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Abstract

We propose a simulation-based technique to calculate impulse-response functions

and their con�dence intervals in a market share attraction model [MCI]. As an MCI

model implies a reduced form model for the logs of relative market shares, simulation

techniques have to be used to obtain the impulse-responses for the levels of the

market shares. We apply the technique to an MCI model for a �ve-brand detergent

market. We illustrate how impulse-response functions can help to interpret the

estimated model. In particular, the competitive and dynamic structure of the model

can be analyzed.
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1 Introduction

The market share attraction model (or, multiplicative competitive interaction [MCI]

model) is often used to correlate market shares with explanatory variables such as price,

promotion, distribution and past market shares, see, for example, Naert and Weverbergh

(1981), Leeang and Reuyl (1984), Brodie and Kluyver (1987), Cooper and Nakanishi

(1988), Kumar (1994) and Bronnenberg et al. (2000). The model has the important fea-

ture that it implies that market shares sum to unity and that they lie within the (0,1)

interval. To estimate the model parameters, the model is usually written in a reduced form

speci�cation. In this reduced form, the logs of the ratios of market shares to a benchmark

market share are correlated with explanatory variables. Hence, the model for I mar-

ket shares M1; : : : ;MI implies a reduced form model for log(M1=MI) to log(MI�1=MI),

where log denotes the natural logarithm and the market share of brand I is chosen as

the benchmark. Several parameters in this reduced form are restricted across equations,

while other parameters are functions of unknown parameters. Given all this, it is usually

diÆcult to precisely understand how the model actually correlates the original market

shares with explanatory variables, and particularly, how changes in explanatory variables

and in innovations (that is, the residuals) a�ect future observations of the market shares

themselves (instead of the log ratios).

In this paper we propose to use impulse-response analysis to help understand the

structure of an MCI model. As the reduced form variables di�er from the market shares,

we should take account of the fact that (1) expected values of logs are not equal to the logs

of expected values that is, E[log(Mi=MI)] 6= log[E(Mi=MI)], where E denotes expectation,

and (2) that the expected value of a ratio of variables is not equal to the ratio of the

relevant expected values that is, E[Mi=MI ] 6= E(Mi)=E(MI). Therefore, the impulse-

response functions for the market shares cannot be obtained from a transformation of the

impulse-response function of the reduced form variables and hence we have to rely on a

simulation-based method to calculate impulse-response functions.

The outline of our paper is as follows. In Section 2, we briey discuss representation

and estimation issues of the MCI model in its general form. In Section 3, we discuss

how one can calculate the impulse-response function and its con�dence bounds given an

empirically speci�ed MCI model. In Section 4, we apply this to a set of 5 detergent

brands, and we illustrate the e�ect of changes in price level, promotional activities and
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changes in innovations on future market shares. In Section 5, we conclude our paper with

some remarks.

2 Speci�cation and Estimation

The MCI model is usually de�ned in terms of attractions, typically of I brands of a certain

product. The attraction of brand i, i = 1; : : : ; I at time t, t = 1; : : : ; T is de�ned as

Ai;t = exp(�i + "i;t)

IY
j=1

KY
k=1

x
�k;j;i
k;j;t ; (1)

where "t � ("1;t; : : : ; "I;t)
0 � N(0;�) and where xk;j;t denotes the k-th explanatory variable

(for example, price or advertising) for brand j at time t and �k;j;i is the corresponding

coeÆcient for brand i. The parameter �i is a brand-speci�c constant. The error process

(or innovation process) "i;t is usually assumed to be only correlated across brands and

not over time, that is, "i;t is assumed independent of "j;t�1; j = 1; : : : ; I. Based on the

attractions, the market share of brand i at time t is de�ned as

Mi;t =
Ai;tPI

j=1Aj;t

: (2)

To capture potential lagged structures in (1), one can include lagged market shares in

the speci�cation of the attractions. The most general autoregressive structure follows

from the inclusion of lagged market shares of all brands. In that case, when a P -th order

autoregressive structure is used, the model becomes

Ai;t = exp(�i + "i;t)

IY
j=1

KY
k=1

x
�k;j;i
k;j;t

IY
j=1

PY
p=1

M
�p;j;i

j;t�p : (3)

The combination of (2) with (3) is often called the fully extended multiplicative compet-

itive interaction model [FE-MCI], see also Cooper and Nakanishi (1988).

