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Abstract

A logarithmic residue is a contour integral of a logarithmic derivative (left or right) of an analytic

Banach algebra valued function. For functions possessing a meromorphic inverse with simple
poles only, the logarithmic residues are identi�ed as the sums of idempotents. With the help
of this observation, the issue of left versus right logarithmic residues is investigated, both for
connected and nonconnected underlying Cauchy domains. Examples are given to elucidate the
subject matter.

1 Introduction

Let B be a complex Banach algebra with unit element e. A logarithmic residue in B is a contour

integral of a logarithmic derivative of an analytic B{valued function f . There is a left version and

there is a right version of this notion. The left version corresponds to the left logarithmic derivative

f 0(�)f(�)�1, the right version to right logarithmic derivative f(�)�1f 0(�).

The �rst to consider integrals of this type { in a vector valued context { was L. Mittenthal

[M]. His goal was to generalize the spectral theory of a single Banach algebra element (case

f(�) = �e� b; b 2 B). He gave suÆcient conditions for a logarithmic residue to be an idempotent.

The conditions are very restrictive.

Logarithmic residues also appear in the paper [GS1] by I.C. Gohberg and E.I. Sigal. The setting

there is that B = B(X), the Banach algebra of all bounded operators on a complex Banach space,

and f is Fredholm operator valued. For such functions Gohberg and Sigal introduced the concept

of algebraic multiplicity. It turns out that the algebraic multiplicity of f with respect to a given

contour is equal to the trace of the corresponding (left/right) logarithmic residues (see also [GKL]

and [GGK]).

Further progress was made in [BES2-5]. In these papers, logarithmic residues are studied from

di�erent angles and perspectives. The problems dealt with are of the following type.

1. If a logarithmic residue vanishes, does it follows that f takes invertible values inside the

(integration) contour? This question was �rst posed in [B]. The answer turns out to depend

very much on the underlying Banach algebra. For certain important classes it is positive, for

other (equally relevant) classes it is negative.

2. What kind of elements are logarithmic residues? Here a strong connection with (sums of)

idempotents appears (cf. also [BES1]). As for the problem posed under 1, the answer depends

on the Banach algebra under consideration too.
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3. How about left versus right logarithmic residues? In all situations where a de�nite answer

could be obtained, the set of left logarithmic residues coincides with the set of right logarithmic

residues. In some situations it was possible to identify the pairs of left and right logarithmic

residues associated with one single function f (and the same integration contour).

4. What can be said about the topological properties of the set of logarithmic residues? In some

cases it was possible, for instance, to identify the connected components of this set.

The present paper is concerned with logarithmic residues of Banach algebra valued functions

f(�) possessing a simply meromorphic inverse f(�)�1. The latter means that f(�)�1 is meromor-

phic with poles of order one. Attention is paid to problems 2, 3 and (to a lesser extent) 1. An

outline of the paper reads as follows.

Section 2 is partly of a preliminary nature in the sense that it contains de�nitions and notations.

In another part it deals with problem 2. For the functions under consideration, the logarithmic

residues turn out to coincide with the sums of idempotents. In particular, the set of (left/right)

logarithmic residues of B-valued analytic function possessing a simply meromorphic inverse is

equal to the set of sums of idempotents in B. In such generality nothing sensible can be said about

problem 4 (cf. [BES3-5] and [PT]).

Section 3 is the core of the paper and deals with the issue of left versus right logarithmic

residues (problem 3). A distinction is made between the case where the underlying Cauchy domain

is connected and where it is not.

Section 4 contains additional remarks and (counter)examples. One of the counterexamples {

based on the main result of Section 3 { exhibits a function whose left logarithmic residue vanishes

while its right logarithmic residue does not. This example has relevance in connection with problem

1. Another counterexample features several interesting properties. Among other things it shows

that logarithmic residues in matrix algebras can fail to belong to the closure of the algebra generated

by the idempotents (cf. [BES3-4]).

2 Preliminaries and �rst results

Throughout this paper , B will be a complex Banach algebra with unit element e. If f is a B-valued

function with domain �, then f�1 stands for the function given by f�1(�) = f(�)�1 with domain

the set of all � 2 � such that f(�) is invertible. If � is an open subset of C and f : � ! B

is analytic, then so is f�1 on its domain. The derivative of f will be denoted by f 0. The left,

respectively right, logarithmic derivative of f is the function given by f 0(�)f�1(�), respectively

f�1(�)f 0(�), with the same domain as f�1.

Logarithmic residues are contour integrals of logarithmic derivatives. To make this notion more

precise, we shall employ bounded Cauchy domains (in C ) and their (positively oriented) boundaries.

For a discussion of these notions, see, for instance [TL].

