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Abstract

In content- and knowledge-based recommender systems often a mea-
sure of (dis)similarity between items is used. Frequently, this measure is
based on the attributes of the items. However, which attributes are impor-
tant for the users of the system remains an important question to answer.
In this paper, we present an approach to determine attribute weights in
a dissimilarity measure using clickstream data of an e-commerce web-
site. Counted is how many times products are sold and based on this a
Poisson regression model is estimated. Estimates of this model are then
used to determine the attribute weights in the dissimilarity measure. We
show an application of this approach on a product catalog of MP3 players
provided by Compare Group, owner of the Dutch price comparison site
http://www.vergelijk.nl, and show how the dissimilarity measure can
be used to improve 2D product catalog visualizations.

1 Introduction

Many content- or knowledge-based recommender systems [3] use some type of
case-based reasoning or nearest neighbor retrieval [14, 16]. These techniques
heavily rely on some (dis)similarity measure between different items for their
recommendation strategy. Often, this similarity measure is based on the at-
tributes of the items. However, not all attributes of an item are equally im-
portant to the user and, thus, in the recommendation process. Therefore, the
measure of similarity should use some type of attribute weighting. Otherwise,
the similarity measure used in the system will not match the notion of similarity
between items the users have and, thus, the system will recommend the wrong
items.

Although weights are generally specified by experts, some work has been
done on recommender systems that automatically learn these weights user specif-
ically. Schwab et al. [21] learn user specific weights for binary features using
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significance testing assuming normal distributions. When the user selects items
having a specific attribute value more or less often, that is, there is a significant
effect, this attribute got a higher or lower weight. Arslan et al. [1] used the
number of times an attribute was used in the query of the user to learn these
attribute weights. Finally, Coyle and Cunningham [6] compare the final choice
of the user with the provided recommendations and learn the feature weights
from that.

All these approaches assume that the user gives the system time to let it
learn his/her preferences in one or more sessions. However, in many e-commerce
domains users expect immediate appropriate recommendations and for a large
group of product categories, such as durable goods, users will not come back to
buy such a product within a couple of years.

In this paper, we introduce a generic way to choose attribute weights. We
use a dissimilarity measure that can handle both different kinds of attributes
and missing values. The attribute weights are estimated using clickstream logs
of an e-commerce site. In these log files, we count how often each item was sold.
Based on the assumption that attributes that have a high influence on the sales
of products are attributes that are considered to be important by the user, we
estimate a Poisson regression model [17, 15] on sales and product attributes.

Besides in recommender systems, dissimilarity between products has also
been used in map based e-commerce interfaces [12, 11]. In our paper, we dis-
cuss an improved prototype of the interface introduced in [12] which uses the
weighted dissimilarity measure. This prototype and the weighted dissimilarity
measure are applied to a product catalog of MP3 players. Both product data
and clickstream files were provided by Compare Group, owner of the Dutch
price comparison site http://www.vergelijk.nl.

The remainder of the paper is organized as follows. In the next section, we
introduce the dissimilarity measure for which the weights are determined. In
Section 3, we describe the Poisson regression model, how we handle missing
values in this model, and how the results of the Poisson regression model are
used to create weights for the dissimilarity measure. Then, in Section 4, we
show an application of the attribute weight determination on a product catalog
of MP3 players and show how this methodology can be applied in a map based
user interface. Finally, in Section 5, we draw conclusions and indicate directions
for future research.

2 Dissimilarity

First we introduce the measure we use to compute dissimilarity between prod-
ucts. To this end, we introduce some notation. Consider a data set D, which
contains n products having K attributes {(xi1, xi2 . . . , xiK)}n1 . For each prod-
uct, we also have a binary vector mi = (mi1,mi2 . . . ,miK), containing values
of 1 for nonmissing attribute values. In most applications, these attributes have
mixed types, that is, the attributes can be numerical, binary, or categorical.