To estimate the parameters, the model is linearized �rst by choosing a base brand (say

brand I) to which the other brands are related, and then by taking logs of the resulting

ratios of variables. Hence, e�ectively one considers log(Mi;t=MI;t). This transformation

results in (I � 1) equations which are linear in the parameters. These equations form

an (I � 1)-dimensional vector autoregressive model with explanatory variables, to be
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abbreviated as VARX(P ). For the fully extended MCI model, this set of reduced form

equations is

logMi;t � logMI;t = (�i � �I) +

IX
j=1

KX
k=1

(�k;j;i � �k;j;I) logxk;j;t +

+

IX
j=1

PX
p=1

(�p;j;i � �p;j;I) logMj;t�p + "i;t � "I;t ;

(4)

with i = 1; : : : ; I � 1.

Note from the expression in (4) that only the di�erences of parameters, for example

�i��I, and the elements in the covariance matrix of "i;t�"I;t are identi�ed. The notation

of the reduced-form MCI model can be simpli�ed by introducing ��i = �i��I , �
�

i = �i��I ,

��

i = �i � �I and �i;t = "i;t � "I;t, resulting in

logMi;t � logMI;t = ��i +

IX
j=1

KX
k=1

��

k;j;i log xk;j;t +

IX
j=1

PX
p=1

��

p;j;i logMj;t�p + �i;t: (5)

Given the distributional assumption on "t in (1), the (I�1) vector process (�i;t; : : : ; �I�1;t)
0

is normally distributed with mean zero and covariance matrix �� = L�L0, where L =

(II�1
...� i) with II�1 an (I � 1)-dimensional identity matrix and i an (I � 1)-dimensional

unity vector. Note that this general setup imposes no restrictions on the covariance matrix

��.

The parameters in the set of reduced form equations in (5) can be estimated using

Generalized Least Squares [GLS]. Given these estimates one may decide to reduce the

number of parameters by imposing various parameter restrictions. Some of the restrictions

imply that the same parameters appear in all I�1 equations, and hence one should resort

to GLS with cross-equation parameter restrictions, see Franses and Paap (1999) for further

details. In our empirical illustration below, we will indicate how such restrictions can be

analyzed.

The key motivation of the present paper lies in the fact that it may not be easy to

understand how exactly the explanatory variables a�ect the levels of the market shares

themselves. Indeed, their e�ect on the logs of the ratios of market shares may in some

cases simply be inferred from the sizes and signs of the relevant parameters, but their e�ect

on the market shares themselves is far from trivial. This is caused by the fact that (1)

the expected values of a logged variable is not equal to the log of the expected value (and
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hence simply taking exponentials to get expected relative market shares is not correct)

and (2) that the expected value of a ratio is not equal to the ratio of the expectations.

So, expected values of the market shares themselves cannot be inferred from the expected

values of the reduced form dependent variables. In the next section, we will motivate

that it is not possible to calculate these expectations analytically. Therefore, we propose

a simulation-based approach to impulse-response analysis to understand the structure

of an MCI model. In impulse-response analysis one examines the e�ects of changes in

innovations and changes in explanatory variables on future patterns of the variables to be

explained.

3 Impulse-Response Functions

Impulse-response functions [IRF] are usually calculated to obtain insights in the dynamic

structure of a model. An impulse-response function gives the expected time path of the

dependent variable(s) that will result when a shock is added to a model in steady state.