Let D be a bounded Cauchy domain. The (positively oriented) boundary of D will be denoted

by @D. We write A@(D;B) for the set of all B-valued functions f with the following properties:

f is de�ned and analytic on an open neighborhood of the closure D(= D [ @D) of D and f takes

invertible values on all of @D (hence f�1 is analytic on a neighborhood of @D). For f 2 A@(D;B),

one can de�ne

LRleft(f ;D) =
1

2�i

Z
@D

f 0(�)f�1(�)d�; (2.1)

LRright(f ;D) =
1

2�i

Z
@D

f�1(�)f 0(�)d�: (2.2)
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The elements of the form (2.1) or (2.2) are called logarithmic residues in B. More speci�cally, we

call LRleft(f ;D) the left and LRright(f ;D) the right logarithmic residue of f with respect to D.

It is convenient to also introduce a local version of these concepts. Given a complex number �0,

we let A(�0;B) be the set of all B-valued functions f with the following properties: f is de�ned and

analytic on an open neighborhood of �0 and f takes invertible values on a deleted neighborhood of

�0. For f 2 A@(�0;B), one can introduce

LRleft(f ;�0) =
1

2�i

Z
j���0j=�

f 0(�)f�1(�)d�; (2.3)

LRright(f ;�0) =
1

2�i

Z
j���0j=�

f�1(�)f 0(�)d�; (2.4)

where � is a positive number such that both f and f�1 are analytic on an open neighborhood of

the punctured closed disc with center �0 and radius �. The orientation of the integration contour

j�� �0j = � is, of course, taken positively, that is counterclockwise. Note that the right hand sides

of (2.3) and (2.4) do not depend on the choice of �. In fact (2.3), respectively (2.4), is equal to the

coeÆcient of (���0)
�1 in the Laurent expansion at �0 of the left, respectively the right, logarithmic

derivative of f at �0. Obviously, LRleft(f ;�0), respectively LRright(f ;�0), is a left, respectively

right, logarithmic residue in the sense of the de�nitions given in the preceding paragraphs (take

for D the disc with radius � centered at �0). We call LRleft(f ;�0) and LRright(f ;�0) the left and

right logarithmic residue of f at �0, respectively.

In certain cases, the study of logarithmic residues with respect to bounded Cauchy domains

can be reduced to the study of logarithmic residues with respect to points. The typical situation is

as follows. Let D be a bounded Cauchy domain, let f 2 A@(D;B) and suppose f takes invertible

values on all of D, except in a �nite number of distinct points �1; : : : ; �n 2 D. Then

LRleft(f ;D) =

nX
j=1

LRleft(f ;�j);

LRright(f ;D) =

nX
j=1

LRright(f ;�j):

This occurs, in particular, when f�1 is meromorphic on D, a state of a�airs that we will encounter

below.

Let �0 2 C and let h be a B-valued function de�ned and analytic on a neigborhood of �0. We

say that h has a simple pole at �0 if �0 is a pole of h of order one.

Proposition 2.1. Let �0 2 C , let f 2 A(�0;B), and suppose f�1 has a simple pole at �0. Write

p and q for the left and right logarithmic residue of f at �0, respectively, i.e.,

p =
1

2�i

Z
j���0j=�

f 0(�)f�1(�)d�;

q =
1

2�i

Z
j���0j=�

f�1(�)f 0(�)d�;

where � is positive and suÆciently small. Then p and q are nonzero idempotents. Also p and q are

similar, i.e., p = s�1qs for some invertible s 2 B.
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Proof. Write

f(�) =

1X
j=0

(�� �0)
jaj; f 0(�) =

1X
j=1

j(�� �0)
j�1aj;

f�1(�) =
1

�� �0
b�1 +

1X
j=0

(�� �0)
jbj:

Then several identities hold. We list the following:

a0b�1 = b�1a0 = 0;

a0b0 + a1b�1 = b0a0 + b�1a1 = e;

a0b1 + a1b0 + a2b�1 = b1a0 + b0a1 + b�1a2 = 0;

p = a1b�1; e� p = a0b0;

q = b�1a1; e� q = b0a0:

Clearly p2 = a1b�1a1b�1 = a1(e� b0a0)b�1 = p� a1b0a0b�1 = p and, analogously, q2 = q. Put

s = b0a0b0 + b�1a1b�1; t = a0b0a0 + a1b�1a1:

Then st = (e � q)3 + q3 + b0a0b0a1b�1a1 = e � b0a0(b�1a2 + b1a0)b�1a1 = e. Similarly, ts = e.

So s is invertible with inverse t. Note that s = b0(e � p) + b�1p = (e � q)b0 + qb�1. Hence

sp = b�1p = b�1a1b�1 = qb�1 = qs. We conclude that p and q are similar. Finally, if p = 0 or

q = 0, then p = q = 0, and it follows that a0b0 = b0a0 = e and b�1 = 0. This contradicts the

assumption that f�1 has a pole of order one at �0. 2

The requirement in Proposition 2.1 that f�1 has a simple pole at �0 is essential. If f�1 has

nonsimple poles, then the logarithmic residue need not even belong to the closure of the subalgebra

of B generated by the idempotents. An example is given in Section 4.

A B-valued function h is called simply meromorphic on an open set � � C if h is meromorphic

on � and all poles of h are simple.