The most often used (dis)similarity measures, like the Euclidean distance,
Pearson’s correlation coefficient, and Jaccard’s similarity measure, are only
suited to handle one of these attribute types. Also, these measures cannot cope
with missing values in a natural way. Therefore, we use a dissimilarity measure
which is based on the general coefficient of similarity proposed by Gower [7],
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which was also used in Kagie et al. [11].
The dissimilarity δij between products i and j is defined as the square root of

the weighted average of nonmissing dissimilarity scores δijk on the K attributes

δij =

√√√√∑K
k=1 wkmikmjkδijk∑K
k=1 wkmikmjk

, (1)

in which the wk’s are the weights for the different dissimilarity scores and,
hence, for the different attributes. These weights wk specify how important
the different attributes are in the computation of the dissimilarity measure and,
hence, in the application. In the next section, we will discuss how we determine
these weights based on an approach using clickstream data.

The computation of the dissimilarity scores δijk in (1) is dependent on the
type of the attribute. For numerical attributes, the dissimilarity score δijk is
the normalized absolute distance

δNijk =
|xik − xjk|(∑

i<jmikmjk

)−1∑
i<jmikmjk|xik − xjk|

. (2)

For categorical attributes, the dissimilarity score δijk is defined as

δCijk =
1(xik 6= xjk)(∑

i<jmikmjk

)−1∑
i<jmikmjk1(xik 6= xjk)

, (3)

where 1() is the indicator function returning a value of 1 when the condition is
true and 0 otherwise.

However, in many product catalogs, as will also be the case in the catalog
used in this paper, a third type of attributes exist, which we call multicategorical
attributes. Where a product can have only one value for a categorical attribute
such as, for example, its brand, it can have multiple values for a multicategorical
attribute. For instance, an MP3 player can have an attribute called ‘supported
audio formats’, which can contain the values MP3 and WMA at the same time.

We assume that two products are identical on a multicategorical attribute,
when they share exactly the same values. So, we propose to compute the dissim-
ilarity score for a multicategorical attribute by counting the number of values
that only one of the products has. More formally, we can define the dissimilarity
score δijk for multicategorical attributes as

δMijk =
|xik ∪ xjk| − |xik ∩ xjk|(∑

i<jmikmjk

)−1∑
i<jmikmjk(|xik ∪ xjk| − |xik ∩ xjk|)

, (4)

where both xik and xjk are sets of values. Note that this leads to identical
results as when we represent every unique attribute value by a binary variable
and then count the unequal values for two products, that is, computing the
Hamming distance between these binary variables. However, using (4) the total
number of unique values is not needed to compute the dissimilarity score.
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3 Choosing Attribute Weights

In the previous section, we introduced the dissimilarity measure for which we
like to determine the weights wk for the different attributes. In this section, we
will introduce an approach to determine these weights using clickstream data.
For every product, we count how often it was sold during some period. Using
these counts and the product attributes, we estimate a Poisson regression model,
which is a model belonging to the class of generalized linear models. Using the
coefficients of this model and their corresponding standard errors, we compute
t-values which form the basis of our attribute weights.

A very popular group of models in the field of statistics are the generalized
linear models (GLM) [17, 15]. Most well-known models belonging to this class
are the linear regression and logistic regression model. Again, we have our data
set D, having items {xi}ni . These items still have K attributes. In GLMs we
cannot use (multi)categorical attributes directly, so we have to create dummy
variables instead. Therefore, every categorical attribute is represented by Lk
dummies xik`, which are 1 for the category where the item belongs to and 0 for
all other attributes, where Lk is the number of different categories for attribute
k minus one (this is done to avoid multicollinearity). When an item belongs
to the last category (Lk + 1) all dummies for this attribute will be 0. For
multicategorical attributes the same approach is used, only now all categories
are represented by the Lk dummies. For, numerical attributes we have only one
variable that represents the attribute. Hence, xik = xik1 and Lk = 1. We collect
all xik` for item i in vector xi. Also, an intercept term xi0 is incorporated in
this vector, which equals 1 for all items. Furthermore, we have an independent
variable value yi for all n items. Now, we can express the group of GLMs as