For example, L�utkepohl (1993) discusses impulse-response functions in a multiple time

series setting, and it turns out that in that case the impulse-response functions can easily

be obtained from the estimated model parameters.

For an MCI model it is slightly more diÆcult to calculate the IRF, in particular if one

wants to calculate it for the market shares themselves, mainly because the expected market

share trajectories cannot be directly obtained from the reduced form model. Again, the

dependent variables in the reduced-form MCI model are the logs of relative market shares

while one usually is interested in the impulse-response functions for the levels of the market

shares. A �rst and obvious method to calculate forecasts, which are the essential compo-

nents of the IRF, for the market shares is simply to forecast the logs of the relative market

shares and next to transform these forecasts to market share forecasts. This method does

not necessarily lead to unbiased forecasts as it ignores the two points earlier mentioned

regarding expectations, which state that in general exp(E[log(Mi=MI)]) 6= E[Mi]=E[MI ].

In this section we therefore propose a simulation-based technique to calculate unbiased

forecasts and to generate impulse-response functions for an MCI model. We �rst outline

how one can generate forecasts in Section 3.1, and next how one can calculate the IRF in

Section 3.2.
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3.1 Forecasting

To forecast the market share of a brand i, we need to specify Mi;t in terms of the relative

market shares, denoted by mj;t = Mj;t=MI;t, j = 1 : : : I � 1, as these are the variables

which are, after a log transformation, modeled in the reduced form MCI model. As

MI;t = 1�
PI�1

j=1 Mj;t, we have

MI;t =
1

1 +
PI�1

j
mj;t

and Mi;t = MI;tmi;t =
mi;t

1 +
PI�1

j
mj;t

: (6)

As the relative market shares (mi;t) are log-normally distributed, see (4), the probability

distribution of the market shares themselves is rather complicated as it involves the inverse

of the sum of log-normally distributed variables. Moreover, it is diÆcult to directly

calculate the mean of the distribution as there is no simple algebraic expression for this

expectation. As correct forecasts should be based on the expected value of the market

shares, they themselves are also diÆcult to calculate analytically.

Given the above, we calculate market share forecasts using a simulation technique. The

model speci�cation in (4) is used to generate relative market shares for various synthetic

disturbances (�) drawn from a multivariate normal distribution with a covariance matrix,

equal to the estimated covariance matrix for �, denoted by �̂�. In every replication, we

calculate the market shares resulting from the generated disturbance vector. The average

market share over a number of replications now provides an unbiased estimate of the

mean of the market share distribution, and therefore an unbiased forecast of the market

shares. Notice that only the parameters of the reduced-form model are required for the

simulations.

To be more precise, for one-step ahead forecasting, the relative market shares can be

simulated using

�
(l)
t+1 = (�

(l)
1;t+1; : : : ; �

(l)

I�1;t+1)
0 from N(0; �̂�)

m
(l)
i;t+1 = exp(�̂�i + �i;t+1)

IY
j=1

KY
k=1

x
�̂�k;j;i
k;j;t+1

IY
j=1

PY
p=1

M
�̂�p;j;i
j;t+1�p ;

(7)

where we have rewritten (5) into an attraction format and where the index l denotes the

simulation iteration. For every draw of �
(l)
t+1, we calculate the corresponding realization of

the relative market shares, m
(l)
i;t+1, using the above equation. With a simulated realization
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of the relative market shares, we can calculate the realization of the market shares using

M
(l)

i;t+1 =
m

(l)
i;t+1

1 +
PI�1

j=1 m
(l)
j;t+1

and M
(l)

I;t+1 =
1

1 +
PI�1

j=1 m
(l)
j;t+1

: (8)

Every vector (M
(l)
1;t+1; : : : ;M

(l)

I;t+1)
0 that is generated using this simulation method amounts

to a draw from the joint distribution of the market shares. The expected market shares

can therefore be estimated by averaging over all simulated market shares that is,

E[Mi;t+1jXt+1;Mt] =
1

L

LX
l=1

M
(l)

i;t+1; (9)

where L denotes the number of simulated market share vectors and where Xt and Mt

contain all information on explanatory variables and on market shares up to and including

period t, respectively.

