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Abstract. A new classification method is proposed, called Support Hy-
perplanes (SHs). To solve the binary classification task, SHs consider the
set of all hyperplanes that do not make classification mistakes, referred
to as semi-consistent hyperplanes. A test object is classified using that
semi-consistent hyperplane, which is farthest away from it. In this way, a
good balance between goodness-of-fit and model complexity is achieved,
where model complexity is proxied by the distance between a test object
and a semi-consistent hyperplane. This idea of complexity resembles the
one imputed in the width of the so-called margin between two classes,
which arises in the context of Support Vector Machine learning. Class
overlap can be handled via the introduction of kernels and/or slack vari-
ables. The performance of SHs against standard classifiers is promising
on several widely-used empirical data sets.

Key words: Kernel Methods, Large Margin and Instance-based Clas-
sifiers

1 Introduction

Consider the task of separating two classes of objects from each other on the basis
of some shared characteristics. In general, this separation problem is referred to
as the (binary) classification task. Some well-known approaches to this task
include (binary) Logistic Regression, k-Nearest Neighbor, Decision Trees, Naive
Bayes classifier, Linear and Quadratic Discriminant Analysis, Neural Networks,
and more recently, Support Vector Machines (SVMs).

Support Hyperplanes (SHs) is a new instance-based large margin classifica-
tion technique that provides an implicit decision boundary using a set of explic-
itly defined functions. For SHs, this set consists of all hyperplanes that do not
misclassify any of the data objects. Each hyperplane that belongs to this set is
called a semi-consistent hyperplane with respect to the data. We first treat the
so-called separable case – the case where the classes are perfectly separable by
a hyperplane. Then we deal with the nonseparable case via the introduction of
kernels and slack variables, similarly to SVMs. The basic motivation behind SHs
is the desire to classify a given test object with that semi-consistent hyperplane,
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which is most likely to classify this particular object correctly. Since for each
new object there is a different such semi-consistent hyperplane, the produced
decision surface between the classes is implicit.
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Fig. 1. Two equivalent ways to apply the SVMs classification rule. In Panel (a), the test
point x receives the label (+1) assigned using hyperplane h0,

Pl
i=1 yiαiκ(xi,x)+b = 0.

In Panel (b), the same test point receives the label (+1) assigned using the farthest
away semi-consistent hyperplane from it (h−1,

Pl
i=1 yiαiκ(xi,x) + b = −1), which is

parallel to another semi-consistent hyperplane (h+1,
Pl

i=1 yiαiκ(xi,x)+b = 1) in such
a way that the distance between these two hyperplanes is maximal.

An advantage of the SHs method is that it is robust against outliers and
avoids overfitting. Further, we demonstrate empirically that the SHs decision
boundary appears to be relatively insensitive to the choice of kernel applied to
the data. The SHs approach is more conservative than SVMs, for instance, in
the sense that the hyperplane determining the classification of a new object is
more distant from it than any of the hyperplanes forming the so-called margin
in SVMs. It can be argued that the SHs approach is more general than SVMs
by means of a formulation of the SHs decision boundary that is nested into the
formulation of the SVMs decision boundary.

2 Support Vector Machines for Classification

We start with an account of the SVM classifier, developed by Vapnik ([11]) and
co-workers. SVMs for binary classification solve the following task: given training
data {xi, yi}l

i=1 from Rn × {−1, 1}, estimate a function f : Rn → {−1, 1} such
that f will classify correctly unseen observations {xj , yj}l+1+m

j=l+1 . In SVMs, the
input vectors {xi}l

i=1 are usually mapped from Rn into a higher-dimensional
space via a mapping ϕ, in which the vectors are denoted as {ϕ(xi)}l

i=1. In
this higher-dimensional (or, feature) space, the SVM method finds the hyper-
plane that maximizes the closest distance between the observations from the two
classes, the so-called margin, while at the same time minimizes the amount of
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training errors ([2], [4], [11]). The optimal SVM hyperplane is found by solving
the following quadratic optimization problem:

max
α

∑l
i=1 αi − 1

2

∑l
i,j=1 αiαjyiyjκ(xi,xj) (1)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l

i=1 yiαi = 0,

where κ(xi,xj) = ϕ(xi)′ϕ(xj) is a Mercer kernel that calculates the inner
product of input vectors xi and xj mapped in feature space. Using the opti-
mal α’s of (1) the SVM hyperplane h0, w′ϕ(x) + b = 0, can be expressed as∑l

i=1 yiαiκ(xi,x) + b = 0. Here, w is a vector of hyperplane coefficients, and
b is the intercept. A test observation x receives the class label assigned using
h0, as shown in Fig. 1a. Stated equivalently, x is classified using the farthest-
away hyperplane that is semi-consistent with the training data, which is parallel
to another semi-consistent hyperplane in such a way that the distance between
these two hyperplanes is maximal (see Fig. 1b).

