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Abstract

In this paper we provide a result that shows existence and uniqueness of Nash

equilibrium in cases in which existent methods are problematic to apply. We em-

ploy this result to the model with simple logit demand, and show existence and

uniqueness of price equilibrium when �rms produce multiple non-symmetric prod-

ucts. Our proof for this case is based only on the intuitive assumption that market

shares are decreasing in own price.
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1 Introduction

Price equilibrium models with di¤erentiated products have received much attention

recently especially in the empirical industrial organization literature. Important

examples of this literature are the works by Berry, Levinsohn and Pakes (1995),

Feenstra and Levinsohn (1995) and Nevo (2001). The models in these studies use

pricing assumptions in order to estimate the model parameters. Existence of price

equilibrium is a necessary condition for the identi�cation of the parameters. Unique-

ness of price equilibrium is important from a practical point of view since it is a

requirement for applying the structural empirical approach for policy analysis via

simulation estimators. Uniqueness of equilibrium is also useful for e¢ cient estima-

tion because it is a necessary condition for constructing the e¢ cient instruments

(Sándor, 2001, Berry, Linton and Pakes, 2003).

Existence and uniqueness of price equilibrium is also important from a theo-

retical point of view. Caplin and Nalebu¤ (1991) establish price equilibrium ex-

istence results for rather general model speci�cations and uniqueness results for

some particular cases. Anderson, de Palma and Thisse (1992) provide a review of

equilibrium results for models with logit demand. Peitz (2000) extends the results

of Caplin and Nalebu¤ (1991) to cases that can be viewed as more realistic, like

utility maximization with a budget constraint or boundedly rational consumers.

Mizuno (2003) extends the uniqueness results of Caplin and Nalebu¤ (1991). All

these studies assume that �rms produce one product and their approaches cannot be

easily generalized to multi-product �rms. Anderson and de Palma (1992) consider

multi-product �rms and show the existence and uniqueness of price equilibrium in

a model with nested logit demand and symmetric products. This latter feature

makes this result so speci�c that it cannot be generalized to a model with realistic

non-symmetric products. Another way to deal with multi-product �rms is shown

by Milgrom and Roberts (1990), who study supermodular and log-supermodular

games. However, the pricing games involved in empirically relevant models do not

necessarily satisfy these properties.
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In this paper we provide a result that can serve as a tool for showing exis-

tence and uniqueness of price equilibrium in some cases in which the approaches

mentioned above cannot. This is the topic of the next section. We apply this

result to a simple version of the models from Berry, Levinsohn and Pakes (1995)

and Nevo (2001), the model with simple logit demand, and show existence and

uniqueness of price equilibrium when �rms produce multiple products without the

symmetry property. The simple logit demand model, although empirically less rel-

evant since it generates restrictive substitution patterns, is often used to illustrate

various estimation features (e.g., Berry, Levinsohn and Pakes, 1995) and in Monte

Carlo simulations (e.g., Berry, Linton and Pakes, 2003). In spite of the fact that

it is known as a well-behaved model, no proof of existence and uniqueness of price

equilibrium has been established in the literature. For example, Berry, Linton and

Pakes (2003, p.15) mention that price equilibrium for the simple logit is known to

be unique only when each product is owned by a di¤erent �rm. We present the

proof of existence and uniqueness in section 3, and we make some �nal remarks in

section 4.

2 An equilibrium result

In this section we brie�y discuss the available theoretical results regarding existence

and uniqueness of price equilibrium, and then present our result. The classical

approach for showing existence is based on the result according to which games

with convex and compact strategy sets and quasi-concave pay-o¤ functions have a

pure strategy Nash equilibrium. The Nash equilibrium is obtained as the �xed point

of the best reply by applying the Brouwer or Kakutani �xed point theorem. This

approach is taken by Caplin and Nalebu¤ (1991), who use results on generalized

concavity of probabilities to prove that the pro�t functions are quasi-concave. For

multi-product �rms quasi-concavity of the pro�t functions is di¢ cult to verify with

this method, while a direct proof is typically hard to obtain.

An essentially di¤erent approach is supermodularity. Supermodularity of games
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was applied by Milgrom and Roberts (1990) to a number of equilibrium problems.

