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Abstract

Estimation of multivariate volatility models is usually carried out by quasi max-

imum likelihood (QMLE), for which consistency and asymptotic normality have

been proven under quite general conditions. However, there may be a substan-

tial efficiency loss of QMLE if the true innovation distribution is not multinormal.

We suggest a nonparametric estimation of the multivariate innovation distribution,

based on consistent parameter estimates obtained by QMLE. We show that under

standard regularity conditions the semiparametric efficiency bound can be attained.

Without reparametrizing the conditional covariance matrix (which depends on the

particular model used), adaptive estimation is not possible. However, in some cases

the efficiency loss of semiparametric estimation with respect to full information

maximum likelihood decreases as the dimension increases. In practice, one would

like to restrict the class of possible density functions to avoid the curse of dimen-

sionality. One way of doing so is to impose the constraint that the density belongs

to the class of spherical distributions, for which we also derive the semiparametric

efficiency bound and an estimator that attains this bound. A simulation experiment

demonstrates the efficiency gain of the proposed estimator compared with QMLE.
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1 Introduction

Modelling correlations of multivariate financial time series has attracted considerable in-

terest recently, as computing power more and more enables the researcher to model large

covariance matrices in flexible ways. For example, two quite general, nonnested classes

of models are the so-called VEC GARCH model described by Engle and Kroner (1995),

and the dynamic conditional correlation (DCC) model of Engle (2002), including exten-

sions allowing e.g. for asymmetries analogous to the univariate GARCH literature. For a

comparison and other models, see the survey by Bauwens, Laurent and Rombouts (2004).

In this paper we leave the particular form of the conditional covariance matrix un-

specified. All we assume is that it depends on a finite dimensional parameter vector, and

the objective is to find efficient estimators of this parameter. Estimation by maximum

likelihood is straightforward if one supposes a specific parametric distribution of the in-

novations. However, the choice of this distribution can be quite problematic. Usually

one assumes normality, which provides the so-called quasi maximum likelihood estimator

(QMLE). It is now well-known that QMLE is consistent under quite general conditions,

even if the true underlying distribution is not normal, see e.g. Bollerslev and Wooldridge

(1992) and Jeantheau (1998). However, in the case of misspecification there may be a

substantial efficiency loss of QMLE compared with the correctly specified maximum like-

lihood estimator (MLE). On the other hand, assuming a non-normal distribution entails

the risk of inconsistent parameter estimation if the distribution is misspecified.

In this paper we follow a nonparametric approach in letting the data determine the

distribution of the innovations. With the typically large data sets in finance we would

expect to obtain density estimates that are sufficiently close to the true distribution of

the innovations. As our model consists of a finite dimensional parameter describing the

volatility and correlation dynamics and an infinite dimensional parameter describing the

innovation distribution, it may be called semiparametric (SP) as in Engle and Gonzalez-

Rivera (1991), who consider univariate GARCH models.

The SP approach is typically more efficient than QMLE. The case where SP estimators

are asymptotically as efficient as maximum likelihood estimators where the true distribu-

tion is known is usually referred to as adaptivity. For example, in a univariate framework,

adaptive estimation of ARMA models has been treated by Kreiss (1987). Often, pa-

rameters describing the autoregressive dynamics of a model can be estimated adaptively,

whereas scale parameters cannot. For univariate GARCH models, Linton (1993) and

Drost and Klaassen (1997) show that adaptive estimators of the autoregressive parame-

ters can be constructed by reparameterizing the volatility process. The same might be
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possible in the multivariate case, but it will depend on the particular model. As we want

this to be sufficiently general, the best we can do is to construct estimators that achieve

the semiparametric lower bound. It turns out that this is possible. We show that the

semiparametric lower bound is in general different from the parametric lower bound, so

that adaptive estimation of the parameter vector is not possible. We characterize some

selected distributions and the associated semiparametric lower bound with respect to their

distance from the parametric lower bound.

To facilitate the applicability of the model, one can for example assume a priori that

the innovation distribution belongs to the class of spherical distributions. This bears the

important advantage that a nonparametric estimator of the innovation distribution can be

constructed in such a way that it has the univariate convergence rate. Hence, there is no

‘curse of dimensionality’ and the proposed procedure can be applied to highly dimensional

systems, if sufficient structure is put on the multivariate volatility model to keep the

number of parameters under control. Of course, restricting the class of distributions

increases the lower bound of the semiparametric estimator, but it will remain more efficient

than QMLE. In a simulation study using a multivariate t distribution, we show that there

are substantial efficiency gains of SP over QMLE.

The paper is organized as follows. First, the model framework and the traditional es-

timation method is introduced. The third section discusses the nonparametric estimation

of the innovation distribution, as well as the efficiency of SP estimators. In the fourth

section a simulation study is provided. Some Lemmata used in the proofs are given in

Appendix B, and the proofs of the propositions in Appendix C. For convenience we sum-

marize some results of matrix algebra and calculus that are used in the paper in Appendix

D.

2 The model and assumptions

Consider a vector stochastic process {εt} of dimension N with a countable index set and

an uncountable state space. We assume that εt has the properties of a conditionally

heteroskedastic error term, i.e., it has mean zero and is serially uncorrelated. We can

write the basic model as

εt = Ht(θ)
1/2vt, (1)

where Ht(θ) is a symmetric and positive definite matrix that may depend on past infor-

mation up to time t− 1, and θ is a finite dimensional parameter vector, θ ∈ Θ ⊂ RK . As

usual, we condition on the sigma field generated by all the information (here the εt’s) until

time t−1. The σ-field Ft−1 contains all this information. Thus, Ht(θ) is Ft−1-measurable.

2



Occasionally, we will suppress the dependence of Ht on θ for notational convenience. We

define the square root of Ht as in (62) so that H
1/2
t is also symmetric and positive definite.

In the following we make assumptions about the innovation term vt, where we denote

by IN the identity matrix of dimension N .

Assumption 1 The stochastic error {vt} is an i.i.d. sequence with E[vt] = 0, E[vtv
′
t] =

IN and finite fourth moments.

Because vt is independent of Ft−1, it follows that the conditional covariance matrix of εt

is Ht. Note that Assumption 1 excludes, for example, a multivariate t distribution with

4 or less degrees of freedom. The assumption of finite fourth moments of vt does not

restrict εt to have finite fourth moments. However, to prove consistency and asymptotic

normality of estimators such as QML one typically needs higher moments conditions for

εt as well. Next we make assumptions about the distribution of vt.

D =

{
g : RN → R++ |

∫
g(x)dx = 1,

∫
xg(x)dx = 0,

∫
xx′g(x)dx = IN ,∀i sup |g(i)(x)| < ∞,Mψψ < ∞

}
(2)

where R++ = (0,∞), g(i)(x) denotes the ith partial derivative of g(·), and Mψψ is the

Fischer information for scale, i.e. Mψψ = E[ψtψ
′
t] < ∞, where

ψt(vt(θ)) = −vec

(
IN +

∂ log g(vt)

∂vt

v′t

)
(3)

is the score vector with respect to the scale parameters.

Assumption 2 Let vt have density function g(vt) ∈ D.

The assumption of a finite Fischer information for scale is standard in the literature on

semiparametric scale models, see e.g., Linton (1993) and Drost and Klaassen (1997). Note

that g is not required to be in a parametric class of densities, so that it can depend on

a possibly infinite dimensional vector η. The vector η can be regarded as a nuisance

parameter in our framework, since we are primarily interested in the estimation of θ.

Next, we summarize regularity conditions that are used by Jeantheau (1998) and

Comte and Lieberman (2003) to show consistency of quasi maximum likelihood estimators.

Assumption 3 We assume the following conditions.

1. Θ is compact.
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2. ∀θ0 ∈ Θ, model (1) admits a unique strictly stationary and ergodic solution εt.

3. There exists a deterministic constant c > 0 such that ∀t, ∀θ ∈ Θ, |Ht(θ)| ≥ c.

4. ∀θ0 ∈ Θ, E[| log(|Ht(θ)|)|] < ∞

5. The model is identifiable.

6. Ht(θ) is a continuous function of θ.

Several specifications have been proposed for Ht, see Bauwens, Laurent and Rombouts

(2003) for a survey. Our results concerning semiparametric estimation of θ are sufficiently

general to be applicable to any such specification as long as the regularity conditions of

Assumption 3 hold. However, in our simulation study of Section 4 we will work with the

so–called VEC representation of a multivariate GARCH(p, q) model, which is given by

ht = vech(Ht) = ω +

q∑
i=1

Aivech(εt−iε
′
t−i) +

p∑
j=1

Bjvech(Ht−j), (4)

where Ai and Bi are N∗ × N∗ parameter matrices, and ω is an N∗ parameter vector

with N∗ = N(N + 1)/2. If one imposes restrictions on the parameters ω, Ai and Bj

that guarantee positive definite Ht, such as the so-called BEKK model of Engle and

Kroner (1995), then a sufficient condition for stationarity of εt is that the eigenvalues of∑q
i=1 Ai +

∑p
j=1 Bj have modulus smaller than one.

