every
e > 0, when the strategy sets are given®yB) andP(A). As before, one can
easily construct the associated primal and dual optimization problems for de-
termining the value of the game and so Theorem 6 also generalizes the duality
theorem of linear programming. Finally we list the minimax result valid under
the weakest topological conditions.

Theorem 7 If B is a compact Haussdorf spacé,is an arbitrary set, and the
function f, is lower semicontinuous for evetiyc A, then it follows that

SUP\ep,(4) MiNyep(B) fe(As 1) = mingep(p) SUPAep,(a) fe(A, 1)

Again this is a generalization of the minimax result of Wald and von Neu-
mann and as before it has a clear interpretation in game theory. Considering
now these generalizations one might wonder whether the same equality holds
under weaker assumptions. The main assumptions in these generalizations are
a compactness assumption on the set of pure strategies, a topological and a
boundedness assumption on the functfott turns out that these assumptions
are critical and to show this we list some counterexamples in the last section.

2 On the Riesz Representation Theorem and Lower
Semicontinuous Functions.

In this section we will gather results needed from functional analysis for the
proof of the minimax result. LeB be a compact Hausdorff space and introduce
the normed linear spad€’'(B), ||.||«) of all continuous real valued functions

h on B equipped with the supnorm

[Plloo := supgep [P(z)] < oo

The set of all continuous linear functionals 61 B) is given by the dual linear
spaceC(B)* and this linear space has dual norm

| < x*, h > |

17 ]loo
Also, let (M(B), ||.]l+) denote the normed linear space of all finite signed
Borel measures on the measurable sg#te3) with B the Borelo-algebra on

B and||.||+» the total variation norm and consider for everyce M(B) the
continuous linear functiondl, : C(B) — R defined by

"]l := supp|.. 20

< Iy, h>= / hdp.
B
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Clearly I,, belongs to the dual spac&B)* and by the so-called Riesz repre-
sentation theorem it follows that all elements of the dual sgade)* actually
have this representation (cf.[4]).

Theorem 8 For B a compact Hausdorff space the mappjng- 1, is alinear
mapping of the spaceM (B), ||.||+) onto the spac€C(K)*, ||.||4) satisfying

el = N Lyl -

By the Riesz representation theorem we obtain that the unitlbat-
{I, € C(B)* : |I)la < 1} can be identified with the sdiu € M(B) :
llullo < 1} and since by the Banach-Alaoglu theorem (cf.[3]) thel$eb
weak compact, the s € M(B) : ||u]|+ < 1} mustalso be wegkompact.
It is shown in [13] that the Banach-Alaoglu theorem is an easy consequence
of Tychonoff’s theorem on the cartesian product of compact sets. Introducing

now the sefP(B) of Borel probability measures qiB, 3) we obtain

P(B) = {u € M(B) : n a positive measure anfgl[;, = 1}.

the weaktopology and hence weakompact. It is well known (cf.[3]) by the
definition of the weaktopology and Theorem 8 thataHgt;,i € 1} C M(B)
converges in the wedtopology to the finite signed Borel measuré and only

if [5hdp; — [ hdp for every h belonging toC'(B). This implies that any

net of Borel probability measures converging in the wi¢aggology converges

to a Borel probability measure and so it follows thatB) is a weakclosed

and hence a we&dkompact subset ofy. € M(B) : |||t < 1}. Actually

one can prove using the so-called theorem of approximation (cf.[2]) that the
convex setP(B) of Borel probability measures is given by the wéelksure

of all finite convex combinations of the so-called one point Borel probability
measures; concentrated oh,b € B. This means:i(Pr(B)) = P(B) with
Pr(B) the already introduced set of all finite discrete probability measures on
(B, B). Summarizing we have the following resuilt.

We will now show that this se®(B) C {p € M(B) : ||p][t» < 1} is closed in

Theorem 9 If the setB is a compact Hausdorff space then the B¢13) is
weakcompact. Moreover, iPr(B) C P(B) denotes the set of all finite dis-
crete probability measures aB,then it follows that!(Pr(B)) = P(B) with
the closure taken in the wedkpology.

The following result is a simple consequence of the Riesz representation
theorem and the Hahn Banach theorem on normed linear spaces.



Lemma 10 Let B be a compact Hausdorff space. For an arbitrary convex set
G C C(B) the following properties are equivalent:

1. Foreveryh € G it holds that minegh(z) < 0.

2. There exists a Borel probability measyren (B, B) such that/, hdu <
0 for everyh € G.

Proof. We first observe for every € C(B) and B compact that the minimum

of h over B is attained. To show =- 1 assume by contradiction that there
exists somé: € G satisfyingmin,cp h(z) > 0. This implies for every Borel
probability measure: on (B, B) that [ hdy > mingep h(z) > 0 and so we
obtain a contradiction. To verify = 2, it is clear that the convex sét does

not intersect the convex cor€™ := {h € C(B) : min,cp h(x) > 0}. Since

the setK™ is open in the normed linear spa@@(B), ||.|l«) we may apply

the separation theorem in normed linear spaces between two disjoint convex
sets of which one set is open (cf.[15]), and so there exist sgme C(B)*
satisfying