These authors establish among others that with one-product �rms the pricing game

corresponding to the model with simple logit demand is log-supermodular and there-

fore has a unique price equilibrium. Supermodularity or log-supermodularity, as

they show, guarantees the existence of equilibrium also in games where the strategy

sets are multi-dimensional, but it appears that in general the pricing games arising

from the empirical models of interest do not satisfy these properties. An example

underpinning this statement is the model with simple logit demand, as we show in

Appendix B.

Uniqueness of the price equilibrium is typically established by proving that the

second derivative of the pro�t function has the dominant diagonal property. This

condition, however, appears to be too strong for the models that we consider, and

therefore we use a more general approach. For a detailed exposition of methods for

proving Nash equilibrium existence and uniqueness we refer to Vives (1999).

Our approach is di¤erent from those discussed above in that we consider the

price equilibrium as the solution of the �rst order conditions of pro�t maximization

and not as the �xed point of the best reply function (or correspondence). Hence

we establish that the �rst order conditions have a solution and show that any such

solution is a Nash equilibrium of the game. For this we show that a player�s strategy

corresponding to a solution is the best reply to the other players�strategies corre-

sponding to this solution. Uniqueness follows from the uniqueness of the solution

to the �rst order conditions.

We turn now to the formal exposition. Assume a game with a �nite number

of players denoted f = 1; :::; F whose strategies are multi-dimensional real convex

compact sets Df . Let �f : D ! R denote their continuously di¤erentiable pro�t

functions, where D = D1 � ::: � DF . We use the common notation that v�j is

the vector v without its j�th component, v�f is the part of vector v without the

components corresponding to the vector vf . By the notation of multi-dimensional

intervals that are open on one side we mean [a;b) � [a1; b1) � ::: � [an; bn) where
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a = (a1; :::; an)
0 and b = (b1; :::; bn)

0. Vectors are by default column vectors, and, in

order to avoid confusion, they are denoted by boldface letters.

The result on which our equilibrium existence and uniqueness is based is the

following.

Proposition 1 Consider a game for which there is a strategy p� that satis�es the

conditions:

1. For any f 2 f1; :::; Fg @�f (p
�)

@pf
= 0.

2. For any f 2 f1; :::; Fg there is exactly one pf for which
@�f

�
pf ;p

�
�f
�

@pf
= 0.

3. For any f 2 f1; :::; Fg, �f
�
pf ;p

�
�f
�
has an interior global maximum with

respect to pf 2 Df .

Then p� is a Nash equilibrium of the game. If, in addition, there is a unique p�

satisfying condition 1, then it is the unique Nash equilibrium of the game.

Proof. In order for p� to be a Nash equilibrium it should satisfy that�f
�
p�f ;p

�
�f
�
�

�f
�
pf ;p

�
�f
�
for any pf 2 Df : By condition 3 there is a pf 2 Df that is an inte-

rior global maximum point of �f
�
�;p��f

�
. This satis�es

@�f
�
pf ;p

�
�f
�

@pf
= 0. By

condition 1 we know that
@�f

�
p�f ;p

�
�f
�

@pf
= 0 also holds. Then by 2 pf = p

�
f and

hence p� satis�es �f
�
p�f ;p

�
�f
�
� �f

�
pf ;p

�
�f
�
, so it is a Nash equilibrium. Since

any Nash equilibrium of the game necessarily satis�es condition 1, the uniqueness

follows.

We note that conditions 2 and 3 of the proposition can be viewed as a generalization

of strict quasi-concavity of the pro�t function and they imply that there is a unique

best reply to the equilibrium strategies.

We introduce a function g whose �xed points are exactly the solutions of the �rst

order conditions of pro�t maximization, that is, g (p) = p if and only if
@�f (p)

@pf
= 0

for any f 2 f1; :::; Fg. In order to demonstrate that conditions 1 and 2 of Lemma
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1 are satis�ed we use a �xed point uniqueness result, which is an implication of

Kellogg�s (1976) result.

Lemma 2 (Kellogg, 1976) Let g : D ! D be a continuously di¤erentiable function

on a convex compact set D � Rn. If det
�
@g (p)

@p0
� In

�
6= 0 for any p 2 D; and g

has no �xed points on the boundary of D then g has a unique �xed point.

This result is used twice in the proof: once for existence and once for uniqueness.

Existence is based on the uniqueness of the pro�t maximizing solution. In order to

show that condition 3 holds we use the next result, proved in Appendix A.