We now turn to the problem of estimating θ. If one supposes that the distribution of

vt is known then maximum likelihood estimation (MLE) is in principle straightforward.

Nevertheless, because the number of parameters is often large, estimation can become a

tedious exercise. If vt is assumed to be normally distributed with zero mean vector and IN

variance matrix then εt will be conditionally normally distributed with zero mean vector

and Ht as covariance matrix. The likelihood, up to an additive constant, for a sample of

n observations then takes the form

Lqml(θ) = −
n∑

t=1

1

2
log |Ht| − 1

2
ε′tH

−1
t εt. (5)

Defining lqml
t (θ) = −1

2
log |Ht| − 1

2
ε′tH

−1
t εt, we can write Lqml(θ) =

∑n
t=1 lqml

t (θ). As

shown by Bollerslev and Wooldridge (1992) in a general conditional heteroskedasticity

framework, maximizing (5) provides consistent estimates even if the likelihood is mis-

specified under fairly general conditions. Therefore this method has been termed Quasi

Maximum Likelihood (QML) estimation. We next assume finiteness of expectations of

the Hessian and the outer product of the gradients.
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Assumption 4 We assume that

1. I = E
[

∂lqml
t

∂θ

∂lqml
t

∂θ′

]
< ∞

2. J = −E
[

∂2lqml
t

∂θ∂θ′

]
< ∞

3. For all i, j, k, E
[
sup‖θ−θ0‖≤δ

∣∣∣ ∂3lt(θ)
∂θi∂θj∂θk

∣∣∣
]

< ∞ for all δ > 0,

where expectations are taken with respect to the true distribution and are evaluated at the

true parameter vector θ0.

Under Assumptions 1 to 4, Comte and Lieberman (2003) prove that the asymptotic

distribution of QML parameter estimates θ̃ is given by

√
n(θ̃ − θ)

D−→ N(0, Vqml)

with Vqml = J −1IJ −1. In the case of correct specification, i.e., the distribution of vt

is indeed multinormal, J = I, and Vqml = I−1. Note that our Assumption 1 of vt

being i.i.d. is stronger than Comte and Lieberman’s assumption of vt being a martingale

difference sequence. For much of our paper, Assumption 1 can probably relaxed to vt being

a martingale difference, but we prefer to follow most of the semiparametrics literature,

which usually assumes i.i.d. errors, because we rely on many results of this literature.

On the other hand, Comte and Lieberman (2003) assume that the components of vt for a

given t are independent, which seems to be a rather strong assumption. We believe that it

should be possible to prove their asymptotic result without this independence assumption

but leave this open to debate.

While the QML estimator is consistent, it is inefficient if the likelihood is misspecified.

Therefore one sometimes considers the multivariate t distribution as an appropriate choice

because of potential fat tails in the innovations. The drawback of this assumption is that

if the assumption of a specific non-normal distribution is not correct, then in general

the estimator may not even be consistent, see e.g. Bollerslev and Wooldridge (1992).

Therefore, we will not pursue the assumption of a specific parametric distribution in our

paper. In the next section we formalize our motivation for giving all the weight to the

data in search for a suitable distribution.

3 Semiparametric estimation

This section describes the methodology used to obtain semiparametric GARCH estima-

tors. We consider two cases. In the first case, no assumption is made about the innovation
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density besides the regularity conditions of the previous section. In the second case, we

assume that the innovation density belongs to the class of spherical densities. We then

describe nonparametric density estimators in the alternative cases.

3.1 Semiparametric estimation in the general case

This section describes first a simple iterative estimation procedure and then considers a

more efficient semiparametric estimator.

For a general innovation density g(·), the log likelihood may be written as

L(θ) = −1/2
n∑

t=1

log |Ht(θ)|+
n∑

t=1

log g(Ht(θ)
−1/2εt). (6)

Note that Assumption 1 requires that g(·) is a density with mean zero and identity

covariance matrix. Without this assumption the model would not be identified. In the

general case, one idea to estimate g(·) is to first use QMLE (i.e. Gaussian g(·)) to obtain

standardized residuals, and then estimate the density g(·) nonparametrically. A simple

estimation algorithm is the following.

1. Use QMLE to obtain a consistent estimate of θ, θ̃, say, that gives H̃t = Ht(θ̃).

2. Calculate standardized residuals, ṽt = H̃
−1/2
t εt. Make sure that they have mean

zero and variance IN .

3. Estimate nonparametrically the density g(·) of ṽt, giving ĝ(·).

4. Maximize L keeping ĝ(·) fixed.

This procedure can be viewed as a generalization of the one suggested for univariate

GARCH models by Engle and Gonzalez-Rivera (1991). For the estimation of g(·) in

step 3, one can use any nonparametric estimation method. For example, we use kernel

density estimators as described in Section 3.3. However, as already noticed by Engle

and Gonzalez-Rivera (1991), this semiparametric estimator is not likely to achieve the

semiparametric lower bound in general.

In the following we propose a semiparametric estimator that attains the semiparamet-

ric lower bound and is based on well-known results of the literature on semiparametric

estimation. In the context of GARCH models, standard references are Linton (1993),

Drost and Klaassen (1997) and Gonzalez-Rivera and Drost (1999). A detailed description

of general semiparametric estimation theory and adaptivity is beyond the scope of this
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paper. We refer to Bickel (1982), Newey (1990), Steigerwald (1992) and Drost, Klaassen

and Werker (1997) for details.

One can estimate the semiparametric model using a two-step procedure that uses the

so-called influence function to correct an initial consistent estimator such as QML. The

correction is essentially a one-step Newton-Raphson algorithm based on the score vector of

the likelihood. Assume for now that the unknown density g of vt is parameterized by some

nuisance parameter η, and write this density as g(vt, η). A particular parametrization of g

is known as parametric submodel. Let us write the log likelihood as L(θ) =
∑n

t=1 lt(θ, η)

with

lt(θ, η) = −1

2
log |Ht(θ)|+ log g(Ht(θ)

−1/2εt, η).

and denote by l̇t(θ, η) = ∂lt/∂θ the score vector w.r.t. the parameter of interest, and

by st(θ, η) = ∂lt/∂η the score w.r.t. the nuisance parameter. It is easily seen that

E[st(θ, η)] = 0. Also, recall that g is restricted to be density of a mean-zero, identity

covariance matrix random vector, so that st(θ, η) has to be orthogonal to the vector

Ft = (vt, vech(vtv
′
t − IN)). In the following we suppress the dependence of lt and l̇t on η

for notational convenience.

In order to obtain efficient estimates, it is required to eliminate the variation of l̇t(θ)

that is due to the nuisance parameter η. This is achieved by projecting the score on

the so-called tangent set, which is the infinite dimensional Hilbert space spanned by all

functions with the same characteristics as st(θ, η), that is, mean zero and orthogonal to

Ft. Thus, the tangent set is defined by

T = {f : RN → RK | E[f(vt)] = 0, E[f(vt)F
′
t ] = 0, E[f(vt)f(vt)

′] < ∞}

To do the projection against T it is often crucial to factorize the score lt(θ) into a

term that only depends on the past and another that depends on the nuisance parameter.

The next proposition shows that this is possible for the model under study.

Proposition 1 For the model (1), the score vector takes the form

l̇t(θ) = Wt(θ)ψt(vt(θ)) (7)

where

Wt(θ) =
∂vec(Ht)

′

∂θ
DND+

N(IN ⊗Ht + H
1/2
t ⊗H

1/2
t )−1

and ψt is given by (3).

Note that Wt is Ft−1-measurable and depends only on the specification of Ht(θ). The

other term ψt depends only on the innovation vt and its density, so that Wt and ψt are
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stochastically independent. As a corollary, note also that the score vector is a martingale

difference sequence, which is typically used for deriving the asymptotic distribution of the

maximum likelihood estimator. The reason is that E[l̇t(θ) | Ft−1] = WtE[ψt | Ft−1] =

WtE[ψt] = 0 because E[ψt] = 0 as implied by Assumptions 1 and 2.

Let Mψψ = E[ψtψ
′
t] as in Assumption 2. Furthermore, let MψF = E[ψtF

′
t ], MFψ =

M ′
ψF , and MFF = E[FtF

′
t ]. We can now derive the projection of l̇t(θ) on the tangent set.

The orthogonal complement of this projection is the so-called efficient score funtion, that

can be used to do a one-step Newton-Raphson improvement of the QML estimator.

Proposition 2 The projection of l̇t(θ) on T is given by

Pt(θ) = P(l̇t(θ) | T ) = E[Wt(θ)]
(
ψt −MψF M−1

FF Ft

)
. (8)

We now propose the following efficient semiparametric estimator,

θ̂ = θ̃ +

(
n∑

t=1

˙̀∗
t (θ̃)

˙̀∗′
t (θ̃)

)−1 n∑
t=1

˙̀∗
t (θ̃) (9)

where ˙̀∗
t (θ) = ˙̀

t(θ)− Pt(θ) is the efficient score function.

