
Mathematical Programming 63 (1994) 83-108 83
North-Holland

A deep cut ellipsoid algorithm for convex
programming: Theory and applications

J.B.G. F r e n k and J. G r o m i c h o *

Econometric Institute, Erasmus University, Rotterdam, Netherlands

S. Z h a n g
Department of Econometrics, University of Groningen, Netherlands

Received 21 October 1991
Revised manuscript received 15 February 1993

This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex
programming problems. In each step the algoritbm does not require more computational effort to construct these
deep cuts than its corresponding central cut version. Rules that prevent some of the numerical instabilities and
theoretical drawbacks usually associated with the algorithm are also provided. Moreover, for a large class of
convex programs a simple proof of its rate of convergence is given and the relation with previously known results
is discussed. Finally some computational results of the deep and central cut version of the algorithm applied to a
min-max stochastic queue location problem are reported.

Key words: Convex programming, deep cut ellipsoid algorithm, rate of convergence, location theory, min-max
programming.

1. Introduction

This paper is divided into two parts.

The first part, contained in Section 2, discusses the ellipsoid algorithm. In this part a so-
called deep cut version of this algorithm for solving a class of convex programming problems
is presented. Also, rate of convergence results are given. We emphasize that the convergence
proof of the computationally attractive deep cut version is simple and elementary contrary
to the proof of a similar result for a corresponding central cut version as reported for the
unconstrained case in [16] and [34] and for the constrained case in [24]. Moreover, the
proof unifies results for deep and central cut versions and shows the influence of deep cuts
on the convergence rate. Finally, it can be extended to a large class of quasiconvex programs
(cf. [12]).

The second part, contained in Section 3, presents a min-max model in location theory in

Correspondence to: Prof. J.B.G. Frenk, Econometric Institute, Erasmus University, P.O. Box 1783, 3000 DR
Rotterdam, Netherlands.

*Author on leave from D.E.I.O. (Universidade de Lisboa, Portugal). This research was supported by J.N.1.C.T.
(Portugal) under contract number BD/631/90-RM.

0025-5610 © 1994--The Mathematical Programming Society, Inc. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6904886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

84 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

which the objective function incorporates the waiting time for service of customers. The
objective uses also so-called (convex) disutility functions and for the linear case the

objective function is worked out in detail. To this special convex programming problem we
apply the two versions of the algorithm and report the computational results.

2. The ellipsoid algorithm

Before proposing a deep cut version of the ellipsoid algorithm we present a general overview.

2.1. Oven, iew

Early papers by Shor (cf. [32] and [31]) are considered to be the start of the ellipsoid
algorithm. Later, Yudin and Nemirovsky (cf. [42] and [43]) observed its implications in
convex programming. The explicit statement of this algorithm is due to Shor (cf. [33]).
The algorithm became very well-known by a publication of Khachiyan in 1979 stating that
the ellipsoid algorithm can be used to prove the polynomial time solvability of linear
programming problems (cf. [21]). Later, the ellipsoid algorithm has been used to prove
the polynomial time solvability of a large class of combinatorial optimization problems (cf.
[18] or [19]). For a very well written survey of the early applications of the ellipsoid
algorithm to linear programming we refer to [3]. Recently the connections between the
ellipsoid algorithm and the quasi-Newton algorithm for nonlinear programming and Kar-
markar's algorithm for linear programming have also been studied (cf. [17] and [41]).
Contrary to its behavior in linear programming it also seems (cf. [8], [7] and [9]) that a
central cut version of the ellipsoid algorithm is robust for general nonlinear programming
problems and, relative to efficiency, competitive with other general purpose algorithms.

For a mathematical description of the ellipsoid algorithm we need to introduce an ellip-
soid. A set E ~ ~" is called an ellipsoid if there exists a vector a ~ ~n and a positive definite
n × n-matrix A such that

E=E(A; a):= {x~ ~n: (x - a) t A - l (x - a) <~ 1}.

Moreover, in order to determine whether a given hyperplane in ~" with normal c intersects
an ellipsoid E(A; a) we observe (cf. [19]) that

min{etx: x~E(A; a) } =c~a- c~-Äc (1)

and

max{ctx: x~E(A; a)} =c'a + ~cctAc. (2)

This implies that the hyperplane

H([~) := { x ~ ~ n : c t x = [3}

with - 1 ~< «~< 1 and ol:= (cta - [3)/cv/~c has a nonempty intersection with E(A; a). It
is now possible to construct for - 1 / n < a ~< 1 a minimum volume ellipsoid E(AI; a l)

,LB.G. Frenk et al. /Deep cut ellipsoid algorithm for convex programming 85

containing the intersection E(A; a) f3H- (/3) with H - (/3) := {x ~ ~ ' : ctx ~ fl} the lower

halfspace corresponding to H(/3) and this ellipsoid has a strictly smaller volume than
E(A; a). Moreover, its formula is given by (cf. [3] or [19])

1 +na
al = a - - b, (3)

n + l

- n2 (A 2 (l + n o 0)
AI n 2 - 1 (1 - °12) - (n + l) (l + o l) bbt ' (4)

with

a:=(c ta- fl)/ cx/~Äcc and b:=Ac/ cxfc~c.

Taking the same matrix Q as described on page 151 of [28] and copying with some

obvious modifications the proof in Proposition 2.7 and 2.8 of [28] one can show thatA~ is
positive definite given that cr 2 < 1 and A is positive definite.

This concludes our brief description of the ellipsoid algorithm. Observe that the main

problem in applying this algorithm is to construct in each step a hyperplane in such a way

that the optimal solution of our optimization problem belongs to the intersection of the

current ellipsoid and the constructed lower halfspace. We note here that for « = 0 (resp.

0 < a ~< 1) the hyperplane is called a valid central cut (resp. valid deep cut).

2.2. Analysis and description of the algorithm

Consider the problem

(P) inf f(x)
x ~ S

w h e r e f : N n ~ N denotes a finite convex function on R" and S e N " some closed convex

set. In this paper we assume that this so-called feasible region S is given by

S:= {x~ Nn: gj(x) ~<0,j-- 1 m}

with gj : Nn ~ N,j ___ 1 m, a set of finite convex functions on N'. It should be noted here

since each function g;, 1 ~<j ~< m, is actually continuous on Nn (cf. [1]) that S is indeed a

closed convex set. Moreover, since the maximum of a finite number of finite convex

functions is finite and convex we may take in the definition of S, without loss of generality,

the number of different functions equal to one, i.e. m = 1. For simplicity we will call it g

instead of g l. A similar argument also applies to the objective funct ionfand so optimization

problem (P) also covers min-max problems.

In order to introduce a deep cut version of the ellipsoid algorithm we need to make the
following assumption.

Assumption 2.2.1. An optimal solution x* of (P) exists for which an upper bound r on the

Euclidean norm of x* is known, i.e. IIx* 112 < r.

86 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

As observed by one of the referees the technique of generating deep cuts that we are

going to present for both the objective function and for the constraint was first introduced

in [35] and later submitted to extensive computational study in [7].

Let us introduce now the set B(0,r) := {x ~ ~ ": [Ix Il 2 < F}. Clearly, following Assumption

2.2.1,

f (x*) = min{f(x) : x E S } =min{f(x): x~S(~B(O,r) }

and so we can start the ellipsoid algorithm by taking B(O,r) := {x ~ N": IIx[]2 ~ r} as the
initial ellipsoid E(A0; 0) with A0 =pI and p := r 2.

Suppose we are at the mth step of the procedure and the current ellipsoid E(Am; am)
contains x*. Let us define the lowest recorded feasible value until iteration m as

l,ù := min {f(aD: k ~< m, a~ ~ S}. After observing that clearly l,, >~f(x*) for every m ~ N we
may distinguish three different cases.