Suppeq < o, h ><infpcp+ < zg,h > . 4)

To show thatzj; is a positive continuous linear functional we assume by con-
tradiction that there exists sontg € K* satisfying< x, ho >< 0. This
implies usingthy € K+ for everyt > 0 thatinf,c g+ < xf,h >= —oco and

so by relation (4) we obtaisup, ., < zj, h >= —oo. This is a contradiction
and so it follows for every» € K that

SUPpea < .’L'é,h >< infh€K+ < x(*b h>=0 (5)

or equivalentlyz is a positive continuous linear functional. By the Riesz rep-
resentation theorem there exists some finite signed Borel measatesfying

<xp,h >:/ hdpu
B

for everyh € C(B) and sincezj is a positive continuous linear functional
it must follow thaty is a finite Borel measure. By scaling we may assume
without loss of generality thgt(B) = 1 and so by relation (5) the desired
result follows. O

To extend the above result to a larger class of functions, recall that the class
of lower semicontinuous real valued functions on the compact Hausdorff space
B is given by the next definition.



Definition 11 The functionp : B — R is called lower semicontinuous if for
everyr € R the lower level seLy(r) := {x € B : ¢(x) < r} is closed.

Clearly a lower semicontinuous function is a Borel measurable function.
In the next result we relate the class of lower semicontinuous functions to the
class of continuous functions. Although this result is known, we list a short
proof for completeness.

Theorem 12 The following properties of a functiop : B — R on the com-
pact Hausdorff spac® are equivalent:

1. The functiony is lower semicontinuous.
2. ¢(z) = suppep, h(z) with Hy := {h € C(B) : h < ¢} nonempty.

Proof. To showl = 2 we first observe using is lower semicontinuous and
B compact that by the Weierstrass-Lebesgue lemma the fungtatains its
minimum overB. Hence without loss of generality we may assume ¢hat 0.
Clearly ¢(x) = sup,ep, h(x) for everyz and assume now by contradiction
that¢(zg) > r > suppep, h(wo) for somezy € X. Using now the lower
semicontinuity of the functiorp, there exists some open neighborhdof
xg satisfyinge(z) > r for everyx € U. Also, sinceB is a compact Hausdorff
space, the seB is normal (cf.[4]) and the setst,} and B\U are closed and
disjoint. Hence Urysohn’s lemma holds and so one can find Jome” (B)
satisfying0 < h < 1, h(zg) = 1 andh(x) = 0 for everyxz € B\U. Taking
now h, := rh itis easy to verify that,, € C(B), h, < ¢ andh,(z¢) = r and
we obtain a contradiction. The implicati@n=- 1 is obvious and so we omit
its proof. d

By the above result we see that a function is lower semicontinuous on a
compact seB if and only if it can be pointwise approximated from below
by continuous functions oB. Actually the set of lower semicontinuous func-
tions is obtained from the normed linear spd¢& B), ||.||~) by addition of
an extra operation: taking the supremum of an arbitrary set of functions. It is
now easy to see that the set of lower semicontinuous functions is the smallest
class of functions orB which containsC'(B) and is closed with respect to
taking a supremum of an arbitrary set of functions belonging to this class. An
immediate consequence of Theorem 12 is given by the next result.

Lemma 13 Let B be a compact Hausdorff space. A real valued functiam
B is lower semicontinuous if and only i, is nonempty and for every Borel



probability measureg: on (B, B) it holds that

SUPheH¢/]E;hdM—/]E;¢dM-

Moreover, forg lower semicontinuous it follows that the mappihg M (B) —
(—o0,00] given byL(u) = [z ¢dp is lower semicontinuous in the weak
topology onM(B).

Proof. By Theorem 12 it follows thaty = SUPhe, h and this implies by
the definition of the integraf ¢dpu (cf.[2]) thatsupy,e J hdp = [ ¢dp. To
show the reverse implication we observe thais a Borel probability measure
for everyz € B and this implies by our assumption that

o(z) = /qudez = SUPpep, /B hdey = suppep, h(z)

showing the desired result. To prove the last part we observe by the definition
of the weaktopology that for every, € C(B) the mappingu — fB hdu is
continuous in the wedkopology and using now, ¢du = SUPher, [ hdp
the desired result follows. O

We now list an extension of Lemma 10 to the class of lower semicontinuous
functions on the compact Hausdorff spdge

Lemma 14 Let B be a compact Hausdorff space. For an arbitrary convex
setG of lower semicontinuous functions d# the following properties are
equivalent:

1. Foreveryp € G it holds thatmin,cp ¢(z) < 0.

2. There exists a Borel probability measyren (B, B) such thatf, ¢du <
0 for everyg € G.

Proof. Again by the Weierstrass-Lebesgue lemma the functi@ttains its
minimum overB. As in Lemma 10 one can easily sh@v=- 1 and so we
only verify 2 = 1. Considering the s&t, := UgeaHy C C(B) it follows by
the convexity of the seff that alsoGy is convex. Also by our assumption we
obtain thatmin,cp h(x) < 0 for everyh € Gy. Hence we may apply Lemma
10 and so there exists some Borel probability meague (B, B) satisfying

[ hdp < 0 for everyh € Gy. This implies for everyp € G usingH, C Gy
that [ ¢dp = SUPhep, [ hdp < 0 and the proof is completed. O

In the next example we construct a convex Getontaining at least one
Borel measurable and not lower semicontinuous function and for thi& set



we showinf,cp ¢(z) < 0 for everyp € G andsupyeq [z ¢dp > 0 for
every Borel probability measuge This means that Lemma 14 does not hold
if the convex set7 contains at least one Borel measurable function which is
not lower semicontinuous.