Forecasting h > 1 steps ahead is slightly more diÆcult as the values of the lagged

market shares are no longer known. Hence, for these lagged market shares we should use

the appropriate simulated values. For example, 2-step ahead forecasts can be calculated

by averaging over simulated values M
(l)
i;t+2, based on drawings �

(l)
t+2 from N(0; �̂�) and on

drawings M
(l)

i;t+1, which were already used for the 1-step ahead forecasts. Note that the

2-step ahead forecasts do not need more simulations than the one-step ahead forecasts.

Finally in case h > P , that is, all lagged market shares are unknown, the h-step

forecasts are calculated using the scheme below. It then holds that E[Mi;t+hjXt+h;Mt] =
1
L

PL

l=1M
(l)

i;t+h, where

M
(l)

i;t+h =
m

(l)

i;t+h

1 +
PI�1

j=1 m
(l)

j;t+h

and M
(l)

I;t+h =
1

1 +
PI�1

j=1 m
(l)

j;t+h

m
(l)

i;t+h = exp(�̂�i + �
(l)

i;t+h)

IY
j=1

KY
k=1

x
�̂�k;j;i
k;j;t+h

IY
j=1

PY
p=1

M
(l)

�̂�p;j;i

j;t+h�p

�
(l)

t+h = (�
(l)

1;t+h; : : : ; �
(l)

I�1;t+h)
0 from N(0; �̂�)

: (10)

When h � P some of the lagged market shares are observed, and in that case one can use

the observed values instead of the simulated values.

It is also possible to calculate con�dence bounds for the forecasted market shares.

Actually, the entire distribution function of the market shares can be estimated based on

the simulated values. For example, the lower bound of a 75% con�dence interval is that

value for which it holds that 12.5% of the simulated market shares is smaller than the

value.
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3.2 Impulse-Response Functions

In this subsection, we describe two types of impulse-response functions. The �rst impulse-

response function is calculated for a shock caused by a temporary change in one of the

explanatory variables, for example, by a change in the price of one of the brands. The

second IRF captures the e�ect of a exogeneous shock in one of the residuals ("i) in (1),

that is, the e�ects of an innovative shock.

The �rst IRF is most easy to compute. All explanatory variables are set at their

average values, except for possible dummy variables which are set at either 0 or 1. For ex-

ample, a promotion dummy is set at 0 because no promotion is the \normal" case. Lagged

market shares are also set at their average values. For these values of the explanatory

variables, the market shares are predicted until a steady state is reached. Notice that in

itself these steady states can also be of interest to marketing researchers. This start-up

period is only needed when lagged market shares are included in the MCI model. Next,

for one period a shock is added to one of the explanatory variables, while for the following

periods the average values are used again. The resulting forecasted time-paths of market

shares constitute the impulse-response functions.

To analyze the impact of exogeneous shocks via the innovations is slightly more diÆ-

cult. This is because only the di�erences of the disturbances (denoted by �, see (5)) are

identi�ed, that is,

�t =

0
BBBB@

"1;t � "I;t

"2;t � "I;t
...

"I�1;t � "I;t

1
CCCCA

(11)

Clearly, a shock in "i;t, i = 1; : : : ; I�1, will now only have an e�ect on �i;t, whereas a shock

in "I;t will a�ect all elements of �t. The impulse-response function for the innovations

captures the inuence of an exogeneous innovation shock in the attraction of one of

the brands. Hence, the interpretation of such a shock is an unexplained large or small

attraction of a brand, which leads to a large or small market share of the corresponding

brand. The calculation of the impulse-response function is similar to the �rst case. The

explanatory variables are again set at their averages (except for the dummy variables),

and the market shares are forecasted until a steady state is reached. For one period, a

shock is added to one of the disturbances ("i;t+h). This can easily be done by adding a
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shock to the elements of �
(l)

t+h in (10) corresponding to "i;t+h for every draw. Again the

forecasted time path of market shares form the impulse-response functions.