Under weak regularity conditions listed by Bickel (1982) and Schick (1986), see also

Newey (1990), the asymptotic distribution of the estimator (9) is given by

√
n(θ̂ − θ)

D−→ N(0, Vsp)

with Vsp = E[ ˙̀∗t ˙̀∗′
t ]−1.

By definition, adaptive estimation is possible if and only if Pt(θ) = 0, which means that

the semiparametric efficient score, ˙̀∗
t , is equal to the parametric score ˙̀

t and, hence, Vsp

is equal to the parametric lower bound, Vml = E[ ˙̀t ˙̀′
t]
−1. In the following we characterize

the asymptotic covariance matrices of the three estimation methods in terms of Wt and

ψt.

Proposition 3 Under Assumptions 1 to 4, the information matrices can be expressed as

V −1
ml = E[WtMψψW ′

t ] (10)

V −1
sp = E[WtMψψW ′

t ]− E[Wt]QE[W ′
t ] (11)

V −1
qml = E[WtMψF W ′

t ]E[WtMFF W ′
t ]
−1E[WtMFψW ′

t ] (12)

with

Q = Mψψ −MψF M−1
FF MFψ (13)
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As a corollary, we obtain that the difference of the information between the MLE and the

semiparametric estimator is given by the positive semi-definite matrix

V −1
ml − V −1

sp = E[Wt]QE[W ′
t ].

The matrix Q determines the inefficiency of the SP estimator w.r.t. MLE. Adaptive

estimation is possible if and only if Q = 0. This would clearly be a special case and

we show later that in certain sub-classes of D, Q = 0 happens only if vt is Gaussian

distributed. The conclusion is that adaptive estimation of the model in (1) without

reparameterization of Ht is not possible. Similar to Gonzalez-Rivera and Drost (1999)

it can also be verified that V −1
sp − V −1

qml is positive semi-definite, meaning that the SP

estimator is at least as efficient as the QML estimator.

In practice, the moment matrix MFF can be replaced by its empirical counterpart

using the empirical moments of the standardized residuals ṽt obtained after the first

step. That is, having a consistent estimate θ̃, one can construct standardized residuals

ṽt = Ht(θ̃)
−1/2εt. Defining further F̂t = (ṽt, vech(ṽtṽ

′
t − IN)), a consistent estimator MFF

is given by M̂FF = n−1
∑n

t=1 F̂tF̂
′
t . The matrix MψF does not need to be estimated as the

following proposition shows, because an expression is available that holds for any g ∈ D.

To calculate Pt(θ̃) in (8), one still needs to estimate ˙̀
t(θ̃) and ψt(θ̃) which both depend

on the unknown innovation density g, for which nonparametric methods such as those

outlined in Section 3.3 are available.

To characterize the distance of the SP estimator from adaptivity, it will be necessary

to evaluate the matrices Mψψ and MFF by numerical integration. However, there are

special cases where they take simple forms. In the following we consider two sub-classes

of D for which calculation turns out to be particularly simple. The first one is the class

of spherical distributions:

Ds =
{
g : RN → R++ | g ∈ D, ∃f : g(x) = f(x′x)

}
(14)

and the second one is the class where the components are independent with identical and

symmetric marginal densities:

Di =

{
g : RN → R++ | g ∈ D, g(x) =

N∏
i=1

h(xi), h(xi) = h(−xi)

}
, (15)

where h(·) is the marginal density of any component of vt.

The following discussion analyzes the properties of the SP estimator w.r.t. MLE in

the case that g happens to be in Ds or in Di without having made this assumption to

construct the estimator. The situation where one has superior knowledge about g and,

for example, knows a priori that g is in Ds, is different and is treated in Section 3.2.
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The matrix MFF depends on the structure of fourth moments of vt. Lemma 6 implies

that, for spherical distributions, the marginal kurtosis κ = E[v4
ti] is linked to any co-

kurtosis c = E[v2
tiv

2
tj], j 6= i by κ = 3c, and MFF depends on only one parameter.

Proposition 4 1. If g ∈ D, then

MψF =
[

0N2×N 2DND+
ND+′

N

]

2. If g ∈ Ds, then

MFF =

[
IN 0N×N∗

0N∗×N 2cD+
ND+′

N + (c− 1)vech(IN)vech(IN)′

]
(16)

Mψψ = 2τDND+
N + (τ − 1)vec(IN)vec(IN)′ (17)

where

τ = E

[(
∂ log g(x)

∂x1

)2

x2
1

]
/3. (18)

3. If g ∈ Di, then

MFF =

[
IN 0N×N∗

0N∗×N IN∗ + [IN∗ ¯ {(κ− 2)vech(IN)vech(IN)′}]

]
(19)

Mψψ = τ2DND′
N + DN [IN∗ ¯ {(τ1 − 1− τ2)vech(IN)vech(IN)′}] D′

N (20)

where τ1 = 3τ , ¯ is the Hadamard product (elementwise multiplication), κ is the

marginal kurtosis, and

τ2 = E

[(
∂ log g(x)

∂x1

)2
]

. (21)

Note that Assumption 2 implies that τ in (17) and τ2 in (20) are finite. The scalar τ2 can

be interpreted as the Fischer information for location which for distributions in Di is the

same for all components.

For illustration consider the bivariate case (N = 2). From Proposition 4 it follows

immediately that, for g ∈ Ds,

Q = DN




3τ − 1− 3c−1
c(2c−1)

0 τ − 1− 1−c
c(2c−1)

0 τ − 1
c

0

τ − 1− 1−c
c(2c−1)

0 3τ − 1− 3c−1
c(2c−1)


 D′

N ,

and for g ∈ Di,

Q = DN




τ1 − 4
κ−1

0 0

0 τ2 − 1 0

0 0 τ1 − 4
κ−1


 D′

N .
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Clearly, the parametric and semiparametric lower bounds coincide in the Gaussian

case since then c = 1, τ = 1 and therefore Q = 0. Whether there are other distributions

for which this happens is our next concern. In a univariate framework, Gonzalez-Rivera

(1997) has shown that a class of symmetric bimodal distributions allows to attain the

parametric lower bound, and for N = 1 this distribution is in Di. The following propo-

sition states that, for higher dimensions, the Gaussian distribution is the only one in Di

and in Ds for which parametric efficiency can be attained. We do not search here for

other, possibly asymmetric, distributions for which the two bounds coincide. It may be

possible that such distributions exist, but we leave this as a topic for further research.

Proposition 5 For the estimation of model (1), the multinormal distribution is the only

one in Ds for which the parametric and semiparametric lower bounds coincide. If N > 1,

then it is also the only distribution in Di for which this occurs.

Let us now look at three examples of distributions in Ds and at two examples of

distributions in Di. Table 1 reports the spectral norm of Q for these distributions, which

for the case of real, positive semi-definite matrices is equal to the spectral radius ρ(Q),

i.e., the largest eigenvalue.

1. The density of a symmetric standardized multivariate t distribution is given by

g(vt) =
Γ

(
ν+N

2

)

{π(ν − 2)}N/2Γ(ν/2)

(
1 +

v′tvt

ν − 2

)−(ν+N)/2

(22)

where Γ(p) =
∫∞

0
xp−1e−xdx is the gamma function. To ensure finite fourth moments

of vt we will assume in the following that ν > 4. Under the density given in (22),

c = (ν − 2)/(ν − 4) and τ = (ν + N)/(ν + N + 2). Note that for ν −→ ∞, since

the limiting distribution is a Gaussian, c = 1, τ = 1, and Mψψ = MψF = MFF =

2D+
ND+′

N . For increasing dimensions N , τ converges to 1 and Mψψ converges to

2D+
ND+′

N .

2. The second example is a multivariate Laplace distribution with density

g(vt) =
(N + 1)N/2Γ(N/2)

2πN/2(N − 1)!
exp(−

√
(N + 1)v′tvt) (23)

For N = 1, 2, 3 we find c = (N + 3)/(N + 1) and τ = (N + 1)/(N + 2). Although

we do not use it here, we conjecture that these formulae for c and τ hold for any N ,

which would imply that c → 1 and τ → 1 for N →∞, which in turn implies using

Proposition 4 that the multivariate Laplace density converges to a multinormal

distribution with increasing dimension.
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3. The third example is an elliptically symmetric (ES) multivariate logistic distribution

with density

g(vt) = c1
e−c2v′tvt

(1 + e−c2v′tvt)2
(24)

with constants c1 and c2 such that (24) integrates to one and Var(vit) = 1. We

calculate the values c1, c2, the co-kurtosis C, and τ by numerical integration. Note

that the univariate distribution (N = 1) is different from the distribution usually

called logistic. For example, the distribution in (24) is platykurtic, whereas the

standard logistic is leptokurtic. The ES logistic distribution is mentioned by Jensen

(1985).