Example 15 Let ¢g : B — R be an arbitrary Borel measurable function
bounded from below but not lower semicontinuous. For such a function the
setHy, is nonempty and so by Lemma 13 there exists some Borel probability
measureuy on (B, B) satisfying

SUPheH,, /B hdpp < /B Podpo-

Without loss of generality (add a constant to the functighwe may assume
that

0 = suppep,, /B hdpo < /B Podpo- (6)

Introduce now the nonempty convex caig:= {h € C(B) : [g hduo < 0}
and consider the convex set

G::{a¢0+h:h€Go,O§a§1}.

For this convex sef’ we will now verify thainf,.c 5 ¢(x) < 0 for everyp € G
andsupeq J ¢dp > 0 for every Borel probability measure. To show that
inf,cp ¢(x) < 0for everyp € G we assume by contradiction that there exists
some) < ag < 1 andhg € Gy satisfying

B = infrep(aogo(z) + ho(x)) >0 (7)

If ag = 0 then by relation (7) it follows tha]fB hodpo > B > 0 and this
contradictshg € Gy. Thereforeay > 0 and again by relation (7) we obtain

do(z) > ag ' (B — ho(z)) for everyz € B. Sincehq € C(B) this implies that

the functionz — oy ' (3 — ho(x)) belongs toH, and by relation (6) it must

follow that
/B ag ' (B = ho)dpo < 0. ®)
Also, sincehy € Gy, g > 0 and 3 > 0 we obtain
/B o (8 — ho)dpo > 0y 8 > 0.

10



and this contradicts relation (8). Therefore it must hold thét.cz ¢(z) < 0
for every¢ € GG and we have verified the first property of the convex(set
To showsup,eq [ ¢dp > 0 for every Borel probability measure we first
observe that for every Borel probability measure# 1 there exists some
h € C(B) satisfying [ hdu # [ hdpo. Without loss of generality we may
assumefB hdp > fB hduy (take —h instead ofh) and adding a constant to
the functionk one can find a functiohy € C(B) satisfying

/ hodpp < 0 and / hodp > 0. 9)
B B

This showshy € G and since¢y is a convex cone, alsehy € G for every
a > 0. This implies using relation (9) that

SuPheGo/BhdM = o0,

and sinceGy C G it follows for every Borel probability measure+# pg that

sup¢eG/¢dM > SUPpeqy, /hdu = 00.

Also for . = pg we obtain by relation (6) that

SUPge /B G > /B dodpo > 0

and so one may conclude that in this example there does not exist any Borel
probability measurg: satisfyingsup y¢ ¢ fB ¢dp < 0. This means that Lemma

13 does not hold for the considered convex@eind our counterexample is
completed.

This concludes our discussion of consequences of the Riesz representation
theorem. In the next section we will consider the application of the above
results within game theory.

3  On Minimax Theorems.

Using the results of the previous section, we will prove in this section some of
the generalizations of the minimax results of Von Neumann, Wald and Ville.
As already observed the minimax results of Von Neumann, Wald and Ville
are equivalent to the separation result in finite dimensional vector spaces be-
tween a closed convex set and a point outside this set. For our generalizations

11



the stronger mathematical tools of the previous section are needed. For the
key result given by Theorem 17 we give two different proofs. One proof uses
Theorem 9 (a combination of the Banach-Alaoglu theorem and the Riesz repre-
sentation theorem) and the last part of Lemma 13, based on Urysohn’s lemma,
to verify that the conditions of Kneser’s minimax result hold and this yields
the result. The other proof uses Lemma 14 based on the Riesz representation
theorem, Urysohn’s lemma and the separation result between disjoint convex
set in normed linear spaces. We will start with the proof based on Lemma 14.
Let f : A x B — R be given and consider the functiois : B — R and

f» : A — R given by

fa(b) = fo(a) := f(a,b). (10)

If Bis a compact Hausdorff space alfigdis lower semicontinuous oB for
everya € A then by Theorem 12 and the definition of the integral we obtain
for every finite signed Borel measugieon (B, ) that

/ fadﬂ = Sup{/ hduhEHfa} < oo
B B

and this implies that the integrgl, f,dy is well defined for every, € A and
u a finite signed Borel measure. Hence it is possible to prove the following
consequence of Lemma 14.

Lemma 16 Let ¢y be a finite constant an® a compact Hausdorff space. If
for everya € A the functionf, is lower semicontinuous then it follows that

SUP e, (4) Minbes fe(A, €) < o if and only ifsup,e 4 fe(€a, 1) < co for
someu € P(B).