Lemma 3 Assume that the pro�t function �f of �rm f is de�ned on the interval

[c;H], and there exists a vector pf 2 (cf ;Hf ) such that for any j 2 Gf , any

pj 2
�
pj; Hj

�
and any p�j 2 [c�j;H�j] we have

@�f
@pj

(pj;p�j) < 0 and
@�f
@pj

(cj;p�j) > 0: (1)

Then for any pf =2
�
cf ;pf

�
and for any p�f 2 [c�f ;H�f ] there is a epf 2 �cf ;pf�

such that

�f (epf ;p�f ) > �f (pf ;p�f ) : (2)

An implication of this lemma is that a pro�t function which satis�es these con-

ditions has interior global maximum. The lemma, in words, states that if such

a pro�t function is decreasing in the prices of the �rm beyond a certain bound

and increasing at the marginal cost values, then the global maximum of the pro�t

function is attained at points that are kept between some bounds. These bounds

prevent the pro�t function from having a global maximum on the boundary of its

de�nition domain.

3 The simple logit case

Suppose that there are J products in the market denoted 1; :::; J . For j 2 f1; :::; Jg,

let dj and pj denote the characteristics and the price of product j; respectively. The

6



utility of an individual i who purchases product j is

uij = ��pj + dj + "ij;

ui0 = "i0;

where � is a scalar parameter, "ij is an iid type I extreme value random variable,

and product 0 represents the alternative when no product is purchased. In empirical

studies dj is typically taken as a linear function of several characteristics of product

j. The probability that product j is purchased, which we regard as the market

share of product j, is

sj =
exp (��pj + dj)

1 +
PJ

r=1 exp (��pr + dr)
:

Due to the simplicity of this formula the simple logit model is often used for illus-

trating various issues regarding discrete choice. From an empirical point of view

it is well known that its applicability is limited due to the restrictive substitution

patterns that it generates.

Suppose further that the J products are produced by F �rms and each �rm

f 2 f1; :::; Fg sells a subset Gf of the J products. The pro�t of �rm f is

�f =
X
j2Gf

(pj � cj)sj;

where cj denotes the constant marginal cost of producing product j. The �rst

order conditions for pro�t maximization are equivalent to the system of equations

in p = (p1; :::; pJ)
0

pf � cf =
1

�

�f
1� s0f �f

for f = 1; :::; F; (3)

where pf , cf and sf are the price, marginal cost and market share vectors corre-

sponding to the products of �rm f , and �f is the vector of ones with jGf j number

of elements. This system of equations implies that the function g whose �xed

points are the solutions of the �rst order conditions of pro�t maximization should
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be de�ned as

gf (p) = cf +
1

�

�f
1� s0f �f

for f = 1; :::; F; and (4)

g (p) =
�
g1 (p)

0 ; :::;gF (p)
0�0 :

Below we show that this pricing game has a unique Nash equilibrium. The only

necessary assumption is the intuitive � > 0. The proof of the �nal result relies on

Proposition 1.

First we show the existence of a J-dimensional compact interval that g trans-

forms into itself. Then we verify that g satis�es the conditions of Lemma 2. This

way we show that conditions 1 and 2 of Proposition 1 hold. Finally we show that

the conditions of Lemma 3 are satis�ed, which on its turn implies condition 3 of

Proposition 1.

We start by demonstrating the conditions of Lemma 2. The function g from (4)

has the components

gj (p) = cj +
1

�

1

1� s0f �f
for any f and j 2 Gf :

We de�ne

Bj � cj +
1

�

1

s0 (c)
for any j 2 f1; :::; Jg ;

where s0 (c) is the probability of the no-purchase alternative computed for p = c.

The following result (proved in Appendix A) shows that there is a compact interval

which is transformed by g into itself, and there is no �xed point of g on the boundary

of this interval.

Proposition 4 For any p 2 [c1;1)� :::� [cJ ;1) gj (p) satis�es

cj < gj (p) < Bj:

Next we establish the nonsingularity of the Jacobian of g minus the identity

matrix. This then completes the proof of the conditions of Lemma 2.

Proposition 5 The function g is continuously di¤erentiable on RJ and for any

p 2 RJ
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1. det

 
@gf (p)

@p0f
� If

!
6= 0 for any �rm f ,

2. det
�
@g (p)

@p0
� IJ

�
6= 0. (Proved in Appendix A.)

Finally, we prove that the conditions of Lemma 3 are satis�ed.

Proposition 6 For any �rm f and any j 2 Gf there exists a pj > cj such that

@�f
@pj

(pj;p�j) < 0 and
@�f
@pj

(cj;p�j) > 0

for any pj � pj and p�j � c�j.