3 Support Hyperplanes

3.1 Definition and Motivation

Just like SVMs, the SHs address the classification task. Let us focus on the so-
called linearly separable case, where the positive and negative observations of
a training data set D are perfectly separable from each other by a hyperplane.
Consider the set of semi-consistent hyperplanes. Formally, a hyperplane with
equation w′x+b = 0 is defined to be semi-consistent with a given data set if for all
data points i = 1, 2, . . . , l, it holds that yi(w′xi + b) ≥ 0; the same hyperplane is
defined to be consistent with the data if for all data points i = 1, 2, . . . , l, it holds
that yi(w′xi + b) > 0. The basic motivation behind Support Hyperplanes (SHs)
is the desire to classify a test observation x with that semi-consistent hyperplane,
which is in some sense the most likely to assign the correct label to x. The extent
of such likeliness is assumed to be positively related to the distance between x
and any semi-consistent hyperplane. Thus, if x is more distant from hyperplane
ha than from hyperplane hb, both of which are semi-consistent with D, then ha

is considered more likely to classify x correctly than hyperplane hb. This leads to
the following classification rule of SHs: a test point x should be classified using
the farthest-away hyperplane from x that is semi-consistent with the training
data. Intuitively, this hyperplane can be called the “support hyperplane” since
it supports its own judgement about the classification of x with greatest self-
confidence; hence the name Support Hyperplanes for the whole method. For each
test point x the corresponding support hyperplane is different. Therefore, the
entire decision boundary between the two classes is not explicitly computed. A
point is defined to lie on the SHs decision boundary if there exist two different
semi-consistent hyperplanes that are farthest away from it. SHs consider the
distance between a test point x and a semi-consistent hyperplane as a proxy for
complexity associated with the classification of x. Under this circumstance, the
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best generalizability is achieved when one classifies x with the so-called support
hyperplane: the semi-consistent hyperplane that is most distant from x. If one
however considers the width of the margin as a proxy for complexity, then the
SVM hyperplane achieves the best generalizability. Notice that by definition the
support hyperplane is at least as distant from x as any of the two semi-consistent
hyperplanes that form the margin of the optimal SVM hyperplane, which makes

(a) (b)
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Fig. 2. Classification with Support Hyperplanes in two steps. At stage one (Panel (a)),
a test point x is added as class “–” to the original data set that consists of “+” and
“–” labeled points, and the distance a from x to the farthest away semi-consistent
hyperplane is computed. At stage two (Panel (b)), x is added to the original data set
as class “+”, and the distance b from x to the farthest away semi-consistent hyperplane
is computed. If a > b (a < b), then x is assigned to class “–” (“+”).

the SHs method relatively more conservative. Let us now argue more formally
that the SH approach generalizes SVM by means of a formulation of the SHs
decision boundary that is part of a formulation of the SVMs decision boundary.
A point x is defined to lie on the implicit SHs separation surface if the following
three conditions are met: (1) x is equally distant from two hyperplanes, (2) these
two hyperplanes are semi-consistent with the training data, and (3) the distance
between point x and any of the two hyperplanes is maximal. Next, observe that
a point x is defined to lie on the explicit SVMs optimal hyperplane if and only if
the three conditions above plus an additional fourth condition are all satisfied:
(4) the two (semi-consistent) hyperplanes are parallel to each other.

3.2 Estimation

Given a linearly separable data set D, {xi, yi}l
i=1, from Rn×{−1, 1}, SHs classify

a test point xl+1 using that semi-consistent hyperplane with respect to D, which
is most distant from xl+1. Formally, in order to find the support hyperplane
w′x + b = 0 of point xl+1, one solves the following quadratic optimization
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problem:

min
w,b,yl+1

1
2
w′w (2)

s.t. yi(w′xi + b) ≥ 0, i = 1, 2, . . . , l

yl+1(w′xl+1 + b) = 1

The distance between the support hyperplane w′x + b = 0 and xl+1 is defined
as 1/

√
w′w by the last constraint of (2), irrespective of the label yl+1. This

distance is maximal when 1
2w

′w is minimal. The role of the first l inequality
constraints is to ensure that the support hyperplane is semi-consistent with the
training data.