Proof. Replacing the functiorf by f — colaxp With 14xp5(a,b) := 1 for

every(a,b) € A x B we may assume without loss of generality that= 0.
Introducing now for every\ € Pr(A) the functiong, : B — R given by

oa(b) == fo(\ ) = /A Jud\

it follows that the set7 := {¢) : A € Pr(A)} is convex. Due tof, is lower
semicontinuous for every € A the setG is also a subset of the set of lower
semicontinuous functions aB and¢, attains its minimum oveB. Since by
definition

SUP)ep,(4) Milpep fe(A, ep) <0< mingep ¢pa(b) < 0 foreverygy € G

12



and

supgea fe(€asp) <0 & / Ge, A = / fadp < 0 foreverya € A
B B

we obtain the desired result by Lemma 14. O

An immediate consequence of Lemma 16 is given by the following result.
This result will play a key role in this paper.

Theorem 17 Let A be an arbitrary set and3 a compact Hausdorff space. If
the functionf, is lower semicontinuous for evetiyc A then it follows that

SUD\epp(4) Milbep fe(A, &) = inf ep(p) SuD,ea fe(€as 1)
and there exists somee P(B) attaining the above infimum.

Proof. The result follows immediately by applying Lemma 16. O

The following remarks are immediate consequences of Theorem 17.
Remark 18 In this remark we observe the following:

1. If B is a compact Hausdorff space and the functifnis upper semi-
continuous for every, € A instead of lower semicontinuous then we
replace in Theorem 17 the functigiby — f and this yields the equality

infyep, (a) maxpeB fe(A, €) = max,cpp) infaeca fe(ea, p)  (11)

Reversing the roles of the sedsand B we obtain by relation (11) foA
a compact Hausdorff space and the functjgris upper semicontinuous
for everyb € B that

inf,cp,.(By Maxaea fe(€a, ) = maxyep(a)infrep fe(A,6)  (12)

2. To compute the optimal Borel probability measuien (B, 1B) satisfying
the equality in Theorem 17 we need to solve the optimization problem

min =z
foadugz a €A
1€ P(B)

By scaling the functiory,, the optimal solution of the above problem
does not change and so we may assume that the optimal objective value
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of this "generalized linear programming” problem is positive. Replac-
ing now every feasibléu, z) with u € P(B) andz > 0 by the finite
Borel measurgi = z~ ' and using||i||w, = m(B) = 2! we need to
solve the primal optimization problem

max || ]eo
Jpfadp <1 acA (P)
ne M(B).

It is easy to show that the result in Theorem 17 is actually a minimax
result. Sinces, € P(B) for everyb € B and [, ¢du > infyep ¢(b), for ¢
lower semicontinuous and € P(B) with B a compact Hausdorff space we
obtain

infueP(B) /B ¢du = inbeB (f)(b) (13)

Actually, since¢ is lower semicontinuousi a compact Hausdorff space and
e, € P(B) for everyb € B, we obtain by the above equality that

min,ep(p) /B¢d,u = minyep ¢(b).

This implies with¢ replaced by — f.(A, €), A € Pr(A) that under the same
conditions as in Theorem 17

min,ep(p) fe(A, 1) = mingep fe(A, €)

for every\ € Pr(A). Also itis easy to verify that

SUPge fe(€as ) = SUPAcPR(A) fe(As 1) (14)

for everyu € P(B) and so the resultin Theorem 17 is the same as the minimax
result

SUP\ep, (4) Milep(B) fe(A, p) = ming,ep(p) SUPrxep,(a) fe(A, 1) (15)

The equality in relation (15) shows that players using the mixed strategy sets
Pr(A) andP(B) can achieve folB a compact Hausdorff space ayicsatis-

fying some additional topological conditions aequilibrium for everye > 0.

Also the player using strategy st B) can achieve the value of the game.
Clearly this result is a generalization of the minimax result of Wald. An alter-
native proof of relation (15) and hence of Theorem 17 is given by an applica-
tion of Kneser’'s minimax result in combination with the Riesz representation
theorem and the weékompactness dP(B).

14



Proof. By Theorem 9 the seP(B) of Borel probability measures ofB, )

is weakcompact. Also by Lemma 13 the mappipg— f.(eq, 1) is lower
semicontinuous in the wed&opology on M(B) for everya € A and this
implies that the mapping — f.(\, i) is also lower semicontinuous in the
weaktopology for every\ € Pr(A). Since the functiof\, i) — fe(A, ) is
affine in both variables o?r(A) x P(B) andPr(A) is clearly convex the
conditions of Kneser’s minimax result hold and this shows the result. [

Assuming for the moment that the integral(\, e;) = [, fodX is well
defined for every\ € P(A) andb € B it follows that

supxep(a) infoeB fe(As €) = suprep,(4) infoep fe(A &) (16)
Imposing the same conditions as in Theorem 17 this implies

supxep(a) infpep fe(A, €) > min cp(p)sup,ea fe(€a, ). (17)

We are now interested under which conditions an equality occurs in relation
(17). By relation (16) such an equality is stronger as the one verified in Theo-
rem 17 and so it seems reasonable to impose, besides the conditions of Theo-
rem 17, some additional condition ¢in This additional condition is given by

the assumption that the integral

fe(Ap) = FdN x p)
AxB

is well defined withA x u denoting the Borel probability product measure of
A € P(A) andp € P(B). By the Fubini-Tonelli theorem (cf.[4]) it is well-
known that this integral indeed exists and satisfies

/Axde()\XM)—/A</Bfadu)d)\_/8(/Afbd/\)du (18)

if the functionf : A x B — R is measurable with respect to the Borel product
o-algebrad ® B and is either bounded from below or above.