4. A product of standardized logistics:

g(vt) =
3N/2

πN

N∏
i=1

e−vit

(1 + e−vit)2
(25)

In the univariate case, Q = τ1 − 1 − 4/(κ − 1) = 0.18. We find that this value is

larger than τ2 − 1 ≈ 0.10, so that the largest eigenvalue remains 0.18 for higher

dimensions.

5. A product of bimodals:

g(vt) =

(
λ

2

)Nλ/2

Γ(λ/2)−N

N∏
i=1

|vit|λ−1e−
λ
2
v2

it , (26)

where either λ = 1 (the multinormal case) or λ > 2 to ensure continuity and

differentiability. For N = 1, this density has been shown by Gonzalez-Rivera (1997)

to give Q = 0. Table 1 reports the value of ρ(Q) for the case λ = 3.

Note that the densities in (22), (23) and (24) are spherical and those in (25) and (26)

are in Di. Note also that the results reported in Table 1 generalize those for the case

N = 1 listed by Gonzalez-Rivera (1997). In the univariate case, Q is a positive scalar,

so that ρ(Q) is just this scalar itself. Figure 1 displays ρ(Q), viewed as a function of

the dimension N , for the Laplace and the t12 distribution. We noticed that, for the tν

distribution, there is a break at N = ν − 6, ν ≥ 7, in the sense that ρ(Q) is concave for

N ≤ ν − 6 and for N ≥ ν − 6, but not for all N ≥ 1. We did not try to prove this result

but found it curious enough to mention.

3.2 Semiparametric estimation in Ds

The preceding discussion has not imposed any restriction on the density of vt other than

having mean zero and identity covariance matrix and satisfying some weak regularity
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conditions. Nonparametric estimators of this density will therefore have to be of full

generality and have to ensure consistency for any such density. It is well known that

nonparametric estimation in high dimensions suffers from the so-called curse of dimen-

sionality, that is, the data sparseness problem described by Silverman (1986). In high

dimensions, convergence rates become very slow and the number of observations required

to obtain reasonable estimates goes beyond what is typically available in economics, even

in finance.

One way to impose more structure on g that solves the dimensionality problem but still

leaves sufficient flexibility is to assume that g belongs to the class of spherical distributions,

which we do in the following.

Assumption 5 For the density g, assume g ∈ Ds, where Ds is defined by (14).

The density g(vt) is said to be spherical if there exists a positive function f such that

g(vt) = f(wt) with wt = v′tvt. Examples of spherical distributions are the multivariate

versions of the normal, the t and Laplace distributions. The relevance of these distribu-

tions for empirical work arises from the fact that one often observes fat tails in empirical

data, even after correcting for time-varying volatility. They exclude skewness, but in

finance this has been of minor interest compared with the leptokurtosis effect. The theo-

retical relevance of Assumption 5 lies in the fact that the class of spherical distributions

(or elliptical, respectively, if the conditional distribution of εt is considered) is the most

general one that is consistent with the conditional capital asset pricing model, as shown

by Berk (1997), see also Hodgson and Vorkink (2003). In our framework, the main advan-

tage of Assumption 5 is that it allows for univariate convergence rates of nonparametric

estimators of g.

Proposition 6 Under Assumption 5, the score vector is given by (7) where Wt simplifies

to

Wt(θ) =
∂vec(Ht)

′

∂θ
(H

−1/2
t ⊗H

−1/2
t )

and ψt is given by (3).

Semiparametric estimators of model (1) that are based on Assumption 5 have a lower

bound that is larger than the bound in the general case. The score in the nonparametric

direction, s(θ, η), is now a function of vt only through wt, and therefore, the tangent

set contains functions that all depend on wt only. But still, these functions have to be

orthogonal to Ft because g is restricted to have mean zero and identity covariance matrix.

Thus, the tangent set under Assumption 5 is defined by

Ts = {f : R+ → RK | E[f(wt)] = 0, E[f(wt)F
′
t ] = 0, E[f(wt)f(wt)

′] < ∞}, wt = v′tvt.

13



Note also that Ts ⊂ T . We can now derive the projection of l̇t(θ) on Ts.

Proposition 7 Under Assumption 5, the projection of l̇t(θ) on Ts is given by

St(θ) = P(l̇t(θ) | Ts) = E[Wt(θ)]
(
ψ̃t −Mψ̃F M−1

F̃F
F̃t

)
, (27)

where ψ̃t = E[ψt | wt], F̃t = E[Ft | wt], Mψ̃F = E[ψ̃tF
′
t ] and MF̃F = E[F̃tF

′
t ]

The efficient semiparametric estimator is given by (9) where ˙̀∗
t (θ) is replaced by ˙̀∗

t (θ) =
˙̀
t(θ)− St(θ).

Note that F̃t contains the conditional expectations E[vt | wt] and E [vtv
′
t | wt]. The first

one is zero since for any given wt, the distribution of vt conditional on wt is symmetric

in vt. For the second conditional expectation, E [vtv
′
t | wt], Hodgson and Vorkink (2003)

describe a simple estimation algorithm after the first estimation step.

Under sphericity, estimation of ψ̃t reduces to the estimation F̃t by noting that there

exists a function f such that g(vt) = f(wt) and

E

[
∂ log g(vt)

∂vt

v′t

∣∣∣∣wt

]
= E

[
2f(wt)

−1∂f(wt)

∂wt

vtv
′
t

∣∣∣∣wt

]
= 2f(wt)

−1∂f(wt)

∂wt

E [vtv
′
t | wt]

Another restriction of D that may be interesting for practical work is to assume that

g ∈ Di, where Di is given in (15). One would again obtain univariate convergence rates

and avoid the curse of dimensionality. Another advantage is that under componentwise

independence of vt it is possible to define impulse response functions for volatility that

avoid typical orthogonalization and ordering problems, as shown by Hafner and Herwartz

(2004). It is also obvious that Proposition 6 holds under the assumption g ∈ Di. However,

we have not further investigated efficient semiparametric estimation in this class but leave

it to future research.

3.3 Nonparametric density estimation

For the nonparametric density estimation, we use kernel estimates. A general multivariate

kernel density estimator with bandwidth matrix H and multivariate kernel K can be

written as

ĝH(x) =
1

n|H|
n∑

t=1

K(H−1(vt − x))

Since the scale of the variables should be the same (same variance in all directions), it

is reasonable to use a scalar bandwidth, H = hIN , with h > 0. It is well known that

by requiring nhN → ∞ and h → 0 as n → ∞, the multivariate kernel density estimates

are consistent and asymptotically normally distributed. The MSE-optimal rate for the
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bandwidth is n−1/(4+N). We use here a rule of thumb bandwidth as proposed by Silverman

(1986). Furthermore, we use a product kernel K(x) =
∏N

i=1 K(xi) and some univariate

kernel function K such as Gaussian, quartic or Epanechnikov. Thus, our density estimate

becomes

ĝh(x) =
1

nhN

n∑
t=1

N∏
i=1

K(
vi,t − xi

h
)

For details on multivariate kernel density estimation see the excellent survey of Scott

(1992).

The multivariate density estimation becomes difficult for high dimenensional cases. When

g(x) is spherical then its density must be of the form f(x′x) for some nonnegative function

f(·). Fang, Kotz and Ng (1990, p. 36), show that in this case the density of y = x′x can

be written as

h(y) =
πN/2

Γ(N/2)
yN/2−1f(y). (28)

Thus one can obtain an estimator of g(·) by estimating h(·) and transforming according

to (28).

Since y has a positive support, one faces the problem of estimating its density near

the boundary. To solve this problem, Hodgson, Linton and Vorkink (2002) and Hodgson

and Vorkink (2003) apply a Box-Cox transformation to y and then use the standard

kernel density estimator to the transformed variable. We use an alternative method by

applying a gamma kernel estimator, see Chen (2000) who shows that gamma kernels are

particularly suited for the estimation of density functions which have bounded support.

The gamma kernel estimator can be written as

ĥ(y) =
1

n

n∑
t=1

Gρb(y),b(yt) (29)

where Gp,q is the density function of a Gamma(p, q) random variable, and

ρb(y) =

{
y/b if y ≥ 2b
1
4
(y/b)2 + 1 if y ∈ [0, 2b).

(30)

Chen (2000) also provides formula for the bandwidth b that minimize the mean integrated

squared error which we will use in our simulation study.

4 Finite sample performance

In this section we are interested in the performance of the proposed SP estimator (9)

relative to the QML and ML estimator in finite samples. Intuitively, the semiparametric
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method should perform better than QML, but worse than ML, when there are strong

departures from normality.