Optimization problem (2) is partially combinatorial, since not all variables
are continuous: the label yl+1 can take only two discrete values. Therefore, in
order to solve (2), two distinct optimization subproblems should we solved (see
Fig. 2). One time (2) is solved when yl+1 equals +1, and another time when
yl+1 equals −1. Each of these optimization subproblems has a unique solution,
provided that the extended data set {xi, yi}l+1

i=1 is separable. In case the two so-
lutions yield the same value for the objective function 1

2w
′w, the test point xl+1

lies on the SHs decision boundary and the classification label is undetermined.
If the extended data set has become nonseparable when yl+1 is labeled, say, +1,
then the respective optimization subproblem does not have a solution. Then,
xl+1 is assigned the opposite label, here −1. A way to detect whether a sub-
problem has become nonseparable from separable will be described in [8]. The
implicit nature of SHs provides for the property that the SHs decision boundary
is in general nonlinear, even in case the original data is not mapped into a higher-
dimensional space. Figure 3 demonstrates that this property does not hold in
general for SVMs. This figure also illustrates that the SHs decision boundary
appears to be less sensitive to the choice of kernel and kernel parameters than
the respective SVMs boundary.

We now treat the so-called (linearly) nonseparable case. A training data
set is said to be nonseparable if there does not exist a single hyperplane that
is consistent with it. SHs deal with the nonseparable case in the same way as
SVMs: by introducing so-called slack variables. For SHs, this procedure amounts
to solving the following quadratic optimization problem:

min
w,b,yl+1,ξ

1
2
w′w + C

l∑

i=1

ξi (3)

s.t. yi(w′xi + b) ≥ 0− ξi, ξi ≥ 0, i = 1, 2, . . . , l

yl+1(w′xl+1 + b) = 1.

Note that in (3) the points that are incorrectly classified are penalized linearly
via

∑l
i=1 ξi. If one prefers a quadratic penalization of the classification errors,

then the sum of squared errors
∑l

i=1 ξ2
i should be substituted for

∑l
i=1 ξi in (3).

One can go even further and extend the SHs algorithm in a way analogical to
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LS-SVM ([5]) by imposing in (3) that constraints yi(w′xi + b) ≥ 0− ξi hold as
equalities, on top of substituting

∑l
i=1 ξ2

i for
∑l

i=1 ξi.
Each of the two primal subproblems pertaining to (3) can be expressed in

dual form1 as:

SH, linear kernel

SVM, linear kernel

SH, RBF kernel, γ=5

SVM, RBF kernel, γ=5

SH, RBF kernel,γ=35

SVM, RBF kernel,γ=35

Fig. 3. Decision boundaries for SHs and SVMs using the linear, κ(xi,xj) = x′ixj , and
the RBF, κ(xi,xj) = exp(−γ ‖ xi − xj ‖2), kernels on a linearly separable data set.
The dashed contours for the SHs method are iso-curves along which the ratio of two
distances is constant: the distance from a test point to the farthest semi-consistent
hyperplane when it is added to the data set one time as “+”, and another time as “–”.

max
α

αl+1 − 1
2

∑l+1
i,j=1 αiαjyiyj(x′ixj) (4)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l+1

i=1 yiαi = 0,

where the α’s are the Lagrange multipliers associated with the respective sub-
problem. In the first subproblem yl+1 = 1, while in the second subproblem
yl+1 = −1. The advantage of the dual formulation (4) is that different Mercer
kernels can be employed to replace the inner product x′ixj in (4), just like in the
SVMs case. The (l+1)×(l+1) symmetric positive-definite matrix with elements
ϕ(xi)′ϕ(xj) on the ith row and jth column is called the kernel matrix.

The SHs approach can also be theoretically justified by observing that a
kernel matrix used by SHs can be modified to represent the original SHs opti-
mization problem as an SVM problem. It turns out that the theoretical under-
pinnings for SVMs can also be transferred to the SHs method. More details will
be provided in [8].