Theorem 19 Let f : A x B — R be measurable with respect # & 5 and
either bounded from above or below. If eitheris a compact Hausdorff space
and f, is lower semicontinuous for evetyc A or A is a compact Hausdorff
space and is upper semicontinous for eveliye B then it follows that

SUPxeP(A) infpep fe()H Eb) = inf;LEP(B) SUPge A fe(eaa :UJ)'

Moreover, if B is a compact Hausdorff space arfg lower semicontinuous
then there exists some € P(B) attaining the above infimum, while fot

a compact Hausdorff space anf upper semicontinuous, there exists some
A € P(A) attaining the above supremum.
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Proof. We first assume thabB is a compact Hausdorff space afigis upper
semicontinuous for every € A. Since by the first assumption the Fubini-
Tonelli theorem holds the integr@l (A, €;) is well defined for every € P(A)
and so by relation (17) we only need to show that

Supxep(4) infpe fe(A, ) < infep(p) Supaca fe(€a, 1)-

Sincey and A\ are probability measures we obtain by the Fubini-Tonelli theo-
rem that

int [ an< [ (] pivdu= [ ([ fudmir < supea [ g

and this implies

supep(a) infoen fe(As €) < inf,cp(p) SuPaea fe(€a, 1)
showing the desired result. To prove the result fom compact Hausdorff
space and, upper semicontinuous for evetyc B we apply the first part
with f replaced by-f and the roles oA and B reversed. This implies
supxep(4) infoe fe(A, &) = — infyep(a) suppep —fe(A )
= —SUP,eP(B) infaea —fe(€a, 1)

= inquP(B) SUPg,c A fe(eav M)

and so the second part is verified. To show the last part we observe by Lemma

13 thaty — sup,cqy fB fadu is lower semicontinuous in the wedkpology
and by the Weierstrass-Lebesgue lemma the infimum is attained. A similar
proof applies forB compact and; is upper semicontinuous. O

The following remarks are immediate consequences of Theorem 19.
Remark 20 In this remark we observe the following:

1. Letf : A x B — R be measurable with respect 6 ® 5 and either
bounded from above or below. K is a compact Hausdorff space and
the functionf, is upper semicontinuous for every= A instead of lower
semicontinuous then we replace in Theorem 19 the fungtlmn— f and
this yields the equality

infyep(a) Suppep fe(A, &) = max,cp(p) infoca fe(ea, 1), (19)

A similar observation applies fad a compact Hausdorff space arf
lower semicontinuous for evebyc B yielding the equality

minAGP(A) SUPpc B fe()\v Eb) = SUP,ep(B) infaeA fe(eaa M) (20)
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2. In Remark 18 we observed fé a compact Hausdorff space anf
lower semicontinuous for evetyc A that finding the Borel probability
measureu on (B, B) attaininginf,,cp () Supge 4 fe(€a, i) bOils down
to solving the "generalized linear programming” problem

max |||
Jpfadu <1 ac A
we M(B).

In caseA is a compact Hausdorff space arfiglis upper semicontinuous
for everyb € B we obtain under the conditions of Theorem 19 that

maxyep(a) infpep fe(A &) = inf ,ep(p) SUPe fe(€a, 1)

To compute the optimal € P(A) attaining the above maximum one can
show similarly that the dual "generalized linear programming” problem

min || Al
Jifedd>1 beB
A e M(A)

needs to solved. Actually for the primal objective value

infuep(B) SUPgcA fe(ecw :u‘)

positive, the above optimization problems with max replaced by sup and
min by inf have the same optimal objective value and so Theorem 19
generalizes the duality principle in linear programming. In case héth
and B are finite sets Theorem 19 reduces to Von Neumann’s minimax
result, which can be derived by the duality principle. As we saw, the
generalized duality principle holds under the assumptions of Theorem
19 with only one of those problems having an optimal feasible solution.
In case both problems have an optimal solution we need to assume by
Theorem 19 thad and B are compact Hausdorff spaces alfidis up-

per semicontinuous for evebye B and f, is lower semicontinuous for
everya € A. In the next subsection we will show by means of counterex-
amples that this generalized duality principle will fail if the conditions
of Theorem 19 are weakened.

Since in Theorem 19 the Fubini-Tonelli theorem holds we obtain in a sim-
ilar way as in relation (13) that

infpep fe(N, &) = inf ep(py fe(A 1)
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for every\ € P(A) and

SUPge fe(€as 1) = SupPxep(a) fe(As 1)

for everyp € P(B). This shows that the result in Theorem 19 is the same as
the minimax result

supep(a) inf ep(B) fe(A 1) = infepp) suprep(a) fe(A p).  (21)

Hence under the conditions of Theorem 19 any two players with the strategy
setsP(A) andP(B) can achieve ae-equilibrium for everye > 0. Moreover,

in caseA is compact the player with strategy $2tA) can achieve the value of

the game, while folB compact the player with strategy getcan achieve this
value. Finally, inspired by the second part of Remark 20 we list the following
consequence of Theorem 19 and 17.