Case 1. aù, ~ S C3 B(O,r). Sincef i s finite and convex on N" it follows that for every x ~ S

the subgradient set Of(x) is nonempty (cf. [1]) and hence for every d,n~ Of(am) the so-

called subgradient inequality holds

f (x*)) f(a,~) + d t (x * -am) . (5)

Observe, ifd,, = 0 then am is optimal and therefore there is no need for a cut. For a derivation

of a deep or central valid cut with respect to f observe the following. If

dt,, (x* -aù,) >lm - f(am) it follows by (5) that

f (x*) > f(am) + lm --f(am) =Im

and this is not possible by the definition of x*. Hence x* must belong to the lower halfspace

H - (/3m) := {X ~ N": d~,x ~< /3m} with/3,ù := dt, am +lm --f(am). We will now verify whether

the hyperplane H(flm) corresponds to a valid cut. Observe by the subgradient inequality for

f, x* ~ E(Am; am) and (1) that

O<~f(am) --lm <~f(am) --fiX*) <~d~a~ - d ~ x *

<~drmam -min{d~mx: x~E(Am; am)} (6)

= Cd~, ,aù ,a ,ù

and hence

d~am - ~m f(am) -- lm
0~« , fd~ A,,d, ~ ~ ~1 (7)

implying that H(flm) is a valid cut. Clearly this is a valid deep cut whenever lm <f(am) and
it can be derived using only orte additional computation. Substituting ce := am,/3 :=/3,~ and

c := dm it follows by (3) and (4) that in this case a smaller volume ellipsoid E(Am + 1; am + j)
can be constructed satisfying x* ~ E(Am; am) (~ H-(f lm) ~ E(Am +l; am +~) and so we are
finished discussing the construction of a valid cut f o r f In the remainder we will refer to

J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming 87

such a cut as an objective cut. Finally, in order to derive a stopping rule, notice by the

definition of %, and (6) that

O<~lm - f (x *) =lm - f (a m) +f (am) - f (x *) <~ (1 - - Œ m) ~ (8)

holds for every objective cut m >~ 0 and hence

lm - - f (x*) ~ min { (1 -- %) ~/d~A~dk: k <~ m, k is an objective cut }. (9)

Case 2. am ~Bc(O,r) . ~ If this subcase holds we construct a valid cut with respect to the

function h(x) = Ilxll2. We shall refer to such cuts as norm cuts. Observe that h is convex

and its gradient Vh (x) exists for every x v~ 0 and equals x/[]x Il 2. Clearly by the subgradient

inequality, Assumption 2.2.1 and (1) it follows that

r> h(x*) >~ h(am) + V h (a m)t(x* -am)

= Vh(am)'x* >1 min{ Vh(am)tx: x ~ E(Am ; am) } (10)

= Ilam 112 - ~/Vh(am) r a m Vh(am)

and so we conclude by the second inequality in (10) that x* must belong to the lower

halfspace H (r) := {x ~ Ne': Vh(am)'X <~ r}. Moreover, applying (10) again we obtain

Vh(a,,)ta m -- r Ilaù, 112 - r

0 ~ « m := ~/Vh(am)tAmVh(am) = ~/Vh(am)tAmVh(a,,) < 1 (11)

and this yields that the hyperplane H (r) is a valid cut. Clearly this is a valid deep cut

whenever Ila,,,Ih > r. Substituting a : = % , / 3 : = r and c := Vh(am) it follows by (3) and (4)

that also in this case a smaller volume ellipsoid E(Am + ~; am + ~) can be constructed satisfying

x* ~ E(Am; a,,) N H - (/3m) ~ E(Aù,+ 6 am+ l).

Finally we consider the last subcase.

Case 3. am E SCh B(0 , r) . If this holds we construct a valid deep cut with respect to the

function g. We shall refer to such cuts as constraint cuts. As in the f r s t subcase we obtain

O>~g(x*) >~g(am) + d ~ n (x * - a m) ~ g(am) - -x /d~ù ,A , ,dm (12)

with some nonzero dm ~ Og(am) and hence by the second inequality in (12) x* belongs to

the lower halfspace defined by H - (/3ù,) := {x ~ [R": d~nx <~/3m} with /3m :=d~,am -- g(am).
Moreover, applying (12) again

d~nam - Æm g(am)
O ~ a , , - ~~nAmd m - ~ ~<l (13)

and this yields that the hyperplane H(flm) is a valid cut. Clearly it is a valid deep cut

~A «_c E" denotes the complement of the set A in E".

88 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

whenever g (am) > 0. Substituting c~ := Cm, /3 :=/3m and c := dm it follows by (3) and (4)

that again in this case a smaller volume ellipsoid E(Am+l; am+l) can be constructed

satisfying x* EE(Am; am) N H - (/3m) ~E(Am+ 1; am+ l).

This concludes the description of the three disj oint subcases and leads to the determination

of the smaller volume ellipsoid to be used in the (m + 1) th step.

Before giving a complete description of the algorithm we recall (cf. [3, 19]) that the

e l l i p s o i d E(A m + j; aù, + 1) given by

Am+ l :=3m(Am-o-, bmb~ù),

with the updating values

n2(1 - o l 2)
6 m ' - - n 2 1 , O-m:=

and

am+ 1 :=aù, - 7"mbm,

2(1 + ne,n) 1 +nc~ m
m

(n + l) (l + o ~ m) , ~'m'-- n + l

bm : = A m d m / ~

is the smallest volume ellipsoid containing E(Am; a,~) N H (/3m).

The algorithm consists now of the following steps.

Step O. let m := 0, Ao := pI and ao := 0;
Step 1. if a m is feasible and optimal then goto Step 4

else goto Step 2;

Step 2. ifam f~B(O,r) then apply a norm cut

else if am ~ S then apply a constraint cut

else apply an objective cut;

Step 3. update the ellipsoid, let m := m + 1 and return to Step 1;

Step 4. stop.

This algorithm includes both the central and the deep cut versions. For the central cut

just take c~m := 0, for the deep cut evaluate oL m according to the subcases discussed in this

subsection.

Except for the first condition in Step 2 this algorithm is similar to the variant V1V3 of

the ellipsoid algorithm studied in [7]. Our contribution to Step 2 is expressed by the first

rule to be evaluated which aims to improve the numerical stability of the algorithm by trying

to keep the centers of the generated ellipsoids inside a bounded region of the space.

Finally we observe for the general case that the above algorithm might be difficult to

implement due to the non-availability of a computationally easy optimality check. Although

in some cases a fast algorithm is available to check for optimality (cf. [11]) this might in

general not be true especially for the nondifferentiable case. This difficulty is caused by the

fact that it is sometimes not possible to derive an easy description of the subgradient sets of

the functions f and g. Therefore we need to introduce a computationally easy stopping rule

to apply in Step 1 of the algorithm. If we are interested in an absolute error of less than a

J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming 89

given e > 0 we observe by (8) that this will be achieved if at step m an objective cut is

performed and the inequality

(1 - - a m) dV/~mmAmdm <,~

holds. However, if we know additionally thatf(x*) > 0 it is sometimes more reasonable to
consider the relative error

(lù, - f (x*))/f(x*).

The algorithm will now be stopped at the mth step if an objective cut is performed at this

step and the inequality

min{ (1 - a~) dv/-~ÄkA«dk: k~< m, k is an objective cut}

< e max{f(a~) - ~ : k<~m, k is an objective cut}

holds. Observe by (6) tha t f (x*) >~f(aD - ~ for every objective cut k ~< m. If the

stopping rule is satisfied this yields that

f i x *) >jmax{fia~) - dl/r~kA~dk: k<~m, k is an objective cut} > 0

and hence we finally obtain by (9) and the stopping rule that

(lm - f (x *)) / f (x *) < e

and so we have found a feasible solution within a 1 + e relative error of the optimal solution.

This stopping rule was used in our computational experiments discussed in the last section.

On the other hand, if it turns out that a~ = 1 for some k (this is possible only if k is not a

norm cut) then by (1) the intersection of E(Ak; aD and H - (f l D consists of orte point

which is necessarily the optimal solution since x* ~ E(A~; aD A H - (f l ~) holds for every

k>~O.

In the next subsection we will provide a simple and elementary convergence proof which

covers both versions of the algorithm.

2.3. Convergence p r o o f

In this subsection we assume that the described algorithm has already performed m steps,

m = 1,2 with centers a» k ~ m, and no optimality check or stopping rule was applied.

By the last remark in the previous subsection we may assume without loss of generality
that 0 ~< a~ < 1 and dk va 0 for every k ~ m.