Proof. The derivative of �f with respect to pj can be written as

@�f (p)

@pj
= sj (1� � (pj � cj) + ��f (p)) : (5)

First we note that the pro�t �f (p) is bounded in p. This can be seen from

�f (p) =
X
j2Gf

(pj � cj)
exp (��pj + dj)

1 +
PJ

r=1 exp (��pr + dr)
�
X
j2Gf

(pj � cj) exp (��pj + dj)

for pj � cj and the fact that exp
�
��pj + x0j� + �j

�
(pj � cj) !

pj!1
0 because � > 0.

Then it follows that for large pj the right hand side of the inequality below is

negative:
@�f (p)

@pj
< 1� � (pj � cj) + � sup�f (p) :

This implies the existence of pj with the announced property.

The second inequality from the statement of the proposition follows directly

from (5).

The �nal result regarding the existence and uniqueness of price equilibrium is

contained in the following statement.

Theorem 7 In the simple logit model if � > 0 there exists a unique price equilib-

rium in [c1;1)� :::� [cJ ;1).
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Proof. The proof is based on Proposition 1. For each j 2 f1; :::; Jg we de�ne

Kj such that

Kj � max
�
pj; Bj

	
: (6)

Let the pro�t function of �rm f be de�ned on [cf ;Kf ]. Then Lemma 3 implies that

�f (�;p�f ) : [cf ;Kf ] ! R has interior global maximum. So the pro�t functions

are de�ned on a convex compact set, are continuously di¤erentiable and satisfy

condition 3 of Lemma 1.

Proposition 4 implies that g (p) 2 (c;B) � [c;K] for any p 2 [c;K], and

therefore g does not have any �xed point on the boundary of [c;K]. Together

with part (2) of Proposition 5 this implies that the conditions of Kellogg�s �xed

point theorem (Lemma 2) are satis�ed and therefore g has a unique �xed point.

This establishes condition 1 of Proposition 1 and the uniqueness of p� satisfying

this condition. Condition 2 of this proposition follows by repeating the previous

arguments for gf
�
�;p��f

�
applying now part (1) of Proposition 5.

So we have obtained that the conditions of Proposition 1 are satis�ed. Hence

there is a unique price equilibrium in the set [c;K] : Since this statement is true for

any K with the property (6), it follows that there is exactly one price equilibrium

in the set [c1;1)� :::� [cJ ;1).

4 Final remarks

We have presented a result that shows existence and uniqueness of Nash equilibrium

in some situations in which previously used results cannot. We applied this result

to the model with simple logit demand. Adopting realistic assumptions like multi-

product �rms and non-symmetric products, we have shown that the pricing game

in this model has a unique Nash equilibrium. The only condition used in the proof

is that market shares of products are decreasing in own price.

In the proofs of both existence and uniqueness of price equilibrium we employed

Kellogg�s (1976) �xed point theorem. There is a connection between this approach

and the so-called global univalence approach of Gale and Nikaido (1965). It turns
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out that application of the former comes down to verifying conditions similar to the

case when we apply the latter. We refer to Vives (1999, p.47-48) for more details

on the latter approach.

The simple logit model is among the simplest models of discrete choice demand.

Yet we could not apply the methods established in the literature for proving the

existence of price equilibrium in the multi-product case. This is because, on the one

hand, the pricing game implied is not (log-)supermodular, and on the other hand,

due to multi-dimensionality of the pro�t functions, their quasi-concavity appears

di¢ cult to judge. This remains to be an interesting puzzle.

Continuing the remarks on the complexity of our proof, we mention that a pow-

erful tool used extensively to prove uniqueness in general equilibrium problems, is

the so-called index theory (see, e.g., Mas-Colell, 1985 for a fairly detailed presen-

tation). This theory can also be applied in the framework of the present paper,

and it o¤ers a more general approach. But in spite of the generalization o¤ered,

this approach does not signi�cantly simplify the proof. Neither does the additional

observation that the Hessians of the pro�t functions evaluated at the solutions to

the �rst order conditions are negative de�nite (because they are diagonal matrices

with negative diagonal elements; see equation (11) in Appendix B). From index

theory it follows that the �rst order conditions have a unique interior solution, but

it is not possible to avoid the proof that the pro�ts have interior global maximum

points.