Theorem 21 Let f : A x B — R be measurable with respect #® 5 and
either bounded from above or below. Bfis a compact Hausdorff space and
fa is lower semicontinuous for evety € A and A is a compact Hausdorff
space andf, is upper semicontinous for eveye B then it follows that

SUD\epp(A) Milpep fe(A, &) = infep, 3y maxaea fe(€a, 1)

Proof. SinceB is a compact Hausdorff space afidis lower semicontinuous
for everya € A it follows by Theorem 17 that

SUP\epy(4) Milbe B fe(A, €) = inf ep(p) SUPyea fe(€a, ). (22)

Using now A is compact and; is upper semicontinous for evetye B we
obtain by relation (12) that

inf,uEPF(B) maXge A fe(ea, u) = max)\ep(A) infbeB fe()\, Eb) (23)

Applying now Theorem 19 to the last parts of relations (23) and (22) yields the
desired result. O

Using relation (14) it is easy to verify that the result of Theorem 21 is the
same as the minimax result

SUP APy (A) Milyep,(B) fe(As 1) = Inf ep, () maxyep,(a) fe(A, 1)

and this minimax result is clearly a generalization of the minimax result of Von
Neumann. We will now show some easy consequences of Theorem17, thereby
generalizing earlier results to be found in the minimax literature. Before men-
tioning those generalizations we introduce for convenience the following class
of functions.

18



Definition 22 The functionf : A x B — R belongs to the clas§ if

inf,,ep(B) SUPaea fe(€as i) = infoep sup,e4 f(a,b).

Moreover, the functiorf : A x B — R belongs to the clasp if

SUD\epp(a) infrep fe(A, €p) = sup,e 4 infpep f(a, b).

We first start with an improvement of the main minimax result proved by
Kassay and Kolumban (cf.[10]). Observe the usual topological conditions are
imposed beforehand.

Lemma 23 Let B be a compact Hausdorff space aridan arbitrary set. If
the functionf, is lower semicontinuous for eveayc A then it follows that
f e Cifandonly if

SUPAcpy(4) MilbeB fe(A; €5) = minpep SUPAep,(a) fe(A, €b).-

Proof. To showf € C implies the desired equality we observe by Theorem 17
andf € C that

SUP AP, (4) Mipe B fe(A, &) = infyep sup,e 4 f(a,b).

Since f, is lower semicontinuous for every € A it follows thatsup,c 4 fa
is also lower semicontinous and by the Lebesgue-Weierstrass theoreB and
compact this yields

SUP\epp(A) Milbe B fe(A, €5) = minpe g SuP,ea f(a,b)

Applying now relation (14) yields the desired equality. To show the reverse
implication, it follows immediately by Theorem 17 and our assumption that
belongs taC. 0

A second easy consequence is given by a characterization for which func-
tions f actually a minimax result fof holds. This result generalizes for dif-
ferent sets of generalized convex functions the well known minimax results of
Ky-Fan (cf.[5]), Konig (cf.[12]), Neumann (cf.[14]) and Jeyakumar (cf.[8]).
The class of functions considered by these authors are a proper subclass of the
setCND.

Lemma 24 Let B be a compact Hausdorff space ardan arbitrary set. If
the functionf, is lower semicontinuous for evety< A then it follows that
feCnDifand only if

suppe g minyep f(a,b) = minye g sup,c4 f(a,b).
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Proof. To showf € C ND implies the desired equality we apply Lemma 23
and usef € D. The reverse implication is obvious using Theorem 17. [

Finally we list some counterexamples showing that the conditions men-
tioned in Theorems 17, 19 and 21 cannot be deleted from these theorems. In
this paper we have used three types of conditions. These conditions are given

by:

1. (Topologica) The functionf, is lower semicontinuous or the function
f» is upper semicontinuous.

2. (Compactness) The sdtor B is a compact Hausdorff space.

3. (Boundedness) The functighis either bounded from above or below.

In the first counterexample we show that Theorem 19 is not correct if only
conditions2 and3 hold. Observe this is also a counterexample for Theorem
17. Actually in this counterexample both setsand B are compact metric
spaces (hence conditi@ris replaced by a stronger condition) and the function
f is uniformly bounded from above and below (also stronger than condition
3). However, the functiory, is not lower semicontinuous for evesyc A and
f» is not upper semicontinous for sorhez B. Clearly by Theorem 19, for
both A and B compact metric spaces arfds bounded from below or above,
the minimax result should hold if eithef, is lower semicontinuous of;, is
upper semicontinuous.