For the proof of Lemma 2.3.2 we now need some well-known results from linear algebra.

L e m m a 2.3.1. For every matrix A ~ ~ " × n and vectors a, b ~ ~ n such that det(A) va 0 and

det(A + a b t) 4= 0 we have

A - 1ab tA - 1
(A + A b t) - I = A -1

1 + b t A Aa '

det(A + a b t) = (1 + b t A - ~a)det(A).

90 J.B.G. Frenk et aL /Deep cut ellipsoid algorithm for convex programming

Proof. The first formula is called the Sherman-Morrison formula and can be found in [23].
For the proof of the second formula we observe by well-known elementary properties of
determinants (cf. [23]) that

b t
det (A+abt)=det ([Ò A+abt])

= riet (I - l a Ä])

~detql+~tAùo Ä])
= (1 +b tA ~a)det(A)

which finishes the proof. []

In order to prove the next lemma we introduce for every positive definite matrix Ak and

dk v~ 0 the ratio eh := d~ÄkAkdk /Ildk II 2.

L e m m a 2.3.2. I f the described algorithm has performed m steps without applying the
stopping rule or an optimality check then

~ ~ o (~ ~ O ~ e ~ ~ -~ «, «~ ,
with Ilj-_l/ 6j = 1.

Proofi From Lemma 2.3.1 and the remarks at the beginning of this subsection it is easy to

verify that

(A o-ù, dmd~n] (14)
Aml+l=6~ 1 ml + 1__o_ dtAmdm),

det(Am +,) = 6~,(1 - O'm) det (A,ù). (15)

Moreover, if tr(A) denotes the trace of matrix A this yields by (14) that

tr(A,;l+l)=6m ! tr(A~l)+6ù, 1 °'m em 2.
I - - O-m

Iterating the previous formula for m ~> 0 we obtain

tr(Am 1+,) = t r (Aö I) F I 6k- 1 + 621 e~ 2
k=0 k=o \)=k I l - o'k

and, since t r (Aõ i) = n/p, this simplifies to

J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming 91

m ~(~)
t r(Am~+l) =n- I - [6~1+ ö l ' 1 - - - - ~ k e h Œ k 2 (16)

/9 k = O k = O j = k

If (15) is also i terated for m ~> 0 it fol lows that

m

det(Am + 1) = de t (Ao) 1-I (6~(1 - irk))
k = O

and this impl ies using de t (Ao) = p" and de t (A - 1) = d e t (A) - ~ that

m

det (a m ~_,) = p - " I ~ (B~-"(1 - o-h) - ~). (17)
k 0

Since tr(Am 11) = ~~'= 1Ai and det(Am 11) = Il,'.'= 1Ai with A» i = 1 n, the pos i t ive

e igenvalues of the posi t ive definite matr ix Am 1+ 1 we obtain by the geomet r ic -a r i thmet ic

mean inequal i ty (cf. [38]) that

n 1 n ~/det(Am + j) ~<tr(Aml+ 1). (18)

Subst i tut ing (16) and (17) in (18) we finally obtain

6. /" 1 O'k 2 n 1
- - eh >~ - 6 7 J 1

h=o v=h - 1 - ° - h P ~/1 - trh

and mul t ip ly ing the last express ion by [Ihm=o Bh the des i red result fol lows. []

Let us now define the fo l lowing parameters as funct ions of the space d imens ion

a : = (n 2 - 1) / n 2, b : = ~ / (n + l) / (n - 1) ,

and note that ab > e 1/,: > 1 for every n >~ 2.

Fo r each i terat ion we also define Dm := min{ (1 - ab)eh: k<~m}.

T h e o r e m 2.3.1. If the deep cut ellipsoid algorithm, without applying a stopping rule or
optimality check, is executed an infinite number of iterations then

l im Dm = 0.
m ~

Moreover, the convergence is geometric at a rate of 1 / v/äb if a m = 0 for every m (central
cut version) and at a possibly higher rate whenever am > O for some m (deep cut version).

Proo f . Dm is c lear ly a nonincreas ing and nonnegat ive sequence. Also, wi thout loss of

general i ty , we may assume as observed in the beginning of this subsect ion that 0 ~< a t < 1

and dk vs 0 for every k ~> O.

Obse rve that after some rewri t ing the inequal i ty

2 Z a k l - i (l _ a ~) >~ b m + l "~-Œk 1
n -- 1 h=o j=o (1 -- tel,) e ~ p \ -- ol h

92 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

follows from L e m m a 2.3.2. Since 0 ~< a~ < 1 for every k, the inequali t ies lq~=ok- ~ (1 - a~) ~< 1
and 1 + na« < 1 + n are satisfied and hence the above expression implies

2b n ~ a k (1 - « k) e ~ > - bm+l nt-OLk 1 . (19)

~=o p - ak

By definit ion D m ~< (1 - «k)ek for every k~< m and since (1 - OLk) 2 ~ (1 - c~k) it follows that

D 2, ~< (1 - oz~)e 2 .

Hence by (19) we obtain that

m F / { m + l m /I_]_OL k 1]
~»~»m~Z°~»~~o ; t ~ ~~~i-~~ ~-

Now, observing that E ~= o a - k = (1 - a - (m + 1)) / (1 - a ~), the last inequali ty yields

DB <,~2,, := 2p -
(n + l) 2 (a -1) m+l --1

n bm+ l Iq '~_O~/ (l+ o lk) / (1 - -O l~) - - 1

Note that 1-[~-o ~/(1 + c o) / (1 - ¢xk) >~ 1 for every m and so

(n + 1) 2 (a - 1) m+l__ 1

n b m + l - 1

Hence it follows using 1 / (a b) < 1 that ~2m ~ 0 as m ~ w and its geometric convergence

rate is of the order 1 / (a b) . However, i f ak > 0 for some k then 2 2 might decrease faster,

and so this might also hold for D 2. Final ly if D2m - ~ 0 at a rate of at least 1~(ab) then

D m -'~ 0 at a rate of at least 1 / Väb. []

Still us ing elementary techniques we will relate the behavior of the sequence Dm, m >~ 0,

to the behavior of the nonincreas ing sequence l m - - f (x *) , m ~ O . In order to do so the

fol lowing notat ion is necessary.

D hin:= min { (1 -- «k) eh: k ~< m, k is a norm cut },

D gm := min { (1 -- «k) eh: k ~< m, k is a constraint cut },

D rm:= min { (1 - ce k) ek: k ~< m, k is an objective cut }.

To avoid ambiguit ies D h, Dgn and D¢ù, are set equal to infinity i f t he corresponding sets are

empty. Since at each step the algori thm either performs a norm cut, a constraint cut or an

objective cut is clear that Dm = min{Dh, , D u, DYm }.

It is now possible to prove the next result for Dhm.

h
L e m m a 2.3.3. There exists a posi t ive constant 6 > 0 such that Dm >~ 6 f o r every m >~ O.

Proof . Let m >~ 0 be given and suppose there exists some k~< m such that the algori thm

ùLB.G. Frenk et al. /Deep cut ellipsoid algorithm for convex programming 9 3

performs a norm cut during step k. If such a k does not exist we are finished since in that

case Dhm = + ~. TO continue the analysis of the first case we observe by Assumption 2.2.1

that there exists some ~ > 0 such that IIx* [I 2 ~ r - 6 and hence by (10) it follows that

r - 6) IIx* ll2 >~ I[aù, Il2 - ~/Vh(aù,)ra m Vh(am).

This implies by (11) and Il Vh(am)ll2= 1 that

(1--0%)Cm=(1-- Ilam IlZZ- r _] ~/Vh(am)tAmVh(am)
~/Vh(am)tAmVh(am)] Il Vh(amll2

= ~/Vh(am)tAm Vh(am) - - Ilam Il2 + r

>~6>0

and so the result is proved. []

By Theorem 2.3.1 and Lemma 2.3.3 it follows that there exists some mo such thät

D m = min{Dgm, D ~ } for m >~ mo. This means that for m big enough we only have to study

the behavior of the sequences Dgm and D ~ . Another elementary result useful for the proof
of the main theorem is given by the next lemma.