Theorem 2.2. Let x 2 B , where B is a complex Banach algebra, and let D be a bounded Cauchy

domain in C . The following statements are equivalent:

(i) x is a sum of idempotents in B;

(ii) x is the left logarithmic residue with respect to D of a function f 2 A@(D;B) such that f�1

is simply meromorphic on D;

(iii) x is the right logarithmic residue with respect to D of a function f 2 A@(D;B) such that f�1

is simply meromorphic on D.
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Proof. Suppose (ii) holds. Then the number of poles of f�1 in D is �nite. Thus x is a sum of

left logarithmic residues of f at a point. Applying Proposition 2.1, we see that (ii) implies (i).

Similarly, (iii) implies (i). It remains to prove that (i) implies (ii) and (iii). Here the complexity of

the arguments depends very much on the \shape" of D.

Assume x = p1 + � � � + pn, where p1; : : : ; pn are idempotents in B. Let D1; : : : ;Dk be the

connected components of D. When k � n, the situation is rather simple and the argument is just a

slight modi�cation of the proof of [BES3], Proposition 2.1. Indeed, choose �1; : : : ; �n in D1; : : : ;Dn

respectively, and let f 2 A@(D;B) be such that

f(�) =

8<
:

e� pj + (�� �j)pj; � 2 Dj ; j = 1; : : : ; n;

e; � 2 Dj ; j = n+ 1; : : : ; k:

Then one veri�es without diÆculty that

LRleft(f ;D) =

nX
j=1

LRleft(f ;�j) =

nX
j=1

pj ;

LRright(f ;D) =

nX
j=1

LRright(f ;�j) =

nX
j=1

pj:

Things are considerably more complicated when k < n. Of course it suÆces to consider the case

k = 1 where D itself is connected. This situation is covered by the following theorem which is a

slight reformulation of the result obtained by one of the authors (T. Ehrhardt) in [E]. 2

Theorem 2.3. Let p1; : : : ; pn be nonzero idempotents in the complex Banach algebra B and let

�1; : : : ; �n be distinct (but otherwise arbitrary) complex numbers. Then there exists an entire an-

alytic B-valued function f such that f takes invertible values on all of C , except for �1; : : : ; �n,

where f�1 has simple poles, while in addition,

LRleft(f ;�j) = LRright(f ;�j) = pj; j = 1; : : : ; n:

For completeness, we mention that the function f constructed in [E] is a product of 3n factors,

each of them is a function of the form e� p+ '(�)p where p is one of the given idempotents and

' is an entire scalar function.

3 Left versus right logarithmic residues

Next we take on the issue of left versus right logarithmic residues. We begin with a result which

holds for arbitrary bounded (so possibly nonconnected) Cauchy domains.

Theorem 3.1. Let x and y be elements in the complex Banach algebra B and let n be a nonnegative

integer. The following statements are equivalent:

(i) There exists a bounded Cauchy domain D and a function f 2 A@(D;B) such that f�1 is

simply meromorphic on D , f�1 has exactly n simple poles in D and

x = LRleft(f ;D) =
1

2�i

Z
@D

f 0(�)f�1(�)d�;

y = LRright(f ;D) =
1

2�i

Z
@D

f�1(�)f 0(�)d�;
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(ii) There exist nonzero idempotents p1; : : : ; pn 2 B and invertible elements s1; : : : ; sn 2 B such

that

x =

nX
j=1

pj; y =

nX
j=1

s�1j pjsj:

Proof. The implication (i)) (ii) is immediate from Proposition 2.1 and the fact that f�1 has only

a �nite number of (simple) poles in D. So let us turn to the implication (ii) ) (i). The argument

will be a slight modi�cation of the proof of [BES3], Proposition 2.1 (cf. also the proof of Theorem

2.2 above).

LetD be a bounded Cauchy domain with n connected componentsD1; : : : ;Dn, choose �1; : : : ; �n
in D1; : : : ; Dn respectively, and let f 2 A@(D;B) be such that

f(�) =
�
e� pj + (�� �j)pj

�
sj ; � 2 Dj; j = 1; : : : ; n:

Then, for � 2 Djnf�jg; j = 1; : : : ; n,

f 0(�)f�1(�) =
1

�� �j
pj; f�1(�)f 0(�) =

1

�� �j
s�1j pjsj;

and hence

LRleft(f ;D) =

nX
j=1

LRleft(f ;�j) =

nX
j=1

pj = x;

LRright(f ;D) =

nX
j=1

LRright(f ;�j) =

nX
j=1

s�1j pjsj = y:

Note that f�1 is simply meromorphic on D. 2

We remark that the statement (i) in the previous theorem is an assertion about the existence

of a function f and a suitable Cauchy domain D. Later on we will analyze the more complicated

situation, where the Cauchy domain D is prescribed and possibly connected.