4 Application

The calculation of the two types of impulse-response functions, discussed in Section 3, is

illustrated using an MCI model for weekly market shares of �ve detergent brands. The

sample contains 132 observations. These �ve brands are assumed to constitute a single

product category. The actual market shares are transformed by scaling the market shares

with the sum of observed market shares. That is, Mi;t is replaced by Mi;t=
P5

j=1Mj;t, at

every t = 1; : : : ; 132. As explanatory variables we have Pi;t, the price of brand i in period

t relative to all other brands in the market, Di;t, which denotes the distribution of brand

i in week t, and we have a promotion variable Pri;t which indicates whether or not there

is a promotion (of any type) for brand i in week t. The distribution variable is de�ned as

the fraction of stores in which the brand is available. The fraction is weighted by the size

of the store, so large stores have a larger impact on Di;t than small stores. The promotion

variable equals 1 if the brand is featured, on display or if there is a price cut. In all other

weeks the Pri;t variable takes the value 0. Table 1 shows a summary of the data. In the

model speci�cation we arbitrarily decide to consider brand 5 as the benchmark brand.

Table 1: Data characteristics 5-brand detergent data

Brand

1 2 3 4 5

Average market shares (%) 24.49 22.22 22.62 8.22 22.45

Average relative price 1.12 1.09 1.10 1.09 1.11

Average relative distribution 0.85 0.91 0.93 0.78 0.94

Fraction of promotions� 0.27 0.21 0.39 0.34 0.10

� Fraction of 132 weeks in which the brand is on promotion.

From the attraction speci�cation of the MCI model (4) we see that we cannot use the

dummy variables directly as strictly speaking a week without promotion would imply a

zero market share. This problem can be solved by transforming the promotion dummy

to a variable which is always positive, for example by using exp(Pri;t) instead of Pri;t.
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In case of no promotion exp(Pri;t) equals 1 and the promotion variable does not add

attraction.

We use the model speci�cation strategy outlined in Franses and Paap (1999). To

�nd the optimal lag P we use a combination of the BIC criterion and the LM-test for

multivariate serial correlation in the residuals to choose the best lag to use. The BIC

criterion indicates that a model without lagged market shares should be preferred. On

the other hand, the LM-test clearly indicates the presence of serial correlation in the

residuals in a model with P = 0. Hence, we decide to consider an extended model with

one-period lagged market shares as additional explanatory variables, that is, to set P = 1.

Next, a number of restrictions are tested using Likelihood Ratio [LR] tests. The LR-

test statistic is de�ned as: �2(log L̂a � log L̂0) where log L̂a and log L̂0 denote the log-

likelihood evaluated at the estimated parameters under the alternative and the null hy-

potheses, respectively. Under the null hypothesis, this test statistic is �2(�)-distributed,

where � equals the number of parameter restrictions.

First of all, the Restricted Covariance Matrix [RCM] assumption is tested. The RCM

restriction assumes that "i;t is not correlated with "j;t for i 6= j, and hence that � is a

diagonal matrix instead of a full matrix. The realization of the test statistic is�2(186:70�

190:45) = 7:508, which is not signi�cant compared with the �2(5) distribution. We

therefore accept the RCM restriction.

The second restriction is Restricted Competition [RC], which assumes that (market-

ing) variables of competitors do not inuence own brand attractions. This restriction is

rejected for the detergent data as �2(144:64 � 186:70) = 84:104 is signi�cant compared

with the �2(45)-distribution. As there is no further possibility to reduce the model, we

give the estimation results for this model in Table 2. Even though some of the parameters

can be set equal to zero, we continue with this empirical model. Note that the estimated

parameters refer to relative market shares, or equivalently, to the reduced form model in

(5), which can also be written in the format of (10).