Lelnma 2.3.4. If Lm,, := {x ~ ~n: f (x) <~f(x*) + nD»,ù } and lù, - f (x *) > nDm,, for some
m,, ~ ~ then Sm,, c E (A~; ak) for eL, ery k <~ m,, with Sm,, = Lm,, 0 S 0 B (O,r).

Proof. The result will be verified by induction. Clearly Sm~, _c B (0,r) = E(Ao; ao). Suppose

now Sm,, c_E(Ak; a~) for some k ~< m n - 1 and consider a» If a~ belongs to S ° (3 B(O,r) the

algorithm performs a constraint cut and so d~~ Og(aD and jBk=d~ak--g(ak). By the
subgradient inequality applied to g it follows for every x ~ S that

d ~ (x - a k) ~g (x) -g (ak) ~ -g (a~)

and hence S c H-(~~) . This implies Sm,, _cH (flk) and by the induction hypothesis we
obtain Sm,, C_H (Ô~) C3 E(Ak;a~) c_E(A~ + ~;a~+ 1). Similarly one can show for a~ ~ BC(0,r)

that B(0,r) ~ H - (/3k) and so Sm,, c_ H - ([3k) f3 E(Ak; a~) c_ E(Ak + l; a~ + 1). Finally consider

the case that ak belongs to S C3 B(O,r). If this holds we obtain dk ~ Of(ak) and Ph = lk --f(ak)
and by the subgradient inequality and lmù - - f (x *) > nDm,, it follows for every x ~ Lm, ' that

dtk(x--a~) <~f(x) --f(ak) <~f(x*) +nDmn - f (a~) <lmù --f(ak) <~lk--f(a~).

Hence Lm, ' c_H (flD and as in the previous cases it follows S,ù, _ H - (/ 3 D AE(Ak; ak)
c_E(Ak+l;a~+l). []

94 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

In order to prove the main theorem and link the behavior of D m to D f, we need the

following regularity condition. This condition is related to Slater 's condition which shows

up in the proof of strong duality in convex programming (cf. [38]).

Assumption 2.3.1. There exists some x ~ B(0,r) with g(x) < O.

We may now prove the following convergence theorem.

T h e o r e m 2.3.2. I f the deep cut ellipsoid algorithm without applying a stopping rule or an
optimality check is executed an infinite number of iterations and Assumption 2.2.1 and 2.3.1

hold then

lim lm = f (x *) .
m'f~

Moreover, it follows that

lm - f (x *)
l im sup

m 1" ~ Dm
< ~ .

Proof . Clearly by Theorem 2.3.1 the sequence lù, converges to f (x*) if l im SUpm,~

(lm -- f iX*)) ~Dm < ~. Observe that this also implies that the sequence lm - - f (x*) has at least

the same convergence rate as the sequence Dm. In order to prove this result we first assume

that there exists an optimal solution x* with g(x*) < 0 and Hx* 112 < r. If this holds there

exists some 3 > 0 such that g (x *) < ~ - & Moreover, if during step k a constraint cut is

performed we obtain by (12) that

- 6>~g(x*) >~g(ah) -

and hence by (13)

(1 - ak)e~ = (1 - g (a h) / ~) ~ / I l d h 112

= (1/dtkAkdh - g(ak)) /Ildk 112 (20)

/> ,~/Ildk II »

Observe now by the convexity o f g on B(O,r) that g is Lipschitz continuous on B(O,r) with

Lipschitz constant L« (cf. [38]) and so Og(ak) c_B(O,Lg) for everyx ~B(O,r) . This implies

][dkll 2 ~< Le and by (20) we obtain (1 - ak) eh >~ 6~Lg > 0. Hence DUù, >~ 6/L~, > 0 for every

m ~> 0 and so by Lemma 2.3.3 and Theorem 2.3.1 there exists some ml such that Dm = D f

for every m ~> ml. To conclude the analysis of this case we observe by (9) that

l,, - f (x *) < min { (1 - ab) eh IIdh il 2 ; k ~< m, k is an objective cut }

J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming 95

and so since, as for g, the funct ionf is Lipschitz continuous on S•B(O,r) with Lipschitz

constant Ly this implies by the previous inequality using IId«l[2 ~Lsthat

Im -- f (x*) ~ L~D f = LFD,, (21)

for every m >~ ml and hence the result is proved for this case. To start the analysis of the

other case suppose that all the optimal solutions with IIx* II 2 < r satisfy g (x*) = 0 and assume

by contradiction that

lm - f (x *)
lim sup - ~.

m t ~ D,n

This implies that there exists an increasing sequence {mù}~_j with mnq'~ and

Imù --fiX*) >nDmù. By Assumption 2.3.1 it follows that g (. f) : = m i n { g (x) :
x ~ B(0,r) } = - 6 for some ô > 0 and so .f ~ B(0,r) can not be optimal. Hence by Theorem

2.3.1 there exists some no such that £" ~ Smù for every n >~ no with the set Sm,, defined as in
Lemma 2.3.4. Since f is continuous it follows for every n >~no that there exists some

A,, ~ (0,1) such that x,,:= Aù.f + (1 - Aù)x * ~ B (0, r) with f(xn) =f(x *) + ½ nDm,, More-
over, by the convexity of g and the definition of £" we obtain

(g(x*) -g(xn))lllx*-x~ 112 > / (g (x *) -g(£))lllx*-£112

and this yields using g(x*) = 0 and g(.f) = - ~ that

- g (x ù) >~ 6[Ix* - x ~ 112/Il x* -xl l2. (22)

By the Lipschitz continuity of f on SNB(0 , r) with Lipschitz constant Ly it follows that

½nD~~, =f(x~) - f i x *) <~Lyllx,-x*ll2 and so by (22),

- g(x~) >1 n~Dù,,/(211x* -£112L«). (23)

Consider now some arbitrary k ~ mù and suppose at step k a constraint cut is performed.

Since by (23) and the definition of xù we obtain that xn~Smo GE(Ak; aÆ), k<~m~, (see

Lemma 2.3.4) it follows by (12) that

g(x~) >~g(ak) +dtk(x~ -ak) >~g(ak) - d ~ ~ k A ~

and so by (13),

(1 - «~)e~ IId~ I1~ = (1 - g (a k) / ~)

= v/d~A~dk - g(ak)

>1 -g(x,,).

This implies using IId~l12 ~<L« wi th Lg the Lipschitz constant o f g on B(0,r) that

g
L~Dm,, >/ - - g (x n)

and hence by (23),

LgDgù», >1 nöD,, / (2 llx* -£1[zLt~). (24)

96 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

On the other hand, if at step mù an objective cut is performed we obtain by (21) and

Imù - f (x*) > nDmù that

LfDf,, >~lmù - f (x*) >nD,, (25)

Combining now (25) and (24) it follows for n sufficiently large and satisfying

min 2[[x*-.lfl]2LfLg' > 1

that

D m ù = m i n { D ~ m ù , D f ù } > / m i n 2 l [x ,_~H2LfLg , Dm,,>Dm,

This yields a contradiction and so it taust follow that

lù, - f ix*)
lim sup <

ù, t ~ Dm

completing the proof. []

Note that Theorem 2.5 of [16] gives exactly the same convergence rate as Theorem 2.3.2
1/n l / f ä ß) but in 16] only the central cut (designated by the author as c,, , and equal to [

version applied to unconstrained problems is analyzed, and the convergence proof presented

there is much more complicated. This proof was extended to the constraint case by Luthi
(cf. [24]) but still covering only central cuts. B esides, contrary to our elementary and more

natural approach, a deep result in convex analysis about volumes of so-called concave arrays

is needed in [24]. This result can only be applied i f f i s convex, while our approach with

some obvious modifications can also be used i f f i s quasiconvex (cf. [12]). So, on one
hand we prove similar results by easier and elementary techniques, while on the other hand

we extend the above mentioned results to a deep cut version.

We also note that our Step 2 provides a simple way to guarantee the existence of suitable

Lt and Lg without impos ingfor g to be Lipschitz continuous on the whole space of R".
A final comment concerns open feasible sets. As we will see in the next section some

applications fall into this category. For such problems the condition g(x*) < 0 is naturally

satisfied and the convergence of the algorithm is also proved in tbis case by considering
only the first part of the proof of Theorem 2.3.2.