We continue our discussion of left versus right logarithmic residues, but now with underlying

Cauchy domains that are required to be connected. It is convenient to establish two lemmas. The

�rst one { Lemma 3.2 { is modelled after certain factorisation results for (semi-)Fredholm operator

valued analytic functions (see, for instance, [GS2] and [T]; cf. also [BES5], Proposition 3.1 and the

discussion presented there exhibiting a connection with [GKL]); the second one { Lemma 3.3 { is

an interpolation result.

Lemma 3.2. Let � be a non-empty open subset of C and let f : �! B analytic. Suppose f takes

invertible values on �, except in a �nite number of distinct points �1; : : : ; �n where f�1 has simple

poles. Then there exist nonzero idempotents p1; : : : ; pn in B and an analytic function g : � ! B

such that g takes invertible values on all of � and

f(�) =

0
@ nY

j=1

�
e� pj + (�� �j)pj

�1A g(�); � 2 �:
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In products written in the �-notation and involving possibly noncommuting factors, the order

of the factors corresponds to the order of the indices. So in the above product, the �rst factor is

e� p1 + (�� �1)p1, the all but last factor is e� pn + (�� �n)pn and the last factor is g(�). There

is an analogue to Lemma 3.2 where g(�) is the �rst instead of the last factor in the factorization

of f . We shall comment on this point in Section 4. As we shall also see there, the condition that

f�1 is simply meromorphic in Lemma 3.2 is essential.

Proof. If n = 0, then f itself takes invertible values on all of � and we can put g = f . So assume

n is positive. The proof goes by induction.

Write

f(�) =

1X
j=0

(�� �1)
jaj;

f�1(�) =
1

�� �1
b�1 +

1X
j=0

(�� �1)
jbj;

and set p1 = a1b�1; t1 = a0b0a0 + a1b�1a1. From (the proof of) Proposition 2.1 we know that p1
is a nonzero idempotent and that t1 is invertible (with inverse b0a0b0 + b�1a1b�1). Introduce

f1(�) =

8<
:
�
e� p1 +

1

���1
p1

�
f(�); � 2 �; � 6= �1;

t1; � = �1:

Then f1 is analytic on �nf�1g. From p1a0 = 0 and (e � p1)a0 + p1a1 = t1 we can conclude that

f1(�) ! t1 = f1(�1) when � ! �1. Hence f1 is analytic on all of �. Clearly f1 takes invertible

values on �, except in the points �2; : : : ; �n where f�1
1

has simple poles. Here we used that

f1(�1) = t1 is invertible. The (induction) argument can now be completed by observing that the

identity

f(�) =
�
e� p1 + (�� �1)p1

�
f1(�)

holds on all of �. 2

We shall write G(B) for the group of invertible elements in B. The connected component of

G(B) containing the unit element e will be denoted by G1(B).

Lemma 3.3. Let s1; : : : ; sn 2 G1(B) and let �1; : : : ; �n be distinct complex numbers. Then there

exists an entire function h : C ! B such that h takes invertible values on all of C and

h(�k) = sk; h0(�k) = 0; k = 1; : : : ; n:

The condition that s1; : : : ; sn 2 G1(B) may be replaced by the requirement that s1; : : : ; sn belong

to precisely one and the same connected component of G(B). This is clear from the fact that the

connected component of G(B) containing s 2 G(B) is equal to f st j t 2 G1(B) g or, alternatively,

f ts j t 2 G1(B) g. Conversely, if h is as in Lemma 4.3, then necessarily s1; : : : ; sn belong to precisely

one and the same connected component of G(B).
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Proof. From [R, Theorem 10.44] we know that sk can be written as

sk = exp
�
sk(1)

�
� � � exp

�
sk(mk)

�
with sk(1); : : : ; sk(mk) in B. Choose scalar polynomials r1; : : : ; rn with

rj(�k) = Æjk; r0j(�k) = 0; j; k = 1; : : : ; n

(Æjk is the Kronecker delta), and put

hj(�) = exp
�
rj(�)sj(1)

�
� � � exp

�
rj(�)sj(mj)

�
:

Then hj : C ! B is analytic and takes invertible values on all of C . Also

hj(�k) = e, j; k = 1; : : : ; n; j 6= k,

hk(�k) = sk, k = 1; : : : ; n,

h0j(�k) = 0, j; k = 1; : : : ; n.

The function h(�) = h1(�) � � � hn(�) now has the desired properties. 2

Theorem 3.4. Let D be a connected bounded Cauchy domain in C , let n be a nonnegative integer

and let x and y be elements in the complex Banach algebra B. The following statements are

equivalent:

(i) There exists a function f 2 A@(D;B) such that f�1 is simply meromorphic on D, f�1 has

exactly n simple poles in D and

x = LRleft(f ;D) =
1

2�i

Z
@D

f 0(�)f�1(�)d�;

y = LRright(f ;D) =
1

2�i

Z
@D

f�1(�)f 0(�)d�;

(ii) There exist nonzero idempotents p1; : : : ; pn 2 B, invertible elements s1; : : : ; sn 2 G1(B) and

s 2 G(B) such that

x =

nX
j=1

pj; y = s�1

0
@ nX

j=1

s�1j pjsj

1
A s:

Note that (ii) can be rephrased as follows:

(iii) There exist nonzero idempotents p1; : : : ; pn 2 B and invertible elements t1; : : : ; tn 2 G(B), all

belonging to precisely one and the same connected component of G(B), such that

x =

nX
j=1

pj; y =

nX
j=1

t�1j pjtj:

As a preliminary to the proof of Theorem 3.4 we make two observations. If v 2 B and v2 = 0,

then e + �v 2 G1(B) for all � 2 C . Also, if p 2 B and p2 = p, then e � p + �p 2 G1(B) for all

nonzero � 2 C . The proof of implication (ii) ) (i) will provide additional information about the

freedom one has in choosing the function f .
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Proof. Suppose (i) holds. The function f takes invertible values on D, except in a �nite number

of distinct points �1; : : : ; �n where f�1 has simple poles. Clearly

x =

nX
j=1

LRleft(f ;�j) =

nX
j=1

1

2�i

Z
j���0j=�

f 0(�)f�1(�)d�;

y =

nX
j=1

LRright(f ;�j) =

nX
j=1

1

2�i

Z
j���0j=�

f�1(�)f 0(�)d�;

where � is positive and suÆciently small. We shall now investigate the connection between

LRleft(f ;�k) and LRright(f ;�k), k = 1; : : : ; n.

According to Lemma 3.2, we can factorize f as

f(�) =

0
@ nY

j=1

�
e� qj + (�� �j)qj

�1A g(�); � 2 D:

Here q1; : : : ; qn are nonzero idempotents in B, g : D ! B is analytic and g takes invertible values

on all of D. For k = 1; : : : ; n, put

ak(�) =

k�1Y
j=1

�
e� qj + (�� �j)qj

�
;

fk(�) = e� qk + (�� �k)qk;

bk(�) =

nY
j=k+1

�
e� qj + (�� �j)qj

�
:

Then f(�) = ak(�)fk(�)bk(�)g(�). Note that ak(�k) and bk(�k) are invertible. In fact

ak(�k) =

k�1Y
j=1

�
e� qj + (�k � �j)qj

�

and

bk(�k) =

nY
j=k+1

�
e� qj + (�k � �j)qj

�

belong to G1(B).

First we consider the left logarithmic residue of f at �k. Suppressing the variable �, we have

f�1 = g�1b�1k f�1k a�1k ;

f 0 = a0kfkbkg + akf
0
kbkg + akfkb

0
kg + akfkbkg

0;

and hence

f 0f�1 = a0ka
�1
k + akf

0
kf

�1
k a�1k + akfkb

0
kb
�1
k f�1k a�1k + akfkbkg

0g�1b�1k f�1k a�1k :
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Now fk(�) = e� qk + (�� �k)qk; f
�1

k (�) = e� qk + (�� �k)
�1qk and f 0k(�) = qk with q2k = qk. It

follows that

LRleft(f ;�k) = ak(�k)qkak(�k)
�1 + ak(�k)(e� qk)b

0
k(�k)bk(�k)

�1qkak(�k)
�1

+ ak(�k)(e� qk)bk(�k)g
0(�k)g(�k)

�1bk(�k)
�1qkak(�k)

�1

= ak(�k)(qk + ~vk)ak(�k)
�1

where ~vk 2 B is given by ~vk = (e � qk)
�
b0k(�k)bk(�k)

�1 + bk(�k)g
0(�k)g(�k)bk(�k)

�1

�
qk. Clearly

~vkqk = ~vk and qk~vk = 0. Hence qk + ~vk = (e+ ~vk) qk (e� ~vk). But then

LRleft(f ;�k) = ak(�k)(e+ ~vk)qk(e� ~vk)ak(�k)
�1:

Since ~v2k = 0, we have e + ~vk 2 G1(B) and (e + ~vk)
�1 = e � ~vk. Put ~sk = ak(�k)(e + ~vk). Then

~sk 2 G1(B) and LRleft(f ;�k) = ~skqk~s
�1

k .

Next we look at the right logarithmic residue of f at �k. Again suppressing the variable �, we

have

f�1f 0 = g�1g + g�1b�1k b0kg + g�1b�1k f�1k f 0kbkg + g�1b�1k f�1k a�1k a0kfkbkg:

It follows that

LRright(f ;�k) = g(�k)
�1bk(�k)

�1qkbk(�k)g(�k)

+ g(�k)
�1bk(�k)

�1qkak(�k)
�1a0k(�k)(e � qk)bk(�k)g(�k)

= gk(�k)
�1bk(�k)

�1(e� v̂k)qk(e+ v̂k)bk(�k)g(�k);

where v̂k 2 B is given by v̂k = qkak(�k)
�1a0k(�k)(e � qk). Since v̂2k = 0, we have e + v̂k 2 G1(B)

and (e + v̂k)
�1 = e � v̂k. Put ŝk = (e + v̂k)bk(�k). Then ŝk 2 G1(B) and LRright(f ;�k) =

g(�k)
�1ŝ�1k qkŝkg(�k).