yi ≈ f(x′ib) , (5)

where f() is some function and b is a vector of regression parameters.
Different GLMs can be made by specifying different functions f() and assum-

ing different distributions from the exponential family for yi having expectation
E(f(x′ib)) in (5). For instance, specifying f(θ) = θ and assuming a normal
distribution leads to the ordinary linear regression model. In our application,
dependent variable y will contain counts of sales for different products. Since
y in that case is discrete and nonnegative, the specification of ordinary linear
regression will be incorrect. Therefore, we will use another type of model from
the GLM family, namely the Poisson regression model, which is often used for
count data. The Poisson regression model is specified by

yi ≈ exp(x′ib) , (6)

where we assume that yi has a Poisson distribution. Note that in the Pois-
son regression model f(θ) = exp(θ). All GLMs can be trained by maximizing
their corresponding loglikelihood function. Often, this is done by an iteratively
reweighted least squares algorithm.

One serious drawback of the Poisson regression model (and other GLMs) for
our application is that it lacks an integrated way of handling missing values,
while product catalogs often contain a lot of missing values, since producers
all supply different attributes. Imbrahim et al. [10] recently compared different
techniques that can be used to handle missing values in combination with GLMs.
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One of the best methods (leading to unbiased estimates and reliable standard
errors) in their comparison was multiple imputation (MI) [19]. MI methods
create Q ‘complete’ data sets in which values for originally missing values are
drawn from a distribution conditionally on the nonmissing values. Methods to
create these imputed data sets are data augmentation [20] and sampling impor-
tance/resampling [13]. Both methods lead to imputations of the same quality,
where the second method needs substantially less computation time. There-
fore, we will use the second method, more specifically the Amelia algorithm [13]
which is available as a package [9] for statistical software environment R.

When using Q imputed data sets, the GLM, in our case the Poisson re-
gression model, has to be estimated on all Q data sets. Following [19] we can
compute estimates of regression coefficients and standard errors. The estimate
for a regression coefficient bk` then becomes

bk` =
1
Q

Q∑
q=1

bk`q , (7)

where bk`q is the estimate of bk` on the q-th imputed data set. Note that this is
just the average for bk` over the Q imputed data sets. Computation of standard
errors is less straightforward, since these should include both the uncertainty in
the specific GLMs and the uncertainty introduced by the imputations. There-
fore, the estimated standard error σk`, more specifically the estimated variance
σ2
k`, consists of a part measuring the within-imputation variance SWk` and

a part measuring between-imputation variance SBk`. The within-imputation
variance is computed in the following way

SWk` =
1
Q

Q∑
q=1

σ2
k`q , (8)

where σ2
k`q is the estimated variance of bk` on the q-th data set, which follows

from the Poisson regression procedure. The between-imputation variance is
specified as follows

SBk` =
1

Q− 1

Q∑
q=1

(bk`q − bk`)2 . (9)

Finally, following [19], both parts are combined to compute the total estimated
variance of bk`

σ2
k` = SWk` +

(
1 +

1
Q

)
SBk` . (10)

The estimated standard errors σk` =
√
σ2
k`, can be used to compute t-values in

the usual way

tk` =
bk`
σk`

. (11)

The resulting coefficients bk` from the Poisson regression model cannot be
used directly as weights in the dissimilarity measure (1) for several reasons.
The first reason is that the scales of the dissimilarity scores and variables are
not the same. Second, when using bk` directly as weight for the corresponding
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dissimilarity score, we do not take into account the uncertainty we have about
the correctness of this coefficient. Although a coefficient can be relatively high,
it can still be unimportant. For example, this can be the case with dummies
having very few 1’s. Then, this high impact of the coefficient is only applicable
to a limited number of items and its total importance is limited. By taking
the uncertainty we have into account, we can correct for this. Finally, we want
to have wk ≥ 0, while bk` can also be negative, when a certain variable has a
negative influence on the sales of a product.