This finishes our theoretical analysis of the ellipsoid algorithm. The application discussed

in the next section will provide a test problem for it. Observe that the absence of an efficient

algorithm to solve this nondifferentiable location problem was the main motive to derive a

deep cut version of the ellipsoid algorithm. However, in the near future we intend to test

this algorithm on more general problems.

J.B. G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming 97

3. An application

Consider, as an example, the problem of locating an ambulance depot to handle the accidents
in a given district. Whenever an accident occurs a call is generated and one of the available
response or service units at this depot is assigned to it and required to travel to the scene of
the accident. Clearly the assignment of a service unit to a call will result in the non-
availability of this unit during some random period of time. Since the occurrence of accidents
is a random process, this may lead to the non-availability of all the units at the same time
and so an incoming call facing this needs to wait for service. By this example it is clear that
the decision where to locate a depot should take these congestion effects into account. After
specifying the queueing discipline a reasonable objective to consider in this example would
be to minimize the maximum of the average lengths of time between the arrival of a call
from one of the possible accident sites and the arrival of a unit at that site. For simplicity
we assume that the number of accident sites is finite. This objective is clearly of the min-
max type. However, before discussing a simplified and mathematical tractable version of
the above example (only one unit and First Come First Served (FCFS) queueing discipline)
we first review the existing min-max single facility location models in the plane and their
solution procedures. Observe that these models do not incorporate the probabilistic nature
of the arrival process of customers and thereby the possible non-availability of servers at
the facility is ignored by them.

The most studied min-max type location problem in the plane is the classical weighted
Euclidean 1-center problem. This problem can be stated as follows: given n demand points
xl, x» ..., x, belonging to the plane, find a point x t= (Xl, X2) such that the function

max {wid(x, xi) }
I <~i~n

is minimized, where the distance function d(x, xi) is given by the Euclidean norm, II 112. It
is called Rawls problem for general norms (cf. [39]).

Sylvester (cf. [37]) introduced the Euclidean version of this problem in 1857 for equal
weights wi. It is easy to see that its solution is given by the center of the smallest circle
containing all the given demand points. Shamos and Hoey (cf. [30]) presented for this
problem an algorithm which uses the so-called "farthest point Voronoi diagram" which
can be constructed in O(n log n) time. Other solutions for this so-called unweighted case
can be found in Rademacher and Toeplitz (cf. [29]), Courant and Robbins (cf. [5]),
Smallwood (cf. [36]), Nair and Chandrasekeran (cf. [27]) and Elzinga and Hearn (cf.
[10]). Finally, Megiddo (cf. [26]) introduced an algorithm with O(n) time complexity.
This algorithm is based on the analysis of linear programming problems up to 3 dimensions.
Megiddo's procedure is theoretically very efficient, but it is not clear how to adapt it for
arbitrary ~p-norms. For general Yp-norms with 1 < p < ~ the problem is clearly a contin-

uous convex programming problem. It is interesting to note here that locating m centers,
using the Euclidean norm, was proved by Masuyama, Ibaraki and Hasegawa (cf. [25]) to
be NP-hard.

A major difficulty of the above convex objective function is its nondifferentiability in a

98 ZB.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

infinite number of points. Therefore it is not possible, at least theoretically, to apply standard

techniques frorn nonlinear programming and so special purpose algorithms had to be devel-

oped. Unfortunately, these special purpose algorithms cannot be applied to the model

derived in the next subsection. However, this model can be solved by the ellipsoid algorithm.

Observe that the same algorithm can also be applied to the classical min-max problem and

the min-sum version (cf. [14]) of the model to be discussed in the next subsection.

3.1. A min-max stochastic queue location model

Let x'i = (xi,, x~2), i = 1, 2 n, denote n demand points in the plane and x t= (XI» X2) the

location of a facility containing orte server. Assume that each demand point x~ generates

demands over time according to a Poisson process { ~ i (t) ; t >~ 0 } with parameter)th» where

hi > 0, i = 1, 2 n, ~~'_ i h~ = 1 and A > 0. The Poisson processes ~ 1 (t), 2_2 (t) 2 n (t)
are independent, and hence the overall demand process B_ (t) : = ~7= 1 ~~_i(t) is again a

Poisson process with rate A.

Regarding the example, let "server" designate the response unit at the ambulance depot,

"customer" designate each accident and "arrival of a customer" designate each call

generated by an accident.

The travel speed of the server is assumed to be a constant v, and the distance d(x , x~)

between the facility at x and the demand point x~ is measured by some norm II ' Il so that

d(x , x~) = IIx -x~[I. This implies that the service time of a customer located at demand point

xi equals (2 /u) llx -xilL if it is assumed (without loss of generality) that on-scene and oft-

scene service times (i.e. the time spent by the server at the demand point and at the facility,

cf. [2]) are equal to zero. Moreover, each time the server finishes bis (or her) service at
some demand point, he (or she) returns to the facility and starts serving the hext client in

the queue. A FCFS queueing discipline is assumed.

The following random variables are needed in order to introduce an objective function
for this problem.

• _dt := the demand point generating the/th arriving customer;

• Wg(X) := the time between the arrival of the/ th arriving customer and the assignment

of the server to this customer, if the facility is located at x;

• ~'i (x) := the service time of the/th arriving customer, if the facility is located at x;

• _sl(x) := the actual waiting time of the / th arriving customer before the arrival of the

server at demand point _dl to serve this customer, if the facility is located at x.

It is not difficult to verify, using the independence of the Poisson arrival processes, that

the random variables dt, 1 >/- 1, are independent and identically distributed with P { _dl = i } = h»
i = 1 , 2 n.

Moreover, conditioning on the event { dl = i} it turns out that

- r~ (x)=(2 /v) l [x -x z [I , if _dz =i ,

and

J.B.G. Frenk et al. /Deep cut ellipsoid algorithm for convex programming 99

S_l(X) = W l (X) "~- l ~_l(X) .

In order to introduce a customer-oriented objective one possibility is to assume that an
arriving customer, using the framework of utility theory, associates with his (or her) actual

waiting time a certain level of dissatisfaction. This gives rise to the following assumption.

Assumption 3.1.1. If the facility is located at x, and the/th arriving customer is generated

by the demand point x» then the customer's random dissatisfaction cost equals f~(s~(x)),

whereß : [0,oo) ~ [0 , w) , f / 0) = 0, is some nondecreasing left-continuous disutility func-

tion, 1 <~i~n.

Note that there is no loss of generality to assume that all customers of a given demand

point xi share the same disutility function ~. Indeed, if a fraction p of customers generated

by the demand point x« has different disutilities, this demand point may be divided into two

separate dummy demand points with arrival rates Ahip and A h / (1 - p) and the desired

property is achieved. However, for notational convenience we assume in the remainder that

the set of demand points consists of distinct points.

Classical location theory distinguishes two major objectives. One possibility is to mini-

mize the average disutilities aggregated over all the customers (min-sum), while the other

is to minimize the maximum of the average disutilities from customers located at demand

point xi, 1 ~< i ~< n, (min-max) . Only the min-max objective will be discussed here. For a

discussion of the min-sum type objective corresponding to the Stochastic Queue Location

Problem in the plane the reader is referred to [14] and [44].

In order to introduce this min-max objective, let us define

•/~ := the index of the/ th arriving customer coming from demand point x~;

• Cm.i(X) := the total random disutility value of the first m customers from demand point

xi if the facility is located at x.

Clearly

m m()
c_»,i(x) = ~ fi(s_i,(x)) = ~ fi w_i,(x) + 1 I Ix -x , II

l = l / = 1 U

which, taking expectations, yields

g[_Cm,i(X)] = Æ W i,(X) + -- I[x-xi l l . (26)
l = l U

Some observations are needed in order to evaluate for every 1 ~< i ~< n the random variable
_w~+ (x). The underlying queueing model can be seen as a M / G / 1 queue with FCFS queueing

discipline and n different customer classes (cf. [4]), where a customer belongs to customer

class i if located at demand point xi. Clearly, in this framework, wt(x) represents the waiting

time in the queue of the/th arriving customer and hence the random process {w~(x): 1 >~ 1 }

is the waiting time process (in the queue) of a M / G / 1 system with arrival rate A = ~2 ~'= 1Ah~

1 O0 J.B.G. Frenk et al. /Deep cut ellipsoid algorithmfor convex programming

and service time distribution B (r) equal to the weighted average of the service time

distributions Be(r) of each customer-class i, i.e.

n n

B (r) := P { y«(x) < r} = ~ hiBe(r) = E h i l { (2 / ,,) l l x_ x, ll < ~} ,
i = l i = 1

where

{Ò if A occurs,
la := otherwise.