Combining the results obtained so far, we get

x = LRleft(f ;D) =

nX
k=1

~skqk~s
�1

k ;

y = LRright(f ;D) =

nX
k=1

g(�k)
�1ŝ�1k qkŝkg(�k):

Put pk = ~skqk~s
�1
k ; s = g(�0) and sk = ~skŝkg(�k)s

�1, where �0 2 D is arbitrary. Then p1; : : : ; pn
are nonzero idempotents in B and

x =

nX
k=1

pk; y = s�1

 
nX

k=1

s�1k pksk

!
s:

It remains to prove that s1; : : : ; sn 2 G1(B).

We know already that ~sk and ŝk are in G1(B). So what we need to show is that g(�k)s
�1 =

g(�k)g(�0)
�1 belongs to G1(B). Consider the function g0(�) = g(�)g(�0)

�1. Clearly g0 is continuous

(even analytic) on D and g0(�0) = e. Also g0 takes invertible values on all of D. Since D is

connected, it follows that the range of g0 is contained in G1(B). In particular the elements of the

form g(�k)g(�0)
�1 are in G1(B). This completes the proof of the implication (i) ) (ii).

Next we turn to the implication (ii) ) (i). Suppose x and y have the representation as in

(ii). We shall prove the following version of (i): Given a connected bounded Cauchy domain and

distinct points �1; : : : ; �n in D, there exists a function f : C ! B such that

10



(a) f is entire analytic on all of C ,

(b) f takes invertible values on all of C , except for �1; : : : ; �n; in particular f 2 A@(D;B);

(c) f�1 has simple poles at �1; : : : ; �n;

(d) LRleft(f ;�j) = pj and LRright(f ;�j) = s�1s�1j pjsjs; j = 1; : : : ; n; hence x is the left and y

is the right logarithmic residue of f with respect to D.

The argument is as follows. Let h : C ! B be as in the interpolation result Lemma 3.3 and

let f0 : C ! B be an analytic function such that f0 takes invertible values on all of C , except for

�1; : : : ; �n, where f
�1
0

has simple poles, and

LRleft(f0;�j) = LRright(f0;�j) = pj; j = 1; : : : ; n:

For the existence of f0, see Ehrhardt's Theorem (Theorem 2.3 above). Introduce f(�) = f0(�)h(�)s.

Then f : C ! B is a function which obviously satis�es (a)-(c). It remains to establish (d).

Take � positive and suÆciently small. Then

LRleft(f ;�j) =
1

2�i

Z
j���j j=�

f 00(�)f
�1
0

(�) d�+
1

2�i

Z
j���j j=�

f0(�)h
0(�)h�1(�)f�1

0
(�) d�:

The �rst term in the right hand side is equal to pj . The second term vanishes because f�1
0

has a

simple pole at �j and h0(�j) = 0. Hence LRleft(f ;�j) = pj . Also, with a similar reasoning,

LRright(f ;�j) =
1

2�i

Z
j���j j=�

s�1h�1(�)f�1
0

(�)f 00(�)h(�)s d�

+
1

2�i

Z
j���j=�

s�1h�1(�)h0(�)s d�

= s�1h(�j)
�1pjh(�j)s;

and the desired result, namely LRright(f ;�j) = s�1s�1j pjsjs, follows from h(�j) = sj. 2

A comparison of Theorems 3.1 and 3.4 suggests that there is a di�erence (as far as the issue of

left versus right logarithmic residues is concerned) between working with connected or working with

possibly nonconnected Cauchy domains. As yet we do not have a concrete example substantiating

this suggestion. An obstacle is that it is generally impossible to describe the (sums of) idempotents

in Banach algebras.

4 Remarks and examples

We begin this section by returning to factorization result obtained in Lemma 3.2. On the basis

of the assumptions of Lemma 3.2, the following alternative conclusion can be reached, too. There

exist nonzero idempotents q1; : : : ; qn 2 B and an analytic function h : � ! B such that h takes

invertible values on all of � and

f(�) = h(�)

0
@ nY

j=1

�
e� qj + (�� �j)qj

�1A ; � 2 �:

11



Comparing this factorization with the one in Lemma 3.2, we note that the idempotents q1; : : : ; qn
and p1; : : : ; pn are necessarily similar, i.e., there exist invertible elements s1; : : : ; sn 2 G(B) such

that qk = s�1k pksk; k = 1; : : : ; n.

To see this, we argue as follows. From the �rst part of the proof of Theorem 3.4 we see that pk,

LRleft(f ;�k) and LRright(f ;�k) are mutually similar. Analogously we have that qk, LRleft(f ;�k)

and LRright(f ;�k) are mutually similar. But then the same conclusion holds for pk; qk; LRleft(f ;�k)

and LRright(f ;�k); cf. also Proposition 2.1.

In this context the following general observation is of interest (cf. the proof of [BES5] Proposi-

tion 3.1).