Example 25 Let A = B = [0, 1] and introduce the functiorf : [0,1] x
[0,1] — R given by

1 forO<a<b
fla,b):=¢ 1 forb=0
0 otherwise

This function is bounded from above and below. Also for edetya < 1 we
obtain{b € B : f,(b) <0} = (0,a] and{b € B : fo(b) < 0} = (0,1] and so
fa is not lower semicontinuous for everye A. Similarly for every0 < b < 1
it follows that

{a€ A: fyla) > 1} = (0,) (24)

and sof; is not upper semicontinuous for every b < 1. Also by relation
(24) we obtain for\ € P(A) and0 < b < 1 that

0< /A fydA = A(0,5))
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and this showsnfyc g fe (A, ) = 0 for every\ € P(A). At the same time, for
w € P(B)and0 < a < 1 it follows that

1> /B fadp = p({0} U (a,1])

and this impliessup,c 4 fe(€q, ) = 1. Hence the conclusion of Theorems 17
and 19 do not hold.

In the next more complicated counterexample we construct an example
with A and B compact metric spaceg,; bounded from above and beloyy, is
continuous for every € B andf, upper semicontinuous for evetiyc A (not
lower semicontinuous) and show that the conclusion of Theorem 21 does not
hold.

Example 26 Let A = B = [0, 1] and consider for any» € N a continuous
mappingg;, : [0,1] — I, [0, 1] given by

¢n(t) = ((bnl(t)? teey ¢nn(t))

onto the n-dimensional culd&’_, [0, 1] satisfyinge,, (0) = ¢,,(1) = 0. To con-
struct such a continuous surjective curve we usexfer 2 the so-called Peano
space filling curvey, (cf.[7]) and use induction om and the composition of
functions

0,11 2 [0,1] x [0,1] 2 117, [0, 1]

with fu(s, t) == (p(s), én_1(t)) and

Introduce now the nonnegative functign [0, 1] x [0, 1] — [0, c0) given by

Fab) = 2exp(1) forb=0
DO 2exp(D)ITP_ pok(a, b)v forb € (0, 1]
with p,.x. : [0, 1] x (0, 1] defined by
Pak(a,b) == |a — ¢nip(2"b — 1) forb e (27,27, n € N.

To determine an upperbound on the functjopwe observe for evergu, b) €
[0,1] x (0,1] thatp,k(a,b) < 1 and this implies

SUP (a,b)e{0,1]x[0,1] f(a,b) < 2exp(1). (25)
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Hence we have shown that the functifris bounded from above and be-
low. To list the topological properties of the functighit is obvious that the
function f;, is continuous for every < b < 1. Also for everya € [0,1]
andby € (0,1] it is clear thatlim,_p, fo(b) = fa(bo) and by relation (25)
lim supy,|o fa(b) < 2exp(1) = f,(0). This shows thaf, is upper semicon-
tinuous, and to prove thaf, is not continuous we consider fare [0, 1) the
sequenceé,, = 27! n € N. Using$,x(0) = 0,1 < k < n it follows that

limy, 00 fa(bn) = 2aexp(1) < fu(0)

and sof, is not lower semicontinuous for < a < 1. We will now verify for
every\ € Pr(A) that

minye(o, 1) fe(A, &) = 0. (26)

To show this, we observe for everye Pr(A) that

fehe) =" Aif(aib) (27)

i—=
for some finite se{ay,...,a,} C II' [0, 1] and positive numbers;, 1 <

1 < n satisfyingd " ; A\; = 1. Since the mapping,, : [0,1] — II [0, 1]

with ¢,,(0) = ¢,,(1) = 0 is surjective onto the hypercube, there exists some
0 < tp < 1 with ¢, (to) = (ai,...,an), and this implies for every < i <n

that

1
Gy lai — ¢nk(2"bo — 1)[# =0
with 277 < by := (o + 1)27" < 27"F1. Hence it follows thaf (a;, by) = 0
foreveryl < i < n, and so by relation (27) we obtaifa(\, e;,) = 0. Applying

the nonnegativity of the functigfithe result in relation (27) now follows. To
give a lower bound on the value

1
SUPge[0,1] fe(fa’ :U') = SUPge(o0,1] /0 Jadp

for everyu € P(B) we continue as follows. Since the function- In(x) is
concave on0, o) it follows by Jenssen’s inequality (cf.[16]) that

1 1
In /0 b(t)dt > /0 In(e(t))dt
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for every positive continuous functighon [0, 1]. This shows for every" <
b< 27l n e Nandby := ¢,1(2"b — 1) that

1 1
| @ = 2exp( | (I~ bef)da + 1) (28)
0 0

1 n !
= 2exp(ﬁ Zk:l /0 In(|a — bg|)da + 1).

Since0 < b, < 1 for everyl < k < n and the functiorp : [0, 1] — R given
by

() = /01 In(ja — |)da = /Oz In(a)da + /OH In(a)da

achieves its minimum at= % (check by differentiation), we obtain by relation
(28) that

1 1 1
/0 fo(a)da > 2exp(/0 In(|la — §|)da +1)=1.

Hence we have shown thﬁ&l fo(a)da > 1 for every0 < b < 1 and by the
Fubini-Tonelli theorem this yields for everye P(B) that

/01 fe(€a, p)da = /01(/01 fadp)da = /01(/01 fola)da)dp > 1.

This showsup,¢(o 1) fe(€as pt) > fol fe(€a, n)da > 1 for everyy € P(B) and
so the conclusion of Theorem 21 does not hold.