Appendix A

Proof of Lemma 3. Take an arbitrary pf =2
�
cf ;pf

�
. For any j 2 Gf de�ne epf

by its components

epj =
8<:

pj; if pj > pj
cj + "j; if pj = cj
pj; otherwise,
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where "j > 0 will be speci�ed below. Denote the products of �rm f by f1; f2; :::; fL.

Then we can show that

�f (epf1; :::; epfL;p�f ) � �f (pf1; epf2; :::; epfL;p�f )
� �f (pf1; pf2; epf3; :::; epfL;p�f ) (7)

� ::: � �f (pf1; :::; pfL;p�f )

step by step using (1). For example, we can show that the �rst inequality holds by

treating the di¤erent cases for pf1 separately. If pf1 2
�
cf1; pf1

�
then epf1 = pf1,

so there is nothing to prove. If pf1 > pf1 then by the �rst inequality from (1)

we have that �f (�; ep�f1;p�f ) is strictly decreasing and hence �f (epf1; ep�f1;p�f ) =
�f
�
pf1; ep�f1;p�f� > �f (pf1; ep�f1;p�f ). If pf1 = cf1 then by the second inequality

from (1) �f (�; ep�f1;p�f ) is strictly increasing and therefore there is a small "f1 > 0
for which epf1 = cf1 + "f1 satis�es

�f (epf1; ep�f1;p�f ) > �f (cf1; ep�f1;p�f ) = �f (pf1; ep�f1;p�f ) :
For showing the other steps of inequality (7) we proceed similarly. The strict in-

equality from (2) is implied by the fact that if pf =2
�
cf ;pf

�
then at least one

component of pf ; say j; satis�es that pj =2
�
cj; pj

�
.

Lemma 8 Let M be an F �F non-singular matrix, � a scalar and u and v column

vectors of size F . Then

det (M � �uv0) =
�
1� �v0M�1u

�
detM;

and hence the matrix M � �uv0 is non-singular if and only if 1� �v0M�1u 6= 0. If

this last non-equality holds, then

(M � �uv0)
�1
=M�1 +

�

1� �v0M�1u
M�1uv0M�1:

(For a proof we refer to Dhrymes, 1984, p.40.)

Proof of Proposition 4. The �rst part of the inequality is obvious. For

the second part, because the probabilities of all alternatives sum to one, and s0 is
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increasing in p, we have

gj (p) = cj +
1

�

1

s0 (p) +
P

r=2Gf sr (p)
< cj +

1

�

1

s0 (p)
� cj +

1

�

1

s0 (c)
:

Proof of Proposition 5. The partial derivatives of the components of g

corresponding to a �rm f have the expressions

@gj
@ph

= � sh
1� s0f �f

for j; h 2 Gf ; and

@gj
@pk

=
sk

1� s0f �f
s0f �f

1� s0f �f
for j 2 Gf ; k =2 Gf :

These imply that the diagonal blocks of the derivatives matrix are

@gf
@p0f

= � 1

1� s0f �f
�fs

0
f ; f = 1; :::; F:

Lemma 8 (fromAppendix A) implies that the matrix
@gf
@p0f

�If = �
�
If +

1
1�s0f �f

�fs
0
f

�
is non-singular if 1 +

s0f �f
1�s0f �f

6= 0, which is satis�ed. This proves the �rst statement

of the proposition.

For the second statement we compute the o¤-diagonal blocks of the derivatives

matrix, which are

@gf
@p0q

=
s0f �f�

1� s0f �f
�2 �qs0q; f; q = 1; :::; F; f 6= q:

To simplify the involved expressions we introduce the notation:

�f �
s0f �f�

1� s0f �f
�2 and  f �

1�
1� s0f �f

�2 ; for f = 1; :::; F:

We can write
@g

@p0
� IJ in the form

@g

@p0
� IJ =

264 �1�1
...

�F �F

375
264 s1
...
sF

375
0

�

264  1�1s
0
1 + I1 � � � 0
...

. . .
...

0 � � �  F �F s
0
F + IF

375 ; (8)

where the matrix on the right hand side is block-diagonal. A diagonal block of this

matrix  f �fs
0
f + If is invertible if 1 +  fs

0
f �f 6= 0 for any p 2 RJ (Lemma 8). This

property is clearly satis�ed. Then its inverse is�
 f �fs

0
f + If

��1
= If �

 f
1 +  fs

0
f �f

�fs
0
f : (9)
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From (8) and Lemma 8 the matrix
@g

@p0
� IJ is non-singular if

1�

264 s1
...
sF

375
0 264  1�1s

0
1 + I1 � � � 0
...