The first two problems that exist when using bk` as weight in the dissimilarity
measure can be overcome by using the t-value tk` of coefficient bk` as basis of
the weight computation. Since the tk`’s are standardized they are comparable
to each other as are the dissimilarity scores. Since this standardization is done
by division of the corresponding standard error σk`, uncertainty about bk` is
incorporated into tk`. When we use |tk`| instead of tk` we guarantee the weights
to be larger than or equal to 0. This can be done, because it does not matter
for the importance of an attribute in the dissimilarity whether the influence of
the attribute is positive or negative, but the size of this influence does.

When attribute k is numerical, we can map |tk1| (i.e. ` = 1) directly to the a
‘pseudo’ absolute t-value vk for attribute k, that is, vk = |tk1|. Then, including
a normalization of the weights (for ease of interpretability), we can compute wk
using

wk =
vk∑K

k′=1 vk′
. (12)

For (multi)categorical attributes, we first have to compute vk using the Lk
values of tk`. This is done by taking the average of the absolute tk` values

vk =
1
Lk

Lk∑
`=1

|tk`| . (13)

These vk’s can then be used to compute the weights for (multi)categorical at-
tributes using (12).

The t-values tk` can be compared to a t-distribution having

dfk` = (Q− 1)
(

1 +
Q · SWk`

(Q+ 1)SBk`

)2

(14)

degrees of freedom to determine p-values for hypothesis testing. These p-values
can be used in a so-called stepwise model. A stepwise model performs variable
selection only keeping the variables that have a statistically significant effect
on y, that is, having a bk` statistically different from 0. To definitely find the
‘best’ model one would have to compare models with all different combinations
of variables. In practice, this is often computationally infeasible. Therefore,
stepwise approaches take a greedy approach by starting with a model containing
all variables and then, each time, deleting the most insignificant variable. Note
that this is not the same as immediately deleting all insignificant variables, since
due to collinearity significance of variables may change when deleting another
variable from the model. When using the stepwise model to determine weights
wk, we consider Lk to be the number of dummies incorporated in the final
model. Since it is not clear whether using a stepwise model leading to less
attributes having all relatively higher weights in the dissimilarity measure will
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Figure 1: GUI of the 2D Product Map interface.

lead to better results than a model containing all variables, we consider both
models in our evaluation.

4 Application to MP3 Players

Now we have introduced the techniques we use to create the weighted dissim-
ilarity measures, we show an application of these dissimilarities on a product
catalog of MP3 players. Also, we show the implications of using these weighted
dissimilarities in creating a product map using the methodology used by Kagie
et al. [12]. They introduced an online shopping interface based on a 2D map
of the product catalog that is made using a technique called multidimensional
scaling (MDS) [2]. MDS creates these maps based on a matrix of dissimilarities.
A screenshot of this GUI is show in Figure 1.

In the product map a limited set of products is highlighted by giving them
a larger full color image. Which products are highlighted is determined by a k-
means clustering as described in [12]. The user can explore the map by zooming
in and out on different parts of the map. Furthermore, the user can label the
products by attribute values or popularity additionally to the default labeling
by cluster.

Both the product catalog and the clickstream log files were made available
to us by Compare Group. Compare Group hosts, among other European price
comparison sites, the Dutch price comparison site http://www.vergelijk.nl.
The product catalog used is based on a data base dump of this site from October
2007. The log files are used to count how many times users clicked on a link
to an internet shop to buy a certain product, which is called an ‘outclick’.
We counted these ‘outclicks’ during two months from July 15 until September
15, 2007. Since the product catalog changes over time, the data set used to
determine the attribute weights is slightly different than the product catalog
used in the prototype. For the determination of the weights a data set is used
containing all MP3 players that were sold (‘outclicked’) at least one time during
the two months analyzed and could be matched to product attributes available
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Table 1: Attribute characteristics of the data used to estimate the attribute
weights. For (multi)categorical attributes only the three most occurring values
are shown.