Remark 4.1. Let � be a non-empty open subset of C , let g : � ! B be analytic, let p 2 B be

an idempotent and let � 2 �. Suppose g takes invertible values on all of �. Then there exist an

idempotent q 2 B and an analytic function h : �! B such that h takes invertible values on all of

�, q is similar to p and�
e� p+ (�� �)p

�
g(�) = h(�)

�
e� q + (�� �)q

�
; � 2 �: (4.1)

This is the reasoning. Put q = g�1(�)pg(�). Then q is an idempotent similar to p. Introduce

h(�) =

8<
:
�
e� p+ (�� �)p

�
g(�)

�
e� q + 1

���
q
�
; � 2 �;� 6= �;

g(�) + (e� p)g0(�)g�1(�)pg(�); � = �:

Then h is analytic on �nf�g and takes invertible values there. Also h(�)! h(�) when �! �, so

h is analytic on all of �. A direct computation shows that h(�) is invertible with inverse

h(�)�1 = g�1(�) � g�1(�)(e � p)g0(�)g�1(�)p:

Finally, the desired identity (4.1) holds. 2

Remark 4.2. It is possible to combine Theorems 3.1 and 3.4 into one single result, thereby actually

providing some extra information. The details are as follows.

Let x and y be elements in the complex Banach algebra B, let D be a bounded Cauchy do-

main in C with connected components D1; : : : ;Dm, let n1; : : : ; nm be nonnegative integers, and let

�k1; : : : ; �knk be distinct points in Dk (k = 1; : : : ;m). The following statements are equivalent:

(i) There exists a function f 2 A@(D;B) such that f takes invertible values on D except in the

points �kj where f
�1 has simple poles and

x = LRleft(f ;D) =
1

2�i

Z
@D

f 0(�)f�1(�) d�;

y = LRright(f ;D) =
1

2�i

Z
@D

f�1(�)f 0(�) d�;

(ii) The elements x and y admit a representation

x =

mX
k=1

nkX
j=1

pkj; y =

mX
k=1

s�1k

0
@ nkX

j=1

s�1kj pkjskj

1
A sk

where sk 2 G(B); skj 2 G1(B) and pkj are nonzero idempotents in B (j = 1; : : : ; nk;

k = 1; : : : ;m).

12



The veri�cation is left to the reader.

Let D be a bounded Cauchy domain and let f 2 A@(D;B). If f takes invertible values on all

of D, then obviously LRleft(f ;D) = LRright(f ;D) = 0. Inspired by the scalar case (B = C ), one

may ask whether the converse is also true (cf. problem 1 in the Introduction). In [BES2] it is shown

that in general the answer is negative. However, it is also demonstrated there that for large and

interesting classes of Banach algebras (for instance the polynomial-identity Banach algebras), the

fact that LRleft(f ;D) or LRright(f ;D) vanishes does imply that f takes invertible values on all of

D. For such algebras, one has of course that LRleft(f ;D) = 0 if and only if LRright(f ;D) = 0.

The following (nonexotic) example, involving a connected Cauchy domain and an entire function f ,

shows that in general it can happen that precisely one of LRleft(f ;D) and LRright(f ;D) vanishes.

Example 4.3. Let H be an in�nite dimensional Hilbert space and let B(H) be the Banach algebra

of all bounded linear operator on H. According to [PT] , each bounded linear operator on H can

be written as a sum of �ve projections on H (i.e., idempotents in B(H)). Let P1 be a projection

on H such that both P1 and I � P1 are nonzero. Choose projections P2; : : : ; P6 on H such that

�P1 = P2 + � � �+ P6, that is P1 + � � � + P6 = 0. Write

P1 =

�
I 0

0 0

�
: Im P1 �Ker P1 ! Im P1 �Ker P1;

and introduce

N1 =

�
0 N

0 0

�
: Im P1 �Ker P1 ! Im P1 �Ker P1;

where N : Ker P1 ! Im P1 is a nonzero bounded linear operator. Here Ker and Im signal null

spaces and ranges, while � stands for a direct (possibly nonorthogonal) sum. The fact that N

can be chosen to be a nonzero operator is due to the nontriviality of Ker P1 and Im P1. Clearly

P1N1 6= N1P1 and N
2
1 = 0. The latter implies that S1 = I �N1 belongs to G1(B(H)), the �rst that

P1S1 6= S1P1.

Let D be any connected bounded Cauchy domain. By Theorem 3.4, there exists a function

F 2 A@(D;B) such that F�1 is simply meromorphic on D, F�1 has (at most) six simple poles in

D and

LRleft(F ;D) = P1 + P2 + P3 + P4 + P5 + P6;

LRright(F ;D) = S�1
1
P1S1 + P2 + P3 + P4 + P5 + P6:

It now follows that LRleft(F ;D) = 0 and LRright(F ;D) = S�1
1
P1S1 � P1 6= 0. Note that F can

even be chosen to be entire. An example involving �ve instead of six projection operators can be

constructed with the help of [BES1], Example 3.1. 2

Our next example shows that the factorization result Lemma 3.2 need not hold in the absence

of the condition that the poles of f�1 are simple.