. . .
...

0 � � �  F �F s
0
F + IF

375
�1 264 �1�1

...
�F �F

375 6= 0
for any p 2 RJ : Using the inverse (9), after some simple calculus this condition

becomes

1�
FX
f=1

�f
1 + �f

s0f �f 6= 0 for any p 2 RJ :

Since
�f

1 + �f
< 1

FX
f=1

�f
1 + �f

s0f �f <
FX
f=1

s0f �f = 1� s0 < 1:

This implies that

1�
FX
f=1

�f
1 + �f

s0f �f > 0 for any p 2 RJ

and hence
@g

@p0
� IJ is non-singular, that is, det

�
@g (p)

@p0
� IJ

�
6= 0 for any p 2 RJ .

Appendix B

Here we show that the pricing game implied by the standard logit case is neither

supermodular nor log-supermodular. The de�nition of supermodularity from Mil-

grom and Roberts (1990) implies that the pricing game in the case of the standard

logit is supermodular if the pro�t functions are twice continuously di¤erentiable

and for any p

@2�f (p)

@pj@ph
� 0 for any f and j; h 2 Gf ; j 6= h; and

@2�f (p)

@pj@pk
� 0 for any f and j 2 Gf ; k =2 Gf :

The pricing game is log-supermodular if the logarithms of the pro�t functions sat-

isfy the above criteria. We show that the �rst inequality does not hold for the
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standard logit model. From Proposition 7 it follows that there is a unique price

equilibrium, p�, and this solves the �rst-order conditions for pro�t maximization,

that is,
@�f (p

�)

@pj
= 0 for any f and j 2 Gf . Equation (5) implies that

1� �
�
p�j � cj

�
+ ��f (p

�) = 0: (10)

The second order derivative of the pro�t function for j; h 2 Gf ; j 6= h is

@2�f (p)

@pj@ph
=
@sj
@ph

(1� � (pj � cj) + ��f (p)) + �sj
@�f (p)

@ph
:

Computed at the equilibrium price, this is zero:

@2�f (p
�)

@pj@ph
= 0; (11)

due to (10) and
@�f (p

�)

@ph
= 0. We use this fact to show the following.

Proposition 9 For arbitrary j; h 2 Gf there exists a p arbitrarily close to p� such

that

1.
@2�f

�
p
�

@pj@ph
< 0 and

2.
@2 ln�f

�
p
�

@pj@ph
< 0.

Proof. Take any " > 0 and de�ne p such that

p
j
= p�j + "; p

h
= p�h + " and p

r
= p�r for all r 6= j; h:

Due to Theorem 7 p�f is a unique global maximum of �f
�
�;p��f

�
. Thus for any

" > 0 we have �f
�
p
�
< �f (p

�). We observe another way of writing the second

order derivatives:

@2�f (p)

@pj@ph
= �sjsh (2� � (pj � cj)� � (ph � ch) + 2��f (p)) : (12)

Then (11) implies that

2� �
�
p�j � cj

�
� � (p�h � ch) + 2��f (p

�) = 0:
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From the de�nition of p we have

2��
�
p
j
� cj

�
��
�
p
h
� ch

�
+2��f

�
p
�
< 2��

�
p�j � cj

�
�� (p�h � ch)+2��f (p

�) = 0:

Together with (12) this implies statement 1 of the proposition.

For showing statement 2 we write

@2 ln�f
�
p
�

@pj@ph
=

@2�f
�
p
�

@pj@ph
�f
�
p
�
�
@�f

�
p
�

@pj

@�f
�
p
�

@ph�
�f
�
p
��2 : (13)

Because

1� �
�
p
j
� cj

�
+ ��f

�
p
�
< 1� �

�
p�j � cj

�
+ ��f (p

�) = 0;

it follows from (5) that
@�f

�
p
�

@pj
< 0, and similarly

@�f
�
p
�

@ph
< 0. Thus

@�f
�
p
�

@pj

@�f
�
p
�

@ph
> 0;

and therefore the right hand side of (13) is negative, which completes the proof.

We note that because p is arbitrarily close to p� we do not run the risk of

having p outside the strategy sets of the �rms, so the result is robust in this sense.

Therefore we can safely claim that this pricing game is neither supermodular nor

log-supermodular.
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