By the above observation and well-known results for the M/G/1 queue (cf. chapter 8 of
[22]) it follows that _w~(x) converges q" almost surely to an almost surely finite random
variable w~(x) if and only i fx ~ 12, where

and

~ : = {x~[R2: (2 A / v) m l (x) <1}

n
m~(x) : : ~ h , llx-xill

i -- l

denotes the Weber function (cf. [40]).
Since by definition/« >/1 and the random variable ~i, (x) is completely determined by the

independent service times of customers arriving before customer/~ and the independent
arrival times up to customer/l we obtain as in (8.10) and (8.11) of [22] that

w_z(x) <w_i_,(x) <~ w_i,+,(x) <~ w_~(x) a.s. (27)

Hence also ~v o (x) "~ w ~ (x) almost surely if and only i fx ~ 12. By the monotonicity and
left-continuity of the disutility functions and (27) this implies, using the monotone con-
vergence theorem (cf. [15]) that

w A x) + 7 IIx-xel["rg w_~(x)+ 7 IIx-x , II .

So for every x ~ 12, the average expected cost c~e~ (x) per customer from demand point

xi exists and by (26) this equals

C(i) (X) : lim - - g [C m , i (X)] ~ ß W~(X) + -- IIx--x, II < ~ "
m ~ ~ m U

Clearly, to avoid pathological cases we have to assume for a given set of disutility

functionsf, 1 ~< i ~< n, that g< [f//(w~ (x) + (1 /v) I[x - x, II)] is finite for every x ~ 12. Observe,
since the service times % (x), I >~ 1, are uniformly bounded for every x ~ Z2, that this assump-
tion holds for any increasing polynomialf (cf. [20]).

The above assumption now gives rise to the following proper optimization problem

(Po) min c (x)

J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming 101

where

Cmax(X) := max c(i)(x).
l<~i<~n

The next theorem mentions a general property for each function c(g).

Theorem 3.1.1. The function co) : ~2~ N is conuex on ~ if the corresponding disutility
function f. is nondecreasing and convex. Moreouer, if f is only nondecreasing then
c(g) : g2--* ~ is quasiconvex on 22.

Proof. The proof can be found in [14] or [44], and hence it is omitted. []

Remarks . 1. The above theorem also holds if we assume that the overall demand process

is a renewal process and each time a demand occurs this demand is generated by demand

point xg with probability hg. Moreover, the trials to decide which demand point has generated

the ärriving demand are independent tossings. In this case the underlying queueing model
is a GI /G /1 queue (cf. [22]).

2. By Theorem 3.1.1 it follows immediately that c : ~ ~ N is convex on ~2 whenever

all disutility functions f» 1 ~< i ~< n, are nondecreasing and convex. Moreover, if at least one

of the disutility functionsf~ is only nondecreasing we obtain that Cmùx : 22 ~ N is quasiconvex
o n 22.

Generally, it is not possible to evaluate c(g)(x) explicitly. However for polynomials and

in particular the simple case of linear disutility functions, like f ,(t) = cgt for 1 ~< i ~< n, and

using a @ - n o r m it is possible to derive a closed analytical expression for co)(x) (cf. [14]

or [441). For the linear case this is given by

((2A/vZ)E]=lhjl]x-xjll2 vl)
c (i , (x) : = C i \ l = ~ 2 ~ j l] x ~ ~ [p -t- I Ix -xg[Ip .

S ince linear functions are both convex and concave the optimization problem (Po) given

by

min Cmax(X)
xŒ.(2

where

and

C (X) := max cg((2A/v=)2Y='hjllx-xjll~ 1)
l<.g~, \ l-(2Mv)E2-,hjl lx-x«ll p _ + -v IIx-xgll,)

g2:= { x ~ R e : (2A/v)mi(x) < 1)

is a very special case of the convex programming problem (P) with an open feasible region

(see the discussion at the end of the previous section).

102 J.B.G. Frenk et aL / Deep cut ellipsoid algorithm for convex programming

We note that it is possible in this case to establish conditions for a feasible a,ù to be

optimal. In fact, it is necessary and sufficient for optimality that 0 ~ OCmax(am) (cf. [1]).
In spite of being in general difficult to determine the subgradient set of a general convex

function this can be done for this particular case.
First recall the following result due to Dubovitsky and Milyutin (cf. [6]).

L e m m a 3.1.1. I f f» 1 <~i<~n, are finite continuous convex functions on 12 and

fma× := maxl < i <, fi then the subgradient set of f~a × at x ~ 12 is g iren by

0fmax(X)=COnV(U Ofi(x))
\ i ~ l (x) «

with l (x) = { i: f (x) =f~ax(X) }.

Proof. The proof can be found in [6] and hence it is omitted. []

Considering each function cu) (x) it is differentiable everywhere except at the demand

points x t 1 < l ~< n.
Suppose that x = xt for a given l. Define, if i ¢ l,

[(2 A / v 2) E / . , h j l l x - x j l l 2" 1
~«)(x) :=c, ~l - (2 a / v) E j ~ t h j IIx - x j I[, + -v IIx -x~ Ilpf '

and, for i = l ,

(2A/V 2) E«.thj [[x - x j II 2
~(t)(x) := ct

1 - (2A/v) F.j.~hj I I x - x j Il.

Note that g(i)(x) and gù)(x) are differentiable inx» and so Vg(t)(Xl) and Vg(i)(Xl) exists.
Let also, if i =~ 1,

and, if i = l ,

Fr:=

C(i) (X ,) -- (Ci/l)) IIx'--Xi II. 2~ h»

1 - (2 A / v) E j ~ t h j l [x t - x j [I p u

c-~ o (xl) 2A h« + c~ .

1 - (2A/v)Z j~ ,h«[Ixz -x« l lù v v

The following lemma fully characterizes the subgradient set of the nondifferentiable

points of c(i) (x) .

L e m m a 3.1.2. Let II II, denote ~p-norm with p >~ 1, and Il'Hg denote the conjugate ~ q -

norm (1/p + 1/q = 1), then

O C (i) (X l) : {d~ ~2: l i d - VS«)(x«)I1~ < Fr}

for l <~i<~n.

J.B.G. Frenk et al. /Deep cut ellipsoid algorithm for convex programming 103

Proof. The proof can be found in [44] or [13] and hence it is omitted. []

In order to test if a point x is optimal for c (x) one need to decide if 0 ~ Oc,~~x(x).
I fx is not a demand point, and so Oc(i)(x) = { Vc~ o (x) } for every i, the problem reduces

to the decision problem whether 0 belongs to the convex hull of a set of points in the plane

and hence it can be solved in linear time (cf. [11] or [26]). If x is a demand point an

efficient solution procedure is presented in [11].

A final remark in this subsection concerns the existence of an initial ellipsoid.

Suppose the optimal solution of (Po) exists, and is denoted by x*. Then x* is a feasible

solution of (Po). This means that

2A "
- - ~ h« llx* - xj l[, < 1.

U j='-----I

By the triangle inequality of a norm we obtain

2A " -xs) p 2A " •
T I~I hj(X* ~ U j~= l hj lIX -- XJ HP < l

and hence

- - x j < - - .
.i= * " ,p 2A

Since

1 2 + [2 1
[Ixl[,>llxl[~=max{lx~l,lx21}> ~ ~ / I x , I Ix2 = ~ l l x l l 2

for any x ~ N 2 and p > 1 it follows that

n t~ U

x * - i Z l h y x j 2 <~ V~ x * - E hjxj (- - .
ù i ~ p d A

From the above inequality we obtain that the optimal point x* taust be contained in a

circle with center ~]_ i hjxj and radius v~ (V~A). This circle provides an initial ellipsoid for
our algorithm.