For convenience we consider the VEC model in (4) of order p = q = 1. To calculate

Wt(θ) in (7) one needs to evaluate ∂vec(Ht)′
∂θ

. Deriving with respect to the parameters in

ω, A and B we get

∂ht

∂ω′
= (IN∗ −B)−1

∂ht

∂vec(A)′
= η′t−1 ⊗ IN∗ + B

∂ht−1

∂vec(A)′

∂ht

∂vec(B)′
= h′t−1 ⊗ IN∗ + B

∂ht−1

∂vec(B)′

where ηt−1 = vech(εt−1ε
′
t−1). The bivariate data generating process is given by

ht =




1

0.7

1


 +




0.2 0 0

0 0.1 0

0 0 0.2







ε2
1,t−1

ε1,t−1ε2,t−1

ε2
2,t−1


 +




0.5 0 0

0 0.1 0

0 0 0.6







h11,t−1

h12,t−1

h22,t−1


 .

For the distributional assumption on vt we take the bivariate t distribution, that is

vt ∼ tν with density given in (22). In this exercise we take ν = 5. We assume that it

is known that g belongs to the spherical class. For the nonparametric estimation of g(·),
this assumption allows us to use the Gamma kernel estimator as explained in Section 3.3.

The employed estimator is thus given by (9) where ˙̀∗
t (θ) = ˙̀

t(θ)−St(θ) and St(θ) is given

by (27). The results are displayed in Table 2.

Concerning the bias, the three estimation procedures perform similarly, perhaps one

could notice that SP performs better than QML for most of the parameters. There are,

however, substantial differences between the standard deviations. Clearly ML performs

best for all the parameters. SP is as expected in between the two other procedures,

also for all the parameters. The same holds true for the MSE of θ̂. One can see that

a good part of the loss of the inefficient QML (compared to ML) is recaptured by SP.

We also compared the performance of the univariate gamma kernel estimator with the

bivariate product kernel estimator when the assumption of sphericity is dropped and the

projection Pt(θ) in (8) is used to construct the estimator (9). The latter estimator had

higher MSE’s for all parameters, but still considerably less than the QML mean squared

errors. However, the relative performance of the multivariate kernel estimator for N > 2

is likely to become worse if the dimension increases and if the true density is close to the

spherical class.
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5 Conclusions and outlook

This paper shows that efficiency gains of semiparametric univariate volatility models over

QMLE carry over to the multivariate case. We suggest two alternative types of semi-

parametric estimators. The first one applies to general innovation densities whereas the

second one is based on the assumption of sphericity. A practical advantage of the spheric-

ity assumption is that a nonparametric density estimator can be constructed that has

one-dimensional convergence rate. Thus it does not run into the ‘curse of dimensional-

ity’ problem. Both estimators are efficient but the semiparametric and parametric lower

bounds are different in general, so that adaptive estimation is not possible. A guideline

for future research may be to find, for particular model specifications, reparameteriza-

tions of the conditional covariance matrix such that adaptive estimation of a subset of

the parameters is possible, analogous to the univariate case. In this paper, this was not

our main concern as we wanted to leave the parametric part of the model unspecified

as much as possible, because a multitude of possible specifications have been proposed

recently. We think that a main drawback of the general approach outlined in Section

3.1 is that, in practice, it will only be feasible in small dimensions. With the typically

high dimensions encountered in finance, for example, this is certainly not a nice feature.

In high dimensions one would like to reduce the dimensionality and the assumption of

sphericity is only one way of doing this. Another one would be to assume that innova-

tions are componentwise i.i.d., a case that we have not looked at further. There are still

other ways to restrict the class of distributions to facilitate the problem of nonparametric

estimation in high dimensions, and we leave this also as a topic for further research.

Finally, it may be possible to relax the assumption of an i.i.d. innovation term to, say,

a martingale difference term, but proofs become considerably more complicated already

in the univariate case, and one would need to control the possible temporal dependence

by making further assumptions.

Acknowledgements

The authors would like to thank Luc Bauwens, Geert Dhaene, Feico Drost, Wolfgang
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Appendix A: Index Set Definitions

Define the index

kN
ij = i + (j − 1)(N − j

2
) (31)

and the index sets

KN
ij =

{
∅ N = 1

{kN
ij | j = 1, . . . , N − 1; i = j + 1, . . . , N} N ≥ 2

(32)

and

KN
ii = {kN

ii | i = 1, . . . , N} (33)

The index kN
ij is the position of the (i, j)-th element of an (N ×N) symmmetric matrix A

in the vector vech(A). Remember that vech(A) contains N∗ = N(N +1)/2 elements. KN
ij

contains all indices of the elements below the diagonal of A in the vector vech(A), this set

contains N(N−1)/2 elements. The set KN
ii contains all indices of the N diagonal elements.

For example, for N = 2, K2
ij = {2} and K2

ii = {1, 3}, and for N = 3, K3
ij = {2, 3, 5} and

K3
ii = {1, 4, 6}. Note that KN

ij ∪ KN
ii = {1, . . . , N∗} and KN

ij ∩ KN
ii = ∅.

Appendix B: Lemmata

Lemma 1 For given nonsingular matrices A,B(m×m), let Z = B ⊗A + A⊗B. Then

DmD+
mZ−1DmD+

m = DmD+
mZ−1 (34)

Proof: Assume the contrary. Then, multiplying both sides of (34) from the right by Z

gives DmD+
mZ−1DmD+

mZ 6= DmD+
m. Using (72), one can write the left hand side of this

inequality as DmD+
mZ−1ZDmD+

m = DmD+
mDmD+

m = DmD+
m, making use of the fact that

D+
mDm = Im(m+1)/2. But this yields a contradiction, so that the original equality in (34)

must hold. ¤

Lemma 2 For given matrices A,B(m×m),

D′
m(A⊗B)DmD+

m =
1

2
D′

m(A⊗B + B ⊗ A) (35)

Proof: Assume the contrary. Vectorizing the left hand side of (35), one obtains (DmD+
m⊗

D′
m)vec(A ⊗ B). Using (67) and vectorizing the right hand side of (35), one obtains

1
2
(Im2 ⊗D′

m + Cmm⊗D′
mCmm)vec(A⊗B). But using (70), this is equal to 1

2
(Im2 ⊗D′

m +

Cmm ⊗ D′
m)vec(A ⊗ B) = 1

2
[(Im2 + Cmm) ⊗ D′

m]vec(A ⊗ B). Finally, using (69), this is

equal to (DmD+
m ⊗D′

m)vec(A ⊗ B), which yields to a contradiction. Therefore, equality

must hold in (35). ¤
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Lemma 3 For a given symmetric, positive definite matrix A(m×m),

2DmD+
m(Im ⊗ A + A1/2 ⊗ A1/2)−1vec(Im) = vec(A−1). (36)

Proof: Assume the contrary. The left hand side of (36) can be written as

2DmD+
m

[
(Im ⊗ A1/2)(Im ⊗ A1/2 + A1/2 ⊗ Im)

]−1
vec(Im)

or, using (63), as

2DmD+
m(Im ⊗ A1/2 + A1/2 ⊗ Im)−1(Im ⊗ A−1/2)vec(Im).

Applying Lemma 1, this is equivalent to

2(Im ⊗ A1/2 + A1/2 ⊗ Im)−1DmD+
m(Im ⊗ A−1/2)vec(Im).

As we assumed inequality in (36), we have that

2DmD+
m(Im ⊗ A−1/2)vec(Im) 6= (Im ⊗ A1/2 + A1/2 ⊗ Im)vec(A−1).

or, using (59), DmD+
mvec(A−1/2) 6= vec(A−1/2). However, since A−1/2 is symmetric because

of our definition of a matrix square root in (62), it holds that vec(A−1/2) = Dmvech(A−1/2),

and because D+
mDm = Im(m+1)/2 this inequality leads to a contradiction, so that equality

must hold in (36). Q.E.D.

Lemma 4 The matrix D+
ND+′

N is a (N∗ × N∗) diagonal matrix with 1 at the (i, i)-th

position, i ∈ KN
ii , and 1/2 at the (j, j)-th position, j ∈ KN

ij , where KN
ij is defined in (32)

and KN
ii in (33).

Proof: The statement holds for D+
1 D+′

1 = 1. Noting that kN+1
ii = kN

i−1,i−1+N+1, where kN
ij

is defined in (31), and using the recursive equation for D+
N+1D

+′
N+1 in (74), the statement

follows by induction. Q.E.D.

Lemma 5 The matrix vech(IN)vech(IN)′ is a (N∗ × N∗) matrix with 1 at the (i, j)-th

position, i, j ∈ KN
ii , and 0 elsewhere, where KN

ii is defined in (33).

Proof: By definition, KN
ii contains the positions of the diagonal elements of a (N × N)

matrix A in the vector vech(A). Therefore, KN
ii contains the positions of the ones in

the vector vech(IN). The matrix vech(IN)vech(IN)′ then contains ones at pairs of any

permutations of these positions, and zeros elsewhere. So there is a total of N2 ones in the

matrix. Q.E.D.
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Lemma 6 For any spherical distribution,

E

[
N∏

j=1

X
αj

j

]
=

{
0 if one (or more) αj is odd

Kα

∏N
j=1

αj !