Attribute % Missing Mean
y 0.0% 109.18

Numerical Attributes
Price 4.4% 141.06
Height 40.8% 63.96
Width 40.8% 47.66
Weight 44.7% 69.71
Depth 40.8% 17.26
Memory Size 0.4% 10315.56
Battery Life 44.7% 18.69

Categorical Attributes
Brand 0.0% Philips (12.3%), Samsung (11.4%), Creative (8.3%)
Radio 34.7% yes (69.8%), no (30.2%)
Extendable Memory 47.4% yes (13.3%), no (86.7%)
Equalizer 39.0% yes (85.6%), no (14.4%)
Screen 29.4% yes (99.4%), no (0.6%)
Battery Type 45.2% li-ion accu (40.8%), 1×AAA (36.0%), li-polymer (20.8%)
Voice Memo 23.3% yes (81.7%), no (18.3%)

Multicategorical Attributes
Memory Type 42.5% flash memory (68.7%), harddisk (21.4%), sd card (9.2%)
Interface 4.0% usb (65.3%), usb 2.0 (29.7%), hi-speed usb (6.9%)
Color 38.6% black (65.7%), white (20.0%), silver (17.9%)
Operating System 30.7% windows (79.8%), mac os (34.2%), windows xp (29.8%)
Audio Formats 1.8% MP3 (98.7%), WMA (90.2%), WAV (47.8%)

in the database (the data base contained except products that are sold now, also
old products). This lead to a data set of 228 MP3 players that is summarized
in Table 1. Although the original database contained more product attributes
than there are shown in the table, these attributes were not used in the analysis,
since they have more than 50% missing values. This is done, since estimation
of the missing values of these attributes becomes very hard and, since they are
hardly observed, these attributes most likely do not have a significant impact
on the sales of a product. Furthermore, to make the imputation of variables
easier we excluded the dummy variables of categories that were observed less
than 10 times.

We estimated the parameters of Poisson regression models using the statis-
tical software environment R [18]. First, we created 25 imputed data sets using
the Amelia package [9]. Then, using the built-in R function glm, 25 Poisson
regression models were estimated on the imputed data sets. Although 3–5 im-
putations are considered to be enough in many applications [19], we use 25,
since the data has a very high degree of missingness. For the stepwise model
this process was repeated as described in Section 3.

The estimated model coefficients of the stepwise Poisson regression model
are shown in Table 2. The deletion of variables was stopped when all remaining
coefficients had a p-value of 0.05 or lower. Besides the coefficient estimates bk`,
the table also shows the corresponding standard error σk` and t-value tk`. Fi-
nally, it shows the vk and corresponding weight wk for all attributes represented
in the model.

As can be seen in the table, the brand of the product is the most important
attribute identifying popularity of a product in the MP3 market. A-brand MP3
players are sold up to 54 times than more than MP3 players of regular brands
ceteris paribus. (For binary (dummy) variables y is exp(bk`) times larger when
this variable is 1 rather than 0, other things being equal. [22]) Also, memory size
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Table 2: Coefficients of the stepwise Poisson regression model.
Attribute Category bk` σk` tk` vk wk

Intercept 2.24 0.15 14.77
Brand 8.76 0.242

Apple 3.97 0.20 19.77
Creative 2.53 0.23 11.22
Philips 0.79 0.14 5.78
Samsung 1.15 0.20 5.71
Sandisk 1.43 0.21 6.94
iAudio 0.71 0.23 3.13

Width -0.01 0.00 -3.25 3.25 0.090
Memory Type 3.05 0.084

HDD 0.86 0.28 3.05
Memory Size -0.00 0.00 -6.38 6.38 0.176
Color 3.06 0.084

white 0.50 0.18 2.81
black 0.53 0.16 3.30

OS 3.11 0.086
windows vista -1.44 0.46 -3.11

Audio-form. 4.75 0.131
atrac3 1.05 0.22 4.75

Battery 3.83 0.106
li-ion-accu 0.74 0.19 3.83

Table 3: Attribute weights based on full Poisson regression model.
vk wk

Brand 2.36 0.119
Price 0.80 0.040
Height 1.78 0.090
Width 0.96 0.048
Weight 0.18 0.009
Depth 1.61 0.081
Radio 0.33 0.017
Memory Type 0.81 0.041
Interface 0.30 0.015
Memory Size 2.50 0.125
Color 1.13 0.057
Extendable Memory 1.03 0.052
Operating System 0.97 0.049
Battery Life 0.71 0.036
Audio Formats 0.74 0.037
Equalizer 0.50 0.025
Screen 0.42 0.021
Battery Type 0.89 0.045
Voice Memo 1.85 0.093