As the model parameters in Table 2 only give relative e�ects and because of the

inclusion of lagged market shares, it is diÆcult to see what e�ect each variable has on

the di�erent market shares. Therefore, we use impulse-response functions to analyze the

structure of the empirical model. An impulse can be caused by a change in one of the

explanatory variables, for example the relative price of brand 1, or it can be caused by an

innovation. As an example, Figure 1 shows the impulse-response functions for all brands
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Table 2: Estimated parameter values in an empirical MCI model for 5 detergent

brands (standard errors in parentheses)

M1;t

M5;t

M2;t

M5;t

M3;t

M5;t

M4;t

M5;t

Intercept 1.308 (0.69) 2.136 (0.898) 1.121 (0.941) 1.387 (0.894)

P1;t -7.828 (1.139) -2.220 (1.481) -0.274 (1.554) -2.647 (1.476)

P2;t 0.054 (0.404) -3.345 (0.526) 0.003 (0.552) -0.254 (0.524)

P3;t -0.186 (0.555) -0.072 (0.722) -5.241 (0.758) 0.207 (0.72)

P4;t -0.196 (0.796) 2.487 (1.035) -0.465 (1.085) -6.682 (1.031)

P5;t 7.419 (1.329) 3.987 (1.729) 5.243 (1.813) 8.887 (1.722)

D1;t 0.081 (0.288) 0.157 (0.374) -0.080 (0.392) -0.428 (0.373)

D2;t 0.014 (0.162) 1.124 (0.211) -0.367 (0.221) 0.104 (0.21)

D3;t 0.330 (0.363) -0.068 (0.472) 1.466 (0.495) -0.584 (0.47)

D4;t 0.027 (0.113) 0.137 (0.147) -0.084 (0.154) 1.015 (0.146)

D5;t -0.224 (0.402) -1.535 (0.523) -1.042 (0.548) 0.174 (0.521)

exp(Pr1;t) 0.070 (0.039) 0.080 (0.051) 0.047 (0.054) -0.064 (0.051)

exp(Pr2;t) -0.012 (0.051) 0.149 (0.067) -0.047 (0.07) 0.020 (0.066)

exp(Pr3;t) 0.037 (0.038) -0.004 (0.05) 0.094 (0.052) 0.001 (0.05)

exp(Pr4;t) -0.076 (0.044) 0.010 (0.058) -0.091 (0.06) -0.007 (0.057)

exp(Pr5;t) -0.012 (0.063) -0.225 (0.083) -0.097 (0.087) -0.014 (0.082)

M1;t�1 0.394 (0.113) 0.118 (0.147) 0.143 (0.155) 0.212 (0.147)

M2;t�1 0.127 (0.107) 0.558 (0.139) 0.193 (0.146) 0.276 (0.139)

M3;t�1 0.180 (0.141) 0.567 (0.183) 0.384 (0.192) 0.621 (0.182)

M4;t�1 0.129 (0.061) 0.084 (0.079) 0.091 (0.083) 0.400 (0.079)

M5;t�1 -0.192 (0.138) 0.081 (0.179) -0.103 (0.188) -0.229 (0.179)

�̂� =

0
BBBB@

�̂21 + �̂25 �̂25 �̂25 �̂25

�̂25 �̂22 + �̂25 �̂25 �̂25

�̂25 �̂25 �̂23 + �̂25 �̂25

�̂25 �̂25 �̂25 �̂24 + �̂25

1
CCCCA

=

0
BBBB@

0:024 0:015 0:015 0:015

0:015 0:040 0:015 0:015

0:015 0:015 0:044 0:015

0:015 0:015 0:015 0:039

1
CCCCA

Note: The restricted covariance matrix implies that �̂ = diag(�̂2

1
; : : : ; �̂

2

I
) in (1), where �̂

2

1
=

0:009, �̂
2

2
= 0:025, �̂

2

3
= 0:026, �̂

2

4
= 0:025 and �̂

2

5
= 0:015. See Franses and Paap (1999) for

details.
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Figure 1: Impulse-response of a 10% increase in the relative price of brand 1, with 75%

con�dence bounds

for a 10% increase in the relative price of brand 1. The impulse-response functions are

calculated using the technique outlined in Section 3, where we use 10,000 replications to

calculate the market share forecasts. Approximately halfway the graph the price of brand