(αj/2)!
if all αj are even

where α =
∑N

j=1 αj and Kα depends on α only.

Proof: see Box and Hunter (1957).

Appendix C: Proofs

Proof of Proposition 1:

Let us write the likelihood as L(θ) =
∑n

t=1 lt(θ) with

lt = −1

2
log |Ht|+ log g(H

−1/2
t εt).

The score vector is given by

∂lt(θ)

∂θ
= −1

2

∂ log |Ht|
∂θ

+
∂ log g(H

−1/2
t εt)

∂θ

where the first term has components

∂ log |Ht|
∂θi

= vec(H−1
t )′

∂vec(Ht)

∂θi

= Tr

(
H−1

t

∂Ht

∂θi

)
= Tr

(
H
−1/2
t

∂Ht

∂θi

H
−1/2
t

)

using (80). With the chain rule for matrix differentiation (75), we can write

∂ log g(H
−1/2
t εt)

∂θi

=
∂ log g(x)

∂x′
∂(H

−1/2
t εt)

∂vec(Ht)′
∂vec(Ht)

∂θi

Applying (77) and (79) we can further write

∂(H
−1/2
t εt)

∂vec(Ht)′
= −(ε′t ⊗ IN)(H

−1/2
t ⊗H

−1/2
t )

∂vec(H
1/2
t )

∂vec(Ht)′
(37)

Then,
∂vec(H

1/2
t )

∂vec(Ht)′
can be appropriately defined by noting that Ht is symmetric and by the

definition of the matrix square root (62) H
1/2
t is symmetric as well. By (78) we know that

in this case

∂vech(Ht)

∂vech(H
1/2
t )′

= D+
N(H

1/2
t ⊗ IN + IN ⊗H

1/2
t )DN (38)

= D+
NZDN (39)
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with Z = (H
1/2
t ⊗ IN + IN ⊗H

1/2
t ), where D+

N denotes the generalized inverse (64) of the

duplication matrix DN . If the matrix Z is invertible, a natural definition for the derivative

of the matrix square root is

∂vech(H
1/2
t )

∂vech(Ht)′
= (D+

NZDN)−1 (40)

= D+
NZ−1DN , (41)

where (41) uses (73). Using (76) we then obtain

∂vec(H
1/2
t )

∂vec(Ht)′
= DND+

NZ−1DND+
N (42)

= DND+
NZ−1 (43)

by Lemma 1.

Plugging (43) into (37), we obtain

∂(H
−1/2
t εt)

∂vec(Ht)′
= −(ε′t ⊗ IN)(H

−1/2
t ⊗H

−1/2
t )DND+

NZ−1 (44)

= −(v′t ⊗ IN)(H
1/2
t ⊗ IN)(H

−1/2
t ⊗H

−1/2
t )Z−1DND+

N (45)

= −(v′t ⊗ IN)(IN ⊗H
−1/2
t )Z−1DND+

N (46)

= −(v′t ⊗ IN){Z(IN ⊗H
1/2
t )}−1DND+

N (47)

= −(v′t ⊗ IN)(IN ⊗Ht + H
1/2
t ⊗H

1/2
t )−1DND+

N (48)

where (45) uses the fact that both Z−1 and DND+
N are symmetric and (47) uses (63).

Thus,

∂ log g(vt)

∂θi

= −∂ log g(vt)

∂v′t
(v′t ⊗ IN)(IN ⊗Ht + H

1/2
t ⊗H

1/2
t )−1DND+

N

∂vec(Ht)

∂θi

= −vec

(
∂ log g(vt)

∂vt

v′t

)′
(IN ⊗Ht + H

1/2
t ⊗H

1/2
t )−1DND+

N

∂vec(Ht)

∂θi

= −vec

(
∂ log g(vt)

∂vt

v′t

)′
W ′

t

with Wt = ∂vec(Ht)′
∂θ

DND+
N(IN⊗Ht+H

1/2
t ⊗H

1/2
t )−1. Defining ψt = −vec(IN+(∂ log g(vt)/∂vt)v

′
t),

this can be written as
∂ log g(vt)

∂θi

= ψ′tW
′
t + vec(IN)′W ′

t .

However, by Lemma 3 the term vec(IN)′W ′
t is equal to 1

2
vec(H−1

t )′ ∂vec(Ht)
∂θ′ . Thus, the

score vector can be written as

∂lt(θ)

∂θ
=

∂vec(Ht)
′

∂θ

{
−1

2
vec(H−1

t )−DND+
N(IN ⊗Ht + H

1/2
t ⊗H

1/2
t )−1vec

(
∂ log g(vt)

∂vt

v′t

)}
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= −1

2

∂vec(Ht)
′

∂θ
vec(H−1

t ) + Wtψt +
1

2

∂vec(Ht)
′

∂θ
vec(H−1

t )

= Wtψt,

as stated. Q.E.D.

Proof of Proposition 2

First note that Pt ∈ T because E[Pt] = 0, E[PtF
′
t ] = 0, and E[PtP

′
t ] is finite since

E[ψtψ
′
t] < ∞ by Assumption 2 and E[FtF

′
t ] < ∞ by Assumption 1 (finite fourth moments).

Next, we show that the orthogonal complement of the projection is orthogonal to T .

It can be written as

˙̀∗
t (θ) = ˙̀

t(θ)− Pt = (Wt − E[Wt])ψt + E[Wt]MψF M−1
FF Ft (49)

The first term on the right hand side of (49) is orthogonal to T since (Wt − E[Wt]) has

mean zero and is independent of vt and, hence, independent of all elements in T . The

second term on the right hand side of (49) is orthogonal to T because it consists of linear

combinations of Ft and Ft is, by definition, orthogonal to T . Q.E.D.

Proof of Proposition 3

1. V −1
ml = E[l̇tl̇

′
t] = E[Wtψtψ

′
tW

′
t ] = E[WtMψψW ′

t ]

2.

V −1
sp = E[l̇tl̇

′
t]− E[l̇tP

′
t ]− E[Ptl̇

′
t] + E[PtP

′
t ].

The second term is

E[l̇tP
′
t ] = E

[
Wtψt(ψ

′
t − F ′

tM
−1
FF MFψ)E(W ′

t)
]

= E[Wt]E[ψtψ
′
t − ψtF

′
tM

−1
FF MFψ]E[W ′

t ]

= E[Wt]
(
Mψψ −MψF M−1

FF MFψ

)
E[W ′

t ]

Similar calculations show that E[l̇tP
′
t ] = E[Ptl̇

′
t] = E[PtP

′
t ], which then gives the

stated result.

3. Recall that Vqml = J −1IJ −1, and thus V −1
qml = J I−1J with

J = −E

[
∂2lqml

t

∂θ∂θ′

]
, I = E

[
∂lqml

t

∂θ

∂lqml
t

∂θ′

]
,

and
∂lqml

t

∂θ
= WtKNFt, where KN =

[
0N2×N DN

]
. We have

I = E[WtKNFtF
′
tK

′
NW ′

t ] = E[WtKNMFF K ′
NW ′

t ]
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and

J = −
∫

IRN

g(x)
∂2lqml

t

∂θ∂θ′
dx =

∫

IRN

∂g(x)

∂θ

∂lqml
t

∂θ′
dx (50)

=

∫

IRN

g(x)
∂ log g(x)

∂θ

∂lqml
t

∂θ′
dx = E

[
∂ log g(x)

∂θ

∂lqml
t

∂θ′

]
(51)

= E [WtψtFtK
′
NW ′

t ] = E [WtMψF K ′
NW ′

t ] (52)

Q.E.D.

Proof of Proposition 4

1. MψF : Note first that ψt is orthogonal to vt: E[ψtv
′
t] = −E[vec{(∂ log g(vt)/∂vt)v

′
t}v′t]

and writing this expectation elementwise one obtains − ∫
IRN (∂g(vt)/∂vit)vjtvktdvt.

Using integration by parts, for i = j = k this is just equal to 2E[vit] = 0, and for

i = j 6= k it is equal to E[vkt] = 0, and the same holds for i 6= j 6= k and i 6= j = k.

Hence, the left block of MψF is equal to 0N2×N .

The right block can be written as

−E[vec(
∂ log g(vt)

∂vt

v′t)vech(vtv
′
t)
′]− vec(IN)vech(IN)′. (53)

Writing the expectation term in (53) elementwise, one obtains− ∫
IRN

∂g(vt)
∂vit

vjtvktvltdvt

which for i = j = k = l is equal to 3, for i = j 6= k = l is equal to 1, and zero

otherwise. Therefore, we have the following symmetry relation,

∫

IRN

∂g(vt)

∂vit

vjtvktvltdvt =

∫

IRN

∂g(vt)

∂vjt

vitvktvltdvt,

and, as a consequence, the first term in (53) can be written as DNJt where

Jt = −E

[
vech

(
∂ log g

vt

v′t

)
vech(vtv

′
t)
′
]

is, due to the above elementwise calculations, a (N∗ × N∗) matrix with 3 at the

(i, i)th position, i ∈ KN
ii ; a 1 at the positions (i, j), i, j ∈ KN

ii , i 6= j; a 1 at the

positions (i, i), i ∈ KN
ij ; and zeros elsewhere. Thus, using Lemma 4 and 5, Jt =

vech(IN)vech(IN)′+2D+
ND+′

N . Rearranging and multiplying from the left by DN we

obtain DNJt − vec(IN)vech(IN)′ = 2DND+
ND+′

N , the stated expression for the right

block of MψF in (53).