has a high impact. Customers seem to prefer MP3 players with smaller amounts
of memory. There are two coefficients that need some more explanation: OS:
Windows Vista and Audio Format: Atrac3. Both effects seem somewhat odd
at first sight. However, the negative effect of Windows Vista support may be
caused by the fact that MP3 Players supporting Windows Vista are relative new
models and were maybe not available during the complete two month period.
The Atrac3 audio format was introduced by Sony and is poorly adopted by
other brands. Although this effect of Atrac3 is stronger than the influence of
the Sony brand, it is possible that this is indeed an effect belonging to Brand
and not to Audio Format.

As mentioned earlier, we also estimated a full Poisson regression model.
The vk’s and weights wk estimated using this model are shown in Table 3. Also,
using this model the attributes Brand and Memory Size are considered the most
important attributes getting the highest weights. However, due to the fact that
there are more variables considered in the model, the absolute weights of these
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c. Full Poisson regression.

Figure 2: Product maps using the different weighting schemes. Points are la-
beled by the case numbers of the products.

attributes are lower than in the stepwise Poisson regression model.
Figure 2a shows the product map created using the original approach that

was described in [12]. All attributes are considered equally important (all
weights are set to 1) and all attributes are used in the computation of the
dissimilarity measure, also the attributes that have so many missing values that
they were excluded from the Poisson regression analysis. All points are labeled
by the case number of the corresponding product. The product maps created
using the stepwise and full Poisson regression model are shown in Figures 2b and
2c. These maps are rotated using Procrustean transformations [8] to best map
the original unweighted map. To get more insight in these three different maps,
we advise to try the prototypes implementing these three weighting schemes
that are available on http://people.few.eur.nl/kagie/wprodmaps.htm.

However, we also provide somewhat more insight in these maps here. Figures
3a–3c show the three previously showed product maps only labeled by their
brands. In both the stepwise and full Poisson regression model Brand was the
attribute getting the highest weight and this should have an influence on the
resulting maps. As can be seen in Figure 3b, the use of the stepwise Poisson
regression weights leads to a map in which the products belonging to a single
brand are almost all clustered together. The clustering on brand in Figure 3c is
less strong, as may be expected since the brand weight was lower, but also in this
map the clustering is stronger than in the original unweighted map. Interesting
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a. Equal weights. b. Stepwise Poisson regression.
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Figure 3: Product maps labeled by brand for the different weighting schemes.
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to see is that contrary to the single clusters of brands in the stepwise map,
products of the same brand that are relative similar are now clustered together,
leading to more clusters for one brand on different places in the map. For
instance, when we have a look at the Creative MP3 players, we see that there
are is a different cluster for the Creative Zen Vision models at the bottom left
which are quite large and have a large memory size, while the smaller models
such as the Zen V and Nano models are clustered in the middle of the map.
Since the effect of the important attributes on the map seems stronger in the
stepwise approach,it seems that this method should be preferred, although user
tests should be conducted to be more certain.

5 Conclusions and Discussion

In this paper, we introduced a generic way to estimate attribute weights for
dissimilarity computation for e-commerce product catalogs using clickstream
data. In the clickstream logs for each product was counted how often it was
sold. Then, a Poisson regression model was used to estimate how much influence
the different attributes have on the sales of the products. Using the coefficients
of this model, attribute weights for the dissimilarity were computed. We com-
pared two Poisson regression models. One model containing only significant
coefficients and a full model containing all attributes.