We will now consider two examples which show that the compactness as-
sumption given by conditio? cannot be deleted in the above theorems. In
the first counterexample of this kind we show that there exists openisatd
B and a uniformly bounded continuous functign A x B — [0, 1] (much
stronger than conditions and3!), for which the conclusion of Theorems 17
or 19 does not hold.

Example 27 Let A = B = (0, 1) and introduce the functiorf : A x B —
[0, 1] given byf(a,b) := h(1 — %) with h : R — [0, 1] defined by

1 fort <0
h(t)=< 1-2t foro<t<1
0 fort > 1
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Since the functiork is continuous orR it follows that also the functiorf :
A x B — R is continuous ord x B. Moreover, for every) < b < % and
A € P(A) we obtain

0< / FodX < A((0, 20])
A

and soinfyecp fe(\, €) = 0 for every\ € P(A). Also we obtain for every
0 <a< 1andu € P(B) that

pa1) < [ fdu<i

and this showsup, ¢ 4 fe(€q, ) = 1 for everyu € P(B). Hence the conclu-
sions of Theorems 17 and 19 do not hold.

In the second counterexample related to the compactness assumption we
construct a continuous functighon A x B, bounded from above and below,
with A compact and3 not, and show that the conclusion of Theorem 21 does
not hold.

Example 28 Let A = [0,1] and B = (0,1] and consider the functiotf

defined in Example 26. It is easy to see that this funcfias continuous
on A x B. As in Example 26 we obtaimfy.,<; fe(\,€) = 0 for every
A € Pr(A) andsup,cp 1) fe(€a, 1) > 1 for everyp € P(B). This shows
that the conclusion of Theorem 21 does not hold.

Finally in the last counterexample we show that the boundedness condition
in Theorem 19 cannot be omitted. Actually in this counter example we con-
struct compact setd and B together with a functiorf neither bounded from
above or below satisfyingj, and f; are continuous for every € A andb € B
and show that the Fubini-Tonelli theorem does not hold. This implies that also
the conclusion of Theorem 19 does not hold.

Example 29 Let A = B = |0, 1]. We will now construct a functiofi satisfy-

ing f, and f; continuous for every € A andb € B, which is not bounded
from above or below. To carry out the construction of this function consider
a continuously differentiable functiofr : R — R satisfyingé(t) < 0 for

0 <t < 3 andf(t) = 0 otherwise. Clearly such a function exists and intro-
duce now the functioh : R — R given by

0(t)—0(t—1)
W) =4 — 1 2= fort#0 (29)
0 fort = 0.
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Sinced is continuously differentiable withi (¢) = 0 for everyt < 0 we obtain
by relation (29)

ot
limtlo h(t) = hmtig ¥ = 9/(0) = hmtTo 9/(75) =0= h(O)
and limyo h(t) = 0 = h(0). This shows that the functioh is continuous
at 0 and since this function is clearly continuoustat 0 the functionh is

continuous inR and satisfies by relation (29) sup C [0,1]. If 3 <b < 1,
it follows by relation (29) that

1 1 1
/tmmﬁ:/aw—ﬂ@—Bﬁ:—/zemmzo
b b 2 b
and for0 <b < 3

1 1 1 b
/b th(t)dt:/b 9(t)—9(t—§)dt:—/0 o(t)dt > 0.

Also for this functior, we obtain

N £ DT
Aiﬁﬂpxéewa @+2))ﬁ<0

and by scaling we may assume that we have constructed a continuous function
h with supgh) C [0, 1] satisfying

1 1
/ h(t)dt = —1 and / th(t)dt > 0 for everyb € [0, 1]. (30)
0 b

Introduce now the function : A x B — R given by

(a.b) = a3h(2) foro<a<1,0<b<1
NRGPT=9 0 fora=0,0<b<1.

The functiory, : [0, 1] — R given byg,(b) := g(a,b) is continuous for every
0 < b < 1 and the functiory, : [0,1] — R given byg,(a) := g(a,b) is also
continuous for everg < b < 1. Also by relation (30) it follows that

1
/ g(a,b)db = —a"2 < -1
0
for everyd < a < 1, fol g(a,b)db = 0fora=0and
1 1
/ g(a,b)da = b2/ th(t)dt >0
0 b
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for every0 < b < 1. Now we finally introduce the functioh: A x B — R
given by

f(a> b) = g(a, b) +g(1 - avb) —g(b, a) —g(l - b’a)' (31)

By the previous observations it follows that the functignand f, are contin-
uous. Also one can check by relation (31) t[fétf(a, b)db < —1 for every

0<a<l1 andfo1 f(b,a)da > 1 for every0 < b < 1. This shows

1
supep(a) infoep fe(A, €) > infbeB/ f(a,b)da > 1
0

and

1
i ep()S0Paca felew ) < e [ Flanb < -1
and so the concludion of Theorem 19 does not hold.

This concludes our discussion of the generalizations of the minimax results
of Wald, Ville and Von Neumann. An important issue related to the above re-
sults would be to derive computational procedures for finding good approxi-
mations of the optimal strategies within the set of Borel probability measures.
This might be a topic of future research.
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