2. g ∈ Ds:
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To derive MFF for spherical distributions, note that vt is orthogonal to vech(vtv
′
t −

IN) due to Lemma 6 (moments containing odd orders are zero). Thus, MFF is

block-diagonal. The upper left block of MFF is just E[vtv
′
t] = IN by Assumption 1.

The lower right block of MFF can be written as

E[vech(vtv
′
t)vech(vtv

′
t)
′]− vech(IN)vech(IN)′ (54)

Using Lemma 6, the (i, i)-th element, i ∈ KN
ii , of the first term in (54) is equal to

3c; the (i, j)-th element, i, j ∈ KN
ii , i 6= j, is equal to c; the (i, i)-th element, i ∈ KN

ij ,

is equal to c; and all other elements are zero. Together with Lemma 5, this implies

that the (i, i)-th element, i ∈ KN
ii of (54) is 3c− 1; the (i, j)-th element, i, j ∈ KN

ii ,

i 6= j, is c − 1; and the (i, i)-th element, i ∈ KN
ij is c. The stated formula is then

immediately obtained by applying Lemma 4 and Lemma 5.

Next, we derive Mψψ for the case g ∈ Ds. The idea is to show that D+
NMψψD+′

N has

the same structure as the lower right block of MFF . We have

D+
NMψψD+′

N = E

[
vech

(
∂ log g(x)

∂x
x′

)
vech

(
∂ log g(x)

∂x
x′

)′]
− vech(IN)vech(IN)′.

A typical element of the first term can be written as

E

[
∂ log g(x)

∂xi

∂ log g(x)

∂xj

xkxl

]
= 4E

[
f−2(x′x)

(
∂f(x′x)

∂x′x

)2

xixjxkxl

]

because g(x) = f(x′x), which is equal to

4

∫

IRN

f−1(x′x)

(
∂f(x′x)

∂x′x

)2

xixjxkxldx (55)

Now the function h(x′x) = 4f−1(x′x)
(

∂f(x′x)
∂x′x

)2

depends on x only through x′x, is

positive and integrable by Assumption 1. Thus, it is itself a spherical density up

to some scale and (55) is just the fourth order moment structure with respect to h.

Therefore, Lemma 6 applies to h and we obtain the same structure as for the lower

right block of MFF . That is, for i 6= j,

E

[(
∂ log g(x)

∂xi

)2

x2
i

]
= 3E

[(
∂ log g(x)

∂xi

)2

x2
j

]

and

E

[
∂ log g(x)

∂xi

∂ log g(x)

∂xj

xixj

]
= E

[(
∂ log g(x)

∂xi

)2

x2
j

]
. (56)

Thus, D+
NMψψD+′

N = 2τD+
ND+′

N + (τ − 1)vech(IN)vech(IN)′ and, because DND+
N is

symmetric and idempotent, we obtain Mψψ = 2τDND+
N + (τ − 1)vec(IN)vec(IN)′.
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3. g ∈ Di:

Due to the independence and symmetry, MFF is diagonal where the first N diagonal

elements are 1 because E[v2
it] = 1, i = 1, . . . , N by Assumption 1. The next N∗

diagonal elements are either equal to κ− 1, corresponding to E[v4
it]− 1, or equal to

1, corresponding to E[v2
itv

2
jt], i 6= j. The formula given in the statement is easily

seen to fulfill this requirement.

Finally, the given formula for Mψψ can easily be checked by noting that a typical

element can be written as

E

[
∂ log g(x)

∂xi

∂ log g(x)

∂xj

xkxl

]
− I{(i = k) ∧ (j = l)},

where I(·) denotes the indicator function. For i = j = k = l, this is equal to τ1 − 1

by definition. For i = k 6= j = l, we have

E

[
∂ log g(x)

∂xi

xi

]
E

[
∂ log g(x)

∂xj

xj

]
− 1 = 1− 1 = 0

and for i = j 6= k = l, due to independence and E[x2
j ] = 1,

E

[(
∂ log g(x)

∂xi

)2

x2
j

]
= E

[(
∂ log g(x)

∂xi

)2
]

,

which is equal to τ2 by definition. All off-diagonal elements of Mψψ are zero and the

provided formula is easily seen to hold. Q.E.D.

Proof of Proposition 5 Full parametric efficiency is possible if and only if Pt = 0.

To prove that this occurs only for the multinormal distribution in the class of spherical

distributions, consider first the case N = 2. Then Pt in (8) is a vector with four com-

ponents, the second and third of which are equivalent due to the symmetry. Writing the

reduced equation system D+
NPt = 0 elementwise, the second equation becomes

−∂ log g(x)

∂x1

x2 − 1

c
x1x2 = 0.

Using the symmetry of spherical distributions, this yields

∂g(x)

∂x
= −1

c
g(x)x (57)

whose unique solution is given by g(x) = const exp(− 1
2c

x′x), which is the multinormal dis-

tribution with covariance matrix cIN . But since we restricted g to have identity covariance

matrix, c = 1.
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To prove the statement for any dimension N , we have to analyze the structure of the

matrix MψF M−1
FF . By Lemma 4, the right block of D+

NMψF is an (N∗ × N∗) diagonal

matrix with 2 at the (i, i)-th position, i ∈ KN
ii , and 1 at the (j, j)-th position, j ∈ KN

ij .

Lemma 4 and 5 imply that the lower right block of MFF is an (N∗ × N∗) matrix

with 3c − 1 at the (i, i)-th position, i ∈ KN
ii ; c − 1 at the (i, j)-th position, i, j ∈ KN

ii ,

i 6= j; c at the (i, i)-th position, i ∈ KN
ij ; and zeros elsewhere. Thus, the i-th row and

i-th column, i ∈ KN
ij , of the lower right block of MFF contains a c at the i-th position

and zeros elsewhere. Since MFF is block diagonal, M−1
FF is block diagonal as well with the

lower right block given by the inverse of the lower right block of MFF . Therefore, the i-th

row and i-th column, i ∈ KN
ij , of the lower right block of M−1

FF contains a 1/c at the i-th

position and zeros elsewhere. This proves that the i-th element, i ∈ KN
ij , of the vector

D+
NMψF M−1

FF Ft is equal to vtivtj/c. One then obtains the same differential equation (57)

with unique solution the N -variate normal distribution.

Next we show that the multinormal distribution is also the only one in Di for which

the parametric lower bound can be attained under the additional constraint that N ≥ 2.

As D+
NQD+′

N is diagonal in the case g ∈ Di, Q = 0 if and only if all diagonal elements of

D+
NQD+′

N are zero. Since there are only two distinct diagonal elements, Q = 0 if and only

if two conditions hold: τ1−1 = 4/(κ−1) and τ2 = 1. For the case N = 1, Gonzalez-Rivera

(1997) has shown that the bimodal density (26) fulfills the first of these conditions. We

now show that for this density with N ≥ 2 the second condition does not hold. We have

∂ log g(vt)/∂vit = (λ− 1)/vit − λvit, so that

τ2 = (λ− 1)2E[v−2
it ] + 2λ− λ2,

where λ > 2. However, since E[v−2
it ] > E[v2

it]
−1 = 1 by Jensen’s inequality, it follows

that τ2 > 1, violating the second condition for Q = 0. In particular, for λ = 3, it is

easy to show that E[v−2
it ] = 3, so that τ2 = 9 and the maximum eigenvalue of Q is 8,

the value given in Table 1. Note that any other distribution violates the first condition,

τ1 − 1 = 4/(κ− 1), except for the multinormal. This completes the proof. Q.E.D.

Proof of Proposition 6

Under Assumption 5, the matrix ∂ log g(vt)
∂vt

v′t is symmetric, so that ψt = −DNvech(IN +
∂ log g(vt)

∂vt
v′t). Furthermore, if we define Z = (H

1/2
t ⊗ IN + IN ⊗H

1/2
t ) and using Lemma 2

in Appendix B, we can write,

Z−1DND+
N(IN ⊗H

−1/2
t )DN =

1

2
Z−1(IN ⊗H

−1/2
t + H

−1/2
t ⊗ IN)DN

=
1

2
(H

−1/2
t ⊗H

−1/2
t )DN ,
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by noting that

(IN ⊗H
−1/2
t + H

−1/2
t ⊗ IN) = (H

−1/2
t ⊗H

−1/2
t )(H

1/2
t ⊗ IN + IN ⊗H

1/2
t ).