Both models indicated the brand and the memory size of a product as best
indicators for its popularity. These effects were stronger in the stepwise model
(with only significant attributes) than in the full Poisson regression model, be-
cause insignificant attributes correlating with these attributes where excluded
from this model.

The weights resulting from both models were used to create product maps of
a product catalog of MP3 players to be used in a map based shopping interface as
introduced in [12]. Both the stepwise and the full Poisson regression approach
lead to maps in which products were more clustered based on the important
attributes as was expected. This effect was stronger using the weights that
resulted from the stepwise model.

An important line for future research is to compare the new weighting ap-
proach with the unweighted approach in real user experiments. Not only, we
intend to do this for the map based interface, but also in a recommender system
context.

Furthermore, this approach could be used on slightly different kind of data
using different models from the GLM family. When rating data is available
linear regression could be used and when there are also negative examples (not
liked products) binary logistic regression might be an option. Also, these models
can be extended using latent classes to provide user specific estimates.

A drawback of this type of linear models is that interaction effects are not
incorporated in these models. Therefore, the resulting weights might be biased.
A line for future research therefore might be to use models that can model
interaction effects, such as generalized regression trees [5, 4].

12



Acknowledgements

We thank Compare Group for making their product catalog and clickstream log
files available to us.

References

[1] B. Arslan, F. Ricci, N. Mirzadeh, and A. Venturini. A dynamic approach
to feature weighting. Management Information Systems, 6:999–1008, 2002.

[2] I. Borg and P. J. F. Groenen. Modern Multidimensional Scaling. Springer
Series in Statistics. Springer, New York, 2nd edition, 2005.

[3] R. Burke. Knowledge based recommender systems. In J. E. Daily, A. Kent,
and H. Lancour, editors, Encyclopedia of Library and Information Science,
volume 69, Supplement 32. Marcel Dekker, New York, 2000.

[4] P. Chaudhuri, W.-D. Lo, W.-Y. Loh, and C.-C. Yang. Generalized regres-
sion trees. Statistica Sinica, 5:641–666, 1995.

[5] A. Ciampi. Generalized regression trees. Computational Statistics & Data
Analysis, 12:57–78, 1991.

[6] L. Coyle and P. Cunningham. Improving recommendation rankings by
learning personal feature weights. In Advances in Case-Based Reasoning;
7th European Conference, ECCBR 2004. Proceedings., volume 3155 of Lec-
ture Notes in Computer Science, pages 560–572, Springer, Heidelberg, 2004.

[7] J. C. Gower. A general coefficient of similarity and some of its properties.
Biometrics, 27:857 – 874, 1971.

[8] B. F. Green. The orthogonal approximation of an oblique structure in
factor analysis. Psychometrika, 17:429–440, 1952.

[9] J. Honaker, G. King, and M. Blackwell. Amelia II: A Program for Miss-
ing Data, 2008. R package version 1.1-27, http://gking.harvard.edu/
amelia.

[10] J. G. Ibrahim, M.-H. Chen, S. R. Lipsitz, and A. H. Herring. Missing-data
methods for generalized linear models: A comparative review. Journal of
the American Statistical Association, 100(469):332–346, 2005.

[11] M. Kagie, M. van Wezel, and P. J. F. Groenen. A graphical shopping
interface based on product characteristics. In V. Oria, A. Elmagarmid,
F. Lochovsky, and Y. Saygin, editors, Proceedings of the 23rd International
Conference on Data Engineering Workshops, pages 791–800. IEEE Com-
puter Society, 2007.

[12] M. Kagie, M. van Wezel, and P. J. F. Groenen. Online shopping using a
two dimensional product map. In G. Psaila and R. Wagner, editors, E-
Commerce and Web Technologies; 8th International Conference, EC-Web
2007. Proceedings., volume 4655 of Lecture Notes in Computer Science,
pages 89–98. Springer, Heidelberg, 2007.

13



[13] G. King, J. Honaker, A. Joseph, and K. Scheve. Analyzing incomplete
political science data: An alternative algorithm for multiple imputation.
American Political Science Review, 95(1):49–69, 2001.