Example 4.4. Let m � 2 and let Bm be the Banach algebra of all m�m matrices (aij)
m
i;j=1 such

that

aij = 0; i; j = 1; : : : ;m; i > j;

aii = a11; i = 1; : : : ;m:

13



In other words, Bm is the Banach subalgebra of Cm�m consisting of all upper triangular m �m

matrices with constant diagonal. Observe that Bm is inverse closed in Cm�m , i.e., if A 2 Bm and

A is invertible in C
m�m , then so is A in Bm (and, of course, the inverses of A in Bm and C

m�m

coincide). It is evident that the only idempotents in Bm are the m�m zero matrix and the m�m

identity matrix. For completeness (cf. Example 4.3) we observe that if D is a bounded Cauchy

domain, f 2 A@(D;B) and either LRleft(f ;D) or LRright(f ;D) vanishes, then f takes invertible

values on all of D (and so LRleft(f ;D) and LRright(f ;D) both vanish). Note also that Bm, being

a subalgebra of Cm�m , is a polynomial identity algebra (see [AL]).

Now let N be an upper triangularm�m matrix with zeros on the diagonal. ThenN is nilpotent.

We assume that the order of nilpotency n of N is larger than one (so Nn = 0 and Nn�1
6= 0, where

2 � n � m). Put F (�) = �I �N . Then F : C ! Bm is entire, F takes invertible values on all of

C , except in the origin where F�1(�) = ��1I + ��2N + � � �+ ��nNn�1 has a pole of order n.

Let � be an open subset of C containing the origin. By analogy with Lemma 3.2, one might

conjecture F to admit a factorization

F (�) =

0
@ nY

j=1

�
I � Pj + �Pj

�1AG(�); � 2 �

where P1; : : : ; Pn are idempotents in Bm; G : � ! Bm is analytic and G takes invertible values

on all of �. This, however, is not true. Indeed, since 0 6= �N = F (0), none of the idempotents

I � P1; : : : ; I � Pn can vanish; but then I � Pj = I; j = 1; : : : ; n. Hence �N = F (0) = G(0),

contradicting the invertibility of G(0). 2

The Banach algebra Bm in Example 4.4 can be used to extract some additional information.

For this, we begin by observing that Bm is generated by m� 1 upper triangular nilpotent m�m

matrices. In particular, B2 is generated by a single matrix. Hence each logarithmic residue in B2

is a sum of idempotents in B2. This follows from [BES4], Theorem 3.2, but of course in this special

case it is easy to see directly that the logarithmic residues in B2 are just the (nonnegative) integer

multiples of the 2� 2 identity matrix.

For m � 3, the situation is completely di�erent. Focussing on m = 3, we obtain the following

example which is an improvement in two respects of [BES3], Example 2.4, where it was shown that

there exist logarithmic residues which are not the sum of idempotents. First, Example 4.5 involves

a matrix algebra (cf. [BES4] for more information about the matrix case). Second, the logarithmic

residues in question not only fail to be a sum of idempotents, in fact they do not even belong to

(the closure of) the algebra generated by the idempotents. The logarithmic residue constructed in

[BES3], Example 2.4 { although not a sum of idempotents { does belong to this algebra. Finally,

Example 4.5 corroborates the fact { already clear form the scalaer case { that the requirement in

Proposition 2.1 that the pole of f�1 has order one is essential.

Example 4.5. Introduce F : C ! B3 by

F (�) =

0
@ � �2 0

0 � 1

0 0 �

1
A :

Then F is entire and F takes invertible values on all of C , except in the origin. A straightforward

computation shows that

F 0(�)F�1(�) =

0
@ ��1 1 ���1

0 ��1 ���2

0 0 ��1

1
A ; � 6= 0;
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F�1(�)F 0(�) =

0
@ ��1 1 ��1

0 ��1 ���2

0 0 ��1

1
A ; � 6= 0:

Hence the left and right logarithmic residue of F at the origin are given by

LRleft(F ; 0) =

0
@ 1 0 �1

0 1 0

0 0 1

1
A ;

LRright(F ; 0) =

0
@ 1 0 1

0 1 0

0 0 1

1
A :

Although both these matrices are sums of idempotents in C
3�3 , neither of them is a sum of idem-

potents in B3. Indeed, the sums of idempotents is B3 are just the (non-negative integer) multiples

of the 3� 3 identity matrix. So actually, LRleft(F ; 0) and LRright(F ; 0) do not even belong to the

(closure of) the algebra generated by the idempotents in B3.

For completeness we mention that the logarithmic residues in B3 coincide with the matrices of the

form

k

0
@ 1 0 �

0 1 0

0 0 1

1
A ;

where k is a non-negative integer and � 2 C is arbitrary. 2

It is worthwile to compare Example 4.4 and 4.5 with the results of [BES5], Section 3: one sees

that most of the conclusions that can be drawn from [BES5] when f is viewed as a Cm�m -valued

function fail to have an analogue in the Bm context.
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