So we have that l̇t(θ) = Wt(θ)ψt, with Wt = ∂vec(Ht)′
∂θ

(H
−1/2
t ⊗H

−1/2
t ). Q.E.D.

Proof of Proposition 7

First note that St ∈ Ts because E[St] = 0, E[StF
′
t ] = 0, and E[StS

′
t] is finite since

E[ψ̃tψ̃
′
t] ≤ E[E[ψtψ

′
t | wt]] = E[ψtψ

′
t] < ∞ by Assumption 2 and E[F̃tF̃

′
t ] ≤ E[E[FtF

′
t |

wt]] = E[FtF
′
t ] < ∞ by Assumption 1 (finite fourth moments).

Next, we show that the orthogonal complement of the projection is orthogonal to Ts.

It can be written as

˙̀∗
t (θ) = ˙̀

t(θ)− St(θ) = (Wt − E[Wt])ψ̃t + E[Wt]Mψ̃F M−1

F̃F
F̃t (58)

The first term on the right hand side of (58) is orthogonal to Ts since (Wt − E[Wt]) has

mean zero and is independent of wt and, hence, independent of all elements in Ts. The

second term on the right hand side of (58) is orthogonal to Ts because ∀s(wt) ∈ Ts,

E[E[Ft | wt]s(wt)] = E[E[Fts(wt) | wt]] = E[Fts(wt)] by the law of iterated expectations.

However, by definition, Ft is orthogonal to Ts. This proves that ˙̀∗
t (θ) is orthogonal to Ts.

Q.E.D.

Appendix D: Some matrix algebra and calculus

The main part of the following results come from Lütkepohl (1996), abbreviated L here-

after.

1. For matrices A,B, C,D of appropriate dimension, we have

vec(ABC) = (C ′ ⊗ A)vec(B) (59)

(A⊗ C)(B ⊗D) = (AB)⊗ (CD) (60)

Tr(ABCD) = vec(D′)′(C ′ ⊗ A)vec(B) (61)

2. Matrix square root: The square root of a symmetric positive definite matrix X is

defined as

X1/2 = ΓΛ1/2Γ′ (62)

where the columns of Γ contain the eigenvectors of X and Λ1/2 is diagonal with the

positive square roots of the eigenvalues on its diagonal. Note that X1/2 is symmetric

and positive definite.
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3. L 3.5.1 (1), p.27: X,Y (m×m) nonsingular:

(XY )−1 = Y −1X−1 (63)

4. The (Moore-Penrose) generalized inverse of an (m× n) matrix X can be defined as

X+ = (X ′X)−1X ′ (64)

if X ′X is nonsingular.

5. The (mn×mn) commutation matrix Cmn is defined by

Cmnvec(A) = vec(A′) (65)

for every (m × n) matrix A. Let Emn
ij be the (m × n) matrix with 1 in its ij-th

position and zeros elsewhere. Then an explicit expression for Cmn is given by

Cmn =
m∑

i=1

n∑
j=1

(Emn
ij ⊗ Emn′

ij ). (66)

For example, C22 is given by

C22 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




.

L 9.2.2 (5b), p.117: A(m× n), B(p× q):

B ⊗ A = Cpm(A⊗B)Cnq (67)

6. The (n2 × n(n + 1)/2) duplication matrix Dn is defined so that

Dnvech(A) = vec(A) (68)

for every symmetric matrix A of order n. For example, D2 is given by

D2 =




1 0 0

0 1 0

0 1 0

0 0 1




.

An explicit expression is given by

Dn =
n∑

j=1

(
n∑

i>j

vec(Enn
ij + Enn

ji )vech(Enn
ij )′ + vec(Enn

jj )vech(Enn
jj )′).
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7. L 9.5.2 (1), p.123: The matrix DD+ is linked to the commutation matrix by

DmD+
m = (Im2 + Cmm)/2 (69)

8. L 9.5.2 (2), p.123:

CmmDm = Dm (70)

9. L 9.5.4 (1), p.124: A(m×m):

DmD+
m(A⊗ A) = (A⊗ A)DmD+

m (71)

10. Theorem 3.11 (iii) Magnus (1988, p.49): A,B(m×m):

DmD+
m(A⊗B + B ⊗ A)DmD+

m = DmD+
m(A⊗B + B ⊗ A)

= (A⊗B + B ⊗ A)DmD+
m (72)

11. L 9.5.4 (8c), p. 125: A(m×m):

(D+
m (Im ⊗ A + A⊗ Im)Dm)−1 = D+

m (Im ⊗ A + A⊗ Im)−1 Dm (73)

12. L, p. 125:

D+
m+1D

+′
m+1 =




1 0 0

0 1
2
Im 0

0 0 D+
mD+′

m


 (74)

13. Chain rule for matrix differentiation, L 10.7(2), p.203: X(m × n), Y (X)(p,×q),

Z(Y )(r × s):
∂vec(Z(Y (X)))

∂vec(X)′
=

∂vec(Z(Y ))

∂vec(Y )′
∂vec(Y (X))

∂vec(X)′
(75)

14. Magnus (1988, p.129): X(m × m) symmetric, Y (X) symmetric matrix function:

Using (68), the differential of vec(Y ) can be written as

dvec(Y ) = Dm
∂vech(Y )

∂vech(X)′
dvech(X)

= Dm
∂vech(Y )

∂vech(X)′
D+

mdvec(X) (76)

15. L 10.4 (3), p.183: X(m× n), A(p×m), B(n× q):

∂vec(AXB)

∂vec(X)′
= B′ ⊗ A (77)
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16. L 10.5.3 (2), p. 194: X, A(m×m) symmetric:

∂vech(XAX)

∂vech(X)′
= D+

m(XA⊗ Im + Im ⊗XA)Dm (78)

17. L 10.6 (1), p.198: X(m×m) nonsigular:

∂vec(X−1)

∂vec(X)′
= −X ′−1 ⊗X−1 (79)

18. L 10.3.3, p.182: X(m×m), |X| > 0:

∂ log |X|
∂X

= (X ′)−1 (80)
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N = 1 N = 2 N = 3

g Class κ τ ρ(Q) κ τ ρ(Q) κ τ ρ(Q)

N(0, IN) Ds ∩ Di 3 1 0 3 1 0 3 1 0

t (ν = 5) Ds 9.00 0.75 0.75 9.00 0.78 0.89 9.00 0.80 0.93

t (ν = 8) Ds 4.50 0.82 0.31 4.50 0.83 0.33 4.50 0.85 0.36

t (ν = 12) Ds 3.75 0.87 0.15 3.75 0.87 0.17 3.75 0.88 0.18

Laplace Ds 6.00 0.67 0.20 5.00 0.75 0.30 4.50 0.80 0.27

ES Logistic Ds 2.38 5.10 11.40 2.57 1.44 0.96 2.69 1.30 0.78

Logistic Di 4.20 0.81 0.18 4.20 0.81 0.18 4.20 0.81 0.18

(26), λ = 3 Di 1.67 2.33 0 1.67 2.33 8 1.67 2.33 8

Table 1: Marginal kurtosis κ, the value of τ in (18), and the spectral norm of the matrix

Q in (13) for alternative distributions g and dimension N . For the spherical distributions,

the co-kurtosis is c = κ/3. For those in Di, the parameter τ1 is given by 3τ (τ2 is not

reported).

ML QML SP

Population Mean SD MSE Mean SD MSE Mean SD MSE

c11 = 1 1.021 0.209 0.0441 1.043 0.286 0.0841 1.0121 0.2394 0.0574

c21 = 0.7 0.725 0.245 0.0609 0.739 0.309 0.0975 0.7227 0.2964 0.0883

c22 = 1 1.039 0.218 0.0493 1.060 0.285 0.0853 1.0302 0.2328 0.0551

β11 = 0.5 0.492 0.081 0.0066 0.483 0.113 0.0131 0.4961 0.0930 0.0086

β22 = 0.1 0.070 0.269 0.0735 0.060 0.324 0.1066 0.0824 0.3211 0.1034

β33 = 0.6 0.591 0.062 0.0040 0.581 0.084 0.0075 0.5950 0.0690 0.0047

α11 = 0.2 0.201 0.038 0.0014 0.201 0.055 0.0030 0.1942 0.0400 0.0016

α22 = 0.1 0.099 0.032 0.0010 0.102 0.043 0.0018 0.0962 0.0347 0.0012

α33 = 0.2 0.201 0.035 0.0012 0.208 0.052 0.0028 0.1961 0.0378 0.0014

Table 2: Monte Carlo results based on 500 replications of the diagonal VEC model with

n = 2000. The innovation density is a bivariate t distribution with 5 degrees of freedom.

MSE means mean squared error and SD means standard deviation.
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Figure 1: The spectral norm ρ(Q) for the Laplace (dashed) and t12

distribution (solid), viewed as a function of the dimension N .
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