[14] F. Lorenzi and F. Ricci. Case-based recommender systems: A unifying
view. In B. Mobasher and S. S. Anand, editors, Intelligent Techniques for
Web Personalization, volume 3169 of Lecture Notes in Computer Science,
pages 89–113. Springer, Heidelberg, 2005.

[15] P. McCullagh and J. A. Nelder. Generalized Linear Models, volume 37 of
Monographs on Statistics and Applied Probability. Chapman & Hall, Boca
Raton, 2nd edition, 1989.

[16] D. McSherry. A generalised approach to similarity-based retrieval in rec-
ommender systems. Artificial Intelligence Review, 18:309–341, 2002.

[17] J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal
of the Royal Statistical Society. Series A (General), 135(3):370–384, 1972.

[18] R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.
http://www.R-project.org.

[19] D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, New
York, 1987.

[20] J. L. Schafer and M. K. Olsen. Multiple imputation for multivariate
missing-data problems: A data analyst’s perspective. Multivariate Be-
havioral Research, 33(4):545–571, 1998.

[21] I. Schwab, W. Pohl, and I. Koychev. Learning to recommend from positive
evidence. In Proceedings of the 5th International Conference on Intelligent
User Interfaces, pages 241–246. ACM Press, 2000.

[22] M. Verbeek. A Guide To Modern Econometrics. John Wiley & Sons,
Chichester, UK, 2nd edition, 2004.

14



Publications in the Report Series Research∗ in Management 
 
ERIM Research Program: “Marketing” 
 
2008 
 
Experts' Stated Behavior 
Youssef Boulaksil and Philip Hans Franses 
ERS-2008-001-MKT 
http://hdl.handle.net/1765/10900  
 
The Value of Analogical Reasoning for the Design of Creative Sales Promotion Campaigns: A Case-Based Reasoning 
Approach 
Niek A.P. Althuizen and Berend Wierenga 
ERS-2008-006-MKT 
http://hdl.handle.net/1765/11289  
 
Shopping Context and Consumers' Mental Representation of Complex Shopping Trip Decision Problems 
Benedict G.C. Dellaert, Theo A. Arentze and Harry J.P. Timmermans 
ERS-2008-016-MKT 
http://hdl.handle.net/1765/11812  
 
Modeling the Effectiveness of Hourly Direct-Response Radio Commercials 
Meltem Kiygi Calli, Marcel Weverbergh and Philip Hans Franses 
ERS-2008-019-MKT 
http://hdl.handle.net/1765/12242  
 
Choosing Attribute Weights for Item Dissimilarity using Clikstream Data with an Application to a Product Catalog Map 
Martijn Kagie, Michiel van Wezel and Patrick J.F. Groenen 
ERS-2008-024-MKT 
http://hdl.handle.net/1765/12243  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
∗  A complete overview of the ERIM Report Series Research in Management: 

https://ep.eur.nl/handle/1765/1
 
 ERIM Research Programs: 
 LIS Business Processes, Logistics and Information Systems 
 ORG Organizing for Performance 
 MKT Marketing  
 F&A Finance and Accounting 
 STR Strategy and Entrepreneurship  

http://hdl.handle.net/1765/10900
http://hdl.handle.net/1765/11289
http://hdl.handle.net/1765/11812
http://hdl.handle.net/1765/12242
http://hdl.handle.net/1765/12243
https://ep.eur.nl/handle/1765/1

	Titelblad ERS 2008 024 MKT.pdf
	 
	ERIM Report Series reference number
	Publication 
	April 2008
	Number of pages
	14
	Persistent paper URL
	http://hdl.handle.net/1765/12243
	Email address corresponding author
	kagie@few.eur.nl
	Address
	 RSM Erasmus University / Erasmus School of Economics  
	Phone:  + 31 10 408 1182   
	Fax: + 31 10 408 9640 
	 Abstract and Keywords
	Abstract
	Free Keywords
	Availability
	Classifications