3.2. Computational results

In order to test the algorithm it was completely coded by us in Sun Pascal and no commercial

routines were used except the standard functions and procedures of the language. The

program includes the optimality test discussed in the previous subsection which was applied

to each feasible center. The program was compiled and executed on a Sun Sparc Station

SLC using the default double precision (64-bit IEEE floating point format) real numbers

of the Sun Pascal language. The computational experience was carried over 600 uncorrelated

instances of the problem discussed in the last subsection. Those instances were randomly

104 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm fo r convex programming

generated in the following way. We start by describing the selection of the problem para-
meters.

For the problems being tested, the number n of demand points belongs to { 10, 25, 50,
100, 250, 500}.

The disutility function of each demand point x i is chosen to be a linear function with
coefficient ci = 250, i . e . f (t) = q t with q = 250 for every i.

For the ~~C£p-norm being used, we take p ~ {1.1, 1.5, 2.0, 2.5, 3.0}, while the overall
Poisson arrival rate is set to A = 0.00l and the fraction hi of arrivals from the demand point
x~ is determined as follows. We uniformly draw numbers from the interval [0,1), say/~i,
1 ~< i ~< n, and set h i equal to hi = /~J (E]= 1/~j) for every 1 < i ~< n.

Now we describe the procedure to generate the demand points. A1 the demand points are
generated within the square [0, 250] × [0, 250], for which a clustered structure is created
using the following procedure. First we draw two integers ml and m2 ranging from 1 to 20,
and then we divide the square [0, 250] X [0, 250] into (m j + 1)(m2 + 1) subsquares by
generating randomly m~ x-axis coordinates and m2 y-axis coordinates in (0, 250) (cf. Figure
1). Then we label these subsquares from 1 to (ml + 1) (m2 + 1).

Subsequently we randomly choose according to these labels some given number of
subsquares. In each chosen subsquare we uniformly draw a given number of demand points.
Finally, the remaining demand points are uniformly drawn from the original square
[0, 250] × [0, 250] and added to the already existing set of demand points, in a total of n
points.

In order to procedure "constrained" examples we compute after the generation of each
instance the value of the speed v of the server according to the following procedure. First a
pair of values for v is produced with the property that for the smallest value the feasible set
~Q is empty and for the biggest value the feasible set ~ includes all the demand points.
Subsequently binary search is applied to the corresponding interval until a value of v is
found for which during the first 10 iterations of the algorithm both constraint and objective
cuts are generated.

y -- (2ZiS

250 '

1

4

7
!
0] 10

5

8

11 [12 • z - a x i a

25O

Fig. 1. Clustered problem rrq = 2, m 2 = 3.

J.B.G. Frenk et al. /Deep cut ellipsoid algorithm for convex programming 105

F i n a l l y , t h e t o l e r a n c e p a r a m e t e r u s e d in t h e s t o p p i n g ru l e is e : = 5 × 10 - 6 a n d a r e l a t i v e

e r ro r m e a s u r e m e n t as d e s c r i b e d in S u b s e c t i o n 2 .2 w a s u s e d .

I n T a b l e 1 w e s u m m a r i z e t h e r e s u l t s o f o u r c o m p u t a t i o n a l e x p e r i e n c e .

F o r e a c h p a i r (n , p) 20 u n c o r r e l a t e d i n s t a n c e s o f t h e p r o b l e m w e r e g e n e r a t e d a c c o r d i n g

to t h e p r o c e d u r e d e s c r i b e d a b o v e a n d e a c h o f t h e m w a s s o l v e d b y b o t h v e r s i o n s o f t h e

a l g o r i t h m . H e n c e t h e e n t r i e s o f T a b l e 1 a r e a v e r a g e s o f t h e c o r r e s p o n d i n g v a l u e s .

T h e c o l u m n s u n d e r deep cut statistics i n c l u d e t h e p e r c e n t a g e o f o b j e c t i v e c u t s g e n e r a t e d

Table 1

Results of the ellipsoid algorithm

Problem Central cuts Deep cuts Deep cut statistics % reduction

n P it time it time % o 4o % c ~« ~ it time

10 1.1 72.2 0.29 58.6 0.24 90 0.054 10 0.089 0.058 18.5 17.7
10 1.5 67.7 0.27 56.9 0.23 87 0.054 13 0.047 0.052 15.2 13.4
10 2.0 61.4 0.11 52.2 0.10 88 0.050 12 0.056 0.050 14.8 13.8
10 2.5 65.8 0.27 53.9 0.22 89 0.056 11 0.060 0.057 16.7 17.2
10 3.0 66.7 0.26 54.5 0.22 85 0.057 15 0,042 0.054 17.2 16.0

50 1.1 74.5 1.31 58.8 1.04 88 0.059 12 0.081 0.061 20,5 20.2
50 1.5 61.0 1.09 50.9 0.9l 87 0.055 13 0.060 0.054 16,1 16.1
50 2.0 61.7 0.42 51.5 0.35 86 0,055 14 0.060 0.055 16.6 16.9
50 2.5 59.3 1.09 48.8 0.89 89 0.055 11 0.069 0.056 17.7 18.5
50 3.0 60.5 1.10 51.6 0.95 83 0.046 17 0.055 0.047 14.6 13.0

100 1.1 70.5 2.52 56.0 2.01 89 0.064 11 0.063 0.063 20.5 20.0
100 1.5 58.5 2.06 50.9 1.80 88 0.045 12 0.058 0.046 12.7 12.3
100 2.0 61.5 0.80 51.2 0.67 85 0.051 15 0.061 0.052 16.4 15.9
100 2.5 60.1 2.08 51.4 1.78 86 0.049 14 0.065 0.050 14.2 13.9
100 3.0 58.9 2.05 51.0 1.79 87 0.053 13 0.053 0.052 13.0 12.6

250 1.1 70.0 5.99 56.6 4.86 88 0.058 12 0.064 0.057 19.1 18.8
250 1.5 60.1 5.15 50.9 4.38 86 0.055 14 0.056 0.054 15.5 15.0
250 2.0 60.7 1.95 51.7 1.66 85 0,053 15 0,051 0.052 14.9 14.8
250 2.5 59.3 5.16 49.2 4.30 88 0.052 12 0.066 0,054 16.8 16.5
250 3.0 61.2 5.28 51.8 4.48 86 0.052 14 0.072 0.053 15.4 15.0

500 1.1 67.3 11,55 54.3 9.34 86 0.063 14 0.052 0.060 19.3 19.1
500 1.5 59.8 10.27 50.3 8.71 88 0.051 12 0.060 0.052 15.7 15.1
500 2.0 62.0 3.88 51.9 3.27 87 0.051 13 0.069 0.052 16.3 15.9
500 2.5 60.9 10.36 50.8 8.67 86 0.053 14 0.070 0.055 16.7 16.3
500 3.0 59.0 10.16 50.3 8.69 88 0.052 12 0.055 0.052 14.8 14.4

25 1.1 75.5 0.70 58.1 0.54 90 0.068 10 0.070 0.068 22.6 22.3
25 1.5 62.2 0.57 52.2 0.49 85 0,053 15 0.056 0,053 16.1 14.0
25 2.0 62.4 0.22 53.6 0.20 85 0.052 15 0.042 0.050 13.2 9.9
25 2.5 61.8 0.56 52.9 0.48 89 0.049 11 0.059 0,049 14.3 14.7
25 3.0 62.5 0.56 52.8 0.48 84 0.051 1O 0.050 0,049 15.6 14.9

106 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

by the deep cut version in column % o and the average depth of the corresponding cut in

column ~o. Similar values concerning constraint cuts are listed in colnmns % c and de. The

column ~ shows the total average depth of a cut. In the generated examples no norm cuts

were produced which may be explained by the rather loose determination of the starting

ellipsoid and by the stability and good behavior of our test problem.

Each t ime column refers to the execution time in seconds of the Sun Station measured

by the available standard c lock function of the Sun Pascal compiler. This corresponds to

the elapsed time from the start to the end of the ellipsoid procedure. During the execution

of the ellipsoid procedure no input or output operations are performed. The optimality test

(cf. [I 1]) is included in these times.