1 The derivation of the dual problem resembles the one used in SVMs (see, e.g., [2]).
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Table 1. Leave-one-out accuracy rates (in %) of the Support Hyperplanes classifier as
well as some standard methods on several binary data sets. Rbf, 2p and lin stand for
Radial Basis Function, second-degree polynomial and linear kernel, respectively

SH SH SH SVM SVM SVM
rbf 2p lin rbf 2p lin NB LR LDA QDA MLP kNN DS C4.5

Sonar 91.4 88.0 79.8 88.9 82.2 80.8 67.3 73.1 75.5 74.9 81.3 86.5 73.1 71.2

Voting 96.8 96.3 96.8 96.5 96.3 96.8 90.3 96.5 95.9 94.2 94.9 93.3 95.9 97.0

W.B.C. 97.4 96.9 97.0 97.0 96.9 96.9 96.0 96.1 96.0 91.4 95.0 97.0 92.4 95.3

Heart 85.6 81.9 85.6 85.6 81.1 85.6 83.0 83.7 83.7 81.5 78.9 84.4 76.3 75.2

A.C.A. 87.4 86.7 86.8 87.4 79.9 87.1 77.1 86.4 85.8 85.2 84.8 85.9 85.5 83.8

Hep. 87.7 86.5 86.5 86.5 86.5 86.5 83.2 83.9 85.8 83.9 79.4 85.8 79.4 80.0

4 Experiments on Some UCI and SlatLog Data Sets

The basic optimization algorithm for Support Hyperplanes (4) is implemented
via a modification of the freely available LIBSVM software ([3]). We tested the
performance of Support Hyperplanes on several small- to middle-sized binary
data sets that are freely available from the SlatLog and UCI repositories ([9])
and have been analyzed by many researchers and practitioners (e.g. [1], [6],
[7], [10] and others): Sonar, Voting, Wisconsin Breast Cancer (W.B.C.), Heart,
Australian Credit Approval (A.C.A.), and Hepatitis (Hep.). Detailed information
on these data sets can be found on the web sites of the respective repositories.

We compare the results of SHs to those of several state-of-art techniques:
Linear and Quadratic Discriminant Analysis (LDA and QDA), Logistic Regres-
sion (LR), Multi-layer Perceptron (MLP), k-Nearest Neighbor (kNN), Naive
Bayes classifier (NB) and two types of Decision Trees – Decision Stump (DS)
and C4.5. The experiments for the NB, LR, MLP, kNN, DS and C4.5 meth-
ods have been carried out with the WEKA learning environment using default
model parameters, except for kNN. We refer to [12] for additional information
on these classifiers and their implementation. We measure model performance by
the leave-one-out (LOO) accuracy rate. For our purposes – comparison between
the methods – LOO seems to be more suitable than the more general k-fold
cross-validation (CV), because it always yields one and the same error rate es-
timate for a given model, unlike the CV method (which involves a random split
of the data into several parts).

Table 1 presents performance results for all methods considered. Some meth-
ods, namely kNN, SHs and SVMs, require tuning of model parameters. In these
cases, we report only the highest LOO accuracy rate obtained by performing
a grid search for tuning the necessary parameters. Overall, the accuracy rates
of Support Hyperplanes exhibit first-rate performance on all six data sets: five
times out of six the accuracy rate of SHs is the highest one. SVMs follow closely,
and the rest of the techniques show relatively less favorable and more volatile
results. For example, the C4.5 classifier performs best on the Voting data set,
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but achieves rather low accuracy rates on two other data sets – Sonar and Heart.
Note that not all data sets are equally easy to handle. For instance, the perfor-
mance variation over all classifiers on the Voting and Breast Cancer data sets is
rather low, whereas on the Sonar data set it is quite substantial.

5 Conclusion

We have introduced a new technique that can be considered as a type of an
instance-based large margin classifier, called Support Hyperplanes (SHs). SHs
induce an implicit and generally nonlinear decision surface between the classes
by using a set of (explicitly defined) hyperplanes. SHs classify a test observation
using the farthest-away hyperplane from it that is semi-consistent with the data
used for training. This results in a good generalization quality. Although we
have treated just the binary case, the multi-class extension can easily be carried
out by means of standard methods such as one-against-one or one-against-all
classification. A potential weak point of SHs, also applying to SVMs, is that it is
not clear a priori which type of kernel and what value of the tuning parameters
should be used. Furthermore, we do not address the issue of attribute selection
and the estimation of class-membership probabilities. Further research could also
concentrate on the application of SHs in more domains, on faster implementation
suitable for analyzing large-scale data sets, and on the derivation of theoretical
test-error bounds.
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