1 is temporarily changed. Note that because we have included lagged market shares in

the model, there can be a carry-over e�ect, that is the market shares do not necessarily go

back to the normal values directly after the shock. Also note that the promotion variable

is also used to indicate a price cut, the impulse-response function for a change in price

only considers a \direct" e�ect. The promotion signal given by a price change is not

included.

Figure 1 shows that the market share of brand 1, of course, decreases because of this

shock. However, not all other brands bene�t from this, as brand 4 also looses market

share, albeit only little in absolute sense. Because this brand has a small market share it

is diÆcult to see whether its market share is indeed insensitive to price changes of brand

1. In graphs of relative impulse-response it is easier to make such inference. The relative

impulse-response function is based on market share relative to the market share in the

steady state. Figure 2 shows such a graph for again a 10% change in the price of brand

1. From this graph we see that indeed brand 4 is relatively insensitive to price changes of

brand 1. Next to this, we see that a 10% increase in price leads to a 40% loss in market

shares for brand 1. Brand 5 bene�ts the most, its market share increases with more than
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Figure 2: Relative impulse-response of a 10% increase in the relative price of brand 1

20%. Interestingly, brand 2 bene�ts from a price increase of brand 1 one week later. The

same type of graphs can be made for all other brands and variables. We choose to only

show the relative impulse-response of a promotion of brand 1, see Figure 3. In contrast

to the price-insensitivity of brand 4 to brand 1, brand 4 appears to be quite sensitive to

a promotion of brand 1. Next to brand 4, also brand 5 looses substantial market share

when brand 1 is on promotion.

The above mentioned shocks to the system are all caused by a change in one of

the explanatory variables. The impulse-response functions therefore show the dynamic

structure of the model as well as the competitive structure. In an impulse-response

function for the innovations however, we can isolate the dynamic structure of the model.

The impulse-response function for a shock in the innovation of the attraction of brand 1

is given in Figure 4. The size of the shock is equal to 0.093, the standard deviation of "1;t.

Note that this standard deviation is identi�ed because we imposed the RCM assumption.

Of course, the direction of the immediate e�ect of this shock is clear on beforehand, that is

brand 1 will gain market share from all other brands. The relative loss of market share is

equal for all competitors, they all loose a bit more than 2% of their market share. The fact

that the relative immediate e�ect of a shock in an innovation is equal for all competitors

directly follows from the multiplicative speci�cation of the model in (1). Naturally the

e�ect on future periods is not the same for all competitors. Brand 2 also looses much

market share in the next couple of periods, whereas brand 5 recovers rapidly.

13



.92

.94

.96

.98

1

1.02

1.04

Brand 4

Brand 5

Brand 2

Brand 3

Brand 1

Brand 1 Brand 2
Brand 3 Brand 4
Brand 5

Figure 3: Relative impulse-response of a promotion of brand 1
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Figure 4: Relative impulse-response of innovation in the attraction of brand 1
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5 Conclusion

We proposed a simulation-based technique to calculate impulse-response functions and

their con�dence intervals in a market share attraction model [MCI]. As an MCI model

implies a reduced form model for the logs of relative market shares, simulation techniques

have to be used to obtain the impulse-responses for the levels of the market shares. We

applied the technique to an MCI model for a �ve-brand detergent market. We illustrated

how impulse-response functions can help to interpret the estimated model. In particular,

the competitive and dynamic structure of the model can be analyzed.
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