We note that the t ime values for p = 2.0 correspond to a special situation since the

computations of the Euclidean distance and the corresponding derivatives can be simplified.

Comparing the two last columns of percentage reductions one can see that the behavior

of the algorithm reflects that the deep cut version does not imply any significant extra

computational effort. In fact, every reduction in it (iterations) is followed by an approximate

reduction in time.

As a final remark we observe that using deep cuts reduces approximately 16% on both

the computational time and the number of iterations.

Previous experiences where the examples were generated in a way that most of the

iterations corresponded to objective cuts, i.e. almost every center belongs to S (3 B (O , r) ,

show averages of 25% reduction which is confirmed in [13] where an unconstrained convex

problem (the weighted @ 1-center or Rawls problem) is solved by the ellipsoid algorithm.

The results obtained in [7] agree in general with out results but show a trend of instability

in the deep cut version when applied to some test problems. We believe that our modified

Step 2 may contribute to increase the stability of the algorithm but more extensive compu-

tational tests need to be performed.

Acknowledgment

The anthors like to thank the anonymous referees for their constructive remarks which

greatly improved this paper.

References

[1] M.S. Bazaraa and C.M. Shetty, Nonlinear Programming: Theory andAlgorithms (Wiley, New York, 1979).
[2] O. Berman, R.C. Larsen and S,S. Chiu, "Optimal server location on a network operating as an M/G/1

queue," Operations Resea,'ch 33 (1985) 746-771.
[3] R.G. Bland, D. Goldfarb and M.J. Todd, "The ellipsoid method: A survey," Operations Resear«h 29 (1981)

1039-1091.
[4] O.J. Boxma, "Workloads and waiting times in single-server systems with multiple customer classes,"

Queueing Systems 5 (1989) 185-214.
[5] R. Courant and H. Robbins, What is Mathematics? (Oxford University Press, Oxford, 1941).

J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming 107

[O] A.Y. Dubovitsky and A.A. Milyutin, "Extremum problems in the presence of restriction," USSR Compu-
tational Mathematics and Mathematical Physics 3 (1965) 1-80.

[7] S.T. Dziuban, J.G. Ecker and M. Kupferschmid, "Using deep cuts in an ellipsoid algorithm for nonlinear
programming," Mathematical Programming Study 25(5) (1985) 93-107.

[8] J.G. Ecker and M. Kupferschmid, "An ellipsoid algorithm for nonlinear programming," Mathematical
Programming 27 (1983) 83-106.

[9] J.G. Ecker and M. Kupferschmid, "A computational comparison of the ellipsoid algorithm with several
nonlinear programming algorithms," SIAM Journal on Control and Optimization 23 (5) (1985) 657-674.

[10] J. Elzinga and D. Hearn, "Geometrical solutions for some minimax location problems," Transportation
Seience 6 (1972) 379-394.

[11] J.B.G. Frenk, J. Gromicho, M. Fridrich and S. Zhang, "An efficient algorithm to check whether 0 belongs
to the convex hull of a finite number of ~Pp-circles." Report 9204/A, Erasmus University Rotterdam
(Rotterdam, 1992).

[12] J.B.G. Frenk, J. Gromicho and S. Zhang, "A deep cut ellipsoid method Ihr quasiconvex programming,"
(1992), in preparation.

[13] J.B.G. Frenk, J. Gromicho and S. Zhang, "General models in min-max continuous location: Theory and
solution techniques," (1993), submitted for publication.

[14] J.B.G. Frenk, M. Labbé, R. Visscher and S. Zhang, "The stochastic queue location problems in the plane,"
Report 8948/A, Erasmus University Rotterdam (Rotterdam, 1989).

[15] C. George. Exercises in Integration (Springer, New York, 1984).
[16] J.L. Goffin, "Convergence rates of the ellipsoid method on general convex functions," Mathematics of

Operations Research 8 (1983) 135-150.
[17] J.L. Goffin, "Variable metric relaxation methods, part lI: The ellipsoid method," Mathematical Program-

ming 30 (1984) 147-162.
[18] M. Grötschel, L. Loväsz and A. Schrijver, "The ellipsoid method and its consequences in combinatorial

optimization," Combinatorica 1 (1981) 169-197.
[19] M. Grötscbel, L. Loväsz and A. Schrijver, GeometricAlgorithms and Combinatorial Optimization (Springer,

Berlin, 1988).
[20] D.P. Heyman and MJ. Sobel, Stochastic Models in Operations Researeh, Vol. 1 (McGraw-Hill, New York,

1982).
[21] L.G. Khachiyan, "A polynomial algorithm in linear programming," Doklady Akademii Nauk SSSR 244

(1979) 1093-1979 [In Russian.]
[22] L. Kleinrock, Queueing Systems: Theory, Vol. 1 (Wiley, New York, 1975).
[23J P. Lancaster and M. Tismenetsky, The Theory ofMatrices (Academic Press, New York, 2nd ed., 1985).
[24] H.J. Luthi, "On the solution of variational inequalities by the ellipsoid metbod," Mathematics of Operations

Research 10 (1985) 515-522.
[25] S. Masugama, T. Ibaraki and T. Hasegawa, "The computational complexity of the m-center problems on

the plane," The Transactions of the IECE of Japan 64 (1981) 57-64.
[26] N. Megiddo, "Linear-time algorithms for linear programming in R 3 and related problems," SIAM Journal

on Computing 12 (1983) 759-776.
[27] K.P.K. Nair and R. Chandresakaran, "Optimal location of a single server center of certain types," Naval

Research Logistics Quarterly 18 (1971) 503-510.
[28] G.L, Nemhauser and L.A. Wolsey, lnteger and Combinatorial Optimization (Wiley, New York, 1988).
[29] H. Rademacher and O. Toeplitz, The Enjoyment ofMathematics (Princeton University Press, Princeton, NJ,

1957).
[30] M.I. Shamos and D. Hoey, "Closest-point problems," in: Proceedings of the 16th Annual IEEE Symposium

on Foundations of Computer Science (1975) pp. 151 - 162.
[31] N.Z. Shor, "Convergence rate of the gradient descent method with dilation of the space," Cybernetics 6

(1970) 102-108.
[32] N.Z. Shor, "Utilization of the operation of space dilation in the minimization of convex functions," Cyber-

netics 6 (1970) 7-15.
[33] N.Z. Shor, "Cut-off method with space extension in convex programming problems," Cybernetics 12

(1977) 94-96.
[34] N.Z. Shor, "New development trends in nondifferentiable optimization," Cybernetics 13 (1977) 881-886.
[35] N.Z. Shor and V.1. Gershovich, "Family of algorithms for solving convex programming problems," Cyber-

netics 15 (1980) 502-508.

108 J.B.G. Frenk et al. / Deep cut ellipsoid algorithm for convex programming

[36] R.D. Smallwood, "Minimax detection station placement," Operations Research 13 (1965) 636-646.
[37] J.J. Sylvester, "A question in the geometry of the situation," Quarterly Journal of Pure and Applied

Mathematics 1 (1857) 79.
[38] D.E. Varberg and A.W. Roberts, Convex Functions (Academic Press, New York, 1973).
[39] J.E. Ward and R.E. Wendell, "Using blocks norms for location modelling," Operations Research 33 (1985)

1074-1090.
[40] A. Weber, "Uber den standort der industrien," (1909).
[41] Y. Ye, "Karmarkar's algorithm and the ellipsoid method," Operations Research Letters 6 (1987) 177-

182.
[42] D.B. Yudin and A.S. Nemirovsky, "Evaluation of the informational complexity of mathematical program-

ming problems," Ekonomika i Matematicheskie Metody 12 (1976) 128-142 [In Russian.]
[43] D.B. Yudin and A.S. Nemirovsky," Informational complexity and efficient methods for the solution of

convex extremal problems," Ekonomika i Matematicheskie Metody 12 (1976) 357-369 [In Russian.]
[44] S. Zhang, "Stochastic queue location problems," PhD thesis, Tinbergen Institute Series 14 (Rotterdam,

The Netherlands, 1991).

